ЗАЩИТА ОТ КОРРОЗИИ В СТРОИТЕЛЬСТВЕ

КОНСТРУКЦИИ БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ

ИСПЫТАНИЕ ПАРОПРОНИЦАЕМОСТИ ЗАЩИТНЫХ ПОКРЫТИЙ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Защита от коррозии в строительстве

КОНСТРУКЦИИ БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ

Испытание паропроницаемости защитных покрытий

ΓΟCT 28575-90

Corrosion protection in construction. Concrete and rainforced concrete constructions, Test of protection covers from steam penetration

MKC 19.040 91.080.40 OKCTY 5870

Дата введения 01.01.91

Настоящий стандарт распространяется на бетонные и железобетонные конструкции и устанавливает методы определения паропроницаемости лакокрасочных, мастичных и оклеечных покрытий на бетонных или железобетонных конструкциях при воздействии водяного пара.

1. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Паропроницаемость защитного покрытия — способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах защитного покрытия, характеризуемая величиной коэффициента паропроницаемости или сопротивлением проницаемости при воздействии водяного пара.

2. СУХОЙ МЕТОД ОПРЕДЕЛЕНИЯ ПАРОПРОНИЦАЕМОСТИ

2.1. Сущность метода

Метод заключается в определении количества водяного пара, которое проходит через образец с защитным покрытием или без него, путем измерения массы влагопоглощающего вещества и последующем вычислении коэффициента паропроницаемости. В спорных вопросах при определении паропроницаемости этот метод испытания является арбитражным.

2.2. Отбор и подготовка образцов

- 2.2.1. Образцы для определения паропроницаемости вырезают из бетонных кубов или цилиндров, подготовленных для испытания на прочность бетона или изготовленных в лабораторных условиях. Для сравнительных испытаний образцы могут быть вырезаны из строительной конструкции.
- 2.2.2. Размеры образцов для испытания выбирают в зависимости от способа их получения и размера зерен заполнителей по табл. 1.

Таблица 1

В миллиметрах

Способ получения образцов	Размер зерен заволнителя	Размеры образцов	
		Диаметр	Толщина
Вырезанные из кубов (цилиндров) или изготовленные в лабораторных условиях	До 5	$50 \pm {0 \atop 1.0}$	20 ± 1,0
	От 5 до 25	100 ± 0 1,0	30 ± 1,5
Вырезанные из строительных конструкций	_	100 ± 0	30 ± 1,5

Излание официальное

Перепечатка воспрещена

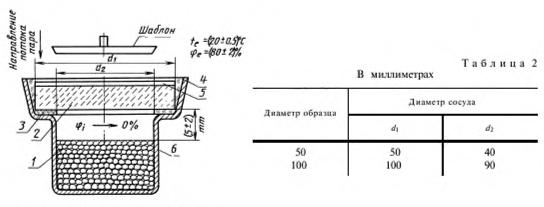
© Издательство стандартов, 1991 © Стандартинформ, 2005

C. 2 FOCT 28575-90

Испытуемую поверхность образцов, получаемых из строительной конструкции, оставляют без изменений.

Поверхность образцов, получаемых из бетонных кубов или цилиндров, перед испытанием очищают от цементной пленки и шлифуют плоскопараллельно.

- 2.2.4. Испытание проводят на пяти образцах с защитным покрытием и на пяти образцах без покрытия. Поверхность образца обеспыливают. Нанесение защитного покрытия выполняют не ранее чем через 28 сут в соответствии с техническими требованиями для применения испытуемого покрытия.
- 2.2.5. Толщину образца измеряют в пяти точках с помощью штангенциркуля и определяют среднеарифметическое значение.


Толщина образца с защитным покрытием включает в себя и толщину защитного покрытия.

2.2.6. По краю нижней поверхности образца приклеивают резиновое кольцо так, чтобы испытуемая поверхность без защитного покрытия не была запачкана клеем.

2.3. Аппаратура и материалы

Для испытаний применяют:

- 1) стеклянные или металлические сосуды (черт. 1, табл. 2);
- круглые шаблоны диаметром d₂;
- шкаф для кондиционирования (изменение температуры в пределах ± 2 °C);
- 4) резиновые кольца согласно диаметрам, приведенным в табл. 2;

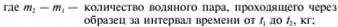
влягопоглощающее вещество; 2 – образец;
 резиновое кольцо; 4 – герметизирующая паста;
 вспытуемое покрытие; 6 – сосуд

Черт. 1

- 5) штангенциркуль;
- 6) весы с погрешностью взвешивания ± 1 мг;
- 7) металлические и волосяные щетки;
- влагопоглощающее вещество гранулированный хлористый кальций (обезвоженный) или силикагель (обезвоженный);
 - 9) клей на основе эпоксидной смолы;
- герметизирующую пасту, состав которой выбирается предпочтительно из следующих вариантов;
 - макрокристаллический воск 60 % и кристаллически чистый твердый парафин 40 %;
 - макрокристаллический воск 90 % и пластификатор 10 %;
- твердый парафин с точкой плавления от 50 °C до 52 °C 80 % и клейкий полиизобутилен 20 %;
 - пчелиный воск или парафин 60 % и канифоль 40 %.

2.4. Проведение испытания

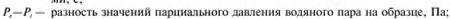
2.4.1. В сосуд закладывают влагопоглощающее вещество по черт. 1, зазор между образцом и стенкой сосуда заполняют герметизирующей пастой. Кольцеобразный край верхней поверхности


образца покрывают герметизирующей пастой до размера, соответствующего открытой нижней поверхности образца.

- 2.4.2. Подготовленные к испытанию 10 сосудов с образцами взвешивают с точностью до \pm 1 мг или \pm 10 мг в зависимости от размеров образца и выдерживают в шкафу для кондиционирования при температуре (20 \pm 0,5) °C и относительной влажности воздуха ϕ_c (80 \pm 2) %.
- Сосуды с образцами взвешивают каждые 24 ч и определяют количество водяного пара, прошедшего через образцы.
- 2.4.4. Взвешивания повторяют до тех пор, пока изменение массы за единицу времени не будет постоянным. Насыщение водой влагопоглощающего вещества не должно превышать 5 % исходного количества. При насыщении, превышающем 5 %, испытание образцов повторяют, причем сосуд наполняют новым количеством влагопоглощающего вещества.
 - 2.4.5. Результаты измерений и взвешивания каждого образца записывают.

2.5. Обработка результатов испытания

- 2.5.1. По данным отдельных взвешиваний строят график зависимости изменения массы влагопоглощающего вещества от времени (черт. 2). Для определения коэффициента паропроницаемости используют данные взвешиваний после появления постоянного диффузионного потока, что на черт. 2 изображено в виде прямой линии.
- 2.5.2. Коэффициент паропроницаемости (δ_n), кг·м⁻² с⁻¹ Па⁻¹, вычисляют для каждого образца по формуле

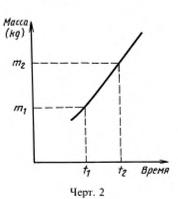

$$\delta_{at} = \frac{(m_2 - m_1) \cdot h}{A(t_2 - t_1)(P_e - P_t)},$$
(1)

h — толщина образца, м;

А — площадь испытуемого образца, м²;

 $t_2 - t_1$ — интервал времени между двумя взвешиваниями, с;

 P_e — парциальное давление водяного пара в воздухе температурой 20 °C и относительной влажностью $\phi_e = 80$ %, Па, вычисляемое по формуле


%, Па, вычисляемое по формуле
$$P_e = \frac{\varphi_e \cdot 2336,75 \cdot \Pi a}{100}; \qquad (2)$$

P_i — парциальное давление водяного пара в воздухе температурой 20 °C и относительной влажностью φ, 0 %, Па, вычисляемое по формуле

$$P_i = \frac{i \cdot 2336,75 \cdot \Pi a}{100}.$$
 (3)

- 2.5.3. В качестве результата испытаний определяют среднеарифметическое значение отдельных величин:
 - $\delta_{m,2}$ среднее значение δ пяти образцов без защитного покрытия;
 - $\delta_{\pi^{-1}}$ среднее значение δ пяти образцов с защитным покрытием.
- За коэффициенты паропроницаемости принимают среднеарифметическое ($\delta_{m,1}$ или $\delta_{m,2}$) результатов четырех определений одной серии испытаний, расхождение между которыми не превышает 5 %. Если не удается получить четыре значения, то следует повторить все испытания. Значения, отличающиеся от среднеарифметического более чем на 5 %, исключаются.
 - Паропроницаемость (б_n) защитного покрытия вычисляют по формуле

$$\delta_0 = \frac{\delta_{n,2}}{\delta_{m,1}}.$$
 (4)

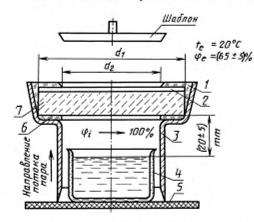
2.6. Протокол испытания

Протокол испытания должен содержать следующие данные:

- наименование предприятия-изготовителя и страны;
- наименование и марку испытуемого продукта (описание строительной конструкции, из которой были получены образцы, вид защитного покрытия);
 - 3) размеры образцов (диаметр, толщина, испытуемая площадь);
- технологию и условия нанесения защитного покрытия (температура, относительная влажность воздуха, продолжительность сушки);
- условия подготовки и проведения испытаний (температура, относительная влажность воздуха);
 - измеренные значения массы влагопоглощающего вещества;
 - отдельные и средние значения результатов испытаний паропроницаемости покрытия;
 - 8) дату и место проведения испытаний;
 - 9) обозначение настоящего стандарта.

3. МОКРЫЙ МЕТОД ИСПЫТАНИЯ ПАРОПРОНИЦАЕМОСТИ

3.1. Сущность метода


Метод испытания заключается в определении количества водяного пара, пропускаемого образцами с защитным покрытием и без него, или проходящего через нанесенное на стеклоткань защитное покрытие и последующем расчете сопротивления паропроницаемости защитного покрытия.

3.2. Отбор и подготовка образцов

3.2.1. В качестве образцов применяют бетонные диски диаметром (100 \pm 1) мм. Толщина и изготовление образцов по п. 2.2.

Для испытания паропроницаемости защитного покрытия не на бетонном основании защитное покрытие наносят на стеклоткань толщиной 0.5 мм, размером ячеек 0.5×0.5 мм.

3.2.2. Испытание проводится согласно п. 2.2.4.

I — герметизирующая паста; 2 — испытуемое покрытие;
 З — обойма; 4 — испытательный стакан с водой, 5 — резиновый коврик; 6 — резиновое кольцо;
 7 — образец

Черт. 3

3.3. Аппаратура и материалы

Для испытания применяют:

- 1) обойму по черт. 3:
- шаблоны диаметром d₁;
- 3) испарительные стаканы с крышкой;
- 4) резиновые прокладки;
- 5) металлические кольца;
- шкаф для кондиционирования (изменение температуры в пределах ± 2 °C);
- резиновые кольца согласно диаметрам по табл. 2:
 - 8) штангенциркуль;
- 9) весы с погрешностью взвешивания $\pm 1 \text{ мг}$;
 - 10) клей на основе эпоксилной смолы:
 - 11) герметизирующую пасту по п. 2.3;
 - 12) дистиллированную воду;
 - 13) нитрат аммония;
 - 14) стеклоткань.

3.4. Проведение испытания

 3.4.1. Подготовку бетонных образцов к испытанию проводят по п. 2.2.1 и 2.2.2. Образцы вставляют в расширенную часть обоймы и герме-

тизирующей пастой, как указано в п. 2.4.1, заделывают зазоры между образцами и краями обоймы по черт. 3.

3.4.2. Для испытания паропроницаемости защитного покрытия, наносимого на стеклоткань, стеклоткань защемляют между двумя металлическими кольцами и вставляют в расширенную часть обоймы. Затем на стеклоткань по п. 2.2.4 наносят защитное покрытие и сушат. Зазоры между обоймой и металлическими кольцами заделывают герметизирующей пастой. При этом испытуемое защитное покрытие следует закрыть шаблоном.

3.4.3. Подготовленные обоймы с образцами и испытательные стаканы с водой устанавливают на резиновой подкладке в шкафу для кондиционирования при температуре (20 ± 0.5) °C и относительной влажности воздуха $\phi_c = (65 \pm 5)$ %.

Относительную влажность воздуха регулируют с помощью насыщенного раствора нитрата аммония. Принципиальная схема комплектного устройства испытания показана на черт. 3.

- 3.4.4. Испытательные стаканы с водой взвешивают с закрытой крышкой с точностью до ± 1 мг. Взвешивание повторяют каждые 24 ч до тех пор, пока масса не станет постоянной.
- 3.4.5. Через 10 дней доливают воду в испытательные стаканы и поддерживают уровень в (20 ± 5) мм от нижней поверхности образца.
 - 3.4.6. Испытание защитного покрытия без бетона проводят по п. 3.4.2.
 - Взвешивание испытательных стаканов начинают на следующий день.

3.5. Обработка результатов испытания

- 3.5.1. Для определения сопротивления паропроницаемости используют данные взвешивания, полученные после установившегося постоянного диффузионного потока водяного пара. Для защитных покрытий, нанесенных на стеклоткань, рассчитывают лишь удельное сопротивление паропроницаемости согласно п. 3.5.3.
- 3.5.2. Сопротивление паропроницаемости (R_v), м²·Па·с·кг⁻¹, защитного покрытия вычисляют по формуле

$$R_w = A (P_i - P_o) \left(\frac{1}{m_1} - \frac{1}{m_2} \right),$$
 (5)

где A — площадь испытуемого защитного покрытия, M^2 ;

 т. — среднее значение количества водяного пара, проходящего через образец с защитным покрытием за единицу времени, кг/с;

 тореднее значение количества водяного пара, проходящего через образец без защитного покрытия за единицу времени, кг/с;

 $P_{i} - P_{e}$ — разность парциальных давлений водяного пара на образце, Па;

 Р_s — парциальное давление водяного пара в воздухе температурой 20 °C и относительной влажностью φ_s = 65 %, Па, вычисленное по формуле (2);

 P_i — парциальное давление водяного пара в воздухе температурой 20 °C и относительной влажностью φ_i 100 %, Па, вычисленное по формуле (3).

3.5.3. Удельное сопротивление паропроницаемости (r_*), м Па·кг $^{-1}$ -с, вычисляют для каждого из пяти образцов на стеклоткани по формуле

$$r_w = \frac{A \cdot (P_i - P_e) \cdot t}{m \cdot h_e}, \qquad (6)$$

где где 1 — продолжительность прохождения постоянного потока пара, с;

т — общая масса водяного пара, проходящего через защитное покрытие за время t, кг;

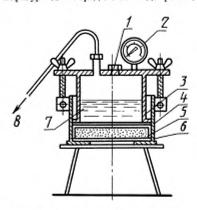
 h_c — толщина защитного покрытия, м.

За среднее значение количества водяного пара, проходящего через образец m_1 и m_2 , принимают среднеарифметическое значение четырех параллельных определений, расхождения между которыми не превышают 10 %.

3.6. Протокол испытания

Протокол испытания должен содержать данные, указанные в п. 2.6, а также:

- измеренные значения массы испарившейся воды m₁ и m₂;
- отдельные и средние значения сопротивления паропроницаемости покрытия R_v или r_v.


- 1. Для изготовления образцов для испытания водопроницаемости приемлема следующая рецептура:
- портландиемент 35 400 кг;
- плотный естественный заполнитель 1400 кг;
- с гранулометрическим составом, %:

от 0 до 0,20 мм - 10:

от 0,21 до 0,80 мм — 20;

от 0,81 до 2,00 мм — 30; от 2,01 до 5,00 мм — 40;

- водоцементное отношение 0,60.
- Принципиальная схема аппаратуры для определения водопроницаемости покрытий (черт. 4).

 I — входное отверстие для воды; 2 — манометр; 3 — уплотняющая прокладка (резиновая); 4 — испытуемое покрытие; 5 — цементно-песчаный образец; 6 — металлическое кольцо; 7 - вода; 8 - к баллону со сжатым воздухом

Черт. 4

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона Госстроя СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 10.05.89 № 74
- 3. Стандарт полностью соответствует СТ СЭВ 6320-88
- 4. ВВЕДЕН ВПЕРВЫЕ
- 5. ПЕРЕИЗДАНИЕ. Апрель 2005 г.

Редактор В.Н. Копысов Технический редактор В.Н. Прусакова Корректор В.С. Черкая Компьютерная верстка С.В. Рябовой

Сдано в набор 15.04.2005. Подписано в печать 20.05.2005. Формат 60 × 84 1/8. Бумага офсетная. Гарнитура Тайис. Печать офсетная. Усл. печ. л. 0,93. Уч.-изд. л. 0,70. Тяраж 60 экз. Зак. 294. С 1145

> ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4. info@gostinfo.ru www.gostinfo.ru

Набрано во ФГУП «Стандартинформ» на ПЭВМ

Отпечатано в филиале ФГУП «Стандартинформ» - тип. «Московский печатник», 105062 Москва, Лялин пер., 6