ПРОДУКЦИЯ КОСМЕТИЧЕСКАЯ

Определение содержания 3-йодо-2-пропинилбутилкарбамата (IPBC) методами жидкостной хроматографии и масс-спектрометрии

ПРАДУКЦЫЯ КАСМЕТЫЧНАЯ

Вызначэнне зместу 3-ёда-2-прапінілбутылкарбамату (IPBC) метадамі вадкаснай храматаграфіі і мас-спектраметрыі

(EN 16343:2013, IDT)

Издание официальное

Настоящий государственный стандарт ГОСТ EN 16343-2016 идентичен EN 16343:2013 и воспроизведен с разрешения CEN/CENELEC, Avenue Marnix 17, B-1000 Brussels. Все права по использованию европейских стандартов в любой форме и любым способом сохраняются во всем мире за CEN/CENELEC и его национальными членами, и их воспроизведение возможно только при наличии письменного разрешения CEN/CENELEC в лице Государственного комитета по стандартизации Республики Беларусь.

Предисловие

Евразийский совет по стандартизации, метрологии и сертификации (EACC) представляет собой региональное объединение национальных органов по стандартизации государств, входящих в Содружество Независимых Государств. В дальнейшем возможно вступление в EACC национальных органов по стандартизации других государств.

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены».

Сведения о стандарте

- 1 ПОДГОТОВЛЕН научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации» (БелГИСС)
 - 2 ВНЕСЕН Госстандартом Республики Беларусь
- 3 ПРИНЯТ Евразийским советом по стандартизации, метрологии и сертификации по переписке (протокол № 89-П от 27 июля 2016 г.)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Таджикистан	TJ	Таджикстандарт

4 Настоящий стандарт идентичен европейскому стандарту EN 16343:2013 Cosmetics — Analysis of cosmetic products — Determination of 3-iodo-2-propynyl butylcarbamate (IPBC) in cosmetic preparations, LC-MS methods (Косметика. Анализ косметической продукции. Определение 3-йод-2-пропинил бутилкарбамата (ИПБК) в косметических средствах. Методы жидкостной хроматографии с массовой спектрометрией).

Европейский стандарт разработан техническим комитетом по стандартизации CEN/TC 392 «Косметика» Европейского комитета по стандартизации (CEN).

Перевод с английского языка (en).

Официальный экземпляр европейского стандарта, на основе которого подготовлен настоящий государственный стандарт, имеется в Национальном фонде ТНПА.

В стандарт внесено следующее редакционное изменение: наименование государственного стандарта изменено относительно наименования европейского стандарта для приведения в соответствие с требованиями ГОСТ 1.5—2001 (подраздел 3.6).

Степень соответствия — идентичная (IDT)

5 ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 19 августа 2016 г. № 66 непосредственно в качестве государственного стандарта Республики Беларусь с 1 апреля 2017 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных (государственных) стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных (государственных) органов по стандартизации.

© Госстандарт, 2016

Настоящий стандарт не может быть воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта Республики Беларусь

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

ПРОДУКЦИЯ КОСМЕТИЧЕСКАЯ

Определение содержания 3-йодо-2-пропинилбутилкарбамата (IPBC) методами жидкостной хроматографии и масс-спектрометрии

ПРАДУКЦЫЯ КАСМЕТЫЧНАЯ

Вызначэнне зместу 3-ёда-2-прапінілбутылкарбамату (ІРВС) метадамі вадкаснай храматаграфіі і мас-спектраметрыі

Cosmetic products

Determination of 3-iodo-2-propynyl butylcarbamate (IBPC) by by liquid chromatography and mass spectroscopy methods

Дата введения — 2017-04-01

1 Область применения

Настоящий стандарт устанавливает метод количественного определения 3-йодо-2-пропинилбутилкарбамата (IPBC), используемого в косметической продукции в качестве консерванта, при его содержании диапазоне от 0,005 до 0,1 г/100 г.

2 Сущность метода

IPBC экстрагируют из косметической продукции, используя метанол. IPBC, присутствующий в экстракте пробы, отделяют методом обращенно-фазовой высокоэффективной жидкостной хроматографии (BЭЖХ) с масс-селективным детектированием (LC-MS) или жидкостной хроматографии с тандемной масс-спектрометрией (LC-MS/MS). Количественное определение IPBC осуществляют методом калибровки с использованием внешнего стандарта или методом стандартных добавок.

3 Реактивы

3.1 Общие требования

Если не указано иное, используют только реактивы аналитической или более высокой степени чистоты; используемая вода должна быть дистиллированной или соответствующей ей по чистоте. «Раствором» следует считать водный раствор, если не указано иное.

- 3.2 **Йодопропинилбутилкарбама**т, номер CAS: 55406-53-6 (поставщик: Sigma-Aldrich ¹⁾ (521949), Dr. Ehrenstorfer GmbH ¹⁾ (C 14335000)).
 - 3.3 **Метанол** для ВЭЖХ, номер CAS: 67-56-1.
 - 3.4 Муравьиная кислота, номер CAS: 64-18-6.
 - 3.5 **Тетрагидрофуран** (THF), номер CAS: 109-99-9.
 - 3.6 Пропан-2-ол, номер CAS: 67-63-0.

3.7 Подвижные фазы (элюенты)

- 3.7.1 **Элюент А**: 1 см³ муравьиной кислоты (3.4) смешивают с 1000 см³ воды.
- 3.7.2 Элюент В: метанол (3.3).
- 3.8 Основной раствор IPBC концентрацией $c = 1 \text{ мг/см}^3$.

Взвешивают приблизительно 0,05 г IPBC (3.2) в мерную колбу вместимостью 50 см³. Вначале разбавляют небольшим количеством метанола (3.3), затем добавляют метанол до метки. Срок хранения раствора в холодильной камере 8 нед.

¹⁾ Пример пригодной продукции, имеющейся в продаже. Эта информация приведена для удобства пользователей настоящего стандарта и не является рекламой данной продукции со стороны CEN. Аналогичная продукция может использоваться, если подтверждено, что она обеспечивает получение таких же результатов.

FOCT EN 16343-2016

3.9 Калибровочные растворы (стандартные растворы)

Аликвотную часть основного раствора объемом 5,0 см 3 (3.8) переносят в мерную колбу вместимостью 50 см 3 и добавляют метанол (3.3) до метки (c=0,1 или 100 мкг/см 3). Из полученного раствора путем разбавления приготавливают 5 или более растворов с концентрацией IPBC от c=0,05 мкг/см 3 до c=1,0 мкг/см 3 . Срок хранения растворов в холодильной камере 8 нед. Примеры разбавлений приведены в таблице 1.

Таблица 1 — Калибровочные растворы

Номер	Калибровочный раствор	Разбавление	Концентрация, мкг/см ³
3.9	Аликвотная часть основного раствора объемом 5,0 см ³ по 3.8		
	разбавляют до 50 см ³	1:10	100
3.10	10 см ³ раствора по 3.9 разбавляют до 100 см ³	1:100	10
3.11	10 см ³ раствора по 3.10 разбавляют до 100 см ³	1:1000	1
3.12	4 см ³ раствора по 3.10 разбавляют до 50 см ³	1:1250	0,8
3.13	5 см ³ раствора по 3.10 разбавляют до 100 см ³	1:1200	0,5
3.14	10 см ³ раствора по 3.11 разбавляют до 50 см ³	1:5000	0,2
3.15	5 см ³ раствора по 3.11 разбавляют до 50 см ³	1:10000	0,1

4 Оборудование

4.1 Стандартное лабораторное оборудование

- $4.2\,$ **Мембранный фильтр** в виде одноразового шприцевого фильтра с размером отверстий $0.2\,$ мкм $^2).$
- 4.3 **Высокоэффективный жидкостный хроматограф**, пригодный для градиентного элюирования, с масс-детектором.
- 4.4 **Аналитическая разделительная колонка**, имеющая следующие параметры: фаза RP 18, 5 мкм, 150 мм × 2 мм, Zorbax ¹⁾, Spherisorb ¹⁾, Phenomenex-Luna ¹⁾ или аналогичные. Если используется предколонка, она должна иметь такие же аналитические характеристики, как и разделительная колонка.

5 Проведение испытаний

5.1 Подготовка пробы

Взвешивают 200 мг пробы с точностью до 0,1 мг в мерную колбу вместимостью 20 см³ (или вместимостью 50 см³). Добавляют 1,5 см³ тетрагидрофурана (3.5) и встряхивают. Добавляют 10 см³ метанола (3.3) и помещают колбу на 5 мин в ультразвуковую баню при комнатной температуре с целью растворения или суспендирования. Затем охлаждают до комнатной температуры и добавляют до метки метанол (3.3). Раствор пробы разбавляют метанолом (3.3) в соотношении 1:10, фильтруют через мембранный фильтр (4.2), а затем анализируют посредством LC-MS или LC-MS/MS.

Для плохо растворимых или суспендируемых матриц рекомендуется частично растворять пробу путем добавления 2 см³ пропан-2-ола (3.6) взамен тетрагидрофурана (3.5) или перемешиванием ее с помощью магнитной мешалки в течение 30 мин перед обработкой в ультразвуковой бане.

5.2 Условия жидкостной хроматографии

При использовании хроматографа (4.3) и колонки (4.4) следующие условия являются наиболее подходящими (см. таблицу 2):

Таблица 2 — Градиентная программа

Время, мин	Доля элюента А, %	Доля элюента В, %
0	85	15
8	10	90
12	10	90

²⁾ Круговые испытания были проведены с использованием фильтра с размером отверстий 0,2 мкм.

Окончание таблицы 2

Время, мин	Доля элюента А, %	Доля элюента В, %
13	85	15
25	85	15

Колонка: фаза RP 18, 5 мкм, 150 мм × 2 мм. Объем впрыскиваемой пробы: 1–10 мкл.

Скорость потока: 0,2 см³/мин.

Температура колоночного термостата: 25 °C.

5.3 Обнаружение

5.3.1 Общие требования

Качественное и количественное определение может быть выполнено путем оценки следовых количеств IPBC или фрагментарных ионов. Чтобы избежать заниженных результатов из-за образования аддукта в режиме мониторинга множественных реакций (MRM) метода ионизации электрораспылением (ESI), ионизацию следует проводить химическим методом при атмосферном давлении (APCI).

5.3.2 MS-детектирование в режиме мониторинга селективных ионов (SIM)

Следовые количества: m/z 282 [M+H]⁺ и m/z 304 [M+Na]⁺.

Оценка основывается на полном ионном потоке (из суммы двух масс).

5.3.3 MS-детектирование в режиме мониторинга множественных реакций (MRM)

Положительно заряженный молекулярный ион: 282 [М+Н]⁺.

Фрагментарный ион 1: 57.

Фрагментарный ион 2: 165.

Оценка основывается на наиболее чувствительном фрагментарном ионе.

Поскольку анализируемое вещество может образовывать аддукты с ионами натрия, заниженные результаты можно получить, если большое количество ионов натрия присутствует в пробе. Поэтому при использовании метода ионизации электрораспылением (ESI) для получения достоверных результатов количественного определения необходимо введение стандартной добавки в режиме мониторинга множественных реакций (MRM). При введении стандартной добавки содержание добавленного IPBC не должно превышать предполагаемое содержание его в пробе.

6 Обработка результатов

6.1 Качественное и количественное определение

IPBC определяют путем сравнения времени удерживания пробы с временем удерживания калибровочных растворов.

Количественное определение анализируемого вещества осуществляют на основании калибровочной кривой или с помощью метода стандартной добавки. Калибровочные растворы хроматографируют в условиях, указанных в 5.2. Концентрацию IPBC рассчитывают посредством линейной регрессии на основании полученных площадей пиков.

6.2 Вычисления

Содержание консерванта (IPBC) w, г/100 г, в пробе вычисляют по следующей формуле:

$$W = \frac{c \cdot V \cdot 100 \cdot F}{m \cdot 1000 \cdot 1000},\tag{1}$$

где w — содержание ІРВС, г/100 г;

c — концентрация IPBC в растворе пробы, определенная по калибровочной кривой, мкг/см 3 ;

т — исходная масса пробы, г;

V — объем испытуемого раствора пробы, см 3 ;

F — коэффициент разбавления (в случае разбавления).

Результат выражается в граммах на 100 г с округлением до третьего десятичного знака.

FOCT EN 16343-2016

7 Протокол испытания

Протокол испытания должен содержать:

- а) сведения, необходимые для идентификации пробы (вид, состав и наименование пробы);
- b) ссылку на настоящий стандарт;
- с) наименование лаборатории, проводившей испытание;
- d) дату и метод отбора пробы (если это известно);
- е) дату поступления пробы и выдачи результатов испытания;
- f) дату проведения испытания;
- g) результаты испытания и единицы измерений, в которых они выражены;
- h) обоснование отклонений от метода данного стандарта;
- і) операции, не указанные в методе или рассматриваемые как дополнительные, которые могли бы повлиять на результаты.

Приложение А (справочное)

Результаты межлабораторного испытания

Метод настоящего стандарта разработан рабочей группой «Косметика» Немецкой федеральной организации по защите потребителей и безопасности пищевой продукции (BVL) с целью реализации требований раздела 64 Кодекса по пищевым продуктам и кормам (LFGB). Он был протестирован при проведении межлабораторных испытаний, в которых приняли участие 13 лабораторий.

Следующие статистические данные, представленные в таблице А.1, были определены для крема и геля для душа при проведении межлабораторных испытаний с участием 13 лабораторий, применивших метод внешнего стандарта для количественного анализа.

Таблица А.1 — Статистические данные межлабораторных испытаний

Параметры	Метод LC-MS. Содержание IPBC, г/100 г	
·	Гель для душа	Крем
Количество лабораторий, участвовавших в испытаниях	13	13
Количество выбросов	3	2
Количество лабораторий после исключения выбросов	10	11
Среднее значение \overline{x} , г/100 г	0,013	0,019
Повторяемость г, г/100 г	0,003	0,003
Стандартное отклонение повторяемости s_r , г/100 г	0,001	0,001
Воспроизводимость R, г/100 г	0,006	0,005
Стандартное отклонение воспроизводимости s_R , г/100 г	0,002	0,002
Выход, %	101,4	103,7

FOCT EN 16343-2016

Библиография

[1] Frauen M., Steinhart H., Rapp C., Hintze U. (2001): Rapid quantification of iodopropynyl butyl-carbamate as the preservative in cosmetic formulations using high-performance liquid chromatography-electrospray mass spectrometry. J Pharm Biomed Anal. 25 (5–6):965-70 (Экспресс-метод количественного определения йодопропинилабутилкарбоната в качестве консерванта в косметических препаратах с использованием высокоэффективной жидкостной хроматографии с масс-спектрометрией)

УДК 665.57/.58:543.544.5(083.74)

MKC 71.100.70

IDT

Ключевые слова: косметика, 3-йодо-2-пропинилбутилкарбамат (IPBC), метод определения, жидкостная хроматография, масс-спектрометрия

Ответственный за выпуск Н. А. Баранов	Ответственн	ый за выпу	rcк Н. А.	Баранов
---------------------------------------	-------------	------------	-----------	---------

Сдано в набор 25.10.2016. Подписано в печать 08.11.2016. Формат бумаги 60×84/8. Бумага офсетная. Гарнитура Arial. Печать ризографическая. Усл. печ. л. 1,16 Уч.-изд. л. 0,33 Тираж 2 экз. Заказ 2002

Издатель и полиграфическое исполнение:
Научно-производственное республиканское унитарное предприятие
«Белорусский государственный институт стандартизации и сертификации» (БелГИСС)
Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий
№ 1/303 от 22.04.2014
ул. Мележа, 3, комн. 406, 220113, Минск.