Государственное
санитарно-эпидемиологическое нормирование
Российской Федерации
4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ
Определение концентраций
химических веществ в воздухе
Газохроматографическое определение
акрилонитрила,
ацетонитрила, диметиламина, диметилформамида,
диэтиламина, пропиламина, триэтиламина и этиламина
в воздухе
методическиЕ указаниЯ
МУК 4.1.1044а-01
Выпуск 2
Минздрав России
Москва 2002
1. Подготовлен НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН авторским коллективом под руководством А.Г. Малышевой (А.Г. Малышева, Н.П. Зиновьева, А.А. Беззубов, Т.И. Голова).
2. Утвержден и введен в действие Главным государственным санитарным врачом Российской Федерации - Первым заместителем министра здравоохранения Российской Федерации - Г.Г. Онищенко 5 июня 2001 г.
3. Введен впервые.
Предисловие
К настоящему времени в мире зарегистрировано более 18 млн. химических соединений. Однако не все из них находят применение в народном хозяйстве и поэтому не могут поступать в окружающую среду. По разным оценкам в промышленности используется до 40 тыс. веществ. В России разработаны предельно допустимые концентрации (ПДК) 589 веществ и утверждены ориентировочные безопасные уровни воздействия (ОБУВ) для 1500 загрязняющих атмосферный воздух соединений, т.е. только для незначительной части веществ, поступающих в окружающую среду. Отметим, что гигиеническая оценка химического загрязнения воздуха жилых и общественных зданий проводится сравнением соответствия реальных уровней содержания со среднесуточными ПДК веществ в атмосферном воздухе. С точки зрения аналитического контроля даже это относительно небольшое количество нормированных веществ изучено совершенно недостаточно, в частности, для значительной части веществ отсутствуют утвержденные, метрологически аттестованные методы контроля.
Существующая система государственного контроля химического загрязнения атмосферного воздуха ориентирована на ограниченное количество показателей. Такой подход не охватывает контроль содержания неизвестных и ненормируемых веществ и их влияние на здоровье населения. Отметим также, что в основе большинства официальных методик, используемых для аналитического контроля как в нашей стране /Руководство по контролю атмосферы, 1991/, так и за рубежом /Методы Агентства по защите окружающей среды США, 1986/, заложен принцип целевого анализа. В то же время, в условиях многокомпонентного загрязнения окружающей среды и постоянно возрастающего количества токсичных соединений, когда каждый исследуемый объект может содержать специфические, ранее не определявшиеся вещества, аналитический контроль качества атмосферного воздуха или воздуха жилой среды по строго определенному перечню компонентов является недостаточным. Отметим также, что под влиянием факторов окружающей среды химические вещества подвергаются трансформации. Учитывая многокомпонентность химического загрязнения воздуха и процессы трансформации, нередко приводящие к образованию более токсичных и опасных веществ, чем исходные, актуальность приобретает химический мониторинг, ориентированный, в первую очередь, на идентификацию спектра загрязняющих веществ и последующий аналитический контроль по выбранным на его основе ведущим показателям. В связи с этим, в последнее время особое внимание уделяется разработке многокомпонентных аналитических методов контроля объектов окружающей среды с применением хромато-масс-спектрометрии, сочетающих способность идентификации широкого спектра неизвестных загрязняющих веществ с количественной оценкой и метрологической аттестацией до 20 соединений одновременно /Сборники методических указаний: Определение концентраций загрязняющих веществ в атмосферном воздухе, 1997; Определение концентраций химических веществ в воде централизованных систем питьевого водоснабжения, 1997, 1999/. Такие многокомпонентные аналитические методы, наряду с контролем нормируемых веществ, часто позволяют одновременно идентифицировать и количественно определять неизвестные и ненормируемые вещества, влияние которых на человека до последнего времени оставалось бесконтрольным. Эти методы чрезвычайно полезны также при поиске источника загрязнения как атмосферного воздуха, так и воздуха жилой среды.
В настоящем сборнике продолжено развитие многоканальных аналитических методов контроля, изложенных в первом выпуске. Так, приведен аналитический метод контроля спектра полициклических ароматических углеводородов (ПАУ). Эти соединения образуются в качестве побочных продуктов термической обработки органического сырья и неполного сжигания топлива. Источниками их поступления в окружающую среду являются промышленные процессы, связанные с термической переработкой, бытовые мусоросжигательные установки, выхлопные газы автомобилей, сигаретный дым. Некоторые представители ПАУ являются высокотоксичными и обладают канцерогенными свойствами. Условия проведения хромато-масс-спектрометрического метода дают возможность идентифицировать широкий спектр ПАУ при выполнении обзорного анализа и одновременно осуществлять аналитический контроль шести веществ этого ряда, три из которых (нафталин, антрацен, фенантрен) нормированы, а два первых соединения - включены в перечень 250 наиболее опасных веществ, разработанных Агентством по охране окружающей среды США.
Многокомпонентные методы контроля в настоящем сборнике представлены также ВЭЖХ определением десяти предельных альдегидов (C1 - С10), в т.ч. формальдегида. По частоте обнаружения, уровням содержания, распространенности в выбросах производств и воздухе жилой среды, принадлежности к основным компонентам выбросов автотранспорта альдегиды следует отнести к гигиенически значимым показателям загрязнения воздуха. Существующие утвержденные методы контроля формальдегида с использованием фотометрии (РД 52.04.186-89) неселективны, поскольку измерение концентраций осуществляется по окрашенным комплексам, образование которых возможно как в результате взаимодействия с формальдегидом, так и с другими альдегидами. В связи с этим эти методы следует рассматривать как групповые. Кроме того, фотометрические методы из-за недостаточной чувствительности не позволяют контролировать содержание формальдегида на уровне предельно допустимой среднесуточной концентрации. Предложенный ВЭЖХ метод контроля дает возможность раздельного определения формальдегида и других предельных альдегидов в одной пробе с чувствительностью ниже уровня их предельно допустимых среднесуточных концентраций. К многокомпонентным методам контроля следует отнести также газохроматографическое определение восьми представителей токсичной группы азотсодержащих соединений, три из которых (ацетонитрил, акрилонитрил и диметиламин) принадлежат ко 2 классу опасности.
Важной аналитической характеристикой, отличающей методы определения ряда веществ, имеющих низкие величины гигиенических нормативов, является требование высокой селективности при малых пределах обнаружения в воздухе, которая представляет собой сложную многокомпонентную смесь. В частности, примером высокочувствительных методов контроля, приведенных в настоящем сборнике, являются газохроматографические определения высокотоксичных соединений: тетраэтилсвинца и несимметричного диметилгидразина. Нижние пределы обнаружения веществ этими методами находятся на уровне 10-4 - 10-5 мг/м3.
В заключение отметим, что в сборнике приведены три аналитических многокомпонентных метода: хромато-масс-спектрометрическое определение для обзорного анализа группы полициклических ароматических углеводородов и контроля шести ПАУ, газохроматографическое определение восьми представителей группы азотсодержащих соединений и ВЭЖХ определение десяти альдегидов (формальдегида и предельных альдегидов С2 - С10), а также десять аналитических методов контроля индивидуальных веществ, основанных на применении газовой, высокоэффективной жидкостной хроматографии и фотометрии.
Последовательность расположения методических указаний в сборнике представлена следующим образом: сначала приведены многокомпонентные методы контроля, затем - методы контроля индивидуальных веществ (по алфавиту).
А.Г. Малышева
УТВЕРЖДАЮ
Главный государственный
санитарный врач Российской Федерации,
Первый заместитель Министра
здравоохранения Российской Федерации
Г. Г. Онищенко
МУК 4.1.1044-1053-01
5 июня 2001 г.
Дата введения 1 октября 2001 г.
4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ
Определение концентраций химических веществ в воздухе
Сборник методических указаний
Область применения
Сборник методических указаний по определению концентраций химических веществ предназначен для использования органами государственного санитарно-эпидемиологического надзора при осуществлении аналитического контроля химического загрязнения атмосферного воздуха, производственными лабораториями, исследовательскими институтами, работающими в области гигиены окружающей среды.
Включенные в сборник методические указания могут быть использованы также при аналитическом контроле загрязнения воздушной среды жилых и общественных зданий.
Сборник методических указаний разработан в соответствии с требованиями ГОСТа Р 8.563-96 «Методики выполнения измерений», ГОСТа 17.0.0.02-79 «Охрана природы. Метрологическое обеспечение контроля загрязненности атмосферы, поверхностных вод и почвы. Основные положения», ГОСТа 17.2.4.02-81 «Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ».
Методики выполнены с использованием современных физико-химических методов исследования, метрологически аттестованы и дают возможность контролировать содержание химических веществ в атмосферном воздухе или воздухе помещений жилых и общественных зданий с нижним пределом обнаружения на уровне (не выше 0,8 ПДК или ОБУВ) гигиенических нормативов, принятых для атмосферного воздуха населенных мест.
Методические указания одобрены и рекомендованы секцией по физико-химическим методам исследования объектов окружающей среды Проблемной комиссии «Научные основы экологии человека и гигиены окружающей среды» и Бюро Комиссии по государственному санитарно-эпидемиологическому нормированию Министерства здравоохранения Российской Федерации.
УТВЕРЖДАЮ
Главный государственный
санитарный врач Российской Федерации,
Первый заместитель Министра
здравоохранения Российской Федерации
Г. Г. Онищенко
МУК 4.1.1044а-01
5 июня 2001 г.
Дата введения 1 октября 2001 г.
4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ
Газохроматографическое определение акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина в воздухе
Методические указания
Настоящие методические указания устанавливают газохроматографическую методику количественного химического анализа атмосферного воздуха или воздушной среды жилых и общественных зданий для определения содержания:
· диметиламина, диметилформамида и этиламина в диапазоне концентраций 0,001 - 0,1 мг/м3;
· акрилонитрила и диэтиламина в диапазоне концентраций 0,01 - 1,0 мг/м3;
· ацетонитрила, пропиламина и триэтиламина в диапазоне концентраций 0,05 - 2,0 мг/м3.
Физико-химические свойства веществ и их гигиенические нормативы представлены в табл. 1.
Методика обеспечивает выполнение измерений акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина с погрешностью ± 15 % при доверительной вероятности 0,95.
Таблица 1
Свойства веществ и их гигиенические нормативы
Формула |
Молекулярная масса |
Ткип., °С |
Плотность, г/см3 |
Растворимость, (г/дм3) |
ПДК, мг/м3 |
Класс опасности |
||||
вода |
этанол |
эфир |
м. р. |
с. с. |
||||||
Амины |
||||||||||
Диметиламин |
(СН3)2NН |
45,09 |
6,9 |
0,6804 |
¥ |
¥ |
¥ |
0,005 |
0,0025 |
2 |
Диметиламин |
(СН3СН2)2NН |
73,14 |
55,5 |
0,7056 |
¥ |
р |
р |
0,05 |
0,05 |
4 |
Пропиламин |
СН3(СН2)2NН2 |
59,11 |
47,2 |
0,733 |
р |
¥ |
¥ |
0,3 |
0,15 |
- |
Триэтиламин |
(C2H5)3N |
101,2 |
89,5 |
0,7229 |
1,5 |
¥ |
¥ |
0,14 |
- |
3 |
Этиламин |
C2H5NH2 |
45,09 |
16,6 |
0,7059 |
¥ |
¥ |
¥ |
0,01 |
- |
3 |
Нитрилы |
||||||||||
Акрилонитрил |
С3Н3N |
53,6 |
78,5 |
0,797 |
р |
¥ |
¥ |
- |
0,03 |
2 |
Ацетоннитрил |
C2H2N |
41,05 |
81,6 |
0,783 |
¥ |
¥ |
¥ |
- |
0,1 (ОБУВ) |
- |
Диметилфор-мамид |
(CH3)2NCHO |
73,10 |
153,0 |
0,95 |
¥ |
¥ |
¥ |
0,03 |
- |
2 |
Примечание: р - растворим; ¥ - растворим во всех соотношениях. |
Измерение концентраций анализируемых соединений основано на газохроматографическом разделении на стеклянной колонке и детектировании азотно-фосфорным детектором (АФД) с предварительным концентрированием их из воздуха на твердый сорбент и последующей термодесорбцией.
Нижний предел обнаружения в анализируемом объеме пробы - 0,002 мкг.
Определению не мешают углеводороды, спирты, кислоты.
При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.
Хроматограф с АФД
Барометр анероид М-67 ТУ 2504-1797-75
Весы аналитические лабораторные ВЛА-200 ГОСТ 24104-80Е
Линейка измерительная ГОСТ 17435-72
Лупа измерительная ГОСТ 8309-75
Меры массы ГОСТ 7328-82Е
Шприцы на 1,10 мм3 и 0,25 см3
фирмы Hamilton (Швейцария)
Посуда мерная стеклянная ГОСТ 1770-74Е
Программно-аппаратный комплекс
«ЭКОХРОМ» для регистрации и
обсчета хроматограмм ТУ 5Е2.148.003
Секундомер СДС пр-1-2-000 ГОСТ 5072-79
Термометр метеорологический ТМ-1 ГОСТ 112-78Е
Малогабаритный пробоотборник модели 222-3
фирмы Skc Inc. Eighny Four. Pa (США) или
пробоотборник с аналогичными характеристиками
Дистиллятор ТУ 61-1-721-79
Кольцо уплотняющее
Насос водоструйный вакуумный ГОСТ 10696-75
Редуктор водородный ТУ 26-05-463-76
Редуктор кислородный ТУ 26-05-235-70
Сорбционная трубка из термостойкого стекла
длиной 80 - 82 мм внутренним диаметром 4 мм
с узким отверстием (1 - 1,5 мм) у одного конца
и толщиной стенки 1 мм
Хроматографические стеклянные
колонки с внутренним диаметром
4 мм длиной 1 или 3 м
Холодильник со льдом
Четырехходовой кран, соединенный
с дополнительной съемной крышкой испарителя
Эксикатор
Трубчатая электропечь
Азот сжатый, ос. ч. ГОСТ 9293-74
Водород сжатый ГОСТ 3022-89
Воздух сжатый ГОСТ 1188-73
Стекловолокно обезжиренное
Стеклянные заглушки
Хлопчатобумажные перчатки ГОСТ 5007-87
Ацетон, ч. д. а. ГОСТ 2603-79
Ацетонитрил, ОП-3, ос. ч. ТУ-6-09-14-2167-84
Диметиламин, ч. ТУ-6-09-11-2024-87
Диметилформамид, ч. ГОСТ 20289-74
Диэтиламин, ч. ТУ 6-09-68-79
Насадка для заполнения колонки:
28 % AT 223 + 4 % КОН на
Gas Chrom R (80/100 меш) фирмы
Alltech Associates (США)
Полимерные сорбенты Chromosorb
103, 106 (60/80 меш) фирмы
Alltech Associates (США)
Силикагель-иидикатор ГОСТ 8984-75
Триэтиламин, ч. ТУ 6-091496-77
Уголь активированный АГ-3 ГОСТ 20464-75
Этанол, х. ч. ГОСТ 10749.15-80
Этиламин, ч. ГОСТ 19234-93
Акрилонитрил, пропиламин фирмы
Fluka Chemie AG (Швейцария)
4.1. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019-79 и инструкцией по эксплуатации приборов, используемых в настоящей методике.
4.2. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005-88.
4.3. При съеме разогретой крышки испарителя на руки надевают хлопчатобумажные перчатки.
К выполнению измерений допускают лиц, имеющих квалификацию не ниже инженера-химика, с опытом работы на газовом хроматографе.
При выполнении измерений соблюдают следующие условия:
· процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТу 15150-69 при температуре воздуха (20 ± 5) °С, атмосферном давлении 630 - 800 мм рт. ст. и влажности воздуха не более 80 %;
· выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.
Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовка хроматографических колонок и сорбционных трубок, подготовка газовой линии, установление градуировочной характеристики, отбор проб.
Исходный раствор № 1 диметиламина, диметилформамида и этиламина для градуировки (с = 10 мг/см3). 250 мг каждого соединения вносят в колбу вместимостью 25 см3 доводят до метки этанолом и тщательно перемешивают. Срок хранения - 1 неделя.
Исходный раствор № 2 акрилонитрила и диэтиламина для градуировки (с = 10 мг/см3). 250 мг каждого соединения вносят в колбу вместимостью 25 см3, доводят до метки этанолом и тщательно перемешивают. Срок хранения - 1 неделя.
Исходный раствор № 3 ацетонитрила, пропиламина и триэтиламина для градуировки (с = 10 мг/см3). 250 мг каждого соединения вносят в колбу вместимостью 25 см3, доводят до метки этанолом и тщательно перемешивают. Срок хранения - 1 неделя.
Рабочий раствор № 1 диметиламина, диметилформамида и этиламина для градуировки (с = 0,1 мг/см3). 1 см3 исходного раствора № 1 помещают в мерную колбу вместимостью 100 см3, доводят до метки этанолом и тщательно перемешивают. Срок хранения - 1 неделя.
Хроматографические колонки и сорбционные трубки перед заполнением насадками промывают горячей дистиллированной водой, 10 см3 ацетона, высушивают в токе инертного газа.
Для разделения компонентов используют одну из двух рекомендуемых колонок:
· колонку № 1 длиной 1 м, заполненную сорбентом Chromosorb 103;
· колонку № 2 длиной 3 м, заполненную сорбентом Gas Chrom R с жидкой фазой AT 223.
Заполнение колонок проводят под вакуумом. Концы колонки закрывают стекловолокном и, не подключая к детектору, кондиционируют в токе газа-носителя (азота) с расходом 20 см3/мин при температуре 160 °С в течение 18 - 24 ч. После охлаждения колонку подключают к детектору, записывают нулевую линию в рабочем режиме. При отсутствии мешающих влияний колонка готова к работе.
Сорбционную трубку заполняют сорбентом Chromosorb 106 или 103, прогретым предварительно в течение 2 - 3 часов при 250 °С. Сорбент фиксируют в трубке с двух сторон стекловолокном. Кондиционируют в токе газа-носителя (азота) с расходом 10 см3/мин при температуре 250 °С в трубчатой электропечи в течение 24 часов; затем трубку выводят из зоны нагрева и, не прерывая потока газа-носителя, охлаждают до комнатной температуры. Трубки с заглушенными концами хранят в течение 2 недель в промытом и просушенном эксикаторе, на дно которого насыпаны слой сухого силикагеля и мешочки с активированным углем.
В схему газовой линии прибора подключают четырехходовой кран, один конец которого соединен с линией газа-носителя, второй - с верхом корпуса испарителя, третий - заглушен, четвертый выход соединяют с дополнительной съемной крышкой испарителя.
В дополнительной крышке испарителя устанавливают уплотняющее кольцо, герметизирующее сорбционную трубку во внутреннем объеме испарителя.
В первом положении крана газ-носитель поступает в испаритель через верх его корпуса и далее в хроматографическую колонку, во втором положении - через дополнительную крышку, сорбционную трубку и также в хроматографическую колонку.
В среднем положении крана поток газа-носителя прерывается и не поступает в испаритель и колонку.
Градуировочные характеристики устанавливают на градуировочных растворах акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина (эффективность сорбции на сорбенте более 95 %) методом абсолютной градуировки. Они выражают зависимость площади пика соответствующего вещества на хроматограмме (мм2 - при ручном расчете или мВ с - при автоматическом обсчете с использованием программно-аппаратного комплекса) от содержания (мкг) по 6-ти сериям растворов для градуировки. Каждая серия состоит из 6 растворов.
Градуировочные растворы диметиламина, диметилформамида и этиламина готовят в мерных колбах вместимостью 100 см3. Для этого в каждую колбу вносят рабочий раствор № 1 для градуировки в соответствии с табл. 2, доводят объем этанолом до метки и тщательно перемешивают.
Градуировочные растворы акрилонитрила и диэтиламина готовят в мерных колбах вместимостью 100 см3. Для этого в каждую колбу вносят исходный раствор № 2 для градуировки в соответствии с табл. 3, доводят объем этанолом до метки и тщательно перемешивают.
Градуировочные растворы ацетонитрила, пропиламина и триэтиламина готовят в мерных колбах вместимостью 100 см3. Для этого в каждую колбу вносят исходный раствор № 3 для градуировки в соответствии с табл. 4, доводят объем этанолом до метки и тщательно перемешивают. Срок хранения всех градуировочных растворов - 1 неделя.
На сорбент через узкое отверстие в сорбционной трубке на глубину 5 - 8 мм вводят 1 мм3 одного из градуировочных растворов. Затем вставляют трубку (широким концом) в уплотняющее кольцо съемной крышки испарителя, соединенной с четырехходовым краном; прерывают поток газа-носителя этим краном. Отвернув крышку на испарителе, быстро вводят в него трубку, закрывают испаритель дополнительной крышкой и одновременно включают секундомер. Через 10 с поворачивают кран-переключатель и газ-носитель, проходя через крышку испарителя, выталкивает смесь из трубки в хроматографическую колонку. Определение соединений проводят на одной из рекомендуемых колонок в следующих условиях:
температура термостата колонки № 1 программируется от 70 °С (8 мин изотерма) до 140 °С (20 мин изотерма) со скоростью 5 град/мин;
температура термостата колонки № 2 программируется от 90 °С (8 мин изотерма) до 140 °С (20 мин изотерма) со скоростью 5 град/мин;
температура испарителя 210 °С;
температура детектора 210 °С;
расход газа-носителя (азота) 20 см3/мин.
Таблица 2
Растворы для установления градуировочной характеристики при определении концентраций диметиламина, диметилформамида и этиламина
1 |
2 |
3 |
4 |
5 |
6 |
|
Объем рабочего раствора № 1 (с = 0, 1 мг/см3), см3 |
0 |
2,0 |
5,0 |
10,0 |
60,0 |
100,0 |
Содержание вещества, мкг в 1 мм3 |
0 |
0,002 |
0,005 |
0,01 |
0,06 |
0,1 |
Таблица 3
Растворы для установления градуировочной характеристики при определении концентраций акрилонитрила и диэтиламина
1 |
2 |
3 |
4 |
5 |
6 |
|
Объем исходного раствора № 2 (с = 10 мг/см3), см3 |
0 |
0,1 |
0,4 |
1,0 |
6,0 |
10,0 |
Содержание вещества, мкг в 1 мм3 |
0 |
0,01 |
0,04 |
0,1 |
0,6 |
1,0 |
Таблица 4
Растворы для установления градуировочной характеристики при определении концентраций ацетонитрила, пропиламина и триэтиламина
1 |
2 |
3 |
4 |
5 |
6 |
|
Объем исходного раствора № 3 (с = 10 мг/см3), см3 |
0 |
0,5 |
1,0 |
5,0 |
10,0 |
20,0 |
Содержание вещества, мкг в 1 мм3 |
0 |
0,05 |
0,1 |
0,5 |
1,0 |
2,0 |
Шкала измерителя тока усилителя детектора - 2 ´ 1010 А;
скорость движения диаграммной ленты - 240 мм/ч;
время удерживания компонентов на колонке № 1:
· диметиламин - 6 мин 48 с, этиламин - 9 мин 04 с, пропиламин - 12 мин 55 с, ацетонитрил - 13 мин 28 с, акрилонитрил - 15 мин 10 с, диэтиламин - 16 мин 34 с, триэтиламин - 21 мин 32 с, диметилформамид - 27 мин 02 с;
время удерживания компонентов на колонке № 2:
· диметиламин - 3 мин 37 с, этиламин - 4 мин 09 с, пропиламин - 5 мин 25 с, ацетонитрил - 9 мин 54 с, диэтиламин - 10 мин 01 с, акрилонитрил - 11 мин 09 с, триэтиламин - 14 мин 55 с, диметилформамид - 34 мин 21 с.
На полученных хроматограммах рассчитывают площади пиков компонентов и по средним результатам из 5-ти измерений строят градуировочные характеристики. Градуировку проводят 1 раз в месяц и при смене реактивов.
Отбор проб воздуха проводят согласно ГОСТу 17.2.3.01-86. Каждая проба воздуха одновременно отбирается на 2 трубки. Воздух со скоростью 0,2 дм3/мин аспирируют в течение 10 мин через узкое отверстие сорбционной трубки, предварительно охлажденной в холодильнике до 0 °С. После окончания отбора пробы концы трубок герметизируют заглушками и помещают в чистые пробирки с притертыми пробками. Срок хранения отобранных проб - не более 3 суток.
При выходе прибора на режим вставляют сорбционную трубку с отобранной пробой в уплотняющее кольцо съемной крышки испарителя и анализируют согласно п. 7.4.
На хроматограмме рассчитывают площадь каждого пика и по градуировочному графику определяют массу вещества в пробе.
Для получения результатов измерения содержания веществ проводят анализ двух параллельных проб воздуха (двух трубок).
Концентрацию каждого вещества в атмосферном воздухе (мг/м3) вычисляют по формуле:
, где
т - содержание вещества в пробе, найденное по градуировочной характеристике, мкг;
V0 - объем пробы воздуха, приведенный к стандартным условиям, дм3;
, где
Vt - объем пробы воздуха при температуре отбора, дм3;
Р - атмосферное давление в месте отбора проб, мм рт. ст.;
t - температура воздуха в месте отбора проб, °С.
Средние значения результатов измерений анализируемых соединений в воздухе оформляют протоколом по форме:
Протокол № количественного химического анализа акрилонитрила, ацетонитрила, диметиламина, диметилформамида, диэтиламина, пропиламина, триэтиламина и этиламина в воздухе 1. Дата проведения анализа ________________________________________________ 2. Место отбора пробы ____________________________________________________ 3. Название лаборатории __________________________________________________ 4. Юридический адрес организации _________________________________________ Результаты химического анализа
Исполнитель: Руководитель лаборатории: |
Контроль погрешности измерений концентраций определяемых веществ проводят на градуировочных растворах.
Рассчитывают среднее значение результатов измерений концентрации в градуировочных растворах:
, где
п - число измерений компонента в пробе градуировочного раствора;
Сni - результат измерения содержания вещества компонента в i-oй пробе градуировочного раствора, мкг.
Рассчитывают среднее квадратичное отклонение результата измерения содержания вещества в градуировочном растворе:
Рассчитывают доверительный интервал:
, где
t - коэффициент нормированных отклонений, определяемых по табл. Стьюдента, при доверительной вероятности 0,95. Рассчитывают погрешность определения содержания:
, %
Если d £ 15 %, то погрешность измерений удовлетворительная.
Если данное условие не выполняется, то выясняют причину и повторяют измерения.
Методические указания разработаны А.Г. Малышевой (НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН, г. Москва) и Е.Е. Сотниковым (Всероссийский центр медицины катастроф «Защита», г. Москва).
СОДЕРЖАНИЕ