

Министерство энергетики

(Минэнерго России)

Российской Федера ининтерство костиции российской федерации ЗАРЕГИСТРИРОВАНО Регистрационный № 58<u>3</u>67

ПРИКАЗ

17 mapia 2020 r

Москва

О внесении изменений в методику оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей, утвержденную приказом Минэнерго России от 26 июля 2017 г. № 676

В соответствии с пунктом 2 постановления Правительства Российской Федерации от 19 декабря 2016 г. № 1401 «О комплексном определении показателей технико-экономического состояния объектов электроэнергетики, в том числе показателей физического износа и энергетической эффективности объектов электросетевого хозяйства, и об осуществлении мониторинга таких показателей» (Собрание законодательства Российской Федерации, 2016, № 52 (ч. V), ст. 7665) приказываю:

Утвердить прилагаемые изменения, которые вносятся в методику оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей, утвержденную приказом Минэнерго России от 26 июля 2017 г. № 676 (зарегистрирован Минюстом России 5 октября 2017 г., регистрационный № 48429).

Министр

А.В. Новак

изменения.

которые вносятся в методику оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей, утвержденную приказом Минэнерго России от 26 июля 2017 г. № 676

- 1. Пункт 1.3 изложить в следующей редакции:
- «1.3. Настоящая методика распространяется на группы оборудования и сооружения объектов электроэнергетики, состав которых, а также определенные по их целевому назначению, устройству и выполняемым функциям функциональные узлы основного технологического оборудования (далее функциональные узлы), группы параметров функциональных узлов и параметры технического состояния функциональных узлов и общие параметры технического состояния, не относящиеся к функциональным узлам (далее обобщенный узел), приведены в приложении № 2 к настоящей методике.

К основному технологическому оборудованию объектов электроэнергетики, в отношении которого производится оценка технического состояния согласно настоящей методике, относятся:

паровые турбины установленной мощностью 5 МВт и более;

паровые (энергетические) котлы, обеспечивающие паром паровые турбины установленной мощностью 5 МВт и более;

гидротурбины установленной мощностью 5 МВт и более;

газовые турбины установленной мощностью 5 МВт и более;

гидрогенераторы номинальной мощностью 5 МВт и более;

турбогенераторы номинальной мощностью 5 МВт и более;

силовые трансформаторы (автотрансформаторы) классом напряжения 35 кВ и выше;

линии электропередачи (далее – ЛЭП) классом напряжения 35 кВ и выше;

батареи статических конденсаторов классом напряжения 35 кВ и выше;

выключатели классом напряжения 35 кВ и выше;

реакторы шунтирующие;

преобразовательные установки классом напряжения 35 кВ и выше;

системы (секции) шин (кроме комплектного распределительного устройства с элегазовой изоляцией) (далее – системы шин) классом напряжения 35 кВ и выше (далее – основное технологическое оборудование).».

2. В пункте 2.2:

абзац второй после слова «узлов» дополнить словами «и обобщенных узлов (далее – узлы) единицы основного технологического оборудования»;

абзац пятый после слов «(наилучшее значение)» дополнить словами «с округлением до целого числа по правилам математического округления».

- 3. Пункт 2.3 изложить в следующей редакции:
- «2.3. Оценка технического состояния основного технологического оборудования осуществляется путем сопоставления фактических значений параметров технического состояния узлов с предельно-допустимыми значениями, а также соответствия требованиям, установленными нормативно-технической документацией и (или) конструкторской (проектной) документацией организаций-изготовителей (далее НТД, значения, установленные НТД), и последующего определения индексов технического состояния узлов и оборудования в целом.

В случае если для определения требований к техническому состоянию функционального узла одного и того же вида оборудования возможно применение более чем одной НТД, субъект электроэнергетики самостоятельно определяет НТД, требования которой применяются при оценке (далее – применяемая НТД).».

4. В абзаце первом пункта 2.4:

слово «функциональных» исключить;

слова «комплексного определении» заменить словами «комплексного определения».

- 5. пункт 2.6 дополнить абзацем следующего содержания:
- «Параметры, учитываемые при расчете индекса технического состояния сегмента воздушной линии электропередачи (далее ВЛ), заполняются на основании

данных паспорта ВЛ, составленного в соответствии с ГОСТ Р 58087-2018 «Единая энергетическая система и изолированно работающие энергосистемы. Электрические сети. Паспорт воздушных линий электропередачи напряжением 35 кВ и выше», утвержденным и введенным в действие приказом Федерального агентства по техническому регулированию и метрологии от 20 марта 2018 г. № 141-ст (Стандартинформ, 2018).».

- 6. Главу III изложить в следующей редакции:
 - «III. Порядок оценки технического состояния основного технологического оборудования
- 3.1. Расчет индекса технического состояния основного технологического оборудования осуществляется в следующей последовательности:

оценка параметров технического состояния узлов основного технологического оборудования в соответствии с пунктами 3.2 и 3.3 настоящей методики;

оценка группы параметров технического состояния узлов в соответствии с пунктом 3.4 настоящей методики;

расчет индекса технического состояния узлов в соответствии с пунктами 3.5 и 3.6 настоящей методики;

расчет индекса технического состояния единицы основного технологического оборудования в соответствии с пунктами 3.7 - 3.9 настоящей методики;

расчет индекса технического состояния группы оборудования и сооружений в соответствии с пунктами 3.10-3.13 настоящей методики.

Схема порядка оценки технического состояния основного технологического оборудования (расчет индекса технического состояния) приведена в приложении № 3 к настоящей методике.

- 3.2. Для оценки параметров технического состояния узлов субъект электроэнергетики определяет фактические значения таких параметров на основании приведенных в пункте 2.6 настоящей методики данных в соответствии с приведенными в приложении № 2 к настоящей методике единицами измерения (графа 8) и возможными фактическими значениями параметров (графа 9).
- 3.3. Каждый параметр технического состояния узла оценивается в соответствии с балльной шкалой оценки отклонения фактических значений таких параметров от

значений, установленных НТД, согласно приложению № 2 (графы 10 – 14) к настоящей методике.

Балльная оценка характеризует качественную оценку параметров технического состояния узлов и уровень выполнения требуемых функций от «0» (наихудшая оценка) до «4» (наихучшая оценка).

3.4. Оценка группы параметров технического состояния узлов определяется минимальной балльной оценкой, полученной в соответствии с пунктами 3.2 и 3.3 настоящей методики, входящего в данную группу параметра.

Для ВЛ оценка группы параметров осуществляется в отношении каждого элемента (опоры и (или) пролета), входящего в состав функционального узла (сегмента).

3.5. Расчет индекса технического состояния функциональных узлов и обобщенного узла (ИТСУ) осуществляется по формуле (1):

$$\mathsf{MTCY} = 100 \times \sum i(\mathsf{KB}_i \times \mathsf{O}\Gamma\Pi_i)/4\,,\tag{1}$$

где:

КВі — значение весового коэффициента для і-ой группы параметров технического состояния в соответствии с приложением № 2 (графа 17) к настоящей методике;

ОГПі – определенная в соответствии с пунктом 3.4 настоящей методики:

балльная оценка i-ой группы параметров технического состояния (для оборудования, кроме ВЛ);

минимальная балльная оценка i-ой группы параметров технического состояния среди всех элементов (опор и пролетов) функционального узла (сегмента) ВЛ (для ВЛ).

В случае наличия у оборудования нескольких узлов, выполняющих одинаковые функции (далее — функциональные узлы одного вида), расчет проводится для каждого узла, ремонт или замена которого могут быть проведены независимо от другого (других) функциональных узлов такого же вида.

3.6. В случае если индекс технического состояния функционального узла, рассчитанный в соответствии с пунктом 3.5 настоящей методики, превышает значение «26» и определенная в соответствии с пунктом 3.4 настоящей методики

балльная оценка одного из критических параметров, влияющих на снижение индекса технического состояния основного технологического оборудования согласно приложению № 2 (графа 15) к настоящей методике, такого узла составляет «0», то индексу технического состояния такого узла присваивается значение «26».

В случае если индекс технического состояния ресурсоопределяющего функционального узла, рассчитанный в соответствии с пунктом 3.5 настоящей методики, превышает значение «25» и определенная в соответствии с пунктом 3.4 настоящей методики балльная оценка одного из ресурсоопределяющих параметров, влияющих на снижение индекса технического состояния основного технологического оборудования согласно приложению № 2 (графа 16) к настоящей методике, такого узла составляет «0», то индексу технического состояния такого узла присваивается значение «25».

3.7. Расчет индекса технического состояния единицы основного технологического оборудования (ИТС) осуществляется по формуле (2):

$$\mathsf{MTC} = \sum (\mathsf{KBY}_i \times \mathsf{MTCY}_i),\tag{2}$$

где:

КВУі – значение весового коэффициента для і-го функционального узла или обобщенного узла в соответствии с приложением № 2 (графа 18) к настоящей методике;

ИТСУі — индекс технического состояния і-го функционального узла или обобщенного узла, рассчитанный в соответствии с пунктами 3.5 и 3.6 настоящей методики.

В случае наличия у единицы основного технологического оборудования нескольких функциональных узлов одного вида для расчета индекса технического состояния такой единицы основного технологического оборудования используется минимальный индекс технического состояния среди таких функциональных узлов. При этом особенности расчета индекса технического состояния ЛЭП определены в пункте 3.9 настоящей методики.

3.8. В случае если индекс технического состояния основного технологического оборудования, рассчитанный в соответствии с пунктом 3.7 настоящей методики, превышает значение «50» и определенный в соответствии с пунктом 3.5 настоящей

методики индекс технического состояния одного из функциональных узлов такого оборудования не превышает значение «25», то индексу технического состояния такого оборудования присваивается значение «50».

В случае если индекс технического состояния основного технологического оборудования, рассчитанный в соответствии с пунктом 3.7 настоящей методики, превышает значение «25» и определенный в соответствии с пунктами 3.5 и 3.6 настоящей методики индекс технического состояния одного из ресурсоопределяющих функциональных узлов имеет значение «25» и ниже, то индексу технического состояния такого оборудования присваивается значение «25».

В случае если индекс технического состояния основного технологического оборудования, рассчитанный в соответствии с пунктом 3.7 настоящей методики, не превышает значение «25» и определенные в соответствии с пунктами 3.5 и 3.6 настоящей методики индексы технического состояния всех ресурсоопределяющих функциональных узлов имеют значение более «25», то индексу технического состояния такого оборудования присваивается значение «26».

3.9. Расчет индекса технического состояния ЛЭП (ИТС ЛЭП) осуществляется по формуле (3):

$$\mathsf{MTC}^{\mathsf{J} \ni \Pi} = \sum (\mathsf{MTCY}_i) / \mathsf{KY}, \tag{3}$$

где:

ИТСУі – индекс технического состояния і-ого функционального узла (сегмента) ЛЭП, рассчитанного в соответствии с пунктами 3.5 и 3.6 настоящей методики, входящего в состав ЛЭП;

КУ – количество функциональных узлов (сегментов) ЛЭП.

3.10. Расчет индекса технического состояния группы основного технологического оборудования одного вида (ИТС³) осуществляется по формуле (4):

$$MTC^{3} = \frac{\sum_{i} (P_{i} \times MTC_{i})}{\sum_{i} P_{i}}, \qquad (4)$$

где:

ИТСі – индекс технического состояния і-ой единицы основного технологического оборудования в оцениваемой группе;

Pi – характерный виду основного технологического оборудования показатель приведения, принимаемый для:

паровых турбин — номинальная активная электрическая мощность; гидротурбин — номинальная активная электрическая мощность; газовых турбин — номинальная активная электрическая мощность; паровых энергетических котлов — номинальная паропроизводительность; турбогенераторов — номинальная активная электрическая мощность; гидрогенераторов — номинальная активная электрическая мощность;

силовых трансформаторов (автотрансформаторов) – номинальная полная электрическая мощность;

линий электропередачи – протяженность; преобразовательных установок – номинальная электрическая мощность; батарей статических конденсаторов – номинальная электрическая мощность;

реакторов шунтирующих - номинальная электрическая мощность;

выключателей – приведенная мощность (в соответствии с приложением № 4 к настоящей методике);

систем шин – приведенная мощность (в соответствии с приложением № 4 к настоящей методике).

3.11. Индекс технического состояния группы основного технологического оборудования, объединенного в одну технологическую цепочку, определяется минимальным индексом технического состояния единицы технологического оборудования, входящего в такую цепочку.

Индекс технического состояния электростанции определяется в отношении следующих технологических цепочек:

гидротурбина – гидрогенератор – силовой трансформатор (автотрансформатор) (при наличии) – группа выключателей (при наличии) – группа систем шин (при наличии) – группа реакторов шунтирующих (при наличии);

газовая турбина (при наличии) — паровой (энергетический) котел (при наличии) — паровая турбина (при наличии) — турбогенератор — силовой трансформатор (автотрансформатор) (при наличии) — преобразовательная установка (при наличии) — группа выключателей (при наличии) — группа систем шин (при наличии) — группа

реакторов шунтирующих (при наличии).

3.12. Расчет индекса технического состояния электростанции, подстанции, содержащих более одной единицы одного из видов основного технологического оборудования, осуществляется в следующей последовательности:

в первую очередь осуществляется в соответствии с пунктом 3.10 настоящей методики расчет индексов технического состояния каждой группы основного технологического оборудования одного вида;

во вторую очередь осуществляется в соответствии с пунктом 3.11 настоящей методики расчет индекса технического состояния технологической цепочки, состоящей из групп основного технологического оборудования одного вида:

группа газовых турбин (при наличии) — группа паровых (энергетических) котлов (при наличии) — группа паровых турбин (при наличии) — группа турбогенераторов — группа силовых трансформаторов (автотрансформаторов) (при наличии) — группа преобразовательных установок (при наличии) — группа выключателей (при наличии) — группа систем шин (при наличии) — группа реакторов шунтирующих (при наличии);

группа гидротурбин — группа гидрогенераторов — группа силовых трансформаторов (автотрансформаторов) (при наличии) — группа выключателей (при наличии) — группа систем шин (при наличии) — группа реакторов шунтирующих (при наличии);

группа силовых трансформаторов (автотрансформаторов) (при наличии) — группа преобразовательных установок (при наличии) — группа выключателей (при наличии) — группа систем шин (при наличии) — группа реакторов шунтирующих (при наличии) — группа батарей статических конденсаторов (при наличии).

3.13. Расчет индекса технического состояния основного совокупного технологического оборудования группы объектов электроэнергетики, принадлежащих одному или нескольким субъектам электроэнергетики (их обособленным подразделениям) (ИТССЭ), осуществляется по формуле (5):

$$MTC^{C3} = \frac{\sum_{i} (N_{npi} \times MTC_{i})}{\sum_{i} N_{npi}},$$
 (5)

где:

ИТСі – индекс технического состояния і-ого объекта электроэнергетики

субъекта электроэнергетики или его обособленного подразделения, входящего в оцениваемую группу объектов электроэнергетики;

Nпрі — приведенная мощность і-ого объекта электроэнергетики субъекта электроэнергетики или его обособленного подразделения, входящего в оцениваемую группу объектов электроэнергетики.

Приведенная мощность объектов электроэнергетики, входящих в оцениваемую группу объектов электроэнергетики, рассчитывается в соответствии с приложением № 4 к настоящей методике.».

- 7. В абзаце первом пункта 4.1 слово «однотипного» исключить.
- 8. Пункт 4.3 дополнить словами «с учетом положений методических указаний по расчету вероятности отказа функционального узла и единицы основного технологического оборудования и оценки последствий такого отказа, утвержденных приказом Минэнерго России от 19 февраля 2019 г. № 123 (зарегистрирован Минюстом России 4 апреля 2019 г., регистрационный № 54277) (далее Методические указания).».

9. В пункте 4.4:

после слов «технологического оборудования» дополнить словами «, на которые не распространяется действие Методических указаний,»;

слова «однотипного оборудования» заменить словами «оборудования одного вида».

- 10. В пункте 4.8 слова «приложении № 10» заменить словами «приложении № 5».
 - 11. В приложении № 1 к методике:
- а) после абзаца двадцать четвертого дополнить абзацем двадцать пятым следующего содержания:

«сегмент – часть ЛЭП (функциональный узел), ограниченная точками изменения конфигурации, – проводник или набор проводников с согласованными между собой электрическими характеристиками, который формирует единую электрическую систему, используемую для пропускания электрического тока между точками в энергосистеме, включает в себя опоры и пролеты в случае ВЛ и (или) кабельную линию (далее – КЛ) в случае КЛ. При этом под точками изменения

конфигурации понимается наличие одного из признаков – изменение физической характеристики провода (удельное сопротивление, материал, сечение), отпайка, отходящая от магистрали, коммутационный аппарат, различные организационные структуры субъекта электроэнергетики, эксплуатирующего ЛЭП;»;

- б) абзац двадцать шестой после слов «единицы оборудования» дополнить словами «, выделяют функциональный узел, определяющий ресурс (срок) службы единицы оборудования, ресурсоопределяющий функциональный узел»;
- в) абзацы двадцать пятый двадцать седьмой считать абзацами двадцать шестым – двадцать восьмым соответственно.
- 12. Приложение № 2 к методике изложить в редакции согласно приложению № 1 к настоящим изменениям.
 - 13. Приложения № 4 8 к методике признать утратившими силу.
 - 14. В приложении № 9:
 - а) слова «Приложение № 9» заменить словами «Приложение № 4»;
- б) слова «Таблица 9.1 Определение приведенной мощности ГРЭС» заменить словами «Таблица 4.1 Определение приведенной мощности ГРЭС»;
- в) слова «Таблица 9.2 Определение приведенной мощности ТЭЦ» заменить словами «Таблица 4.2 Определение приведенной мощности ТЭЦ»;
- г) слова «Таблица 9.3 Определение приведенной мощности ГЭС и АС» заменить словами «Таблица 4.3 Определение приведенной мощности ГЭС и АЭС»;
- д) таблицу 9.4 изложить в редакции согласно приложению № 2 к настоящим изменениям.
- 15. В приложении № 10 слова «Приложение № 10» заменить словами «Приложение № 5».

Приложение № 1

к изменениям, которые вносятся в методику оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей, утвержденную приказом Минэнерго России от 26 июля 2017 г. № 676, утвержденным приказом Минэнерго России от «17» марта 2020 г. № «192»

«Приложение № 2

к методике оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей, утвержденной приказом Минэнерго России от 26.07.2017 № 676

Оборудование и сооружения объектов электроэнергетики с детализацией узлов и параметров технического состояния. Балльная шкала оценки. Весовые коэффициенты для групп параметров и узлов

№ п.п.	Группа	Класс	Фун кциог узе		Группа параметров	Параметр функционального	Единица изм е рен ия	Фактическое значение	параметров (д соответ	цалее – Ф) от 1 ствия требова	предельно-доп иниям, установ	фактических зн устимых значе ленным норма: структорской (ний, а также гивно-	влия снижен техн	раметр, ющий на ше индекса ического шя (да/нет)	Весовой коз	ффициент
N5 II'II'	оборудова ния	оборудова ния	няименова ние	ресурсоо пределя ющий (да/нет)	функциональн ого узла	узла	пар аме т ра	параметра		пией организа		гелей (двлее — :		критич еский	ресурсооп ределяющ ий	группа параметров функционал ьного узла	функцио нальный узел
_	2	3		5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	Гидросил овое оборудова	Гидравлич еская турбина	Направля ющий аппарат	нет	Коррозионный, абразивный и кавитационный	Глубина коррозионного и абразивного износа попаток НА	мм		1 < Φ/5	0,8 < Φ/5 ≤ 1	0,4 < Φ/5 ≤ 0,8	0,2 < Φ/5 ≤ 0,4	Φ/5 ≤ 0,2	нет	нет	0,05	0,09
2	ние	-71	(далее – НА)		износ лопаток НА	Скорость коррозионного и абразивного износа лопаток НА	мм/год		1 < Ф/1	0,7 < Φ/1 ≤ 1	0,35 < Φ/1 ≤ 0,7	0,1 < Φ/1 ≤ 0,35	Φ/1 ≤ 0,1	нет	нет		
3			E .			Кавитационный износ лопаток НА		Имеется/ отсутствует	Имеется	-	<u> </u>	-	Отсутству ет	нет	нет		
4					Коррозионный, абразивный и кавитационный	Глубина коррозионного и абразивного износ верхнего и нижнего колеп НА	мм		1 < Ф/5	0,8 < Φ /5 ≤ 1	0,4 < Φ/5 ≤ 0,8	0,2 < Φ/5 ≤ 0,4	Φ /5 ≤ 0,2	нет	нет	0,05	
5					износ верхнего и нижнего колец НА	Скорость коррозионного и абразивного износа верхнего и нижнего колец НА	мм/год		1 < Ф/1	0,7 < Φ /1 ≤ 1	0,35 < Φ/1 ≤ 0,7	0,1 < Φ/1 ≤ 0,35	Φ/1 ≤ 0,1	нет	нет		
6						Кавитационный износ верхнего и нижнего колец НА		Имеется/ отсутствует	Имеется	-	<u> </u>	-	Отсутству ет	нет	нет		
7	1				Подшипники лопаток,	Зазоры в подшипниках и втулках цапф лопаток	ММ		1 < Ф/Н	-	•		0 ≤ Φ/H ≤ 1	нет	нет	0,35]
8					втулки цапф лопаток	Износ и дефекты цапф лопаток и втудок		Не единичный случай, повторяющий ся дефект / единичный случай/ отсутствуют	Не единичный случай, повторяющ ийся дефект	-	Единичный случай	•	Отсутству кот	нет	нет		

9				1 0/	 	0.0 400	0.0	0.1 45 400	0 - 4/100 - 1	# /100 A T			
			Количество втулок цапф	% от	1	0,3 < Φ/100	0,2 <	0,1 < Ф/100	0 < Φ/100 ≤	$\Phi/100 = 0$	Het	нет	1
1 1			лопаток, требующих замены в	общего			Φ/100 ≤	≤0,2	0,1		. 1		
			капитальный ремонт или	числа.			0,3			-	, [ļ	1
			межремонтный период	ļ	ļ	1 - 5 -				₽	,		0.25
10		Узлы и детали	Зазоры в узлах и деталях	MM		1 < Ф /H	- '	-	-	Φ/Η≤1	нет	HET	0,35
		кинематики	кинематики НА	-		1 - 5 10 -	064505	01.50	0 < 0.5 <				1
11		HA	Суммарный люфт в узлах и	% от		1 < Φ/0,5	0,6 < Φ/0,5	$0.4 < \Phi/0.5$	0 < ₱/0,5 ≤	$\Phi = 0$	нет	нет	[]
			деталях кинематики НА	полного			≤1	≤0,6	0,4		i 1		
				хода							ı I		
				сервомо							ı I		
				тора									4
12			Повреждения срезных		He	He	-	Е ди ничный		Отсутству	нет	Het	
			пальцев или талрепов в	į	единичный	единичный		случай		ют			
1			межремонтный период		случай,	случай,					, 1		1
					повторяющий	повторяющ				1			
1 1				1	ся дефект /	ийся дефект						!	!
1 1				1	единичный						ı 1	. !	1
Į l			•		случай/						i 1	. !	1
				<u> </u>	отсутствуют]
13			Увеличение перестановочных		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	1
	ļ		усилий		отсутствует		<u> </u>			ет	<u> </u>		
14			Трещины в дегалях	шт.		2<Φ	-	1≤Φ≤2	-	$\Phi = 0$	нет	нет	1
-			кинематики		1						1 1	. !	
15		Уплотнение	Протечки через НА		Останов	Останов	Гидроагре	-	Величина	Отсутству	нет	нет	0,10
		лопаток по	·		гидроагрегата	гидроагрега	гат без		протечек не	ют		. 1	
, ,]]	перу и торцам		1	в постоянном	та в	торможен		препятствуе	ļ	į 1	, !	
					режиме	постоянном	ияне		т останову		. !		1
					торможения/	режиме	останавли		гидроагрега		, ,		1
			•		гидроагрегат	торможения	вается		та на		. !		1
1					без				выбеге без		, 1		1
					торможения				торможения	i	. 1	, !	1
	i i l				не		<u> </u>		1 opinionio 11111		ι Ι	, ,	1
					останавливае			1			ı 1		
					тся/				i		i	, 1	1
				ļ	величина						i 1	. !	1
i				1	1						i 1	, !	1
				1	протечек не						i 1	. !	1
l i	1 1	j			препятствует						ı 1	, !	1
					останову						i 1		1
					гидроагрегата						i 1		1 i
					на выбеге без						i 1		1
1 1									l				1 1
					торможения/		ļ				١ ١		1
1					торможения/ отсутствуют								
16			Зазоры по высоте лопаток без	мм		-	1 < Ф/Н	-	-	Φ/H ≤ 1	нет	нет	
			резинового уплотнения	мм	отсутствуют	-		-	-		нет	нет	
16			резинового уплотнения Зазоры по высоте лопаток с	мм	отсутствуют Имеются/	-	1 < Ф/Н Имеются	-	-		нет	нет	
			резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением		отсутствуют		Имеются			Ф/Н≤1 Отсутству ют			
			резинового уплотнения Зазоры по высоте лопаток с	мм	отсутствуют Имеются/					Отсутству	нет		
17			резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением		отсутствуют Имеются/	-	Имеются	-	-	Отсутству		нет	
17			резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением Суммарная длина местных	% длины	отсутствуют Имеются/	-	Имеются	-	-	Отсутству	нет	нет	
17			резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением Суммарная длина местных зазоров между смежными	% длины тела	отсутствуют Имеются/	-	Имеются	-	-	Отсутству	нет	нет	
17			резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений	% длины тела	отсутствуют Имеются/	-	Имеются 1 < Ф/20	-	-	Отсутству ют Ф/20 ≤ 1	нет	нет	
17			резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых	% длины тела лопатки	отсутствуют Имеются/	-	Имеются 1 < Ф/20 0,5 <	- - 0,2 < Φ/100	- - 0 < Ф/100 ≤	Отсутству	нет	нет	
17			резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих	% длины тела лопатки % от общего	отсутствуют Имеются/	-	Имеются 1 < Ф/20 0,5 < Ф/100 ≤	-	-	Отсутству ют Ф/20 ≤ 1	нет	нет	
17 18 19		Регупирующее	резинового уплотнения Зазоры по высоте лопаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены)	% длины тела лопатки % от общего числа	отсутствуют Имеются/	- - 0,7 < Ф/100	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7	- 0,2 < Φ/100 ≤ 0,5	- - 0 < Φ/100 ≤ 0,2	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0	Het Het	нет	0.10
17		Регулирующее кольно НА	резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и	% длины тела лопатки % от общего	отсутствуют Имеются/	-	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤	- 0,2 < Φ/100 ≤ 0,5 0,7 ≤ Φ/100	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100	Отсутству ют $\Phi/20 \le 1$ $\Phi/100 = 0$	нет	нет	0,10
17 18 19		Регулирующее кольцо НА	резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих	% длины тела лопатки % от общего числа	отсутствуют Имеются/	- - 0,7 < Ф/100	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤	- 0,2 < Φ/100 ≤ 0,5	- - 0 < Φ/100 ≤ 0,2	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0	Het Het	нет	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца	% длины тела лопатки % от общего числа	отсутствуют Имеются/ отсутствуют	- 0,7 < Ф/100 1,0 < Ф/100	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Φ/100 ≤ 0,5 0,7 ≤ Φ/100 < 0,9	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10
17 18 19			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца Перекосы в установке	% длины тела лопатки % от общего числа	Отсутствуют Имеются/ отсутствуют Имеются,	- 0,7 < Ф/100 1,0 < Ф/100 Имеются,	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	Het Het	нет	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца	% длины тела лопатки % от общего числа	Отсутствуют Имеются/ отсутствуют Имеются, требуют	- 0,7 < Ф/100 1,0 < Ф/100 Имеются, требуют	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9 Имеются, требуют	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца Перекосы в установке	% длины тела лопатки % от общего числа	Имеются/ отсутствуют Имеются, требуют устранения	- 0,7 < Ф/100 1,0 < Ф/100 Имеются, требуют устранения	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9 Имеются, требуют устранения	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца Перекосы в установке	% длины тела лопатки % от общего числа	Имеются/ отсутствуют Имеются, требуют устранения во время	- 0,7 < Ф/100 1,0 < Ф/100 Имеются, требуют устранения во время	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9 Имеются, требуют устранения во время	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца Перекосы в установке	% длины тела лопатки % от общего числа	Имеются/ отсутствуют Имеются, требуют устранения во время непланового	- 0,7 < Ф/100 1,0 < Ф/100 Имеются, требуют устранения во время неплановог	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9 Имеются, требуют устранения во время планового	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца Перекосы в установке	% длины тела лопатки % от общего числа	Имеются/ отсутствуют Имеются, требуют устранения во время непланового ремонта/	- 0,7 < Ф/100 1,0 < Ф/100 Имеются, требуют устранения во время	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9 Имеются, требуют устранения во время	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца Перекосы в установке	% длины тела лопатки % от общего числа	Имеются/ отсутствуют Имеются, требуют устранения во время непланового ремонта/ имеются,	- 0,7 < Ф/100 1,0 < Ф/100 Имеются, требуют устранения во время неплановог	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9 Имеются, требуют устранения во время планового	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10
17 18 19 20			резинового уплотнения Зазоры по высоте лонаток с резиновым уплотнением Суммарная длина местных зазоров между смежными лопатками без резиновых уплотнений Количество торцевых уплотнений, требующих ремонта (замены) Износ трущихся деталей и направляющих регулирующего кольца Перекосы в установке	% длины тела лопатки % от общего числа	Имеются/ отсутствуют Имеются, требуют устранения во время непланового ремонта/	- 0,7 < Ф/100 1,0 < Ф/100 Имеются, требуют устранения во время неплановог	Имеются 1 < Ф/20 0,5 < Ф/100 ≤ 0,7 0,9 ≤ Ф/100 ≤ 1,0	- 0,2 < Ф/100 ≤ 0,5 0,7 ≤ Ф/100 < 0,9 Имеются, требуют устранения во время планового	- 0 < Φ/100 ≤ 0,2 0,5 ≤ Φ/100 < 0,7	Отсутству ют Ф/20 ≤ 1 Ф/100 = 0 Ф/100 < 0,5	HeT HeT HeT	HeT HeT HeT	0,10

							13									
							во время									
		1					планового									
					l i		ремонта/									
	!				T		отсутствуют		Имеются	ļ <u>.</u>						
22					Трещины на креплении опор		Имеются/	-	имеются	-	-	Отсутству	нет	нет		!
23				1	сервомоторов Повышенные перемещения и		отсутствуют Имеются/	-	Имеются	-		ЮТ				1
23					люфты в узлах трения		отсутствуют	-	PIMERUICA	-	-	Отсутству ют	нет	нет		
24		Крышка	нет	Вибрационное	Вертикальная вибрация	мкм	OlcylcibyRol	1 < Ф/Н	0,8 < Ф/Н	0,65 < Φ/H	0,5 < Φ/H ≤	Φ/H ≤ 0,5		****	0,50	0,09
24		турбины	Her	состояние	Бергикальная виорация	MAM		1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5,5 < €/11	≤0,8	0,5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Φ/11 ≤ 0,5	да	нет	0,50	0,03
25		Туронны	1	COCTONING	Тенденция отклонения	мкм		_	50 < (Φ –		- 5,05	(Φ - Φo) ≤	нет	нет		
25					вертикальной вибрации				Фо)	Φo) ≤ 50		10	Hei	HCI		1
					крышки турбины по				/	""		10				1
					сравнению с исходным				İ							1
1 1					значением Фо в						i					1
					сопоставимых условиях (в											1
			ļ		соответствии с НТД,				1							l l
			•		требования которой											
					применяются при оценке	ļ										
					(далее - применяемая НТД))]
26				Наличие и	Цикл работы (отношение			1<Ф	0,56 < Φ ≤	0,39 < Φ ≤	0,3 < Φ ≤	Φ≤0,3	нет	нет	0,20	1
				объем	времени работы ко времени				1	0,56	0,39					
				протечек	останова) насосов осущения							1				
					шахты турбины (дренажных											
					насосов)		 		1,7		ļ	ļ				
27	ì	1	i		Протечки масла через крышку	İ	Сплошная	Сплошная	Масляные	1	-	Отсутству	нет	нет	•	i i
							пленка на	пленка на	пятна на	следы на		ют				1
							поверхности воды в шахте	поверхност и воды в	поверхнос	конусе, без						1
		1					турбины/	и воды в шахте	ти воды в шахте	пятен на водной						1
	+						масляные	турбины	турбины	поверхност						
			1				пятна на	Туромия	Туронны	и и в шахте						1
							поверхности]	турбины	}	1				1
			1				воды в шахте			Турогина						1
							турбины/									1
						ļ	масляные									!
							следы на					<u> </u>				
						1	конусе, без									
		1					пятен на]
					1		водной			1		İ				
		-					поверхности									
							и в щахте									
							турбины/									
							отсутствуют		<u></u>]
28				Состояние	Трещины в крепежных		Имеются/	Имеются	-	-	-	Отсутству	нет	нет	0,30	
				крепежных	деталях		отсутствуют			ļ		ют				
29				деталей	Повреждение резьбы		Имеется (на	Имеется	Имеется	Имеется	-	Отсутству	нет	нет		
		1		1	крепежных деталей		более чем 2	(на более	(на 2	(на 1		eт				
		1					крепежах,	чем 2	крепежах	крепеже 1-	1					
1 1							более 2	крепежах,	1-2 нитки)	2 нитки)						j l
	1	1					ниток)/	более 2			-					
			1				имеется (на 2	ниток)								
							крепежах 1-2 нитки)/									
		1			}					1						
		1					имеется (на 1 крепеже 1-2		1							1
					İ		нитки)/									
		1					отсутствует									
30					Выкрашивание ниток резьбы	 	Более 2	Более 2	2 нитки	1 нитка	 -	0	****			
30		1			Description of the persons		ниток/	HUTOK	LIMIKA	I HAIRA	_	Отсутству	нет	нет		
		1	1				2 нитки/	THE LOR		1		ет				
		1					1 нитка/			1						
							отсутствует			1						
31					Крепежные детали		Требуется	Требуется	Требуется	Требуется	-	Замена не	нет	нет		
''	ŀ	1			2-benevering Wetmin		массовая	массовая	единичная		_	требуется	Hel	Hel		
	<u> </u>			<u>. L</u>	<u> </u>		1		1 -	1 AMELITER AREA		Theologica	1	l	l	

								14									
	!				l			замена/	замена	замена в	замена в		•	Ţ - <u></u>			Г
ļ								требуется		неплановы	плановый]
]	единичная		й ремонт	ремонт						
								замена в									ĺ
			j	j				неплановый							ļ		
			1					ремонт/			1						
			ĺ	ĺ	1		1	требуется		ĺ		ĺ			j		ĺĺĺ
								единичная									j
								замена в]			1
								шановый									
								ремонт/									
								замена не					ŀ				
32	·		Постоя		1/	П	 	требуется	II	14	17	TZ	0			0.04	- 10
32			Проточна	да	Механические	Повреждения и трещины проточной части		Имеются	Имеются	Имеются	Имеются	Имеются	Отсутству	нет	нет	0,24	0,19
			я часть		повреждения	проточной части		усталостные	усталостны	поврежден	поврежден	повреждени	ют				
İ								трещины, механические	е трещины, механическ	ия и усталостн	ия и усталостны	я (сколы, выбоины,					
					1		Ì	повреждения,		ые	е трещины	выссины, вмятины),				1	
							1	параметры	ие повреждени	трещины	металличес	устраняемы	1				
		1	1					которых	я,	металличе	Kax	е без			l]
1]				находятся за	л, параметры	ских	облицовок	дополнител					
								пределами	которых	облицовок	CK, KPK,	ьных работ	1		1		
			1					значений,	находятся	CK, KPK,	сопрягающ	по	1]
								установлени	за	сопрягаю	его пояса и	восстановле					
								ых НТД	пределами	щего	отсасываю	нию или	,				
								(вызваны	значений,	пояса и	щей трубы,	замене					
			Į.			1	ŀ	посторонним	установлен	отсасываю	устраняем	поврежденн					
								и	ных НТД	щей	ые без	ых участков		ŀ			
								предметами),	(вызваны	трубы,	дополнител	СК и				İ	
								требующие	посторонни	требующи	ьных работ	отсасываю				ļ	
		ĺ	i	ì	ł	}		непланового	МИ	e	по	щей трубы	l	ł		1	i i
								ремонта/	предметами	капитальн	восстановл						l
								имеются	_),	ого	ению или		İ				
								повреждения	требующие	ремонта,	замене						
								и	неплановог	замены	поврежден		1				1
							ŀ	усталостные	о ремонта		HEIX						
			!					трещины			участков	Ļ		-	1		
				ļ				металлически									
							1	х облицовок									1
								спиральной									
								камеры (далее – СК),									
								камеры									
	1	•						рабочего									
								колеса (далее									
								– КРК),									
								сопрягающег									
	1	1						о пояса и		1			1				
						1	}	отсасывающе]
	1	1						й трубы,					1				
								требующие									
	1	1						капитального					1				
	[1						ремонта,		1			1				
							1	замены/		[
1	1	l	1	1	1	1	1	имеются	1	1	}	1	1	1	1	}	1 1
		[повреждения]	ŀ						
	1	1						И		1		1					
		1						усталостные									
	1	1						трещины		1		1					
	1	1						металлически		1]		1		ļ		
		1						х облицовок		1	1	1	1				
		1						CK, KPK,		1							
		İ						о пояса и									
								о пояса и отсасывающе		1		1					
								й трубы,									
L	L	I		l	1		_I	լուµy∪ы,	l .	I	L	1	1	1	1	1	1

устраняемые без дополнительн ых работ по восстановлен ию или замене поврежденны х участков/ имеются повреждения (небольшие сколы, выбоины, вмятины), устраняемые	
дополнительн ых работ по восстановлен ию или замене поврежденны х участков/ имеются повреждения (небольшие сколы, выбонны, выбонны, вмятины),	
ых работ по восстановлен ию или замене поврежденны х участков/ имеются повреждения (небольшие сколы, выбоины, выбоины, выбоины, вмятины),	
восстановлен ию или замене поврежденны х участков/ имеются повреждения (небольще с колы, выбоины, выбоины,	
ию или замене поврежденны х участков/ имеются повреждения (небольшие сколы, выбоины, выбоины,	
замене поврежденны х участков/ имеются повреждения (небольшие сколы, выбоины, выбоины,	
поврежденны х участков/ имеются повреждения (небольшие сколы, выбоины, выбоины,	
х участков/ имеются повреждения (небольшие сколы, выбоины, выбоины, вмятины),	
имеются повреждения (небольшие сколы, выбоины, выбоины, вмятины),	
повреждения (небольшие сколы, выбоины, выбоины,	
(небольшие сколы, выбоины, выятины),	i 1
сколы, выбоины, вмятины),	
выбоины, вмятины),	
вмятины),	
TO THE PERSON OF	
6e3	
дополнительн	
ых работ по	
восстановлен	
ию или	
замене	
поврежденны	
х участков	
СКи	
отсасывающе	
й трубы/	
отсутствуют	
33 Искажение формы камеры мм 0,0003 < Ф-	
рабочего колеса от формы, $H / H = \Phi - H / H \le \Phi - H / H $	
определенной организацией-	
изготовителем	
34 Состояние КРК Кавитационная эрозия г - 1 < Ф/Н 0,5 < Ф/Н ≤ 0 ≤ Ф/Н ≤ нет нет	0,35
1,0 0,5	-
Дефекты прилегания	
облицовки КРК и общей 1,0 0,5 сопрягающего пояса к площади	1
штрабному бетону	
	-
	0.10
Состояние Площадь участков % от - 0,1 < 0,07 < 0,05 < Ф/100 ≤ нет	0,10
бетона разрушенного оетона оощем площади 0,07	
70	⊣
1 лубина участков м - 1 < Ф/0,5 0,6 < Ф/0,5 Ф/0,5 ≤ 0,6 нет нет нет дазрушенного бетона ≤1 ≤0,8	
	0,30
Скрытые Восстановление штраоного Нет (не Нет Да Да, нет нет дефекты и бетона восстановлен (не (при сроке (при сроке	0,30
восстановлени о или восстановлен службы службы	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	
ремонта о не в полном восстановл	
объеме)/ ено не в	
да (при сроке полном	
службы 1,6 ≤ объеме)	
да (при сроке	1
службы Ф/H < 1,6)	— ·
Службы Ф/Н < 1,6) Восстановление облицовки Нет (не Нет Да Да, нет нет	
Службы Ф/Н	
1,6	
2 1,6 2 1,6 2 2 2 2 2 2 2 2 2	
Восстановление облицовки Нет (не - Нет Да Да, нет нет КРК Восстановлен ено или восстановлен ено или 1,6 ≤ Ф/H) Ф/H ≤ О не в полном восстановл 1,6 О не в полном восстановл 1,6 О не в полном восстановл 1,6 О не в полном восстановл 1,6 О не в полном восстановл 1,6 О не в полном восстановл 1,6 О не в полном восстановл 1,6 О не в полном восстановл 1,6 О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном Восстановл О не в полном О не	
Восстановление облицовки Нет (не - Нет Да Да, нет нет КРК Восстановлен ено или восстановл ено или восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл ено не в восстановл восстановл ено не в восстановл ено не в восстановл восстановл восстановл восстановл восстановл восстановл ено не в восстановл восст	
Службы Ф/Н <1,6) Нет (не	
Службы Ф/Н	

	T	Т	T			T-0 (-m ama						····		T	
				:		да (при сроке службы Ф/Н									
42				77 1		< 1,6)								_	
41				Наличие скрытых дефектов		Привело к увеличению	-	-	Привело к увеличени	Не привело к	Не обнаружен	нет	нет		
]					планируемых			ю	увеличению	0				
						работ/			планируем	планируемы					
						не привело к увеличению			ых работ	х работ					
						планируемых									
						работ/									
						не									
42			Группа	Наличие дефектов проточной		обнаружено Имеется/	Имеется			_	Отсутству	нет	да	0,01	
"-			ресурсоопреде	части:		отсутствует					eT	1101	- дд.	0,01	
			хиднонил	наличие усталостных трещин,											
1			параметров	механических повреждений, параметры которых находятся											
				за пределами значений,											
				установленных НТД				1							
				(вызванных посторонними предметами)											
				и и											
				искажение формы КРК свыше											
				0,0003 от формы, определенной организацией-											
				изготовителем (при зазоре											
				«Камера-лопасть» больше											
1				значения, установленного											
				нтд)					1						
				и кавитационная эрозия свыше											
				значения, установленного											
				нтд,				ı.]
				и наличие повреждений											
				креплений отъемного											
42	7.	ļ		сегмента				1 . 5 /77	- AT						
43	Рабочее колесо	да	Зазор «Камера - лопасть»	Зазор (для поворотно- лопастных турбин (далее - тип	MM		-	1 < Ф/Н (при	Ф/H < 1,0 (при	-	Ф/H = 1,0 (при	нет	н е т	Поворотно- лопастные -	0,3
	ROJECO		" MOINCID"	ПЛ))				отсутстви	отсутствии		отсутстви			0,15	
								и	документа		и			Радиально-	
								документа ции	ПИИ		документа			осевые -	
								организац	организаци и-		ции организац			0,25	
								ии-	изготовите		ии-				
								изготовите ля Н ==	ля Н ≔ 0,001D1)		изготовите = Н кл				
								0,001D1)	0,001D1)		0,001D1)				
44				Зазор по лабиринтному	мм		-	1 < Ф/Н	Φ/H < 1,0	-	$\Phi/H = 1,0$	нет	нет	1	
				уплотнению (для радиально- осевых турбин (далее - тип											
				РО))											
45				Отклонение зазора после	% от		•	1 < Φ/20		0,3 < Φ/20 ≤	$\Phi/20 \le 0,3$	нет	нет	-	
	F			центровки гидроагрегата	средней				≤1	0,7					
					величин ы										
46				Подрезка лопастей в период		Имеется/	•	-	Имеется	-	Отсутству	нет	нет	1	
			76	ремонта		отсутствует		1		<u> </u>	ет				
47			Кавитационны й износ,	Кавитационная эрозия	r		-	1 < Ф/Н	0,5 <Φ/H ≤ 1,0	0,2 < Φ/H ≤ 0,5	Φ/H ≤ 0,2	нет	нет	Поворотно- лопастные -	
48			механические	Повреждения кромок		Имеются,	•	Имеются,	Имеются,	-	Отсутству	нет	нет	0,15	
		1	повреждения	лопастей		требует замены		требует замены	не требует		ют			Радиально-	
						лопасти/		лопасти	замены лопасти					осевые - 0,25	
		<u> </u>				имеются, не								-,	
L															

	 			17								
				требует замены лопасти/ отсутствуют						-		
49	Усталостные трещины лопастей	Усталостные трещины лопастей (для турбин типа ПЛ)		Имеются, требует замены лоцасти/ имеются, не требует замены лоцасти/ отсутствуют	•	Имеются, требует замены лопасти	-	Имекотся, не требует замены лопасти	Отсутству ют	нет	нет	0,19
50		Усталостные трещины рабочего колеса и лопастей (для турбин типа РО)		Имеются, требует замены рабочего колеса/ имеются, не требует замены рабочего колеса, но требуют ремонта лопастей/ отсутствуют	-	Имеются, требует замены рабочего колеса	-	Имеются, не требует замены рабочего колеса, но требуют ремонта лопастей	Отсутству кот	нет	нет	
51	Протечки масла через уплотнения рабочего колеса (далее – РК)	Протечки масла через уплотнения РК		Имеются/ потеки масла через уплотнения лопастей, уплотнений цапф лопастей, на втулке РК, из-под крышки втулки РК/ отсутствуют	-	-	Имеются	Потеки масла через уплотнения лопастей, уплотнений цапф лопастей, на втулке РК, из-под крышки втулки РК	Отсутству кот	нет	нет	Поворотно- лопастные - 0,10 Радиально- осевые - 0
52	Перестановочн ые усилия	Перестановочные усилия	кгс/см2		-	1,2 < Ф/Н	1,1 < Φ/H ≤ 1,2	1 < Φ/H ≤ 1,1	Ф/Н ≤ 1	нет	нет	Поворотно- попастные - 0,10 Радиально- осевые - 0
53	Скрытые дефекты и восстановлени е после ремонта	Устранение трещин		Нет (не восстановлен о или восстановлен о не в полном объеме)/ да (при сроке службы 1,6 ≤ Ф/Н)/ да (при сроке службы Ф/Н < 1,6)		-	Нет (не восстановл ено или восстановл ено не в полном объеме)	Да (при сроке службы 1,6 ≤ Ф/Н)	Да, (при сроке службы Ф/Н < 1,6)	нет	нет	0,3
54		Восстановление формы РК наплавкой металла		Нет (не восстановлен о или восстановлен о не в полном объеме)/ да (при сроке службы 1,6 ≤ Ф/Н)/	-	-	Нет (не восстановл ено или восстановл ено не в полном объеме)	Да (при сроке службы 1,6 ≤ Ф/Н)	Да, (при сроке службы Ф/H < 1,6)	нет	нет	

	 					10									
						да (при сроке службы Ф/Н < 1,6)									
55				Наличие скрытых дефектов		Привело к увеличению планируемых работ/ не привело к увеличению планируемых работ/ не обнаружено	-	-	Привело к увеличени ю планируем ых работ	Не привело к увеличению планируемы х работ	Не обнаружен о	нет	нет		
56			Группа ресурсоопреде ляющих параметров	Наличие дефектов рабочего колеса для турбин типа ПЛ: зазор «Камера-лопасть» больше значения, установленного НТД, и кавитационная эрозия больше значения, установленного НТД, и наличие усталостных трещин лопастей, требующих их замены и перестановочные усилия более 20% от значений, установленных НТД		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	нет	да	0,01	
57				Наличие дефектов рабочего колеса для турбин типа РО: зазор «Камера-лопасть» по лабиринтному уплотнению больше значения, установленного НТД, и кавитационная эрозия больше значения, установленного НТД, и наличие усталостных трещин рабочего колеса и лопастей, требующих их замены		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	нет	да		
58	Система автоматич еского	нет	Комбинаторная зависимость	Угол отклонения от оптимального значения, установленного НТД.	град		1 < Ф/1	1	0,5 < Φ/1 ≤ 0,7	0,5	Φ=0	нет	нет	Поворотно- лопастные - 0,30	0,09
59	управлени я			Разница в развороте лопастей при одном и том же открытии НА после отработки сигналов на «прибавить» и «убавить»	град		1 < Ф/1	1	0,5 < Φ/1 ≤ 0,7	0,2 < Φ/1 ≤ 0,5	Φ/1 ≤ 0,2	нет	нет	Радиально- осевые - 0	
60			Давление в полостях сервомоторов при отсутствии регулирования	Разность давлений в полостях сервомоторов	кгс/см2		0,3 < (Фмакс - Фмин)/Фми н	0,15 < (Фмакс - Фмин)/Фм ин ≤ 0,3	0,05 < (Фмакс - Фмин)/Фм ин ≤ 0,15	-	0 ≤ (Фмакс - Фмин)/Фм ин ≤ 0,05	нет	нет	Поворотно- лопастные - 0,2 Радиально- осевые - 0	
61			Состояние регулятора скорости в	Отказы регулятора скорости в процессе эксплуатации в межремонтный период		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству кот	нет	нет	Поворотно- лопастные - 0,3	
62			Целом	Дефекты в межремонтный период		Имеются связанные с отказами в регулировани и/ имеются не связанные с	-	Имеются связанные с отказами в регулиров ании	-	Имеются не связанные с отказами в регулирова нии и не приводящие к	Отсутству ют	нет	нет	Радиально- осевые - 0,75	

								19									
								отказами в регулировани и не приводящие				внеплановы м простоям					
								к внеплановым простоям/ отсутствуют									
63					Цикл работы насосов маслонапорной установки (далее – МНУ)	Цикл работы (отношение времени работы ко времени останова) насосов МНУ в режиме работы гидроагрегата без отработки сигналов регулирования			0,2 < Ф	-	0,15 < Φ ≤ 0,2	0,1 < Φ / ≤ 0,15	Φ ≤0,1	нет	нет	Поворотно- лопастные - 0,2 Радиально- осевые - 0,25	
64			Турбинны й подшипни к и вал	нет	Водяная смазка и охлаждение подшипника	Отклонение давления в напорной ванне подшипника от нижней (далее – Ны) или верхней (далее – Нв) границы диапазона значений, установленных НТД	ктс/см2		0,5 < (Ф- Нв)/Нв или 0,5 < (Нн- Ф)/Нн	0,35 < (Ф- Нв)/Нв ≤ 0,5 или 0,35 < (Нн-Ф)/Нн ≤ 0,5	0,2 < (Ф- Нв)/Нв ≤ 0,35 или 0,2 < (Нн- Ф)/Нн ≤ 0,35	0 < (Ф- Нв)/Нв ≤ 0,2 или 0 < (Нн- Ф)/Нн ≤ 0,2	(Ф-Нв)/Нв ≤ 0 и (Ны-Ф)/Нн ≤ 0	нет	нет	на водяной смазке - 0,2; на масляной смазке - 0	0,09
65						Отклонение расхода воды на смазку и охлаждение от Нн или Нв границы диапазона значений, установленных НТД	л/с		0,3 < (Ф- Нв)/Нв или 0,3 < (Нн- Ф)/Нн	0,2 < (Ф- Нв)/Нв ≤ 0,3 или 0,2 < (Нн- Ф)/Нн ≤ 0,3	0,1 < (Ф- Нв)/Нв ≤ 0,2 или 0,1 < (Ни- Ф)/Нн ≤ 0,2	0 < (Ф- Нв)/Нв ≤ 0,1 или 0 < (Нн- Ф)/Нн ≤ 0,1	(Ф-Нв)/Нв ≤ 0 и (Ни-Ф)/Ни ≤ 0	нет	нет		
66					Состояние вала в зоне	Бой вала в зоне подшипника	ММ		1 < Ф/Н	0,8 < Φ/H ≤ 1	0,65 < Φ/H ≤ 0,8	0,5 < Φ/H ≤ 0,65	Φ/H ≤ 0,5	нет	нет	на водяной смазке - 0,4;	
67					подшипника	Выработка рубашки вала	мм		1 < Φ/1	0,7 < Φ/1 ≤ 1	0,7	0,5	Φ/1 ≤ 0,3	нет	нет	на масляной смазке - 0,5	
68					Состояние подшипника	Вибрация корпуса подшипника	мкм		1,0 < Ф/Н	0,80 < Φ/H ≤1,0	0,55 < Φ/H ≤ 0,80	0,30 < Φ/H ≤ 0,55	Φ/H ≤ 0,30	нет	нет	на водяной смазке - 0,4;	
69						Тенденция изменения вибрации корпуса подпипника по сравнению с исходным значением Фо в сопоставимых условиях (в соответствии с применяемой НТД)	мкм		-	50 < (Φ – Φο)	10 < (Φ – Φο) ≤ 50	-	(Φ – Φο) ≤ 10	нет	нет	на масляной смазке - 0,5	
70						Степень износа вкладышей турбинного подпишника	%		1 < Ф/70	0,714 < Φ/70 ≤ 1	0,429 < Φ/70 ≤ 0,714	0 < Φ/70 ≤ 0,429	Φ=0	нет	нет		
71			Обобщенн ый узел	нет	Срок службы	Срок службы	лет		1,6 ≤ Ф/Н	1,2 ≤ Φ/H < 1,6	0,8 ≤ Φ/H < 1,2	0,8	Φ/H < 0,5	нет	нет	0,8	0,15
72					Энергетически е	Коэффициент полезного действия	%		-	Φ/H < 0,98	0,98 ≤ Φ/H < 0,99	0,99 ≤ Φ/H < 1	Ф/Н = 1	нет	нет	0,2	
73	'				характеристик и	Мощность	МВт		-	Φ/H < 0,98	0,98 ≤ Φ/H < 0,99	0,99 ≤ Φ/H < 1	Ф/Н = 1	нет	нет		
	Сооружен	Воздушна	Сегмент	нет		ции и арматуры опоры, в том чис	ле:	 	ļ	0 "						для	1,00
74	ВИЯ	я линия электропе редачи (далее –			изоляция фарфоровая/ст еклянная	Загрязнение		Стойкое/ нестойкое удаляемое/ отсутствует	-	Стойкое	-	Нестойкое удаляемое	Отсутству ет	нет	нет	сегмента с опорами - 0,184 для	
75		вл)				Подтягивание (задир) подвесок		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет	сегмента без опор -	
76						Отклонение изолирующих поддерживающих подвесок	мм		-	-	1 < Ф/Н	-	Φ/H ≤ 1	нет	нет	0,233	
77						Следы перекрытия, оплавления, треск		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет]	
78						Коррозия шапок изоляторов		Имеется/ отсутствует	-	-	-	Имеется	Отсутству ет	нет	нет]	
79			_		изоляция полимерная	Загрязнение		Стойкое/ нестойкое	•	Стойкое	-	Нестойкое удаляемое	Отсутству ет	нет	нет		

1		- 1									····		
					удаляемое/								
			Отклонение изолирующих	мм	отсутствует	-	-	1 < Ф/Н	-	Φ/H ≤ 1	нет	нет	1
_			поддерживающих подвесок Подгагивание (задир)		Имеется/		-	Имеется	-	Отсутству	нет	нет	-
			подвесок		отсутствует					eт]
	1 1		Эрозия/микротрещины		Имеется/	-	-	Имеется	-	Отсутству	нет	нет] i
			защитной оболочки		отсутствует					ет			4
			Следы перекрытия, оплавления, треск		Имеются/ отсутствуют	-	•	Имеются	-	Отсутству ют	нет	нет	
		Комплектность	Комплектность подвески		He	-	He	-	-	Соответст	нет	нет]
		подвески			соответствует		соответств			вует			
					проекту/		ует			проекту			
					проекту		проекту						
		арматура	Несоответствие геометрии		Имеется/	_	Имеется		_	Отсутству	нет	нет	1
		линейная	чертежу		отсутствует]		ет			1
		'	Конструктивные элементы		Отсутствуют/	-	Отсутству	- "	•	В	нет	нет	1
					в комплекте		ют			комплекте]
			Коррозионный износ поперечного сечения	%		-	1 < Ф/Н	-	•	Φ/H ≤ 1	нет	нет	
			металлических элементов								1		
			Сплошная поверхностная		Имеется/		-	-	Имеется	Отсутству	нет	нет	1
			коррозия Трещины	<u> </u>	отсутствует Имеются/		Имеются	-	-	Отсутству	нет	нет	
			Изгибы		отсутствуют Имеются/	_	Имеются	_		ют		HOT	
					отсутствуют	-				Отсутству ют	нет	нет]
			Раковины		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству ют	нет	нет	
			Оплавы		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству кот	нет	нет	
			Износ шарнирных сочленений		Имеется/ Отсутствует	-	Имеется	-	-	Отсутству	нет	нет	
			Искровые промежутки	мм	010/1012/01	-	-	0,1< (Φ/H)-	0,1 < (Φ/H)	(Ф/Н) -	нет	нет	1
								1 (для линий	- 1 (для линий	1 ≤0,1		ı	
								с плавкой гололеда)	без плавки гололеда)				
	i i i				I .						- t		
	i I I	Состояние опоры	ы/портала, в том числе:										для
		Состояние опоры заземление	и/портала, в том числе: Конструктивные элементы		Отсутствуют/ в комплекте	-	-	Отсутству	•	В комплекте	нет	нет	сегмента с
			Конструктивные элементы Несоответствие сечения	ММ	Отсутствуют/ в комплекте	-	-	Отсутству кот Ф/H < 1	-	В комплекте 1 ≤ Ф/Н	нет	нет	сегмента с опорами - 0,135
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв)	ММ	в комплекте Имеется/			ЮТ		комплекте 1 ≤ Ф/Н Отсутству			сегмента с опорами - 0,135 для сегмента
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление	ММ	в комплекте	~	_	ют Ф/H < 1	-	комплекте 1 ≤ Ф/Н	нет	нет	сегмента с опорами - 0,135 для
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи	Ом	в комплекте Имеется/	-	-	ют Ф/H < 1 Имеется 1,1 < Ф/Н	-	комплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1	нет	Het Het Het	сегмента с опорами - 0,135 для сегмента
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений	Ом	в комплекте Имеется/		-	кот Ф/H < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05	-	томплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0	HET HET HET	Het Het Het	сегмента с опорами - 0,135 для сегмента
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства	Ом	в комплекте Имеется/ отсутствует	-	-	ют Ф/H < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50	-	томплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1	нет	Het Het Het	сегмента с опорами - 0,135 для сегмента
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего	Ом	в комплекте Имеется/ отсутствует Выступает над		-	кот Ф/H < 1 Имеется 1,1 < Ф/H 1,0 < Ф/0,05 1 < Ф/50 Выступает над	-	томплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0	HET HET HET	Het Het Het	сегмента с опорами - 0,135 для сегмента
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства	Ом	в комплекте Имеется/ отсутствует Выступает над поверхность ю земли/			кот Ф/H < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50 Выступает	-	комплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1	HET HET HET	HeT HeT HeT HeT	сегмента с опорами - 0,135 для сегмента
		заземление	Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства Заземлитель	Ом	в комплекте Имеется/ отсутствует Выступает над поверхность ю земли/ не выступает			кот Ф/Н < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50 Выступает над поверхност ью земли	-	томплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1 Не выступает	HET HET HET HET	HET HET HET HET	сегмента с опорами - 0,135 для сегмента
			Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства	Ом	Выступает над поверхность ю земли/ не выступает Имеется зазор/			кот Ф/H < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50 Выступает над поверхност	-	комплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1	HET HET HET	HeT HeT HeT HeT	сегмента с опорами - 0,135 для сегмента
2		стойка решетчатая (для	Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства Заземлитель Прилегание пят к фундаментам	Ом	Выступает над поверхность ю земли/ не выступает Имеется зазор/ без зазора		- - - - - - - - - - - - - - - - - - -	кот Ф/Н < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50 Выступает над поверхност ью земли	-	томплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1 Не выступает	HET HET HET HET HET	HeT HET HET HET	сегмента с опорами - 0,135 для сегмента
		стойка решетчатая (для металлических	Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства Заземлитель Прилегание пят к фундаментам Посторонние предметы, в том	Ом	Выступает над поверхность ю земли/ не выступает Имеется зазор/ без зазора Имеются/			кот Ф/Н < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50 Выступает над поверхност ью земли	-	томплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1 Не выступает Без зазора Отсутству	HET HET HET HET	HET HET HET HET	сегмента с опорами - 0,135 для сегмента
2		стойка решетчатая (для	Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства Заземлитель Прилегание пят к фундаментам Посторонние предметы, в том числе птичьи гнезда	Ом Ом %	Выступает над поверхность ю земли/ не выступает Имеется зазор/ без зазора		- - - - - - - - - - - - - - - - - - -	кот Ф/Н < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50 Выступает над поверхност ью земли		комплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1 Не выступает Без зазора Отсутству кот	HET HET HET HET HET	HeT HET HET HET HET	сегмента с опорами - 0,135 для сегмента
2		стойка решетчатая (для металлических	Конструктивные элементы Несоответствие сечения заземляющих спусков Повреждение (обрыв) заземляющих спусков Сопротивление металлической связи Переходное сопротивление контактных соединений Износ контура заземляющего устройства Заземлитель Прилегание пят к фундаментам Посторонние предметы, в том	Ом	Выступает над поверхность ю земли/ не выступает Имеется зазор/ без зазора Имеются/		- - - - - - - - - - - - - - - - - - -	кот Ф/Н < 1 Имеется 1,1 < Ф/Н 1,0 < Ф/0,05 1 < Ф/50 Выступает над поверхност ью земли	-	томплекте 1 ≤ Ф/Н Отсутству ет Ф/Н ≤ 1,1 Ф/0,05 ≤ 1,0 Ф/50 ≤ 1 Не выступает Без зазора Отсутству	HET HET HET HET HET	HeT HET HET HET	сегмента с опорами - 0,135 для сегмента

107 108 109				-,											
	106	1	1	į.	Коррозионный износ несущих	%	\	-	- '	$1 < \Phi/10$	-	Ф /10 ≤ 1	нет	нет	
The content of the	107						Имеется/	_		Имертся		OTCVTCTBV	цет	UPT	
Common representation Helesteral Heles	107		1				i	_	_	TIMOCICA	_		Hei	Hei	
100 100	108							-	-	Имеется	-		нет	нет	
100	100														
10	109				Болтовые (заклепочные)			-	-	Ослаблены	-	В норме	нет	нет	
112					соединения		в норме								
12 13 14 15 15 15 15 15 15 15	110					мм			-		-		нет	нет	
113 114 115	111				Отклонение от вертикальной			-	-		-		нет	нет	
133 Typumana a compana, manch Typumana Typumana Typumana a compana, manch Typumana T															
	112				Защитное покрытие			-	-			В норме	нет	нет	
Typesman a sortane Bacterio property Bacterio Bacterio property Bacterio Bac										T	нарушения				
Typestrate a servance Massorius															
The common is a companion and interest The common is a companion and interest The common is a common interest The common is a common interest The common is a common interest The common is a common interest The common is a common interest The common is a common interest The common is a common interest The common is a common interest The common is a common interest The co	112				Траушин гр матрина					Иметотоя		Orresponsy			
The control appearance mask and process	113				трещины в метапле				_	PIMEROICA	_		HCI	Hei	
115 116	114				Трешины в сварных швах					Имеются	-		нет	нет	
150	***														
	115				Высота прокладок под пятой	мм		-	-	1 < Φ/40			нет	нет	
1 1 1 1 1 1 1 1 1 1		1		1		мм		-		_	1 < Φ/2		нет		
17		1			и элементов решетки при										
118 118 2 2 2 2 2 2 2 2 2												ļ			
118 Деформация поставах угологов и элементого решетал гра. Деформация поставах угологов и элементого решетал гра. Деформация поставах угологов и элементого решетал гра. Деформация и дета дета дета дета дета дета дета дета	117					мм		-	-	-	l < Φ/3	$\Phi/3 \le 1$	нет	нет	
118														l	
119 Претеняе факти в разверения Притеняе факти Притеняе факти Притеняе факти Притеняе факти Притеняе факти Мимется Закор за и мет закор з	110						·				1 < 0/5	₽/5 < 1			
119 119	118				деформация поясных уголков	MM		-	-	-	1 < Ψ/3	Ψ/3≤1	нет	нет	
Правитация фидикатту Правитация фидикатту Вазор более 2 мм Макетта Вазор ма											:				
120 120	110			CEOTIVA			Имеется	-	Имеется	·	Имеется	Без 3930pg	цет	UPT	
120 120	119			1							1	Des susopa		1101	
120 120				_	4)			}							
120 120				v ·			имеется зазор	ł							
10 10 10 10 10 10 10 10				опор)											
120 120		1 1													
Посторовние предмены, в том часие питемы педа потустемуют пот нет нет нет нет нет нет нет нет нет не							1								
121 121 122 123 124 125 125 127 12					т.						TT				
121 122 123 124 125 125 126 126 127 12	120							-	_	-	имеются		нет	нет	
122 123 124 125 126 126 127 127 128 129 12	121							_	_	Оспаблены		·	пет	nor	
122 123 124 124 124 124 124 124 124 124 124 125 125 125 125 125 125 126 12	121				·			_	-	Осласлены	_	ь норме	Her	Hei	
123 124 125 126 126 127 127 128 129 12	122	1	1			мм	B Hopare	-	_	1 < Ф/H	-	Φ/H < 1	нет	нет	
124 124 125 125 125 125 125 125 125 125 125 126 126 126 126 126 126 127 127 127 127 128 128 129 120 129 120 12							· · · · · · · · · · · · · · · · · · ·	_							
124 Скосаное коррозионное поряжение пору															
Поряжение Педевяя коррозия сварных Имеется Имеется Отсутствует Педевяя коррозия сварных Имеется Отсутствует Отсутству нет нет нет нет нет нет нет нет нет нет	124						Имеется/	•	-		-		нет	нет	
126 127 128 129 129 129 130 131 132 133 133 133 133 133 135 132 133 133 135 133 135 133 135 133 135 133 135 133 135 133 135 135 133 135 133 135 135 133 135 135 133 135 13					поражение		l .				<u> </u>	er			j
126 127 128 129 129 129 129 130 131 131 132 133 134 133 134 133 134 133 134 133 134 133 134 135 13	125				Щелевая коррозия сварных		1	-	_	Имеется	-	Отсутству	нет	нег]
127 Трещины в сварных швах Имеются		1			швов с появлением трещин				ļ <u></u> .			ет			
Трещины в сварных швах	126		1		Трещины в металле			-	-	Имеются	-		нет	нет	
128 Защитное покрытие Имеются Имеются нарушения нет															
128 Защитное покрытне Имеются нарушения/ в норме нет нет нет нет нет нет нет нет нет не	127				Трещины в сварных швах	1		-	-	Имеются	-		нет	нет	
129 129 130 131 132 133 133 130 130 130 131 132 133 130 13					<u></u>				-	ļ	T.		ļ		
129 Стойка (для железобетонны х опор) или приставка оси для портальных опор мелезобетонных для для дря оси для одностоечных опор 132 133 133 133 134 135 1	128				защитное покрытие	1		-] -	-	E .	в норме	нет	нет	
129 130 130 131 132 133 133 133 133 133 130 13	 										нарущения				
130 железобетонны х опор) или приставка оси для портальных опор 131 132 133 133 133 133 130	120			croffre (mm	Посторонние предисти в том			 		_	Имеются	Orcyreany	Uer	шет	
130 x опор) или приставка приставка Отклонение от вертикальной оси для портальных опор - 1 < -	129							-	_	· -	TIMORUICA		Her	нег	
Приставка оси для портальных опор Ф/(1:100) ≤ 1	130					 	1,	_	 	1 <	 -		нет	нет	
131 железобетонна я для оси для одностоечных опор 1 < - Ф/(1:150) нет нет оси для одностоечных опор Ф/(1:150)	130		'												
132 132 Оси для одностоечных опор Ф/(1:150) ≤ 1 133 Искривление см - - 1 < Ф/Н	131						1				-		нет	нет	1
132 133 Продольное оголение поперечной арматуры - - 1 < Ф/Н	***						1		1	_	1				
Продольное оголение м 1 < Ф/Н - Ф/Н ≤ 1 нет нет поперечной арматуры	132	1	\			CM			<u> </u>				нет	нет	
поперечной арматуры					Продольное оголение		T	-	-		_				
124					поперечной арматуры		<u></u>	1	1	L.,					
154	134				Ширина поперечной трещины	мм		_	1 < Φ/0,6	0,5 < Ф/0,6	0 < Φ/0,6 ≤	$\Phi = 0$	нет	нет	

		(арматура стержневая)					≤1	0,5			
5		Ширина поперечной трещины	ММ		-	1 < Ф/0,3	0,17 <	0 < Ф/0,3	Φ=0	нет	нет
		(арматура проволочная)					Φ/0,3 ≤ 1	≤0,17			
6		Продольные трещины - длина	М		-	3<Ф	-	0<Φ≤3	$\Phi = 0$	нет	нет
7		Продольные трещины - ширина	мм		-	-	0,3 ≤ Φ	0 < Ф < 0,3	Φ ≃ 0	нет	нет
8		Продольные трещины -	шт.		-	2<Ф	-	0<Φ≤2	Φ=0	нет	нет
9		количество в одном сечении Раковины/сквозные отверстия	шт.			1<Ф	Φ=1	-	Φ=0	нет	нет
- 		- количество	см2			25 < Ф	0<Φ≤25		Φ=0		
0		Раковины/сквозные отверстия - площадь	CMZ			25 < Ψ	U < Ψ ≤ 25	-	Ψ=0	нет	нет
		Пористый бетон /щель вдоль стойки		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет
2		Коррозия		Пятна,	-	-	-	Пятна,	Отсутству	нет	нет
				потеки цвета ржавчины/				потеки цвета	ет	:	
	Į.			отсутствует				ржавчины			
3		Поперечная арматура		Темные полосы по вигкам	-	-	-	Темные полосы по виткам	В норме	нет	нет
				поперечной арматуры/				поперечной арматуры			
4	стойка (для	Посторонние предметы, в том		в норме Имеются/	-	-	-	Имеются	Отсутству	нет	нет
5	деревянных onop)	числе птичьи гнезда Обгорание, выгорание		отсутствуют Имеется/	-	Имеется	-	-	ют Отсутству	нет	нет
				отсутствует Имеется/	_	_	Имеется		ет		
6		Деформация, изгиб		отсутствует	-		ROTSOMIT	-	Отсутству ет	нет	нет
7		Загнивание		Имеется/ отсутствует	-	Имеется		-	Отсутству	нет	нет
8	приставка деревянная	Загнивание		Имеется/ отсутствует	-	Имеется		-	Отсутству	нет	нет
9	(для деревянных	Обгорание, выгорание		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет
0	опор)	Длина трещины шириной 0,5	м	orey rereyer	-	1 < Φ/1,5	0 < Φ/1,5 ≤	-	$\Phi = 0$	нет	нет
1		см Бандаж		Обрыв/	-	Обрыв	-	Ослабление	В норме	нет	нет
				ослабление, коррозия/ в норме				, коррозия			
2	траверса металлическая	Посторонние предметы, в том числе птичьи гнезда		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству	нет	нет
3	Metannackay	Коррозионный износ косынок	%	отоутогвуют	•	*	1 < Ф/30	_	Φ/30 ≤ 1	нет	нет
4		Коррозионный износ	%		-	-	1 < Φ/20		Φ/20 ≤ 1	нет	нет
5		ненесущих элементов Коррозионный износ несущих	%		-	-	1 < Ф/10	-	Φ/10 ≤ 1	нет	нет
66		элементов Сквозное коррозионное		Имеется/		-	Имеется	•	Отсутству	нет	нет
		поражение	ļ	отсутствует		1			ет		
		Щелевая коррозия сварных швов с появлением трещин		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет
8		Прогиб			-	-	1 < Φ/(1:300)	-	Φ/(1:300) ≤ 1	нет	нет
9		Трещины в металле		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству	нет	нет
		Трещины в сварных швах		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству	нет	нет
0			 	Отсутствуют	-		Отсутствуе		В норме	нет	нет
i1		Защитное покрытие		1		1					
		Защитное покрытие		имеются нарушения/			т	нарушения			
		Защитное покрытие Болтовые (заклепочные)		имеются			Т	нарушения Ослаблены	В норме		

											
	траверса	Посторонние предметы, в том		Имеются/	-	-	Имеется	-	Отсутству	нет	нет
	железобетонна	числе птичьи гнезда Оголение поперечной	м	отсутствуют		_	1 < Φ/1,5	_	eτ Φ/1,5 ≤ 1	нет	нет
	1	арматуры (вдоль опоры)	M		_	_	1 (4/1,3	- I	₩/1,5 ≤1	Her	Her
		Поперечная арматура		Темные	-	-	-	Темные	В норме	нет	нет
				полосы по				полосы по	-		
				виткам				виткам			
				поперечной				поперечной			
	i l			арматуры/				арматуры			
				в норме		1 < 0/0 (0.5 < 0.00	0 - 70 -	* /0.6.0		
		Ширина поперечной трещины	MM		-	$1 < \Phi/0,6$	0,5 < Φ/0,6	0 < Φ/0,6 ≤	$\Phi/0,6=0$	нет	нет
		(арматура стержневая)				1 < Φ/0,3	≤1 0,17<	0.5 $0 < \Phi/0.3 \le$	$\Phi/0,3=0$		
		Ширина поперечной трещины (арматура проволочная)	MM	1	-	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\Phi/0.3 \le 1$	$0 \cdot \Psi / 0.3 \le 0.17$	$\Psi/0,3=0$	нет	нет
		Продольные трещины - длина	M	†	-	3 < Ф	-	0<Φ≤3	$\Phi = 0$	нет	нет
1		Продольные трещины -	MM		_		0,3 ≤ Φ	0 < Φ < 0,3	$\Phi = 0$	нет	нет
		ширина					-,		• •	1101	10.
1 1		Продольные трещины -	IIT.		-	2<Ф	-	0<Φ≤2	$\Phi = 0$	нет	нет
		количество в одном сечении									
1		Прогиб			-	-	1 <	-	Φ/(1:300)	нет	нет
]	1 1						Φ/(1:300)		≤ 1		
1 1	1 1	Раковины/сквозные отверстия	IIIT.		-	1<Φ	$\Phi = 1$	-	$\Phi = 0$	нет	нет
]		- количество	ļ			05 -	0 - 5 - 55				
	1	Раковины/сквозные отверстия	см2		-	25 < Ф	0 < Φ ≤ 25	-	$\Phi = 0$	нет	нет
]]]	} }	- площадь		Имеется/		_	Имеется	 	O		<u> </u>
		Пористый бетон/щель вдоль траверсы		имеется/	-	•	RIMECICA		Отсутству ет	нет	нет
		Пятна, потеки цвета		Имеются/				Имеются	Отсутству		TIOT
1		ржавчины		отсутствуют	_	-	_	rimerotca	ют	нет	нет
1	траверса/подтр			Имеются/	-	-	Имеются	_	Отсутству	нет	нет
	аверсный брус			отсутствуют				ļ	ют		
1	ядд)	Обгорание, выгорание		Имеется/	-	Имеется	-	-	Отсутству	нет	нет
1	деревянных			отсутствует					ет		
]	опор)	Деформация, изгиб		Имеется/	-	-	Имеется	-	Отсутству	нет	нет
]				отсутствует					ет		
		Загнивание		Имеется/	-	Имеется		-	Отсутству	нет	нет
4				отсутствует				77	er		
		Ослабление, коррозия		Имеется/	-	-	-	Имеется	Отсутству	нет	нет
- 1 1	namonar angri	крепления Посторонние предметы, в том		огсутствует Имеются/	-	_	Имеются		Orrownown	TION	
	ветровая связь (для	числе птичьи гнезда	ļ	отсутствуют	-	-	PIMEROICA	_	Отсутству ют	нет	нет
1	деревянных	Обгорание, выгорание	 	Имеется/	-	Имеется		-	Отсутству	нет	нет
1 1	опор)	Coropanzio, ani opariie		отсутствует		111100101		_	ет	HOI	HO1
1 1		Деформация, изгиб	1	Имеется/		-	Имеется	-	Отсутству	нет	нет
				отсутствует				<u></u>	er		
1		Загнивание		Имеется/	-	Имеется		-	Отсутству	нет	нет
]				отсутствует				<u> </u>	ет		
]		Ослабление, коррозия		Имеется/	-	-	-	Имеется	Отсутству	нет	нет
1 1		крепления		отсутствует				 	ет		
	тросостойка	Конструктивные элементы		Отсутствуют/	-	Отсутству	-	-	В	нет	нет
4		D	 	в комплекте		Ихоотол		 	комплекте		
		Разрушение, потеря несущей способности		Имеется/	-	Имеется	-	-	Отсутству	нет	нет
-		Посторонние предметы, в том	1	отсутствует Имеются/		 	Имеются	- -	ет Отсутству	Tron	Wern .
		числе птичьи гнезда		отсутствуют	-		ILIACKOTCA	l -	ют	нет	нет
-		Коррозионный износ косынок	%	O10) IOIBYROI			1 < Ф/30	 	Φ/30 ≤ 1	нет	нет
		(только для металлических	"				1 - =/50	I -	¥,50 ≥ 1	HUI	
		опор)		1							
1		Коррозионный износ	%		-	-	1 < Ф/20	-	Φ/20 ≤ 1	нет	нет
		ненесущих элементов				<u></u>		<u> </u>			
1	j	Коррозионный износ несущих	%		-	-	1 < Ф/10	*	Φ/10 ≤ 1	нет	нет
]]]		элементов					1				
]		Сквозное коррозионное		Имеется/	-	-	Имеется	-	Отсутству	нет	нет
		поражение Щелевая коррозия сварных	<u> </u>	отсутствует		<u> </u>	L		ет	<u></u>	
				Имеется/			Имеется		Отсутству		

	 			24			,	T	, ,			
104		швов с появлением трещин		отсутствует			T		er			-
194		Трещины в металле		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет	
195		Трещины в сварных швах		Имеются/ отсутствуют	-	-	Имеются	•	Отсутству ют	нет	нет	
196		Защитное покрытие		Имеются		-	-	Имеются	В норме	нет	нет	
				нарушения/ в норме				нарушения				
197		Болтовые (заклепочные)		Ослаблены/	-	•	-	Ослаблены	В норме	нет	нет	-
198		соединения Изгиб, деформация		в норме Имеется/	-	-	-	Имеется	Отсутству	нет	нет	-
				отсутствует					er			_
99	оттяжка (при наличии)	Разрушение, потеря несущей способности		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет	
0		Неисправность креплений		Имеется/	-	-	Имеется	*	Отсутству	нет	нет	1
1		Конструктивные элементы		Отсутствуют/	-	-	Отсутству	_	er B	нет	нет	1
2		Измер измературна даматия	%	в комплекте		1 < Φ/20	ют		комплекте Ф/20 ≤ 1			_
3		Износ поперечного сечения Тяжение	кH	1		$\Phi < 20$	-	-	$0/20 \le 1$ $20 \le \Phi \le$	нет нет	нет нет	-
						и 50 < Ф			50			
4		Ослабление тяжения		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет	
5		Защитное покрытие		Имеются нарушения/	-	-	-	Имеются нарушения	В норме	нет	нет	1
_				в норме					<u> </u>]
6		Устройство регулирования длины		Имеется неисправност ь/ исправно	-	-	-	Имеется неисправно сть	Исправно	нет	нет	
7	общие дефекты	Выход из створа		Имеется/ отсутствует	*	-	-	Имеется	Отсутству	нет	нет	
3	ľ	Отклонение опоры вдоль оси ВЛ от проектного пикета	м		-	-	-	1 < Ф/5	Φ/5 ≤ 1	нет	нет	
,		Древесно-кустарниковая растительность в радиусе 2 м		Имеется/ отсутствует	-	<u>-</u>	-	Имеется	Отсугству	нет	нет	_
_		(только для деревянных опор)		010/1012/01					C1			
\dashv		мента опоры, в том числе:	r									для
'	фундамент оттяжки	Конструктивные элементы		Отсутствуют/ в комплекте	-	-	Отсутству	-	В комплекте	нет	нет	сегмента с опорами -
	(измеряются	Оползень (смещение или		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	0,033
-	при наличии оттяжек)	осыпание грунга) Сваи		отсутствует Выход сваи	_	-	Выход сваи		ет В норме	нет	нет	для сегмента
				из грунта/			из грунга		2 nopme	1101	1101	без опор - 0
3		Поверхностный фундамент		в норме Смещен/	-	-	Смещен		Не смещен	нет	нет	-
		•		не смещен			,]
		Болговые (заклепочные) соединения		Ослаблены/ в норме	-	-	-	Ослаблены	В норме	нет	нет	
		Оседание, вдавливание в		Имеется/	-	-	-	Имеется	Отсутству	нет	нет	1
<u>-</u>		грунт Оседание/вспучивание грунта		отсутствует Имеется/	-	-	Имеется	-	ет Отсутству	нет	нет	
, 		Бетон оголовника	 	отсутствует Имеются	-	-	-	Имеются	В норме	нет	нет	
				сколы бетона/				сколы бетона	•	-	_	
8	фундамент	Разрушение фундамента		в норме Имеется/		-	Имеется	-	Отсутству	нет	нет	-
9	опоры	Отсутствие контргайки или		отсутствует Имеется/	-	-	-	Имеется	ет Отсутству	нет	нет	-
		кернения Отсутствие шпилек	Ше	отсутствует		2≤Φ	Φ=1		ет			
20		крепления	шт.		-	}		-	Φ=0	нет	нет	
21		Оползень (смещение или		Имеется/	-	Имеется	-	<u> </u>	Отсутству	нет	нет	

					25								
			осыпание грунта), не		отсутствует					eт			
			влияющий на устойчивость опоры										
222			Сваи (только для		Выход сваи	_	_	Выход сваи		В норме	нет	нет	
			металлических опор)		из грунта/			из грунта					
					в норме								
223			Оседание, вдавливание в		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	
224		İ	грунт Оседание/вспучивание грунта		отсутствует Имеется/	-		Имеется	_	ет			
224			Оседание/вспучивание грунта		отсутствует	-	-	PIMEETCA	-	Отсутству ет	нет	нет	
225			Поверхностный фундамент		Смещен/	-	-	Смещен	-	Не смещен	нет	нет	
		1			не смещен								}
226			Ригели		Находятся на	-	-	Находятся	-	В норме	нет	нет	
					поверхности/			на					
					в норме			поверхност и					
227			Бетон оголовника		Имеются		-		Имеются	В норме	нет	нет	
					сколы бетона,		1		сколы				
				!	трещины/				бетона,				
		<u> </u>			в норме		}	15 (577	трещины				
228		Срок службы	Срок службы	лет		-	-	1,5 < Ф/Н	1 < Φ/H ≤ 1,5	Φ/H ≤ 1,0	нет	нет	для
		опоры					ļ		1,5				сегмента с опорами -
1 1	1 1	Ì	1	ĺ	(1	i I		ľ			0,033
													для
			-						!				сегмента
		C	L	<u></u>									без опор - 0
229		состояние фазн	ых проводов пролета, в том числе Наброс	: 	Имеется/		Имеется	 _		Отсутству	нет	нет	для сегмента с
		фазных	Паорос		отсутствует	_	TIMECICA	_	_	er	Hei	HCI	опорами -
230		проводов	Стрела провеса	м	1	-	0,05 < (Ф-			(Ф-	нет	нет	0,242
		(провод					H)/H			H)/H ≤			для
		неизолировани			, , , , , , , , , , , , , , , , , , ,					0,05			сегмента
231		ый)	Вспучивание верхнего повива («фонари»)		Имеется/ отсутствует	-	-	-	Имеется	Отсутству	нет	нет	без опор - 0,303
232			Перекрытие, оплавление	 	Имеется/	-	· -	<u> </u>	Имеется	ет Отсутству	нет	нет	0,505
			Tropesquarine, organization		отсутствует				IIMOOIGA	ет	noi	nei	
233			Разрегулировка проводов в		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	1
			расщепленной фазе		отсутствует					eт			
234			Обрыв проволок провода вне	%		-	34 < Ф	17 < Φ ≤ 34	0 < Φ ≤ 17	Ф=0	нет	нет	
235			зажима - доля Обрыв проволок провода вне				8<Ф	4<Φ≤8	0<Φ≤4	Ф=0			-
233			зажима - количество	шт.		-	J 0,4	4.4.	U ~ ¥ ≥ 4	4-0	нет	нет	
236			Расстояние между группами	м			 -	0,1< Ф/Н-	_	Φ/H - 1 ≤	нет	нет	j
			дистанционных распорок					i		0,1			
237			Повреждение дистанционных		Имеется/	-	Имеется	-	-	Отсутству	нет	нет]
220			распорок	<u> </u>	отсутствует			ļ		ет	· · ·		
238			Отсутствие дистанционных распорок		Имеется/ отсутствует	-	-	-	Имеется	Отсутству ет	нет	нет	
239			Коррозия	<u> </u>	Имеется/	-	Имеется	 		Отсутству	нет	нет	
				<u></u>	отсутствует			L		eT	1101	1101	
240		провод	Длина пролета	М		-	-	-	1 < Ф/Н	Φ/H ≤ 1	нет	нет] [
241		изолированный	Изоляция защищенного		Повреждена/	-	-	-	Повреждена	He	нет	нет]]
			провода		не					поврежден			
242			2	1	повреждена Повреждены/		 		Попрожения	He			
242			Элементы крепления проводов		не	-	-	-	Поврежден ы	поврежден	нет	нет	
	1 1	1	1	1	повреждены	}	1	ł	~	і ы			
243			Тип, марка провода	1	Не	-	-	-	He	Соответст	нет	нет	1
			· -		соответствует				соответству	вует			
					нагрузке/		1		ет нагрузке	нагрузке			
					соответствует								
244			Разрегулировка проводов в	 	нагрузке Имеется/	_		<u> </u>	Имеется	Отсутству	race.	TIOT	
244			газрегулировка проводов в пролете		отсутствует	-]	-	FIMOCICA	ет	нет	нет	
L			1	<u> </u>	1 ,			·	L		L		<u> </u>

					20		1						
245	1 1	соединители	Количество витков	IIIT.		-	Φ/H ≠1	-	-	Φ/H=1	нет	нет	[
246			Изменение цвета	L	Имеется/ отсутствует	-	Имеется	•	-	Отсутству ет	нет	нет	
247			Болтовые (заклепочные)		Отсутствуют	-	Отсутству	-	-	В норме	нет	нет	
			соединения]	болты/шайбы		ют						
					в норме		болты/шай бы			1			
248			Шплинты	<u> </u>	Отсутствие/		Отсутстви			В норме	нет	нет	
240]		THE PL		выползание/	_	е/выполза	_	_	В норме	nei	Hei	
] _	в норме		ние						
249			Коррозия		Имеется/	-	•	Имеется	-	Отсутству	нет	нет	1
250	[Кривизна	%	отсутствует	-		1< Ф/3		<i>e</i> τ Φ/3 ≤ 1	нет	нет	{
251	1 1		Болговая муфта		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	
					отсутствует			İ		ет			
252		гасители	Смещение места установки от		Смещено/	-	-	-	Смещено	Согласно	нет	нет	
		вибрации	проекта		согласно					проекта			
252	i l		П.1		проекта		 		TZ	 			
253			Деформация		Имеется/ отсутствует	-	-	-	Имеется	Отсутству	нет	нет	
254			Наличие согласно проекту	 	Отсутствуют/	_	_	Отсутству	<u> </u>	ет Установле	нет	нет	
			I man me don money		установлены			ют		ны	ACI	nei	
255			Отсутствие грузов		Отсутствуют/	-	 -	-	Отсутствую	Установле	нет	нет	1
	1 1				установлены				т	ны	I]
256		гасители	Наличие согласно проекту		Отсутствуют/	-	-	Отсутству	-	Установле	нет	нет]
		пляски			установлены		ļ	ют		ны]
257		1	Смещение места установки от		Смещено/	-	-	-	Смещено	Согласно	нет	нет	
1 1			проекта		согласно		1			проекта			
		Corrosura	вогроса пролета, в том числе:	-	проекта		 		 			<u> </u>	для
258		грозотрос	Обрыв проволок провода вне	%			34 < Ф	17 < Φ ≤ 34	0<Φ≤17	Ф=0	нет	нет	для сегмента с
23		postpoe	зажима - доля	/ /				1 2 2 2 3 4	***-*/	••	1101	nei	опорами -
259			Обрыв проволок провода вне	шт.		-	8<Ф	4<Φ≤8	0<Φ≤4	Ф=0	нет	нет	0,061
			зажима - количество										для
260			Анкерный/натяжной зажим		Поврежден/	-	Поврежде	-	-	Не	нет	нет	сегмента без опор -
261		[Обрыв проволок провода вне	 	не поврежден Имеется/		н Имеется			поврежден Отсутству	нет	LIOT	0,076
			зажима		отсутствует	_				er	HC1	нет] -,
262			Стрела провеса	М		-	0,05 < (Ф-	-	-	(Φ-	нет	нет]
							н)/н		1	H)/H ≤			
			11.5	ļ	II		 	ļ	ļ	0,05			
263			Наброс		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	
264			Сплошная поверхностная		отсутствует Имеется/		 		Имеется	Отсутству	FFOT	TECHT	
204		1	коррозия		отсутствует	· -	1 -	-	TIMOCICA	er	нет	нет	
265	1	l l	Расплетение проволок	 	Имеется/	-	 -	Имеется	-	Отсутству	нет	нет	<u> </u>
					отсутствует				<u></u>	ет			
266			Следы оплавления,		Имеются/	-	-	-	Имеются	Отсутству	нет	нет]
2.5			перекрытия		отсутствуют	ļ	 			ют			
267			Защитное покрытие		Имеются	-	-	-	Имеются	В норме	нет	нет	
					нарущения/ в норме		1	[нарушения				
268		соединители	Вытяжка троса из	 	Имеется/	-	Имеется	 	-	Отсутству	нет	нет	1
#00		- COOPPINITURE	соединительного/натяжного		отсутствует			1		ет	4501	HC1	
			зажима	<u></u>		<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>]
269			Размер	мм		-	Φ/ H ≠ 1	-	-	$\Phi/H = 1$	нет	нет]
270			Изменение цвета		Имеется/	-	Имеется	-	_	Отсутству	нет	Her]]
271	[]	[[T	-	Отсутствует		M	 	ļ	ет			
271			Трещины		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству	нет	нет	
272]		Коррозия	 	Имеется/	<u>-</u>	 	Имеется		Отсутству	нет	TIÓT	1
	1 1		1 Topposta		отсутствует				-	er	He1	нет	
""													
			Кривизна	%		-	-	1 < Φ/3	-	Φ/3 ≤ 1	нет	нет	
273 274			Кривизна Количество витков	% шт.		-	-	1 < Φ/3 Φ/H ≠ 1	-	Φ/3 ≤ 1 Φ/H=1	нет нет	нет	

				27		, 	,					
				отсутствует					ет			
276	гасители вибрации	Смещение места установки от проекта		Смещено/ согласно проекта	-	-	-	Смещено	Согласно проекта	нет	нет	
277		Деформация		Имеется/ отсутствует	-	-	-	Имеется	Отсутству ет	нет	нет	
278		Наличие согласно проекту		Отсутствуют/ установлены	-	-	Отсутству ют	-	Установле ны	нет	нет	
279		Отсутствие грузов		Отсутствуют/ установлены	-	-	-	Отсутствую т	Установле ны	нет	нет	
280	гасители пляски	Наличие согласно проекту		Отсутствуют/ установлены	-	-	Отсутству ют	-	Установле ны	нет	нет	
281		Смещение места установки от проекта		Смещено/ согласно проекта	-	-	-	Смещено	Согласно проекта	нет	нет	
282	Состояние трассы	Древесно-кустарниковая растительность		Высотой более 4 м/ высотой 4 м и менее/ отсутствуют	-	Высотой более 4 м	-	Высотой менее 4 м	Отсутству ет	нет	нет	для сегмента с опорами - 0,242 для
283		Отдельные угрожающие деревья на краю просеки		Имеются/ отсутствуют	-	Имеется	-	•	Отсутству ет	нет	нет	сегмента без опор -
284		Просека (ширина)	М			Φ/H < 1	-		1 ≤ Φ/H	нет	нет	0,303
285	Срок службы пролета	Срок службы	лет		-	-	1,5 < Ф/Н	1 < Φ/H ≤ 1,5	Φ/H ≤ 1,0	нет	нет	для сегмента с опорами - 0,060 для сегмента без опор - 0,075
286	Группа критических параметров изоляции	Разрушение, потеря несущей способности изоляции фарфоровой/ стеклянной/ полимерной		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	да	нет	для сегмента с опорами - 0,003
287	2500244	Количество дефектных изоляторов в гирлянде	шт.		1 ≤ Φ/H		0,2 < Ф/H < 1	-	0 ≤ Φ/H ≤ 0,2	да	нет	для сегмента
288		Повреждение/разрыв оболочки полимерной изоляции		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	да	нет	без опор - 0,005
289	5	Разрушение, потеря несущей способности линейной арматуры		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	да	нет	
290		Изломы линейной арматуры		Имеются/ отсутствуют	Имеются	-	•	-	Отсутству	да	нет	
291	Группа кригических параметров	Дефект термитной сварки пережог фазного неизолированного провода		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	да	нег	для сегмента с опорами -
292	фазного провода	Дефект термитной сварки фазного неизолированного провода - усадка металла в месте сварки глубиной более 1/3 диаметра провода		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	да	нет	0,004 для сегмента без опор - 0,005
293		Обрыв проволок в поддерживающем/натяжном зажиме фазного неизолированного провода		Имеется/ Отсутствует	Имеется	-	-	-	Отсутству ет	да	нет	,,,,,,
294		Вытяжка провода из соединительного/натяжного зажима соединителя		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	да	нет	
295		Трещины соединителя		Имеются/ отсутствуют	Имеются	-	-	-	Отсутству	да	нет	
296		Свечение соединителя		Имеется/ отсутствует	Имеется	-	-	-	Отсутству	да	нет]
297		Анкерный/натяжной зажим		Поврежден/	Поврежден	-	-	_	He	да	нет	1

		1 7		-	<u> </u>	соединителя		не поврежден		ı	I		поврежден	· I		T	
298	-	1 1				Степень развития дефекта		Аварийный С	Аварийный	Развивший	Начальная		Дефект	да	нет	1	
2,76			1			контактных соединений		дефект/	дефект	ся дефект	стадия		отсутствуе	Α.	iici		
		1 1			i	соединителя по результатам		развившийся	дефект	ол дофект	развития		T				
	İ					тепловизионного контроля		дефект/			дефекта		1 1	- 1			
						Telliobashonnoro kontpeda		начальная			дофокта		1 1				
			1					стадия					1				
								развития					1 1]	
								дефекта/	-		1		1 1			1 1	
								дефекта/					1				:
								отсутствует					1 1				
299						Габарит (отклонение) фазных	м	Ulcylcibyel	Φ/H < 1				1 ≤ Φ/H			1 1	
299			ŀ				M.		Ψ/11 < 1	_	-	-	1 \ \Pi \	да	нет		
200			i			проводов		IA	Имеются		-						
300	-				Группа	Конструктивные элементы		Имеются		- 1	~	-	В	да	нет	для	
					критических	стойки, влияющие на		элементы	элементы				комплекте			сегмента с	
		j l			параметров	устойчивость металлической		стойки,	стойки,							опорами -	
1		1			опоры	опоры		требующие	требующие							0,003	
ŀ								непланового	неплановог							для	
								ремонта /	о ремонта				ļ			сегмента	
	4							в комплекте	77				+			без опор - 0	
301	1					Разрушение, потеря несущей	1	Имеется/	Имеется	-	-	-	Отсутству	да	нет		
						способности стойки опоры		отсутствует					ет				
ĺ						(металлической			'								
1			i			железобетонной, деревянной)											
						или приставки							1				
1	ł	1	ł			железобетонной для	ł	}	1				1 1			1 1	
						деревянной опоры	1]	
302						Разрушение/излом приставки		Имеется/	Имеется	-	-	-	Отсутству	да	нет		
			1			деревянной (для деревянных		отсутствует					er				
			i			опор)]	
303						Конструктивные элементы		Отсутствуют/	Отсутствую	- !	-	-	B	да	нет		
		1 '			1	траверсы (металлической,	l	в комплекте	Т				комплекте				
1						железобетонной)											
304						Разрушение, потеря несущей		Имеется/	Имеется	-	-	-	Отсутству	да	нет		
	į.					способности траверсы (для		отсутствует					eT				
						металлической и деревянной		' '									
					1	опоры)											
305						Разрушение, потеря несущей		Имеется/	Имеется	-	-	-	Отсутству	да	нет	1 !	
						способности подтраверсного		отсутствует					er				
						бруса, ветровой связи (для	İ				1		'-				
	l					деревянной опоры)	1										
306						Потеря несущей способности		Имеется/	Имеется	-	-	-	Отсутству	да	нет	1	
1 300						фундамента		отсутствует		ļ			ет		1.01		
307		1				Разрушение, потеря несущей	 	Имеется/	Имеется		-	_	Отсутству	ла	нет	1	
307		1				способности фундамента	[отсутствует			[ет	, ,,,u	1101		
İ						оттяжки		010,1012,01					"				
308		1				Оползень (смещение или		Имеется/	Имеется	_		-	Отсутству	да	нет	-	
1 300	1	1				осыпание грунта), влияющий		отсутствует	11.11.01.01]	er	де.	HC1		
	1	1				на устойчивость опоры		Jiey leibyei	1				61				
309		Кабельная	Сегмент	нет	Состояние	Манометр	+	Поврежден/	_	Поврежде	-		Исправен	нет	T10TD	КЛ 35 кВ -	1
303			Сегмент	Hel	вспомогательн	i Manomerp		исправен	_	н	_	_	Исправен	HCI	нет	0;	•
210		линия			1	Датчик давления масла		Поврежден/	-	Поврежде	-		Marmanara			Маслонапол	
310		электропе			ого оборудования	датчик давления масла		исправен	-	н н	i -	_	Исправен	нет	нет	ненные КЛ	
311		редачи			(для класса	Система вторичной	1	Неисправна/		Неисправн	<u></u>		Иотто	FYSIA	****	110 кВ и	
311		(далее – КЛ)			напряжения	коммутации кабельного		исправна	ı -	а	ı -	-	Исправна	нет	нет	более -	
		(1/2)			напряжения 110-500 кВ)			исправна		4	1					0,128;	
					110-200 KD)	сооружения				l	1						
											1					КЛ 110 кВ и	
									1	I	1					более с	
	- !								1	1	[полиэтилен	
										I	1					овой	
		1		1	1	I	I		I		1	1]		изолящией	
			1		1	1			1	1							
										[(далее - ПЭ	
																(далее - ПЭ изоляция) -	
:																(далее - ПЭ	

				<u> </u>								более
												прочие - 0
312	Состояние кабельной	Тангенс угла диэлектрических потерь (tgб) масла при 100 °C		i 	-	1 ≤ Ф/ H	0,95 ≤ Φ/H < 1	0,9 ≤ Φ/H < 0,95	$\Phi/H < 0.9$	нет	нет	КЛ 35 кВ - 0;
313	муфты (для класса напряжения 110-500 кВ)	Пробивная напряженность (Епр) масла / полиметилсилаксановой	кВ/см		-	Ф/Н ≤ 1	1 < Φ/H ≤ 1,05	1,05 < Φ/H ≤ 1,1	1,1 < Ф/Н	нет	нет	Маслонапол ненные КЛ 110 кВ и более -
	110-300 kB)	жидкости										оолее - 0,235; КЛ 110 кВ и более с ПЭ изоляцией - 0; КЛ 110 кВ и более прочие - 0,375
314	Состояние силового кабеля	Оболочка		Повреждена/ не повреждена	#	Поврежде на	-	-	Не поврежден а	нет	нет	КЛ 35 кВ - 0,375; Маслонапол
315	RAUGIN	Элементы катодной защиты (для класса напряжения 110 - 500 кВ)		Повреждены/ исправны	-	Поврежде ны	_	-	а Исправны	нет	нет	ненные КЛ 110 кВ и более -
316		Ограничитель перенапряжений схемы заземления экрана		Поврежден/ не поврежден	est	Поврежде н	19	**	Не поврежден	нет	нет	0,235; КЛ 110 кВ и более с ПЭ
317		Коробка транспозиции/заземления экранов		Поврежден/ не поврежден	•	Поврежде н	-	-	Не поврежден	нет	нет	изоляцией - 0,375; КЛ 110 кВ и
318		Огнезащитное покрытие		Повреждено/ не повреждено	-	Поврежде но	-	-	Не поврежден о	нет	нет	более прочие - 0,375
319		Аномальный локальный нагрев поверхности		Имеется/ отсутствует	-	Имеется	-	-	Отсугству ет	нет	нет	
320		Степень развития дефекта контактных соединений по результатам тепловизионного контроля		Аварийный дефект/ дефект отсутствует	-	Аварийны й дефект	-	-	Дефект отсутствуе т	нет	нет	
321	Группа критических	Изолятор концевой муфты		Поврежден/ не поврежден	Поврежден	-	-	-	Не поврежден	да	нет	0,02
322	параметров	Течь масла из элементов КЛ (муфт, кабеля, схемы маслоподпитки) (для класса напряжения 110 кВ и выше)		Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 капля в сек.)/ намокание/от потевание/ отсутствует	Интенсивна я (не менее 2-х капель в сек.)	Капельная (не более 1 каппи в сек.)	-	Намокание/ отпотевание	Отсутству ет	да	нет	
323		Электрический пробой		Имеется/	Имеется	-	-	-	Отсутству	да	нет	
324	Состояние изоляции кабельных линий (для класса напряжения 35	Ток утечки (максимальный)	мА	отсутствует	-	1 < Ф/Н	-	0,9 < Φ/H ≤ 1	er Φ/H ≤ 0,9	нет	нет	КЛ 35 кВ - 0,375; Маслонапол ненные КЛ 110 кВ и более - 0;
	кВ)											КЛ 110 кВ и более с ПЭ изоляцией - 0; КЛ 110 кВ и более прочие - 0

							30						_		
325				Состояние изоляции	Коэффициент пропитки изоляции (Кпр)			-	1 < Ф/Н	0,95 < Φ/H ≤ 1	0,9 < Φ/H ≤ 0,95	Φ/H ≤ 0,9	нет	нет	КЛ 35 кВ - 0;
326				кабельных линий	Содержание нерастворенного газа в масле	%		-	1 < Ф/Н	0,95 ≤ Φ/H < 1	0,9 < Φ/H < 0,95	Φ/H ≤ 0,9	нет	нет	Маслонапол ненные КЛ
327				маслонаполнен ных (для	Тангенс угла диэлектрических потерь (tgδ) масла при 100 °C	%		-	1 ≤ Φ/H	 0,95 ≤ Φ/H < 1	0,9 ≤ Φ/H < 0,95	Ф/Н < 0,9	нет	нет	110 кВ и более -
328				класса напряжения 110 кВ и выше)	Пробивная напряженность масла (Епр)	кВ/см		-	Ф/Н≤1	1 < Φ/H ≤ 1,05	1,05 < Φ/H ≤ 1,1	1,1 < Ф/Н	нет	нет	0,235; КЛ 110 кВ и более с ПЭ изолящией - 0;
329				Состояние	Ток в заземляющем	A		-	l ≤ Φ/H	0,95 ≤ Φ/H	0,9≤Φ/H<	Φ/H < 0,9	нет	нет	КЛ 110 кВ и более прочие - 0 КЛ 35 кВ -
				изоляции кабельных линий с нолиэтиленово й изоляцией (для класса напряжения 110 кВ и выше)	проводнике экрана КЛ					<1	0,95				0; Маслонапол ненные КЛ 110 кВ и более - 0; КЛ 110 кВ и более с ПЭ изоляцией - 0,375; КЛ 110 кВ и более прочие - 0
330				Общие сведения	Срок службы	лет		-	-	1,5 < Ф/Н	1,0 < Φ/H ≤ 1,5	Φ/H ≤ 1,0	нет	нет	КЛ 35 кВ - 0,23;
331					Гидроизоляция кабельного сооружения		Нарушена/ не нарушена	-	•	Нарушена	-	Не нарушена	нет	нет	Маслонапол ненные КЛ
332					Коррозия металлоконструкций/контура заземления кабельных сооружений (для класса напряжения 110 кВ и выше)		Имеется/ отсутствует	-	-	Ймеется	-	Отсутству ет	нет	нет	110 кВ и более - 0,147; КЛ 110 кВ и более с ПЭ
333					Разрушение железобетонных конструкций кабельного сооружения		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет	изоляцией - 0,23; КЛ 110 кВ и
334				:	Горловина/крышка люка кабельного сооружения		Повреждена/ не повреждена	-	-	Поврежден а	-	Не поврежден а	нет	нет	более прочие - 0,23
335					Замок/дверные петли кабельного сооружения		Повреждены/ не повреждены	-	-	Поврежден ы	-	Не поврежден	нет	нет	
336					Гидроизоляция колодца транспозиции/заземления экранов (для класса напряжения 110 кВ и выше)		Нарушена/ не нарушена	-	-	Нарушена	-	ы Не нарушена	нет	нет	
337					Коррозия металлоконструкций/контура заземления колодца транспозиции (для класса напряжения 110 кВ и выше)		Имеется/ отсутствует	-	<u>-</u>	Имеется	-	Отсутству ет	нет	нет	
338	Система (секции)	Портал	нет	Состояние заземления	Конструктивные элементы		Отсутствуют/ в комплекте	Отсутствую т	-	-	-	В комплекте	нет	нет	при 0,3 наличии
339	пин (кроме				Несоответствие сечения заземляющих спусков	%		-	-	Ф/Н < 1	-	1 ≤ Φ/H	нет	нет	тросостоек - 0,10
340	кроме комплектн				Повреждение (обрыв) заземляющих спусков		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет	при отсутствии
341	ого				Сопротивление металлической связи	Ом		-	-	1,1 < Ф/Н	-	Φ/H ≤ 1,1	нет	нет	тросостоек - 0,125
342	ительного устройств				Переходное сопротивление контактных соединений	Ом		-	-	1,0 < Ф/0,05	•	Φ/0,05 ≤ 1,0	нет	нет	1 1
343	ac				Износ контура заземляющего	%	T	-	-	1 < Φ/50	-	Φ/50 ≤ 1	нет	нет	1

	элегазово		устройства			1				I			
344	й		Выступание заземлителя над	"	Имеется/	-	-	Имеется	-	Отсутству	нет	нет	
	изоляцией		поверхностью		отсутствует					ет			
246	[)	Состояние стойк			TZ	17				В			при
345		стойка металлическая	Конструктивные элементы, влияющие на устойчивость		Имеются элементы	Имеются элементы	-	-	-	комплекте	да	нет	наличии тросостоек -
		MCIABINACCRAA	стойки		стойки,	стойки,				ROMILICATE			0,20
		i i			требующие	требующие					İ		при
1 1		1 1	ì		восстановлен	восстановле				1	1		отсутствии
					ки	кин							тросостоек -
i l	1				неплановым	неплановым							0,25
					ремонтом / в комплекте	ремонтом							
346		1 1	Разрушение, потеря несущей		Имеется/	Имеется		_	_	Отсутству	да	нет	
546			способности		отсутствует					ет		1101	
347			Прилегание пят к		Имеется	Имеется	-	-	-	Без зазора	нет	нет	
			фундаментам		зазор/	зазор							
240					без зазора Имеются/		T2						
348			Посторонние предметы, в том числе птичьи гнезда		отсутствуют	-	Имеются	-	-	Отсутству ют	нет	нет	
349			Коррозионный износ косынок	%	O.O. ICIBYROI	-		1 < Φ/30	_	Φ/30 ≤ 1	нет	нет	
350	1		Коррозионный износ	%		-	-	1 < Φ/20	~	$\Phi/20 \le 1$	нет	нет	
			ненесущих элементов]
351			Коррозионный износ несущих	%		-	-	1 < Ф/10	-	Φ/10 ≤ 1	нет	нет]
			элементов		 	+							
352			Щелевая коррозия сварных швов с появлением трещин		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет	
353			Сквозное коррозионное		Имеется/			Имеется		Отсутству	нет	нет	
			поражение		отсутствует			1		ет		1101	
354			Ослабление болтовых		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	
			(заклепочных) соединений		отсутствует					ет			
355	i i		Прогиб	ММ			<u> </u>	1 ≤ Φ/H	-	Φ/H < 1	нет	нет	
356			Отклонение от вертикальной			-	-	1 < Φ/(1:200)	-	Φ/(1:200)	нет	нет	
357			оси Нарушение защитного		Отсутствует/	 	-	Отсутствуе	Имеются	≤ 1 В норме	нет	нет	-
33,			покрытия		имеются			T	нарушения	Впормо	1101	noi	
1	}	1	•		нарушения/	}	}	ł ,	13	}			}
					в норме								
358			Трещины в металле		Имеются/	-	-	Имеются	•	Отсутству	нет	нет	
250			The		отсутствуют	<u> </u>		T2		ют			
359			Трещины в сварных швах		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет	
360			Высота прокладок под пятой	MM	Olcy lelbylol		_	1 < Φ/40		$\Phi/40 \le 1$	нет	нет	
361			Деформация поясных уголков	MM		-	-	-	1 < Φ/2	Φ /2 ≤ 1	нет	нет	
			и элементов решетки при							_			
			длине до 1 м				<u> </u>]
362			Деформация поясных уголков	MM					1 < Φ/3	Ф /3 ≤ 1	нет	нет	
			и элементов решетки при длине 1 - 2 м]					
363			Деформация поясных уголков	мм	<u> </u>	<u> </u>		 	1 < Φ/5	Φ/5 ≤ 1	нет	нет	{
303			и элементов решетки при	MIN				_	1 (4)	4/3 = 1	noi	noi	
			длине более 2 м										
364		стойка	Разрушение, потеря несущей		Имеется/	Имеется		-	-	Отсутству	да	нет	1 1
		железобетонна	способности		отсутствует					ет]
365		Я	Наличие посторонних		Имеется/	-	-	-	Имеется	Отсутству	нет	нет	
366			предметов у стоек Отклонение от вертикальной		отсутствует	-	<u> </u>	1<	-	eτ Φ/(1:100)	TION	TTOT	-
300		1	оси для портальных стоек			-	_	Φ/(1:100)	_	$\Phi/(1:100)$ ≤ 1	нет	нет	
367	[]		Отклонение от вертикальной	l		1		1 <		Φ/(1:150)	нет	нет	1
			оси для одностоечных стоек					Φ/(1:150)		≤ 1]
368			Искривление	СМ		-	-	1 < Ф/Н		Φ/ H ≤ 1	нет	нет]
369			Продольное оголение	%		-	-	1 < Ф/Н	-	Φ/H ≤ 1	нет	нет	
250			поперечной арматуры				1 < 0/0 (0.5 < 5/0.5	0 < 0.0	0/0 (0			
370		J	Поперечные трещины (арматура стержневая)	MM] -	1 < Φ/0,6	0,5 < Φ/0,6 ≤1	0 < Φ/0,6 ≤0,5	$\Phi/0,6=0$	нет	нет]
LL			(арматура стержневая)	L			Щ	<u> </u>		I	L	· · · · · · · · · · · · · · · · · · ·	<u> </u>

											
	Поперечные трещины	мм		-	1 < Φ/0,3	0,17<	0 < Ф/0,3	$\Phi/0,3=0$	нет	нет	
	(арматура проволочная)		<u> </u>	2 - 2		Φ/0,3 ≤1	≤0,17				
	Продольные трещины - длина	MM	ļ	3 < Ф	**	-	0<Φ≤3	$\Phi = 0$	нет	нет	
	Продольные трещины -	HFF.	1	-	-	0,3 < Φ	0 < Φ ≤ 0,3	$\Phi = 0$	нет	нет	
	ширина						0.45.40				
	Продольные трещины -	ШТ.		-	от 2	-	0 < Φ ≤ 2	$\Phi = 0$	нет	нет	
	количество в одном сечении	 	<u> </u>		1<Ф	Φ=1	_	Φ=0		<u> </u>	
	Раковины/сквозные отверстия	шт.		•	1 < Ψ	$\Psi = 1$	-	$\Phi = 0$	нет	нет	
	- количество Раковины/сквозные отверстия	см2	 	25 < Φ		0<Φ≤25		Φ=0	TTOT	*****	
	- площадь	CMZ		23 \ \P	-	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	Ψ-0	нет	нет	
	Пористый бегон/щель вдоль		Имеется/	-			Имеется	Отсутству	нет	нет	
	стойки		отсутствует				Inviction	ет		HOI	
	Пятна, потеки цвета		Имеются/	-	-		Имеются	Отсутству	нет	нет	1
	ржавчины		отсутствуют					ют			
	Темные полосы по виткам		Имеются/	-	-	-	Имеются	Отсутству	нет	нет	
	поперечной арматуры		отсутствуют					ют			
Coc	гояние траверсы, в том числе										при
трав	ерса Конструктивные элементы		Отсутствуют/	Отсутствую	-		-	В	да	нет	наличии
	плическая	<u> </u>	в комплекте	т				комплекте			тросостоек -
	Разрушение, потеря несущей		Имеется/	Имеется	-	-	-	Отсутству	да	нет	0,20
	способности		отсутствует					ет	<u> </u>		при
	Посторонние предметы, в том		Имеются/	-	Имеются	_	-	Отсутству	нет	нет	отсутствии
]]]	числе птичьи гнезда	<u> </u>	отсутствуют					ют	<u> </u>		тросостоек -
]	Коррозионный износ косынок	%		-		1 < Ф/30		Φ/30 ≤ 1	нет	нет	0,25
	Коррозионный износ	%		-	-	1 < Φ/20	-	Φ/20 ≤ 1	нет	нет	
	ненесущих элементов										
	Коррозионный износ несущих	%		-	-	1 < Ф/10	-	Φ/10 ≤ 1	нет	Het	
	элементов		ļ.,,			77					
	Сквозное коррозионное		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	1 1
	поражение		отсутствует			17		er			
	Щелевая коррозия сварных		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	
	пвов с появлением трещин	 	отсутствует			1 <		eτ Φ/(1:300)			
	Прогиб	,		_	-	Φ/(1:300)	-	Ψ/(1:300) ≤1	нет	нет	
1	Трещины в металле		Имеются/	_	_	Имеются	-	Отсутству	нет	TOP	
	трещины в метальте		отсутствуют	_	_	TIMOTOTCA	-	ют	Hel	нет	
1	Трещины в сварных швах	 	Имеются/		_	Имеются	-	Отсутству	нет	нет	
	Tpunina b obapinos anomi		отсутствуют			11.0.01010.1		ют	10.	HOI	
1	Нарушение защитного	-	Отсутствует/	-	-	Отсутствуе	Имеются	В норме	нет	нет	1
	покрытия		имеются			T	нарушения	2 1101/110	1101	1101	
	1		нарушения/		i						
			в норме								
]	Ослабление болтовых		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	1
	(заклепочных) соединений		отсутствует	<u> </u>				er			1
	ерса Разрушение, потеря несущей		Имеется/	Имеется	-	-	-	Отсутству	да	нет]
	езобетонна способности		отсутствует					ет]
	Посторонние предметы, в том		Имеются/	-	-	Имеются	•	Отсутству	нет	нет	
]	числе птичьи гнезда		отсутствуют					ЮТ]
	Продольное оголение	M		-	- '	1 < Ф/1,5	-	Φ/1,5 ≤ 1	нет	нет	
	поперечной арматуры	ļ	<u> </u>]
	Темные полосы по виткам		Имеются/	-	-	-	Имеются	Отсутству	нет	нет	
	поперечной арматуры	<u> </u>	отсутствуют					ЮТ			1
	Поперечные трешины	MM		-	1 < Φ/0,6	0,5 < Φ/0,6	0 < Φ/0,6 ≤	$\Phi/0,6=0$	нет	нет	
1 1 1	(арматура стержневая)	1	ļ			≤1	0,5	7.75.5	ļ		ļ
	Поперечные трещины	MM		-	1 < Ф/0,3	0,17 <	0 < Φ/0,6 ≤	$\Phi/0,3=0$	нет	нет	
1	(арматура проволочная)	 	1			Φ/0,6 ≤ 1	0,17			- ·]
1	Продольные трещины - длина	М		3 < Ф	<u> </u>	-	0<Φ≤3	$\Phi = 0$	нет	нет	<u> </u>
	Продольные трещины -	MM	1	-	-	0,3 < Ф	$0 < \Phi \leq 0,3$	$\Phi = 0$	нет	нет	
4	ширина	 			0.0		A . *	<u> </u>	ļi		<u> </u>
	Продольные трещины -	IIIT.	1	~	2 < Ф	-	0<Φ≤2	$\Phi = 0$	нет	нет	
	количество в одном сечении	1				1 -		# //1 000)		-	
	количество в одном сечении Прогиб			-	-	1 < Φ/(1:300)	-	Φ/(1:300) ≤ 1	нет	нет	

																
403					Раковины/сквозные отверстия - количество	ЩТ.		-	1<Ф	Φ=1	-	Φ=0	нет	нет		
404					Раковины/сквозные отверстия	см2		25 < Ф	-	0<Φ≤25	-	Φ=0	нет	нет		
405					- площадь Пористый бетон/щель вдоль		Имеется/	-	-	Имеется		Отсутству	нет	нет		
406					траверсы Пятна, потеки цвета		отсутствует Имеются/	-	-		Имеются	ет Отсутству	нет	нет		
					ржавчины		отсутствуют					ют				
407				Состояние тросостойки	Конструктивные элементы		Отсутствуют/ в комплекте	Отсутствую т	-	-	<u> </u>	В комплекте	нет	нет	при наличии	
408					Разрушение, потеря несущей способности		Имеется/ Отсутствует	Имеется	-	-	-	Отсутству ет	нет	нет	тросостоек - 0,20	
409					Посторонние предметы, в том		Имеются/	-	Имеются	-	-	Отсутству	нет	нет	при	
410		1			числе птичьи гнезда Коррозионный износ косынок	%	отсутствуют			1 < Ф/30	<u>-</u>	юτ Φ/30 ≤ 1		****	отсутствии тросостоек -	
411					Коррозионный износ	%	 	<u> </u>	 	$1 < \Phi/20$		$\Phi/30 \le 1$ $\Phi/20 \le 1$	нет	нет	0	
411	Į	1 1			ненесущих элементов	70	1] -	1	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	Φ/20 ≤ 1	нет	нет) "	
412					Коррозионный износ несущих	%		 	 -	1 < Ф/10		Φ/10 ≤ 1	TTOT	TYPE		
412					элементов	70		-	-	Ι \ Ψ/10	_	4/10 \(\geq \)	нет	нет		
413					Сквозное коррозионное поражение		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет	:	
414					Щелевая коррозия сварных		Имеется/	-	-	Имеется	-	Отсутству	нет	нет		
415					швов с появлением трещин Трещины в металле		отсутствует Имеются/	-	-	Имеются	-	Отсутству	нет	нет	-	
416	}				Трещины в сварных швах		отсутствуют Имеются/		-	Имеются	-	ют Отсутству	нет	нет		
417					Нарушение защитного		Отсутствуют Имеются		 _		Имеются	ют В норме	нет	нет		
, ,,,			ı		покрытия		нарушения/ в норме				нарушения		1.01			
418		1			Ослабление болтовых (заклепочных) соединений		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет	•	
419					Деформация, изгиб		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет	1	
420				Состояние	Разрушение фундамента		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет	при	
421				фундамента	Потеря несущей способности		Имеется/	Имеется	-	-	-	ет Отсутству	да	нет	наличии тросостоек -	
422					фундамента Ослабление затяжки		отсутствует Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,30 при	
423					анкерных болгов Оползень (смещение или		отсутствует Имеется/	Имеется	-			Отсутству	нет	нет	тросостоек -	
					осыпание грунта)		отсутствует		<u> </u>			er			0,375	i
424				1	Отсутствие контргайки или кернения		Имеется/ отсутствует	-	-	-	Имеется	Отсутству ет	нет	нет		Í
425			i		Отсутствие шпилек крепления	Urr.		2≤Φ	-	Φ=1	-	Φ=0	нет	нет		
426					Выход сваи из грунга		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	1	
427					Оседание, вдавливание в		отсутствует Имеется/	-	-	Имеется	-	Отсутству	нет	нет	1	
428					грунт Оседание/вспучивание грунта		отсутствует Имеется/	-	 -	Имеется	-	ет Отсутству	нет	нет	4	
429					Смещение поверхностного		отсутствует Имеется/	-	-	Имеется		ет Отсутству	нет	нет	-	
430					фундамента Ригели находятся на		отсутствует Имеется/	-	-	-	Имеется	ет Отсутству	нет	нет	4	
431					поверхности Сколы бетона оголовника		отсутствует Имеются/				Имеются	ет Отсутству	нет	нет	_	
431							отсутствуют		<u> </u>		114010101	ют	nei	Het.		
		Изоляция	нет		щии подвесной, в том числе			ļ		ļ			<u> </u>	<u> </u>	при	0,35
432]	и	ļ	RIJURILOEN	Разрушение, потеря несущей]	Имеется/	Имеется	-	-] -	Отсутству	да	нет	отсутствии	,
433		арматура		подвесная фарфоровая /	способности Количество дефектных	пт.	отсутствует	1 ≤Φ/H		0,2 < Φ/H <	_	eτ 0 ≤ Φ/H ≤	да	нет	подвесной -	
				стеклянная	изоляторов в гирлянде			<u> </u>		1		0,2			0;	
434		1	l		Конструктивные элементы	L	Отсутствуют/		Отсутству	l	<u> </u>	В	нет	нет	при	

					- 34						······································		
25					в комплекте		ют			комплекте			отсутствии
35			Загрязнение		Стойкое/	-	Стойкое	-	Нестойкое	Отсутству	нет	нет	изоляции
					нестойкое				удаляемое	ет	İ		опорной и
					удаляемое/						1		проходной -
26					отсутствует		17						0,6;
36			Подгягивание (задир)		Имеется/	•	Имеется	-	-	Отсутству	нет	нет	при
			подвесок		отсутствует					ет			отсутствии
37			Отклонение изолирующих	MM		-	-	1 < Ф/Н	-	Φ/H ≤ 1	нет	нет	изоляции
			поддерживающих подвесок		<u> </u>								опорной -
8			Следы перекрытия,		Имеются/	-	-	Имеются	-	Отсутству	нет	нет	0,25;
			оплавления, треск		отсутствуют					ют			при
9		ĺ	Коррозия шапок изоляторов		Имеется/	-	-	-	Имеется	Отсутству	Het	нет	отсутствии
					отсутствует					ет			изоляции
'		изоляция	Разрушение, потеря несущей		Имеется/	Имеется	-	-	-	Отсутству	да	нет	проходной -
		подвесная	способности		отсутствует					eт			0,2;
		полимерная	Повреждение/разрыв		Имеется/	Имеется	-	-	-	Отсутству	да	нет	при
		1	защитной оболочки		отсутствует					ет			наличии
		1 1	Загрязнение		Стойкое/	-	Стойкое	-	Нестойкое	Отсутству	нет	нет	изоляции
	l l				нестойкое				удаляемое	er			опорной и
	1 1				удаляемое/				1				проходной -
					отсутствует					<u> </u>			0,1
			Отклонение изолирующих	мм		-	-	1 < Ф/Н	-	Φ/H ≤ 1	нет	нет	7
			поддерживающих подвесок	L	1		L		L		į		
			Подтягивание (задир)		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	7
1]]		подвесок		отсутствует			1		er	į		
			Эрозия/микротрещины		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	7
		1 1	защитной оболочки		отсутствует					ет			
]		Следы перекрытия,		Имеются/	Имеются	-	-		Отсутству	нет	нет	1
		1 1	оплавления, треск	ĺ	отсутствуют				i	ют			
_		Состояние	Степень развития дефекта по		Аварийный	Аварийный	-	<u> </u>	_	Дефект	да	нет	при
		инцепоей	результатам тепловизионного		дефект/	дефект				отсутствуе	, A.	1101	отсутствии
1	l i	опорной	контроля		дефект	704			1	T			изоляции
		Stophon	acare posta		отсутствует					•			опорной - 0;
	l i	1 1	Разрушение, потеря несущей		Имеется/	Имеется		_		Отсутству	да	нет	при
·	!		способности		отсутствует	TIMOUTON		_	_	er	да	Hei	отсутствии
_		1 1	Повреждение	-	Имеется/	Имеется				Отсутству	да	нет	изолящии
			Повреждение		отсутствует	I IMPOUTOR	_	1 -	-	er	да	Hel	подвесной и
-			Наклон изолятора, тяжение		Имеется/	-		Имеется					проходной -
' 		1 1	провода	ŀ	отсутствует	-	_	PIMEETCA	-	Отсутству	нет	нет	0,6;
				_	Стойкое/	_	Стойкое		11	er			
	1		Загрязнение				Стоикое	-	Нестойкое	Отсутству	нет	нет	при
					нестойкое		İ		удаляемое	ет			отсутствии
]			удаляемое/			1		[изоляции
		1 1			отсутствует			1	1				подвесной -
			İ		1			1					0,35;
			1		1		1						при
			1		1		1	1					отсутствии
							1	I					изоляции
	l l			1		1	l	I					проходной -
					1	1		I					0,4;
				1	1	1		I]			при
]					[1	I					наличии
]	I	1				изоляции
l													подвесной и
			1		1	[I					проходной -
1			1			1	1	1					0,3
		Company	Разпулнения полога полога		Имеется/	Имеется		 		One			
		Состояние	Разрушение, потеря несущей		1	YIMCCICX	-	-	-	Отсутству	да	нет	при
		изоляции	способности		отсутствует	177	 		ļ	er			отсутствии
		проходной	Повреждение	1	Имеется/	Имеется	-	-	-	Отсутству	да	нет	изоляции
]			<u> </u>	отсутствует			<u> </u>		er			проходной -
1			Повреждение уплотнения		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	0;
•					отсутствует			<u></u>		ет			при
	ı I		Загрязнение		Стойкое/	-	Стойкое		Нестойкое	Отсутству	нет	нет	отсутствии
			1 •	I		1	1	1	1	1			изоляции
		l i		1	нестоикое	l		1	ATTAILYEME	C 1			TESONIALUM I
5					нестойкое улаляемое/			İ	удаляемое	eT			
					нестоикое удаляемое/ отсутствует				удалиемое	61			подвесной и опорной ~

				0,6; при отсутствии изоляции подвесной - 0,25; при	
				при отсутствии изоляции подвесной - 0,25;	:
				отсутствии изоляции подвесной - 0,25;	
				изоляции подвесной - 0,25;	
				подвесной - 0,25,	l l
				0,25;	
		:			ļ
		:		mou	
				отсутствии	,
			1	изоляции	,
		1		опорной -	,
		1	1	0,35;	j
				при	,
					,
	1			наличии	
		i		изоляции	,
	ĺ			подвесной и	ľ
				опорной -	,
				0,2	,
456 Состояние Разрушение, потеря несущей Имеется	Отсутству	да	нет	0,1	, ,
арматуры способности отсутствует	er				,
457 Линейной Несоответствие геометрии Имеется/ - Имеется	Отсутству	нет	нет	⊣ i	,
	ет		1101)	
		 		┥	
458 Изломы Имеются	Отсутству	да	нет		
отсутствуют	ЮТ				
459 Конструктивные элементы Отсутствуют/ Отсутствую	В	нет	нет		,
в комплекте т	комплекте	; 		1	,
460 Коррозионный износ % - 1 < Ф/H	Φ/H ≤ 1	нет	нет	7 1	,
поперечного сечения					,
металлических элементов	1	[,
	0		 	-	,
	, , ,	нет	нет		,
коррозия отсутствует	er er			⊣	,
Tpeщины Имеются	Отсутству	нет	нет	1	,
отсутствуют	ют				,
463 Изгибы Имеются	Отсутству	нет	нет	7	,
отсутствуют	ют		1		,
Раковины Имеются	Отсутству	нет	нет	┥ !	,
		l nei	HC1		,
отсутствуют	ют		-	⊣ ∣	ļ
465 Оплавы Имеются/ Имеются - - - -	Отсутству	иет нет	нет		ļ
отсутствуют	ют				ļ
466 Износ шаркирных сочленений Имеется	Отсутству	нет	нет		ļ
отсутствует	ет	1			ļ
467 Габариты Нарушение габарита до Имеется/ - Имеется	Отсутству	нет	нет	0,3	
зданий/сооружений отсутствует	•	1 1101	1 1101	0,5	1
	ет		+		ŀ
468 Нарушение габарита до Имеется/ - Имеется	Отсутству	нет	нет		ŀ
поверхности земли отсутствует	ет			_	,
Несоответствие габарита до Имеется/ - Имеется	Отсутству	нет	нет		!
заземленных конструкций отсутствует	er			<u></u>	
Контакти нет Состояние ошиновки, в том числе				0,4	0,2
470 ые гибкая Вспучивание верхнего повива Имеется/ Имеется -	Отсутству	нет	нет	⊣ ""	- ,
соединени ощиновка («фонари») отсутствует	ет	1 101	""		
			 	⊣ ∣	
471 я и прочее Дефект термитной сварки Имеется	Отсутству	и нет	нет		
(пережог) отсутствует	ет			_	
472 Дефект термитной сварки Имеется/ Имеется - - -	Отсутству	иет нет	нет		
фазного неизолированного отсутствует	ет		1		
провода - усадка металла в			1		
месте сварки глубиной более					
1/3 диаметра провода	1		1		
	- ~ 			⊣	
473 Имеется/ Имеется/ - - -	Отсутству	/ нет	нет		
отсутствует	er			⊣	
474 Наличие Имеется/ - Имеется -	Отсутству	иет нет	нет		
оборванных/перегоревших отсутствует	er	1	1		
проволок	1		1		
Следы перекрытия, Имеются/ Имеются -	Отсутству	/ HeT	нет	7 1	
оплавления отсутствуют	ют				
			 	-	
	Отсутству	/ да	нет		
отсутствует	ет		1		

0,2	
-	
-	
-	
-	
_	
1 0.4	1
-	
1	0,1
0,5	0,2
0,5	-
	0,2
1	-
1	0,08
1	0,00
0,666	0,52
0,334	

							<i>J</i> 1									
				корпуса	максимальное значение	<u> </u>		ротора до		ротора до		ротора до				
	l i			газотурбинной				3000 об/мин		3000		3000		l		
				установки в				(включ.)		об/мин		об/мин				i i
}	1 1	ļ		районе	}			7,1 < Ø		(включ.)		(включ.)				1 1
	l i			подшинниковы				частота		4,5 < Φ ≤		0 < Φ ≤ 4,5	Į.			
	1			х опор				вращения		7,1						1
ļ				x ontob								частота				1
1								ротора от		частота		вращения				
	1				1			3000 до		вращения		ротора от				
								20000		poropa or		3000 до				
1	1	1		1	}			об/мин	ł	3000 до		20000	1	i		1 1
ļ								9,3 < Φ		20000		об/мин				
ļ	i								J	об/мин		$0 < \Phi \le 4,5$				1
ĺ										4,5 < Φ ≤		',-]
	1									9,3						1
503	1			,	Вибрация (горизонгальная	мм/с		частота				****				
1 303						MIMU C				частота	-	частота	нет	нет		
İ	1 1			i	составляющая) –			вращения		вращения		вращения	1	l		1 1
					максимальное значение			рогора до		ротора до		ротора до				1
								3000 об/мин		3000		3000				1
								(включ.)		об/мин		об/мин				
	1							7,1 < Φ		(включ.)		(включ.)				
		1		1]			частота		4,5 < Φ ≤		0 < Φ ≤ 4,5] [
]	J		1	j l			вращения		7,1		частота] [
					l (ротора от		частота		вращения	ſ	ĺ] [
								3000 до		вращения		ротора от				1
								20000				3000 до				
					i			об/мин		ротора от 3000 до		20000				
													1			
								9,3 < Ф		20000		об/мин				
1	1		ļ	ļ	,]]		об/мин		$0 < \Phi \le 4,5$	1			1 1
										4,5 < Φ ≤		1 1				1
<u> </u>]									9,3						1
504	1			j	Вибрация (осевая	MM/C		частота	-	частота	-	частота	нет	нет		
	1		<u> </u>		составляющая) —			вращения		вращения		вращения				
	1				максимальное значение			рогора до		ротора до		ротора до				i i
		i						3000 об/мин		3000		3000				
-	1 1	}	}	}	1								1			1 1
1			ļ					(включ.)		об/мин		об/мин				1
Į.			ļ					7,1 < Φ		(включ.)		(включ.)				
			1					частота		4,5 < Φ ≤		$0 < \Phi \leq 4,5$				
								вращения		7,1		частота				1
		1						ротора от		частота		вращения				1
1								3000 до		вращения		ротора от				1
1	1 1	ł	}		ł		l	20000		ротора от		3000 до				1 1
								об/мин		3000 до		20000				
		1						9,3 < Ф		20000						1
								3,3 \ \				об/мин				
	1									об/мин		$0 < \Phi \leq 4,5$				1 1
	1									4,5 < Φ ≤						
	<u>.</u>		1							9,3						
505	1	ì	ĺ	ľ	Вибрация (вертикальная			1,5 < Φ/H	-	1,0 < Φ/Η ≤	-	0 < Φ/H ≤	нет	нет		1 1
		1			составляющая) -					1,5		1,0		İ]]
					максимальное значение											
1]		1		(для конвертированных			j				[]
			1		авиационных двигателей)			[]
506	- 		1				 	1,5 < Φ/H		1,0 < Φ/H ≤		0 < Φ/H ≤]
500	J	j	J	J	Вибрация (горизонтальная]	1,5 - 4/11	1		_		нет	нет		j l
	[l		составляющая) —			1		1,5		1,0	[[
					максимальное значение]		j] i
	1		1		(для конвертированных			1								
	_		1		авиационных двигателей)							<u> </u>] 1
507		1	1		Вибрация (осевая			1,5 < Φ/H	-	1,0 < Φ/H ≤	-	0 < Φ/H ≤	нет	нет		
			1		составляющая)]		1,5		1,0				
)	1	1)	ļ	максимальное значение)	į j		'		, ´ !	j	ļ		1
	1]		(для конвертированных		1									1
	1		1		авиационных двигателей)									ļ		
508	Папапа	Approxima		Коргиоз		<u>-</u> -	Имертон/	 	Имарта			† 			0.75	1 0 0 2 4
308	Паровая	Арматура	нет	Корпуса	Несплошность (трещина) в		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,75	0,034
	турбина	В		главных	основном металле и сварных		отсутствует]				er				1
	1	пределах		паровых	швах, в том числе]								1
i	1	турбины	J	задвижек	устраненная ремонтом]]]		ļ		J .	<u> </u>			1
- 1																
509	†			(далее – ГПЗ)	Твердость металла	HB		-	Φ/H < 1	-	-	1 ≤ Φ/H	нет	нет]

610 T	<u> </u>	 		III EED	I Havenuman		Эо Имеется/	Имеется		<u> </u>		O			0.36	· · · · · · · · · · · · · · · · · · ·
510				Штоки ГПЗ	Искривление штока		Имеется/ отсутствует	РЕМЕСТСЯ	-	-	-	Отсутству ет	нет	нет	0,25	
511		Корпус	да	Состояние	Глубина дефекта	% от		-	1 < Ф/70	0,72 < Φ/70	0,5 < Φ/70 ≤	Φ/70 ≤ 0,5	нет	нет	при	0,29
		цилиндра		литых элементов	(несплошность, трещина), в том числе устраненного	толщин ы стенки				≤1,0	0,72				наличии хытых	
				корпуса	ремонтом	I DI CICHKI									элементов —	
512				цилиндра	Временное сопротивление	МПа (-	Φ/H < 1	-	-	1 ≤ Φ/H	нет	нет	0,5;	
					разрыву (предел прочности)	ктс/мм2)									при	
513 514					Относительное сужение	<u>%</u>		<u>-</u>	Φ/H < 1 Φ/H < 1	-		1 ≤ Φ/H	нет	нет	отсутствии	
514					Относительное удлинение Ударная вязкость стали по	76 кДж/м2		<u> </u>	$\Phi/H < 1$		•	1 ≤ Ф/Н 1 ≤ Ф/Н	нет нет	нет нет	липых элементов —	
			1		Шарпи КСИ	(кгсм/см			-/ *			1 _ 2/11	1101	1101	0	
						2)			ļ <u></u>							
516					Ударная вязкость стали по	кДж/м2		-	Ф/Н < 1	-	-	1 ≤ Φ/H	нет	нет		
					Шарпи КСУ	(кгсм/см 2)										
517					Доля вязкой составляющей в	2)		-	Φ/H < 1	-		1 ≤ Φ/H	нет	нет	┪	
					изломе ударного образца по											
					Шарпи (KCV)											
518	1				Твердость металла	НВ МПа	 	-	Φ/H < 1 Φ/H < 1	<u>-</u>	<u>-</u>	1 ≤ Φ/H	нет	нет	4	
519 520					Горячая твердость Критическое раскрытие при	MILIA	1	-	Φ/H < 1 Φ/H < 1	-	-	1 ≤ Φ/H 1 ≤ Φ/H	нет нет	нет нет	-	
520					ударном нагружении	MIN		_	7/11 \ 1	_	-	1 2 9/11	HC1	HCI.		
521					Условный предел текучести	МПа		-	Φ/H < 1	-	-	1 ≤ Ф/Н	нет	нет	1	
					стали о0,2	(кгс/мм2										
522					Harring and a second	 	Имеется/		Имеется		<u> </u>				-{	[
522					Наличие ограничений по параметрам по результатам		отсутствует	-	Имеется	-	-	Отсутству ет	нет	Het		
					технического		olo, lolb, ol					J 01				
					диагностирования		<u> </u>		<u></u>						1.	
523		1		Состояние	Дефекты крепежа		Имеются/	-	-	Имеются	-	Отсутству	нет	нет	при]
524				фланцевых	Твердость металла	HB	отсутствуют	_	-	Φ/H < 1	 	ют 1 ≤ Ф/Н			наличии	}
525				разъемов корпусных	Временное сопротивление	MΠa	 		 	$\Phi/H < 1$		1 ≤ Φ/H 1 ≤ Φ/H	нет нет	нет нет	литых элементов —	
323				деталей и	разрыву (предел прочности)	(кгс/мм2						1 _ = -/11	1101	HOI	0,49;	
				крепежа		1)									при	
526		İ			Относительное сужение	%	-	-	-	Φ/H < 1	<u>-</u>	1 ≤ Ф/Н	нет	нет	отсутствии	
527 528		1			Относительное удлинение Ударная вязкость стали по	% кДж/м2	-	-	 	Φ/H < 1 Φ/H < 1	-	1 ≤ Φ/H 1 ≤ Φ/H	нет	нет	литых элементов —	
326		1			Нарпи КСU	(KICM/CM		_	-	Φ/11 < 1	_	Г≥Ф/П	нет	нет	0,99	
		1				2)			<u> </u>	1.						
529		1			Условный предел текучести	Mlla		-	-	Φ/H < 1	-	1 ≤ Φ/H	нет	нет	1	
		1			стали о0,2	(кгс/мм2										
530					Коробление, деформация	 	Имеется,	<u> </u>		Имеется,	Имеется,	Отсутству	нет	нет	-	
]					разъема		присутствует	_		присутству	отсутствует	ет	Hei	Her		
		İ					пропаривание			ет	пропариван					
							, образование			пропариван	ие,					
							конденсата в разъеме/			ие, образовани	образование				1	
							разъеме/ имеется,			е	конденсата в разъеме				1	
							отсутствует			конденсата	- Pussonio				1	
							пропаривание			в разъеме					1	
							, образование								1	
							конденсата в разъеме/								1	
							отсутствует								1	
531	1			Группа	Наличие дефектов:		Имеется/	Имеется	-	-	-	Отсутству	нет	да	0,01	1
		1		ресурсоопреде	(несплошности, в том числе		отсутствует				[er			1	
				ляющих	устраненные ремонтом,											
				параметров	глубиной, превышающей 70% толщины стенки,			-							1	
					или						1				1	
					свойства металла, не			Į.			1					
1	ı İ	1	1		соответствующие значениям,	1	1	1	1	1	I	I	1	1	1	1

Topic Topi																		
1.575 1.0 m/s 1.775 1.0 m/s 1.0 m/s 1.775 1.0 m/s 1.775 1.0 m/s 1.775 1.0 m/s 1.0 m/s 1.775 1.0 m/s 1.0 m/s 1.775 1.0 m/s 1.0 m/s 1.775 1.0 m/s 1.							установленным НТД)											
Securiority Securiority											•							
Section Sect							возможности папънейшей]							
Converted Conditional Services Continu													1					
Temperature Section																		
1.00 1.00																		
1.52 Proop 78 Prope Prope 78 Prope Prop							электрических станций и				Į.				1			
Conference Con			-						[[
Increase Companies Security			1						İ									ļ
Рессийской Ведериания от 13 документ (изокания) Рессийской Остроительных денты (изокания) Рессийской Ос					j													
Agreement Description De					1		постановления Правительства											ľ
Size							Россииской Федерации от 13											
STATE																		
S22 All continues All co																		
Successformer Securition																		
SS2 Section 1																		
Tignatementaries Pocosition of Decaphation (Companion of Companion o							систем и о внесении		ļ									
1.578 1 < 0.04.5 ≤ 1							изменений в некоторые акты											
Signature Procession Proc											1							
SS2 Portug							Федерации» (Собрание				1							
1532 Hommum ner Buffpatromore Maconsanames neutrons may mer me																		
Подпиния пет Выбрационноми величном выбрацион подпининальных состоями величном выбрацион подпининальных состоями выправления выправ							5483 No 51 cr 8007)											
1.578 1.5	532		ŀ	Полинин	нет	Вибрационное		мм/с		1.578 <	1 < Ф/4.5 <	-	_	Φ/4 5 < 1	нет	нет	0.5	0.058
1553 1553 1554			ĺ				([=, 1,5 1		1101	, 0,5	0,050
\$333 \$334										,								
1,578 1,5							составляющая)											
1,578 1 < 04,4 ≤ 1 1,578 1 < 04,4 ≤ 1 1,578 1,57	533							мм/с				-	-	Φ/4,5 ≤ 1	нет	нет		
2534 1534 1534 1538 1540,4.5 1578 15			Į						İ	Φ/4,5	1,578				İ			1
Максамальная вештення выформация подпинициомых опор (осевая состволяющая) Максамальная температура опсустивуют 1 < Ф/Н - Ф/Н - Ф/Н 1 1 1 1 1 1 1 1 1	1		i								•							
1.578 1.	524							202/0	 	1 579 /	1 < 0/4.5 <			Φ/4.5 < 1				
535 Кортурся и якладышия Лефекты подшинивного минивников Лефекты подшинивного минивного минивников Лефекты подшинивного минивн	334				<u> </u>			MM/C				_	-	Ψ/4,5 ≤ 1	нет	нет		
S35 S36 S S S S S S S S S										4,1,5	1,576							
536 Видадыны подпиятивков Максимальная температура баббата вкладыней (конодок) подпиятивков 1 < Ф/Н - Ф/Н = 1 - Ф/Н < 1 нет нет нет нет нет пе	535					Корпуса и			Имеются/	-	Имеются	-	-	Отсутству	нет	нет	0.5	1
537 Ротор турбины Да Состояние ротора Максимальная велигина рациального биелия ротора Бала сфероациязация поторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления) Твердость метвлля (для роторов высокого (далее − СД) давления (даления) Твердость метвлля (для роторов высокого (далее − СД) давления (даления) Твердость метвлля (для роторов высокого (далее − СД) давления (даления) Твердость метвлля (для роторов высокого (далее − СД) давления (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвлля (даления) Твердость метвля (даления)									отсутствуют					ют			,	
Боло развольных величина развильных величина развильного биневия ротора Максинания ротора Балл феронциявания металла (для роторов высокого (далее – ВД) и срещего (дялее – СД) двальевия) Твердость металла НВ - 25XIMI Ф 25XIMI	536		İ			подшипников	Максимальная температура	°C		1 < Ф/Н	-	Φ/H = 1	-	Ф/Н < 1	нет	нет		
Болго формациями металла (лия ротора различная регичная ротора различная ротора различная фана ротора различная различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная фана ротора различная различная различная различная различная различная различная различная различная различная различная различная различная различна]]		İ															
Турбины Ротора Бапл сферокдиязации металла (для роторое высокого (далее −ВД) и среднего (далее −СД) даявеня) Твердость металла (для роторое высокого (далее −ВД) и среднего (далее −СД) даявеня) Твердость металла НВ - 25XIMIФ 25XIMIФ 25XIMIФ 25XIMIФ 25XIMIФ 4 (72MA) и 4 (72MA)	527		ļ			ļ <u></u>				16 (0/11	ļ	1 (0/1)						
Балл фероивязывия металла (для рогоров высокого (далее – СД) давления) Твердость метвлла НВ - 25XIMIФ 25XIMIФ 25XIMIФ 25XIMIФ (Р2МА) и на ИЗХМА и н	33/				да	1		MM	1	1,5 < W/H	-			Φ/H ≤ I	нет	нет	0,19	0,29
БД) и среднего (далее — БД) и среднего (далее — СД) давления НВ - 25XIM1Ф 25XIM1Ф 25XIM1Ф 25XIM1Ф 472MA) 472MA 472	538			туроины	ŀ	ротора		бапп	<u> </u>		1 < 0/3			₫/3 < 1		******		
БД) и среднего (далее – СД) давления) Твердость металла НВ - 25X1М1Ф А (Р2МА) 1 34XМА 4 34XМА 4 34XМА 4 0/200 <0,9 0,95 Ф/200 <0,95 -1 20X3МВФ А (ЭН- 415A), 20X1МІФ Ф/220 < 20X1МІФ Ф/220 < 20X1МІФ Ф/220 < 20X1МІФ Ф/220 < 20X1МІФ Ф/220 < 20X1МІФ Ф/220 < 20X1МІФ Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/220 < 400 Ф/	556						(для поторов высокого (далее	OWDI			1 1		-	4 /3 \(\(\frac{1}{2}\)\)	HCI	Her		
Твердость металия — 25XIMIФ А (Р2МА) и 34XMA Ф/200 < 0,9 0,9 ≤ Ф/200							– ВД) и среднего (далее – СД)											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							давления)				1							
m 34XMA m 3	539						Твердость металла	HB		-					нет	нет		
$\begin{array}{ c c c c c c c c c }\hline & \phi/200 <0,9 & 0,95 & \phi/200 & 0,95 & \phi/200 & 1 & \phi/200 \\ \hline & 20X3MB\Phi & & & & & & & & & & \\ A (3H-& & & & & & & & & & \\ 415A), & A (3H-& & & & & & & & \\ 20X1MI\Phi & & & & & & & & & \\ 415A), & A (3H-& & & & & & & \\ 415A), & 20X1MI\Phi & & & & & & & \\ 0,909 & & 0,909 & & & & & & & \\ 0,909 & & 0,909 & & & & & & \\ 0,909 & & 0,909 & & & & & & \\ 0,909 & & 0,909 & & & & & \\ 0,909 & & 0,909 & & & & & \\ 0,909 & & & & & & & \\ 0,909 & & & & & & \\ 0,889 & & & & & & & \\ 0,889 & & & & & & \\ 0,889 & & & & & & \\ 0,889 & & & & & & \\ 0,889 & & & & & & \\ 0,9180 < & & & & & \\ 0,944 \leq & & & & & \\ 0,944 \leq & & & & & \\ 0,944 \leq & & & & & \\ 0,944 \leq & & & & \\ 0,944 \leq & & & & \\ 0,944 \leq & & & & \\ 0,944 \leq & & & \\ 0,944 \leq & & & \\ 0,944 \leq & & & \\ 0,948 \leq & & & \\ 0,948 \leq & & & \\ 0,948 \leq & & & \\ 0,948 \leq & & & \\ 0,948 \leq & & & \\ 0,948 \leq & & \\ 0,9$]									A (P2MA)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													34XMA					1
20X3MBΦ A (3H-415A), 20X1MIΦ A (3H-415A), 20X1MIΦ 0,955 40X 1≤ Φ/180 < 0,889 Φ/180 < 0,889 Φ/180 < 1,0 889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889 Φ/180 < 1,0 0,889											₩/200 <0,9	∪,⊅ <u>></u> Ψ/∠∪∪ <0.95		1≤ Ψ/200				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1								20Х3МВФ	3,,,,	``	20X3MRΦ				
$ \begin{vmatrix} 415A), \\ 20X1M1\Phi \\ \Phi/220 < \\ 0,909 \end{vmatrix} \begin{vmatrix} 415A), \\ 20X1M1\Phi \\ 0,909 \\ 0,909 \le \\ \Phi/220 < \\ 0,955 \end{vmatrix} \begin{vmatrix} 40X \\ 40X \\ 0,955 \end{vmatrix} \begin{vmatrix} 40X \\ 0,944 \le \\ 0,889 \end{vmatrix} \begin{vmatrix} 40X \\ 0,889 \le \\ \Phi/180 < \\ 0,889 \le \\ 0,180 < \end{vmatrix} \begin{vmatrix} 415A), \\ 20X1M1\Phi \\ 0,955 \le \\ 40X \\ 0,944 \le \\ 0,94$										1		20Х3МВФ	20Х3МВФА					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											415A),	А (ЭИ-	(ЭЙ-415А),	415A),				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1							415A),	20Х1М1Ф	20X1M1Φ				
$ \begin{vmatrix} 40X & \phi/180 < 0,955 & 40X & 1 \le \phi/180 \\ 0,889 & 40X & \phi/180 < 1,0 \\ 0,889 \le \phi/180 < 0 \end{vmatrix} $														1≤ Φ/220				
$ \begin{vmatrix} 40X & 0.955 & 40X \\ \Phi/180 < & 0.944 \le \\ 0.889 & 40X & \Phi/180 < 1.0 \end{vmatrix} $											0,909		Φ/220 <1	4077				
			ļ							1	400		400					
0,889 40X $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$ $\Phi/180 < 1,0$			j									0,933		1≥ Φ/180				
0,889 ≤ Φ/180 <								1		1		40X						
Φ/180 <			ļ							!		0,889 ≤						
										1		Ф/180 <						
U,744	Į.					1			L	l	L	0,944	L		1			1

				40								
540		Твердость металла в месте повреждения ротора	НВ		10	1 < Φ /350	0,886 < Φ/350 ≤ 1,0	0,8 < Φ/350 ≤ 0,886	Φ/350 ≤ 0,8	нет	нет	
541		Наличие ограничений по параметрам по результатам		Имеется/ отсутствует	-	Имеется	-		Отсутству ет	нет	нет	
542	Дефекты	технического диагностирования Дефекты (подкалка) ротора, в		Имеются/		•		Имеются	Отсутству	нет	нет	0,307
	ротора	том числе устраненные ремонтом		отсутствуют					ют			
543		Протяженные трещиноподобные дефекты глубиной более 1мм, в том числе устраненные ремонтом		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет	
544		Равноосные дефекты с диаметром 3 мм и более (на поверхности осевого канала с температурой 400°С и более)	-	Имеются/ отсутствуют	•	-	Имеются	-	Отсутству ют	нет	нет	
545		Коррозионные повреждения ротора, в том числе устраненные ремонтом	мм		#	-	1 < Ф /2	0,5 < Φ/2 ≤ 1,0	Φ/2 ≤ 0,5	нет	нет	
546		Повреждения шпоночного соединения на роторе		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству	нет	нет	
547		Трещины шпоночного соединения на роторе		Имеются/ отсутствуют	*	-	Имеются	-	Отсутству ют	нет	нет	
548	Соединительн ые муфты с	Трещины или дефекты		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству ют	нет	нет	0,141
549	призонными болтами	Соосность («коленчатость») соединения муфт роторов	мм	11	-	1 < Ф/Н	-	-	Ф/Н≤1	нет	нет	0.211
550	Состояние дисков	Дефекты (подкалка) диска, в том числе устраненные ремонтом	i	Имеются/ отсутствуют	- :	-	-	Имеются	Отсутству ют	нет	Her	0,211
551		Твердость в районе повреждения диска	НВ		-	1 < Ф/350	0,886 < Φ/350 ≤ 1,0	0,8 < Φ/350 ≤ 0,886	Φ/350 ≤ 0,8	нет	нет	
552		Размер трещиноподобного дефекта в районе разгрузочных отверстий, устраненного ремонтом	MM		-	1 < Ф/Н	0,75 < Φ/H ≤1,0	0,50 < Φ/H ≤ 0,75	0 ≤ Φ/H ≤ 0,50	нет	нет	
553		Размер трещиноподобного дефекта на полотне, ступице, устраненного ремонтом	мм		-	1 < Ф/Н	0,75 < Φ/H ≤ 1,0	0,50 < Φ/H ≤ 0,75	0 ≤ Φ/H ≤ 0,50	нет	нет	
554		Размер трещиноподобного дефекта в пшоночном пазу, устраненного ремонтом	ММ		-	1 < Ф/10	0,75 < Φ/10 ≤ 1,0	0,50 < Φ/10 ≤ 0,75	0 ≤ Φ/10 ≤ 0,50	нет	нет	
555		Коррозионные повреждения дисков, в том числе устраненные ремонтом	мм		-	1 < Ф/1,5	$\Phi/1,5 \le 1,0$	0,50 < Φ/1,5 ≤ 0,75	0,50	нет	нет	
556		Повреждения шпоночного соединения на диске		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет	
557	Рабочие лопатки (далее – РЛ)	Глубина забоин на поверхности в нижней трети пера, в том числе устраненных ремонтом	MM		-	1 < Ф/1	0,75 < Φ/1 ≤ 1,0	0,50 < Φ/1 ≤ 0,75	$0 \le \Phi/1 \le 0,50$	нет	нет	0,141
558		Глубина рисок на поверхности в нижней трети пера, в том числе устраненных ремонтом	мм		-	1 < Ф/0,5	0,75 < Φ/0,5 ≤ 1,0	0,50 < Φ/0,5 ≤ 0,75	0 ≤ Φ/0,5 ≤ 0,50	нет	нет	
559		Глубина равноосных механических забоин на остальной поверхности пера и хвостовика, в том числе	мм		-	1 < Φ/2	0,75 < Φ/2 ≤ 1,0	0,50 < Φ/2 ≤ 0,75	0 ≤ Φ/2 ≤ 0,50	нет	нет	
560		устраненных ремонтом Глубина рисок на остальной поверхности пера и хвостовика, в том числе устраненных ремонтом			-	1 < Φ/1	0,75 < Φ/1 ≤ 1,0	0,50 < Φ/1 ≤ 0,75	0 ≤ Φ/1 ≤ 0,50	нет	нет	

561		Коррозионные повреждения рабочих лопаток, в том числе	ММ		•	1 < Ф/2	0,75 < Φ/2 ≤1,0	0,50 < Φ/2 ≤ 0,75	0 < Φ/2 ≤ 0,50	нет	нет	
562		устраненные ремонтом Трещиноподобные дефекты, в том числе устраненные		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству	нет	нет	
563		ремонтом Смещение (разворот, выход из ряда, вытягивание) РЛ в	ММ		<u>-</u>	-	1 < Ф/Н	0 < Φ/H ≤ 1	Ф/Н = 0	нет	нет	
		зоне фазового перехода (далее – фп), последних ступеней										
564		(далее – пс) - размер Смещение (разворот, выход из ряда, вытягивание) РЛфп,		Многочислен ные/	-	Многочис ленные	1 - 2 случая каждого	1 - 2 случая одного вида	Есть в пределах	нет	нет	
		РЛис - характер распространения		1-2 случая каждого вида/ 1-2 случая одного вида/ есть в пределах допуска			вида		допуска			
565		Эрозия входных и выходных кромок РЛ, в том числе устраненная ремонтом	ММ		-	1 < Ф/Н	-	-	Φ/H ≤ 1	нет	нет	
566		Эрозия на входной кромке РЛфп, РЛпс в зоне противоэрозионной защиты, в том числе устраненная ремонтом	ММ		-	1 < Ф/6	0,75 < Φ/6 ≤ 1,0	0,5 < Φ/6 ≤ 0,75	0≤Φ/6≤ 0,5	нет	нет	
567		Эрозия на выходной кромке РЛфп, РЛпс, в том числе устраненная ремонтом	ММ		-	1 < Ф/2	0,75 < Φ/2 ≤ 1,0	0,50 < Φ/2≤ 0,75	0 ≤ Φ/2≤ 0,50	нет	нет	
568		Расстояние от отверстия для проволочной связи до входной кромки РЛфп, РЛпс	ММ		-	Φ/H < 1	-		1 ≤ Ф/Н	нет	нет	
569		Глубина промывов за степлитовыми пластинами на выпуклой поверхности РЛфп, РЛпс	ММ		-	1 < Ф/2	0,75 < Φ/2 ≤ 1,0	0,50 < Φ/2≤ 0,75	0 ≤ Φ/2 ≤ 0,50	нет	нет	
570		Сохранность всех степлитовых пластин РЛфп, РЛпс		Имеется/ отсутствует	-	Отсутству ет	-	-	Имеется	нет	нет	
571	Группа ресурсоопреде ляющих параметров	Наличие дефектов: (балл сфероидизации (для роторов ВД и СД), превышающий значение 3, или твердость металла ниже значения, установленного НТД, на 20 ед. или твердость металла ротора или диска в зоне повреждения, превышающая значение, установленное НТД, или наличие протяженных трещиноподобных дефектов глубиной более 1мм, в том числе устраненных ремонтом, или наличие равноосных дефектов		Имеется/ отсутствует	Имеется				ег	нет	да	0,01
		с диаметром 3 мм и более (на поверхности осевого канала с температурой 400°С и более)										

					и отрицательное заключение о возможности дальнейшей эксплуатации, выдаваемое в соответствии с Правилами технической эксплуатации электрических станций и сетей Российской Федерации, утверждаемых в соответствии с пунктом 3 постановления Правительства Российской Федерации от 13 августа 2018 г. № 937 «Об утверждении Правил технологического функционирования электроэнергетических систем и о внесении изменений в некоторые акты Правительства Российской											
572		Система парорасир еделения	нет	Корпуса стопорных и регулирующих клапанов	Федерации» Глубина дефекта (несплопность, трещина), в том числе устраненного ремонтом	% от толщин ы стенки		1 < Ф/80	0,75 < Φ/80 ≤ 1	0,5 < Φ/80 ≤ 0,75	0,25 < Φ/80 ≤ 0,5	0 ≤ Φ/80 ≤ 0,25	нет	нет	0,75	0,058
573					Временное сопротивление разрыву (предел прочности)	МПа (ктс/мм2		-	Ф/Н < 1	-	-	1 ≤ Ф/Н	нет	нет		
574	1				Относительное сужение	%		-	Φ/H < 1	-	_	1 ≤ Ф/Н	нет	нет		
575	1				Относительное удлинение	%		-	Φ/H < 1		-	1 ≤ Φ/H	нет	нет		
576					Ударная вязкость стали по Шарпи КСU	кДж/м2 (кгсм/см 2)		•	Ф/Н < 1	-	-	1 ≤ Φ/H	нет	нет		
577	-				Ударная вязкость стали по Шарпи КСV	кДж/м2 (кгсм/см 2)		-	Ф/Н < 1	-	-	1 ≤ Ф/Н	нет	нет		
578					Доля вязкой составляющей в изломе ударного образца по Шарпи (КСV)	%			Ф/Н < 1	-	-	1 ≤ Ф/Н	нет	нет		
579	1				Твердость металла	НВ		-	Φ/H < 1	-	-	1 ≤ Ф/Н	нет	нет		1
580	1				Горячая твердость	ΜΠa		-	Φ/H < 1	•	-	1 ≤ Φ/H	нет	нет		
581					Критическое раскрытие при ударном нагружении	ММ		-	Ф/Н < 1	-	-	1 ≤ Ф/Н	нет	нет		
582					Условный предел текучести стали σ0,2	МПа (кгс/мм2)		-	Ф/Н < 1	-	-	1 ≤ Ф/Н	нет	н с т		
583				Штоки регулирующих и стопорных клапанов	Искривление штока		Имеется/ отсутствует	Иместся	_	-	-	Отсутству ет	нет	нет	0,25	
584		Трубопро воды в пределах турбины	нет	Состояние металла	Несплопность (трещина) в основном металле и сварных швах, в том числе устраненная ремонтом		Имеется/ отсутствует	_	Имеется	•	-	Отсутству ет	нет	нет	0,5	0,102
585					Микроповрежденность	балл		1 < Ф/4	$\Phi/4 = 1$	$\Phi/4 = 0.75$	$\Phi/4 = 0,5$	$\Phi/4 = 0,25$	нет	нет		_
586				Геометрия	Утонение стенок по результатам ультразвуковой толщинометрии в растянутой зоне гибов	%		1 < Φ/20	0,9 < Φ/20 ≤ 1,0	0,9	0,4 < Φ/20 ≤ 0,7	0 ≤ Φ/20 ≤ 0,4	нет	нет	0,5	
587					Остаточная деформация (для прямых труб)	%		12X1MФ 1 < Ф/1,5	12X1MΦ 0,9 < Φ/1,5 ≤ 1,0	12X1MΦ 0,7 < Φ/1,5 ≤0,9	12X1MΦ 0,4 < Φ/1,5 ≤ 0,7	$12X1M\Phi$ $0 \le \Phi/1,5 \le$ 0,4	нет	нет		
								Прочие стали 1 < Ф/1	Прочие стали	Прочие стали	Прочие стали	Прочие стали				

		<u>-</u>	,					,	100.20.	0.5 . 5.41 .						
									$0.9 < \Phi/1 \le 1.0$	0,7 < Φ/1 ≤ 0,9	$0.4 < \Phi/1 \le 0.7$	0 ≤ Φ/1 ≤ 0,4				
588					Остаточная деформация (для прямых участков гнутых труб	%		1 < Ф/0,8	0,9 < Φ/0,8 ≤ 1,0				нет	нет		
589					независимо от марок стали) Наличие ограничений по параметрам/ресурсу после		Имеется/ отсутствует	-	Имеется	-	-	Отсутству	нет	нет		
					экспертизы промбезопасности/техническо го диагностирования		oloyicibyei 	:								
590		Обобщенн ый узел	нет	Срок службы	Срок службы	лет (ч)		2 < Ф/Н	1,5 < Φ/H ≤ 2	1 < Φ/H ≤ 1,5	0,5 < Φ/H ≤ 1	Φ/H ≤ 0,5	нет	нет	0,539	0,168
591	į			Состояние масла	Класс промышленной чистоты масла	класс		1 < Ф/11	-	$\Phi/11 = 1$	-	Ф/11 < 1	нет	нет	0,164	
592					Тенденция изменения класса промышленной чистоты масла по сравнению с предыдущим замером Фпред	класс		-	-	-	1 < (Ф- Фпред)	(Ф - Фпред) ≤ 1	нет	нет		
593					Обводнение масла		Имеется/ отсутствует	-	Имеется	-	-	Отсутству	нет	нет		
594					Максимальная температура за маслоохладителем	°C		1 < Ф/Н	-	-	-	Φ/H ≤ 1	нет	нет		
595				Тепловые расширения	Перемещение переднего стула турбины при номинальной нагрузке	MM		-	Φ/H < 0,9	0,9≤Φ/H< 0,925	< 0,95		нет	нет	0,297	
596	Паровой котел	Барабан	да	Геометрия	Утонение (коррозия) по результатам ультразвуковой толщинометрии - доля	%		1 < Ф/10	0,75 < Φ/10 ≤ 1	0,50 < Φ/10 ≤ 0,75	0 < Φ/10 ≤ 0,50	Ф/10 = 0	нет	нет	0,5	Барабан ные - 0,318
597					Утонение (коррозия) по результатам ультразвуковой толщинометрии - размер	MM		1 < Ф/8	0,75 < Φ/8 ≤ 1	0,5 < Φ/8 ≤ 0,75	0 < Φ/8 ≤ 0,5	Φ/8 = 0	нет	нет		Прямото чные - 0
598					Наличие ограничений по параметрам/ресурсу после экспертизы промышленной безопасности/технического		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет		
599		:		Состояние металла	диагностирования Количество мостиков или отверстий с устраненными трещинами (для группы отверстий одноименного назначения)	шт.		-	-	1 < Ф/10	0,5 < Φ/10 ≤ 1	0 ≤ Φ/10 ≤ 0,5	нет	нет	0,49	
600					Количество дефектов, устраненных сваркой за весь период эксплуатации	шт.		-	-	1 < Ф/10	0,5 < Φ/10 ≤ 1	0 ≤ Φ/10 ≤ 0,5	нет	нет		
601					Протяженность ремонтных заварок отдельного продольного или кольцевого основного сварного соединения	%		-	-	1 ≤ Φ/25	-	Φ/25 < 1	нет	нет		
602					Суммарная протяженность ремонтных заварок продольных или кольцевых основных сварных соединений	%		-	-	1 ≤ Φ/10	-	Φ/10 < 1	нет	нет		
603					Твердость металла	HB	 	-	 	Φ/H < 1	 	1 ≤ Φ/H	нет	нет		
604					Наличие микротрещин и (или) графитизации 2-го балла и более		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет		
605				Группа ресурсоопреде ляющих параметров	Наличие дефектов: (утонение (коррозия) по результатам ультразвуковой толщинометрии превышает значение, установленное НТД, или		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ег	нет	да	0,01	

			T	1	протяженность ремонтных	1										T
					заварок отдельного	1										
					продольного или кольцевого	ĺ					j					1
					основного сварного	1										1
1					соединения превышает 25%	1										
l I					<u>-</u>	1									1	
			1		длины	1	İ								1	
1 1			Í	ľ	или	1			ĺ	ĺ			ĺ	!	1	ĺ
1			1		суммарная протяженность	1								ļ	1	
					ремонтных заварок	1								ļ	1	1
					продольных или кольцевых	l								ļ	1	1 1
		1			основных сварных	1								ļ	1	1
					соединений превышает 10%	1			1					,	1	1
					длины	1								;	1	
					или	1					-			,		
						1									1	
i 1	i				твердость металла не	1										
1 !					соответствует значениям,	1										
i			1		установленным НТД)	1				1						
					и	1										1
		1			отрицательное заключение о	1			ļ						1	
					возможности дальнейшей	1	1								1	1
					эксплуатации, выдаваемое в	1			1						1	
					соответствии с Правилами	1									1	
					технической эксплуатации	1									1	
			ļ		электрических станций и	1				ļ					1	
			İ		сетей Российской Федерации,	1									1	
					утверждаемыми в	1									1	
					соответствии с пунктом 3	1										
						1									1	
				i	постановления Правительства	1		İ								
				1	Российской Федерации от 13	1										
					августа 2018 г. № 937 «Об	1										
1 1	1		1	}	утверждении Правил	1	1	}	1	1	1	}			ł	1 1
					технологического	1			j							
			:		функционирования											
					электроэнергетических	1										1
			1		систем и о внесении	1										
			1		изменений в некоторые акты	1										
1					Правительства Российской											
	ļ				Федерации»	1										
606	ŀ	Каркас,	 	Визуальный	Местная потеря устойчивости	\vdash	Имеется/	-	Имеется			0			0.2	F6-
000			да	_		1	li .		PIMEETCA	-	-	Отсутству	нет	нет	0,3	Барабан
		обмуровка		контроль	(выпучины и впадины в	1	отсутствует					eт				ные -
		котла и		каркаса	стенке балок, деформация											0,063
1 1		газоходы			поперечных ребер и полок,	1			<u> </u>						1	Прямото
					продольной оси балок,	1									1	чные -
		1	j		закручивание балок при											0,089
		1	1	1	одностороннем приложении	1	I	I	1			ı İ				
<u> </u>	į.					1			1							
60=					нагрузки)											
607				Результаты	нагрузки)		Имеются/	-	Имеются	-	-	Отсутству	нет	нет	0.29	
607				Результаты измерений	нагрузки) Нарушения геометрии			-	Имеются	-	-	Отсутству	нет	нет	0,29	-
607				измерений	нагрузки) Нарушения геометрии каркаса котла (наклон колонн,		Имеются/ отсутствуют	-	Имеются	•	-	Отсутству	нет	нет	0,29	_
607				измерений геометрии	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей			-	Имеются		-		нет	нет	0,29	-
607				измерений	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам			-	Имеются	-	-		нет	нет	0,29	_
				измерений геометрии	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений		отсутствуют					ют			0,29	
607				измерений геометрии	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по		отсутствуют	-	Имеются	-	-	Отсутству	нет	нет	0,29	
				измерений геометрии	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по		отсутствуют					ют			0,29	
				измерений геометрии	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического		отсутствуют					Отсутству			0,29	
608				измерений геометрии каркаса	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса		отсутствуют			-	<u>-</u>	ют Опсутству ет				
				измерений геометрии каркаса Плотность	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый	%	отсутствуют				- 1 < Φ/H ≤	Отсутству			0,29	
608				измерений геометрии каркаса Плотность обмуровки и	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из	%	отсутствуют	имеется	-	-	<u>-</u>	ют Опсутству ет	нет	нет		
608				измерений геометрии каркаса Плотность	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из	%	отсутствуют	имеется	-	-	- 1 < Φ/H ≤	ют Опсутству ет	нет	нет		
608				измерений геометрии каркаса Плотность обмуровки и настенных	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый	%	отсутствуют	имеется	-	-	- 1 < Φ/H ≤	ют Опсутству ет	нет	нет		
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из	%	отсутствуют	имеется	-	-	- 1 < Φ/H ≤	ют Опсутству ет	нет	нет		
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений топки	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из пароперегревателя	-	отсутствуют	имеется	-	1,3 < Ф/Н	- 1 < Φ/H ≤ 1,3	ют Отсутству ет Ф/H ≤ 1	нет	нет	0,2	
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений топки	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из пароперегревателя	%	отсутствуют	имеется	-	-	- 1<Φ/H≤ 1,3	ют Опсутству ет	нет	нет		
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений топки Плотность обмуровки и	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из пароперегревателя Присосы в газовый тракт на участке от входа в	-	отсутствуют	имеется	-	1,3 < Ф/Н	- 1 < Φ/H ≤ 1,3	ют Отсутству ет Ф/H ≤ 1	нет	нет	0,2	
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений топки Плотность обмуровки и настенных	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из пароперегревателя Присосы в газовый тракт на участке от входа в экономайзер до выхода из	-	отсутствуют	имеется	-	1,3 < Ф/Н	- 1<Φ/H≤ 1,3	ют Отсутству ет Ф/H ≤ 1	нет	нет	0,2	
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений топки Плотность обмуровки и настенных ограждений обмуровки и настенных	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из пароперегревателя Присосы в газовый тракт на участке от входа в экономайзер до выхода из дымососа (без учета	-	отсутствуют	имеется	-	1,3 < Ф/Н	- 1<Φ/H≤ 1,3	ют Отсутству ет Ф/H ≤ 1	нет	нет	0,2	
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений топки Плотность обмуровки и настенных	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из пароперегревателя Присосы в газовый тракт на участке от входа в экономайзер до выхода из дымососа (без учета золоулавливающей	-	отсутствуют	имеется	-	1,3 < Ф/Н	- 1<Φ/H≤ 1,3	ют Отсутству ет Ф/H ≤ 1	нет	нет	0,2	
608				измерений геометрии каркаса Плотность обмуровки и настенных ограждений топки Плотность обмуровки и настенных ограждений обмуровки и настенных	нагрузки) Нарушения геометрии каркаса котла (наклон колонн, деформации продольных осей балок) по результатам измерений Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования каркаса Присосы в топку и газовый тракт до выхода из пароперегревателя Присосы в газовый тракт на участке от входа в экономайзер до выхода из дымососа (без учета	-	отсутствуют	имеется	-	1,3 < Ф/Н	- 1<Φ/H≤ 1,3	ют Отсутству ет Ф/H ≤ 1	нет	нет	0,2	

						45									
611			Группа ресурсоопреде ляющих	Наличие дефектов: (местная потеря устойчивости или		Имеется/ отсутствует	Имеется	-	-	-	Отсугству ет	нет	да	0,01	
			параметров	нарушение геометрии каркаса (наклон колонн, деформации продольных осей балок),							:				
				выявленное по результатам измерений, превыплающее					-						
				значение, установленное НТД)						:					
				и отрицательное заключение о возможности дальнейшей											
;				эксплуатации, выдаваемое в соответствии с Правилами технической эксплуатации						:					
				электрических станций и сетей Российской Федерации,		ļ					:				
				утверждаемыми в										:	
				соответствии с пунктом 3 постановления Правительства Российской Федерации от 13	i					:					
				августа 2018 г. № 937 «Об утверждении Правил											
				технологического функционирования											
				электроэнергетических					,						
				систем и о внесении изменений в некоторые акты Правительства Российской											
612	Пароводя	нет	Состояние	Федерации» Несплошность (трещина) в	<u> </u>	Имеется/	-	Имеется	-	-	Отсутству	нет	нет	1	Барабан
	ная арматура		металла (для арматуры Dy ≥ 100 T ≥ 450°C)			отсутствует					eт				ные - 0,033
613	в пределах		100 T ≥ 430 C)	устраненная ремонтом Твердость металла	НВ		-	Φ/H < 1	-	-	1 ≤ Φ/H	нет	нет	†	Прямото чные -
614	котла Поверхно	нет	Состояние	Степень сфероидизации	балл		-	Ф/6 = 1	-	-	Φ/6 < 1	нет	нет	для	0,043 Барабан
615	сти нагрева		металла	перлита Глубина продольных борозд	мм		1< Φ/1	<u> </u>	_		Φ/1 ≤ 1	нет	нет	поверхност ей топки	ные - 0,134
	котла			(на внутренней поверхности труб)								IIC1	noi	(испаритель ных	Прямото чные -
616				Глубина обезуглероженного слоя (на внутренней поверхности труб)	ММ		1< Ф/0,2	-	-	-	Φ/0,2 ≤ 1	нет	нет	поверхност ей) – 0,35; для	0,202
617				Глубина язв (на поверхности труб высокотемпературных пароперегревателей)	мм		1< Ф/0,3	-	-	-	$\Phi/0,3 \leq 1$	нет	нет	пароперегре вателей и других поверхност ей — 0,5	
618			Геометрия	Утонение по результатам ультразвуковой толщинометрии	мм		-	-	1 < Ф/1	0,5 < Φ/1 ≤ 1,0	Φ/1 ≤ 0,5	нет	нет	для поверхност ей топки	- - - - -
619				Увеличение наружного диаметра труб	% от номинал ьного диаметр		-	Углеродис тая сталь 1 < Ф/3,5	Углеродист ая сталь 0,90 < Ф/3,5 ≤ 1	Углеродист ая сталь 0,70 < Ф/3,5 ≤0,90	Углеродис тая сталь Ф/3,5 ≤ 0,70	нет	нет	(испаритель ных поверхност ей) – 0,35;	
					а			Легирован ная сталь 1 < Ф/2,5	Легирован ная сталь 0,90 < Ф/2,5 ≤ 1	Легированн ая сталь 0,70 < Ф/2,5 ≤ 0,90	Легирован ная сталь Ф/2,5 ≤ 0,70	:		для пароперегре вателей и других поверхност	
620				Количество отглушенных труб в пакете/блоке (для низкотемпературных поверхностей нагрева)	%		-	1< Ф/Н			Ф/Н≤ 1	нет	нет	ей — 0,5	

							40									
621					Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования поверхностей нагрева		Имеется/ отсутствует	<u>-</u>	Имеется	_	-	Отсутству ет	нет	нет		
622				Внутренняя загрязненность поверхностей нагрева топки	Общая загрязненность	г/м²		1 < Ф/Н	0,75 < Φ/H ≤ 1	0,5 < Φ/H ≤ 0,75	0,25 < Φ/H ≤ 0,5	Φ/H ≤ 0,25	нет	нет	для поверхност ей топки (испаритель ных поверхност ей) — 0,3; для пароперегре вателей и других поверхност ей — 0	
623		Трубопро воды и коллектор ы	нет	Состояние металла	Несплопность (трещина) в основном металле и сварных швах, в том числе устраненная ремонтом		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет	0,5	Барабан ные - 0,318 Прямото
624					Дефекты округлой формы (раковины, язвы) на наружной и внутренней поверхностях коллекторов глубиной более 3 мм - доля от толщины стенки	%		-	1 < Ф/100	Φ/100 = 1	0 < Ф/100 < 1	Ф/100 = 0	нет	нет		чные - 0,464
625	ļ				Дефекты округлой формы (раковины, язвы) на наружной и внутренней поверхностих коллекторов глубиной более 3 мм - размер	ММ		-	1 < Ф/20	Φ/20 = 1	0 < Ф/20 < 1	Φ/20 = 0	нет	нет		
626					Дефекты округлой формы (раковины, язвы) на наружной и внутренней поверхностях паропроводов - доля от толщины стенки	%		-	1 < Ф/10	Ф/10 = 1	0 < Φ/10 < 1	$\Phi/10 = 0$	нет	нет		
627					Дефекты округлой формы (раковины, язвы) на наружной и внутренней поверхностях паропроводов - размер	ММ		•	1 < Ф/2	Φ/2 = 1	0 < Ф/2 < 1	Φ/2 = 0	нет	нет		
628]	Микроповрежденность	балл		-	1 < Φ/4	$\Phi/4 = 1$	$\Phi/4 = 0.75$	$\Phi/4 < 0.5$	нет	нет	1	
629				Геометрия	Утонение стенок по результатам ультразвуковой толщинометрии в растянутой зоне гибов	%		1 < Ф/20	0,9 < Φ/20 ≤ 1,0	0,7 < Φ/20 ≤ 0,9	0,4 < Φ/20 ≤ 0,7	0 ≤ Φ/20 ≤ 0,4	да	нет	0,5	
630					Остаточная деформация (для прямых труб)	%		12X1MФ 1 < Ф/1,5 Прочие стали 1 < Ф/1	12X1МФ 0,9 < Ф/1,5 ≤ 1,0 Прочие стали 0,9 < Ф/1 ≤ 1,0	12X1МФ 0,7 < Ф/1,5 ≤ 0,9 Прочие стали 0,7 < Ф/1 ≤ 0,9	12X1МФ 0,4 < Ф/1,5 ≤ 0,7 Прочие стали 0,4 < Ф/1 ≤ 0,7	12X1МФ 0 ≤ Ф/1,5 ≤ 0,4 Прочие стали 0 ≤ Ф/1 ≤ 0,4	да	нет		
631					Остаточная деформация (для прямых участков гнутых труб независимо от марок стали)	%		1 < Φ/0,8	0,9 < Φ/0,8 ≤ 1,0	0,7 < Φ/0,8 ≤ 0,9	$0.4 < \Phi/0.8 \le 0.7$	0,4	да	нет		
632				:	Наличие ограничений по параметрам/ресурсу котла по результатам технического диагностирования трубопроводов и коллекторов		Имеется/ отсутствует	Имеется	-		-	Отсутству ет	да	нет		
633		Обобщенн ый узел	Her	Срок службы	Срок службы	пет (ч)		2 < Ф/Н	1,5 < Φ/H ≤2	1 < Φ/H ≤ 1,5	0,5 < Φ/H ≤ 1		нет	нет	0,5	Барабан ные -
634		<u> </u>	L	Энергетически	Паропроизводительность	т/ч		-	$\Phi/H < 0.9$	0,9 ≤ Φ/H <	0,925 ≤ Φ/Η	0,95≤Φ/H	нет	нет	0,5	0,134

					е					I	0,925	< 0,95					Прямото
					характеристик и							:					чные - 0,202
635	Электроте хническое оборудова ние	Батарея статическ их конденсат оров	Силовая часть	нет	Состояние конденсатора	Течь жидкого диэлектрика		Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 капли в сек.)/ намокание/от потевание/ отсутствует	Интенсивна я (не менее 2-х капель в сек.)	-	Капельная (не более 1 капли в сек.)	Намокание/ отпотевание	Отсутству ет	да	нет	0,6	0,9
636						Степень развития дефекта контактных соединений по результатам тепловизионного контроля		Аварийный дефект/ развившийся дефект/ начальная стадия развития дефекта/ дефект отсутствует	Аварийный дефект	-	Развивший ся дефект	Начальная стадия развития дефекта	Дефект отсутствуе т	нет	нет		
6 37						Разница температуры нагрева корпусов элементов конденсаторов	°C		-	1,2 ≤ Фмакс/Фм ин	1,14 ≤ Фмакс/Фм ин < 1,2	-	Фмакс/Фм ин < 1,14	нет	нет		
638	1					Сопротивление разрядного резистора	МОм		-	100 ≤ Φ	90 ≤ Φ < 100	-	Φ<90	нет	нет		
639						Изменение емкости единичных конденсаторов	МжФ		-	Пред < Ф - Н /Н (при отсутстви и указаний в НТД Пред=0,15	(Пред*0,67) < Ф - Н /Н ≤ Пред (при отсутствии указаний в НТД Пред=0,15)	< Ф - H /H ≤ (Пред*0,67) (при отсутствии указаний в НТД	Ф - Н/Н ≤ (Пред*0,3 3) (при отсутстви и указаний в НТД Пред=0,15	нет	нет		
640						Изменение емкости для конденсаторных блоков	Фим		Пред <Ф - Н/Н (при отсутствии указаний в НТД Пред=0,10)	•	(Пред*0,75) < Ф - Н /Н ≤Пред (при отсутствии указаний в НТД Пред=0,10)	(Пред*0,5) < Ф - Н /Н ≤ (Пред*0,75) (при отсутствии указаний в НТД Пред=0,10)	Ф - Н/Н ≤ (Пред*0,5) (при отсутстви и указаний в НТД Пред=0,10	да	HCT .		
641					Общее состояние,	Загрязнение изоляторов		Имеется/ отсутствует	•	-	-	Имеется	Отсутству ет	нет	Het	0,4	
642					контактных состояние	Коррозия корпуса		Имеется/ отсутствует	•	-	Имеется	-	Отсутству ет	нет	нет		!
643					соединений	Дефекты крепежа и контактов		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет		
644]					Треск, шумы внутри бака		Имеются/ отсутствуют	Имеются	-		-	Отсутству ют	да	нет		
645						Изменение цвета полимерной изолящии		Имеется/ отсутствует	•	-	-	Имеется	Отсугству ет	нет	нет		
646						Разгерметизация/Разрыв полимерной изоляции		Имеется/ отсутствует	Имеются	-	-	•	Отсутству ет	да	нет		
647	7		Обобщенн ый узел	нет	Общие сведения	Срок службы	лет		1,85 ≤ Φ/H	1≤Φ/H < 1,85	0,57 ≤ Φ/H < 1	0,13 ≤ Φ/H < 0,57	Φ/H < 0,13	нет	нет	1	0,1
648		Выключат ель	Контактна я система	нет	Состояние контактной системы	Аномальный локальный нагрев поверхности в зоне дугогасящей камеры камеры/верхнего фланца выключателя по результатам тепловизионного контроля		Имеется / отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет	0,45	при констру ктивном наличии функцио нального

						,											
						(для маломасляных (далее – MM),											узла «Высоко
						элегазовых (далее – Э),			-								вольтны
						вакуумных (далее – ВК), воздушных (далее – ВВ),										1	й ввод» (Э
						масляных (далее – МВ))						ļ	[]				баковые,
649		İ				Максимальное сопротивление	мкОм		1,0 < Ф/Н	0,95 < Ф/Н	-	0,9 < Φ/H ≤	Φ/H ≤ 0,9	да	нет	1	BK
		1				контактной системы				≤ 1,0		0,95				_	баковые,
650	İ	- 1			Ì	Тенденция изменения максимального	мкОм		-	-	1,10 ≤ Ф/Фпред	} -	Ф/Фпред < 1,10	нет	нет		МВ баковые)
						сопротивления контактной					Ф/ФПред и		1,10				- 0,25;
						системы от предыдущего					Φ/H ≤ 0,95						при
						измерения Фпред			10 (4)	0.05 + 0.01		00.0	777.00			4	констру
651					!	Время включения выключателя	С		1,0 < Ф/Н	0,95 < Φ/H ≤ 1,0	-	0,9 < Φ/H ≤ 0,95	Φ/H ≤ 0,9	нет	нет		ктивном отсутств
652						Тенденция времени	С		-		1,10≤	- 0,22	Ф/Фпред <	нет	нет	4	NIN
						включения					Ф/Фпред		1,10				функцио
											H Transfer						нального
653						Время отключения	c		1,0 < Ф/Н	0,95 < Φ/H	Φ/H ≤ 0,95	0,9 < Φ/H ≤	Φ/H ≤ 0,9	нет	нет	-	узла «Высоко
						выключателя			2,5 - 4/11	0,35 < Q /11 ≤ 1,0		0,9 < 4/11 \(\)		ne i	He1		вольтны
654						Тенденция времени	С	_	-	-	1,10 ≤	-	Ф/Фпред <	нет	нет		й ввод»
						отключения					Ф/Фпред и		1,10				(ММ, Э
											ν Φ/H≤0,95		[вые, ВК,
655					Состояние	Степень развития дефекта		Аварийный	-	Аварийны	Развивший	-	Дефект	нет	нет	0,275	BB) -
					внешних	контактных соединений по		дефект/		й дефект	ся дефект		отсутствуе				0,33
	ļ				контактных соединений	результатам тепловизионного контроля		развившийся дефект/					T				
					(кроме	KOHIPOIK		дефект									
					высоковольтны			отсутствует]	i
656					х вводов)	Загрязнение контактных		Имеется /	-	-	•	Имеется	Отсутству	нет	нет]	
657						соединений Окисление контактных		отсутствует Имеется /	_	 	_	Имеется	Отсутству	нет	нет	-	
",						соединений		отсутствует			_	THEOLIGA	eT	nei	HOI		
658						Неисправность контактных соединений		Имеется / отсутствует	-	Имеется	-	-	Отсутству	нет	нет	1	
659					Pecypc	Механическая	шт.	Отсутствует	1,0 ≤ Φ/H	 	0,9≤Φ/H<	 	Φ/H < 0,9	да	нет	0,275	
					100, po	износостойкость					1,0				222	0,2,5	
			-			(механический ресурс)			1012							4	
660						Коммугационная износостойкость	IITT.		1,0 ≤ Φ/H	-	0,9 ≤ Φ/H <	-	Ф/Н < 0,9	да	нет		
						(коммутационный ресурс)				1	1,0 или		или 2≲(H-Ф)				1
						(Tourney Landson Proof Pro					0 < (Н - Ф)		(
					<u></u>					<u> </u>	< 2					<u> </u>	ļ
661			Изоляцио иная	нет	Состояние внешней	Трещина фарфоровой покрышки		Имеется / отсутствует	-	-	Имеется	-	Отсутству	нет	нет	для ММ, МВ, Э - 0,5	при констру
		ļ	иная система		изоляции	(ММ, Э)		Olo, loibyei					61			для ВК, ВВ	
662					подвижных	Сколы фарфоровой		Имеется /	-	-	-	Имеется	Отсутству	нет	нет	- 1,0	наличии
					частей	покрышки/ внешней изоляции		отсутствует					ет				функцио
663						(ММ, Э, ВВ) Повреждение армировочных	-	Имеется /	_	 	Имеется		Отсутству	нет	нет	4	нального узла
003						швов фарфоровой покрышки		отсутствует	_	-	IMMORION	-	eT	uei	uet		«Высоко
						(MM)]	вольтны
664						Загрязнение опорного		Имеется /	-	-	-	Имеется	Отсутству	нет	нет]	й ввод»
						изолятора (стойкое) (ВВ)		отсутствует					er				(Э баковые,
665						Повреждение опорного		Имеется /	-	Имеется	-	 	Отсутству	нет	нет	1	BK
						изолятора		отсутствует					ет			1	баковые,
						(BB)	1.0		- TT - 1 C	<u> </u>	10.25						MB
666	1					Сопротивление изоляции	МОм		Φ/H < 1,0	-	1,0 ≤ Φ/H ≤ 1,1	-	1,1 < Ф/Н	нет	нет		баковые) - 0,25;
						вторичных цепей электромагнитного.					1,1						при
						управления]	констру
667				<u> </u>		Сопротивление основной	МОм	<u> </u>	$\Phi/H < 1,0$	1,0 ≤ Φ/H	1,05 ≤ Φ/Η	-	1,10 ≤ Φ/Η	нет	нет	7	ктивном

l .		1	изоляции			<u> </u>	< 1,05	< 1,10						отсутств
1		· ·	(ВК)	<u></u>										ии
668	1		Сопротивление изоляции подвижных частей	МОм		Φ/H < 1,0	1,0 ≤ Φ/H < 1,05	1,05 ≤ Φ/H < 1,10	-	1,10 ≤ Ф/Н	нет	нет		функцио нального
			подвижных частей (ВВ, МВ)				`1,05	1,10						узла
669	1 1		Тенденция сопротивления	МОм		-	-	-	Ф/Фпред <	0,9≤	нет	нет		«Высоко
			основной изолящии от						0,9	Ф/Фпред				вольтны
			предыдущего измерения Фпред		1									й ввод» (ММ, Э
			(ВК)											колонко
670	1		Тенденция изменения	МОм		-	-	-	Ф/Фпред <	0,9 ≤	нет	нет	1	вые, ВК,
			сопротивления изоляции						0,9	Ф/Фпред				BB) - 0,33
			подвижных частей от предыдущего измерения											0,55
			Фпред											
	_		(BB, MB)											
(21	4 1 1		рующей среды, в том числе	i	Имеется /			Имеется		0			для ММ, МВ, Э - 0,5	
671		Состояние масла	Нарушение уплотнения, трещина стекла		отсутствует	1 -	-	KIMCCICA	-	Отсутству ет	нет	нет	мв, э - 0,5 для ВК, ВВ	
			маслоуказателя										-0	
	_		(MM, MB)		<u> </u>	1	ļ	ļ <u></u>						
672			Повышенный уровень масла (MM, MB)		Имеется / отсутствует	-	-	Имеется	-	Отсутству ет	нет	Het		
673	1		Низкий уровень масла (MM, MB)		Имеется /	-	-	Имеется	-	Отсутству	нет	нет]	
674	-		Течь масла		отсутствует Интенсивная	Интенсивна	Капельная	Намокание	<u> </u>	ет Отсутству	нет	нет	1	
"			(MM)		(не менее 2-х	я (не менее	(не более 1	/отпотеван		ет		****		
				1	капель в	2-х капель в	капли в	ие						
					сек.)/ капельная (не	сек.)	сек.)							
					более 1 капля	1								
					в сек.)/								1	
					намокание/от потевание/									
					потевание/									
675	1		Течь масла		Интенсивная	-	-	Интенсивн	Капельная	Отсутству	нет	нет	1	
			(MB)		(не менее 2-х			ая (не	(не более 1	ет				
					капельная (не			cek.)	••••.					
					более 1 капля									
676			Лавление в полюсе	 		_	Пониженн		Повышенно	Норма	нет	нет	1	
""			(MM)		повышенное/		oe		e	-10p.444	1101	1101		
	_			<u> </u>	норма	A 77 - 10		10:57					1	
677				кВ		Φ/Η < 1,0	-		-	1,0 ≤ か /(⊔⊥5)	нет	нет		
			(mb)							(c⊤n)/ Ψ				
	<u> </u>							1,0]	
678]		Содержание механических		Имеется /	-	Имеется	-	-	Отсутству	нет	нет		
			примесей (МВ)		отсутствует					er				
679	-	Состояние			Имеется /	-	-	Имеется	_	Отсутству	нет	нет	†	
"		элегаза (или	плотности элегаза 1 ступени		отсутствует					ет				
	_	смеси элегаза)	(9)			ļ				<u> </u>			1	
680						-	-	Имеется	-	1	нет	нет		
					Olcylcibyer					l er				
			полюсами											
<u></u>	_		(3)	ļ]	1
681						-	Имеется	-	-		нет	нет		
					Olcylcibyer					er er				
682	-		Неисправность сигнализатора	1	Имеется /	-	-	Имеется		Отсутству	нет	нет	1	
680			Давление в полюсе (ММ) Пробивное напряжение масла (МВ) Содержание механических примесей (МВ) Срабатывание датчика плотности элегаза 1 ступени (Э) Пониженное давление элегаза в полюсе (более чем на 5%) по сравнению с другими полюсами	кВ	более 1 капля в сек.)/ отсутствует Пониженное/ повышенное/ норма Имеется / отсутствует Имеется / отсутствует Имеется / отсутствует Имеется / отсутствует	Φ/H < 1,0	- Имеется Имеется	менее 2-х капель в сек.) 1,0 ≤ Ф/Н и Ф/(H+5) < 1,0 - Имеется	капли в сек.) Повышенно е	ет Отсутству	нет	нет		

	 , ————					50									
				плотности		отсутствует					eт				
683	Прочее оборудова	нет	Неисправности «механической	(Э) Неисправность заводного устройства		Имеется /	-	-	Имеется	-	Отсутству	нет	нет	0,5	при
684	ние выключат еля		» части	устроиства Неисправность механизма включения/отключения		отсутствует Имеется «на включение»/ имеется «на	Имеется «на отключение	Имеется «на включение	-	~	ет Отсутству ет	нет	нет		констру ктивном наличии функцио
						отключение»/ отсутствует	»	»							нального узла
685				Недопустимая деформация металлоконструкций		Имеется / отсутствует	Имеется	-	•	•	Отсутству ет	нет	нет		«Высоко вольтны
686				Неисправность указателя положения		Имеется / отсутствует	-	_	-	Имеется	Отсут ств у ет	нет	нет		й ввод» (Э
687				Повреждение корпуса привода (ММ, ВК, ВВ, МВ)		Имеется / отсутствует	-	-	•	Имеется	Отсутству ет	нет	нет		баковые, ВК баковые,
688				Разрушение сварных швов (ММ, ВК, МВ, Э)		Имеется / отсутствует	-	-	Имеется	<u>-</u>	Отсутству ет	нет	нет	1	МВ баковые)
689				Сквозная коррозия (ВК, МВ, ММ, Э)		Имеется / отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет]	- 0,15; npæ
690				Неисправность маслоотборного устройства (МВ)		Имеется / отсутствует	-	•	Имеется	-	Отсутству ет	нет	нет		констру ктивном отсутств
691				Невозможность контроля уровня масла по маслоуказателю (ММ, МВ)		Имеется / отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет		ии функцио нального узла
692				Неисправность пневматической схемы (ВВ)		Имеется / отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет		«Высоко вольтны й ввод»
693				Неисправность манометра (ВВ, ММ)/денсиметра (Э)		Имеется / отсутствует	-	-	•	Имеется	Отсутству ет	нет	нет		(ММ, Э колонко
694			Неисправности «электрическо	Неисправность блок- контактов		Имеется / отсутствует	•	•	Имеется	•	Отсутству ет	Het	нет	0,5	вые, ВК, ВВ) -
695			й» части	Неисправность обогрева полюсов выключателя (ММ, ВК, ВВ, МВ, Э баковые)		Имеется / отсутствует	•	-	Имеется	•	Отсутству ет	нет	Het		0,17
696				Неисправность обогрева привода (ММ, ВК, МВ, Э)		Имеется / отсутствует	•	-	Имеется	•	Опсутству ет	нет	нет		
698	Ì		1	Нарушение заземления выключателя		Имеется / отсутствует	<u>-</u>	-	Имеется	<u>-</u>	Отсутству ет	нет	HeT]	
				Повреждение пусковых электромагнитов управления (ВК, МВ, ВВ, Э)		Имеется / отсутствует	•	Имеется	-	-	Отсутству ет	Het	нет		
699	Высоково льтный ввод	Her	Общие сведения	Течь масла для негерметичных вводов (для класса напряжения 110 кВ и выше)		Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 каппя	•	Интенсивн ая (не менее 2-х капель в сек.)	Капельная (не более 1 капли в сек.)	Наможяние/ отпотевание	Отсутству ет	нет	нег	для 35 кВ - 0,5 для 110 кВ и выще: герметичны	при констру ктивном наличии функцио
						в сек.)/ намокание/от потевание/ отсутствует								е вводы - 0,25 негерметич ные вводы - 0,25	нального узла «Высоко вольтны й ввод»
700				Наличие дефектов покрышки с характеристиками, превышающими значених, установленные НТД		Имеется/ отсутствует	•	-	Имеется	-	Отсутству ет	нет	нет	герметичны е вводы с твердой изоляцией -	(Э баковые, ВК баковые,
701				Неравномерное распределение температуры по результатам тепловизионного контроля		Имеется/ отсутствует	Имеется	•	-	-	Отсутству ет	нет	нет	0,5	МВ баковые) - 0,25; при
702	 	L	L	Давление масла	KTC/CM ²		Φ<0,1	-	-	-	0,1≤Φ≤3	нет	нет	1	констру

			(для класса напряжения 110			или							
<u></u>			кВ и выше)		17 /	3<Ф							_ c
3	! !		Неисправность маслоотборного устройства		Имеется / отсутствует	Имеется	-	-	-	Отсутству ет	нет	нет	
			(для класса напряжения 110		oley lelbyer								l l
			кВ и выше)										
4	1		Аномальный локальный		Имеется /	Имеется	-	•	-	Отсутству	нет	нет] \
			нагрев крышки		отсутствует					er			1
			измерительного вывода по]			
			результатам тепловизионного контроля										
5			Степень развития дефекта		Развившийся	-	-	Развивщий	-	Дефект	нет	нет	- ;
			контактных соединений по		дефект/			ся дефект		отсутствуе			1
			результатам тепловизионного		дефект					т			
	1	Vacuation	контроля	% oб.	отсутствует	1 < Ф/Н	0,6 < Ф/Н	0,3 < Φ/H ≤	0,1 < Φ/H ≤	⊅ /// < 0.1			25 D
		Хроматографи ческий анализ	Концентрация ацетилена С2Н2	76 00.		1 ~ Ф/П	0,6 < Ψ/H ≤1	0,3 < Ψ/Π ≤ 0,6	0,1 < Φ/H ≤ 0,3	Φ/H ≤ 0,1	нет	нет	для 35 кВ - 0
. 		газов,	Суммарное содержание	% об.		1,0 < Ф/Н		9,0	-	Φ/H ≤ 1,0	нет	нет	для 110 кВ
		растворенных	углеводородных газов в масле									1101	и выше:
		в масле	SCxHy										герметичны
		(дуля	Общее газосодержание масла	% об.		4 < Ф	-	2<Φ≤4	-	Φ≤2	нет	нет	е вводы -
	i i	герметичных маслонаполнен			•								0,25
	1 1	ных вводов											негерметич ные вводы -
	1	класса											0
		напряжения											герметичны
		110 кВ и выше)											е вводы с
													твердой
				}									изоляцией -
 	\ \	Физико-	Пробивное напряжение	кВ		Φ/H < 1,0		1,0 ≤ Φ/H	_	1,0≤	нет	нет	для 35 кВ -
		химический					•	и Ф/(Н+5)		Φ/(H+5)			0
		анализ масла						< 1,0				-	для 110 кВ
'		(от 110 кВ и	Влагосодержание (для	г/т		1,0 < Ф/Н	-	Φ/H ≤ 1,0	-	Φ/(H - 5) ≤	нет	нет	и выше:
		выше)	негерметичных вводов классом напряжения 110 кВ)					и 1 < Ф/(H -		1,0			герметичны
	<u> </u>		Классом напряжения 110 кв)			1		5)					е вводы - 0,25
			Влагосодержание (для	г/т		1,0 < Ф/Н	-	Φ/H ≤ 1,0		Φ/(H - 5) ≤	нет	нет	негерметич
			герметичных вводов классом					и		1,0			ные вводы -
	1		напряжения 110 - 750 кВ)					1 < Ф/(Н -					0,25
	1		T	%				5)	<u></u>	_			герметичны
			Тангенс угла диэлектрических потерь (tgб) масла при 90 °C	70			-		-		нет	нет	е вводы с твердой
			для класса напряжения 110 -		1	15 < Ф		12 < Φ≤15		Φ≤12			изоляцией -
			150 кВ (включительно)		1								0
			для класса напряжения 220 кВ	<u> </u>		10 < Φ		8 < Φ ≤ 10		Φ≤8]
			Содержание	мгКОН/г		-	-	1,0 <	-	Φ/0,014 ≤	нет	нет	
			водорастворимых кислот и щелочей (для герметичных			1		Φ/0,014		1,0			
			вводов класса напряжения 110			1							1
			кВ и выше)			1]			
			Содержание	мгКОН/г			-	1,0 <	-	Φ/0,030 ≤			1
			водорастворимых кислот и					Ф/0,030		1,0			
			щелочей (для негерметичных			[[l				
]]		вводов класса напряжения 110 кВ)]
			Тенденция изменения	мгКОН/г	 			 	1,15 <	Ф/Фпред ≤	нет	нет	-
'			содержания водорастворимых	MINOIBI			-	_	Ф/Фпред	1,15	Het	Hel	
			кислот и щелочей в масле по							-,,,,		•	
			сравнению с предыдущим										
			замером Фпред										
5			Класс промышленной	класс		1,0 < Ф/Н	•	$\Phi/H = 1,0$	-	Φ/H < 1,0	нет	нет]
			чистоты масла	ļ		 	 	ļ <u></u> .	1				_
7			Тенденция изменения класса промышленной чистоты	класс		-	-	-	1 < (Ф –	Ф-	нет	нет	
		ı	промышленной чистоты	1	1	1	I	1	Фпред)	Фпред) ≤ 1	ı	I	1

					· · · · · · · · · · · · · · · · · · ·	·	J2								· · ·
					масла по сравнению с					ļ					
<u> </u>		<u> </u>			предыдущим замером Фпред	760777	0.05		01.5.		T 101			4	
718		1		i	Кислотное число (для	мгКОН/г	0,25 < 0	Φ -	0,1<Φ≤	-	Φ≤0,1	Het	нет	1	
					негерметичных				0,25						
710		<u> </u>			маслонаполненных вводов)	°C	Φ<12		 		125 < 0			-	
719					Температура вспышки масла в	"	Ψ<12	5 -	-	_	125 ≤ Φ	нет	нет	1	
					закрытом тигле (для]							1		
					негерметичных маслонаполненных вводов)	1		1					1		1
720					Тенденция изменения	°C			5 ≤ (Фпред	-	(Фпред -	Y Y GOT	Trom.	1	
/20		ŀ			температуры вспышки в		-	-	- ФП ред	-	Φηρέμ. Φ) < 5	нет	нет		
					закрытом тигле по сравнению				'\psi'		Ψ) \ 3				
i					с предыдущим замером					!					
					Фпред (для негерметичных	1			ļ				İ		
					маслонаполненных вводов)										
721					Содержание	%	Φ/H < 1	.0 -	1,0 ≤ Φ/H <	-	1,5 ≤ Φ/H	нет	нет	1	
1		1			антиокислительной присадки			´	1,5		,				
722				Состояние	Сопротивление изоляции	МОм	Φ < 50	0 -	-		500 ≤ Φ	нет	нет	для 35 кВ -	1
]]		изолящии	измерительного вывода								1	0,5	j
723					Тангенс угла диэлектрических	%	1<Ф/	н -	0,8 ≤ Φ/H ≤	0,66 ≤ Φ/Η	Φ/H < 0,66	нет	нет	для 110 кВ	
					потерь (tgδ) основной				1	< 0,8	1			и выше:	1
					изоляции, приведенный к 20				1					герметичны	
					°C									е вводы -	
724		İ	1		Тангенс угла диэлектрических	%	1,0 < Φ	/H -	0,8 ≤ Φ/H ≤	0,66 ≤ Φ/H	$\Phi/H < 0.66$	нет	нет	0,25	
					потерь (tgб) последних слоев				1	< 0,8				негерметич	
					изоляции, приведенный к 20				1					ные вводы -	
					°C	<u> </u>					<u> </u>			0,50	
725				ļ	Емкость основной изоляции	Фп	H<(4		-	-	(Ф-Фо)/Фо	нет	нет	герметичны	
							Фо)/Ф				≤Н (при			е вводы с	
					1		(при				отсутстви			твердой	
							отсутст		1		и указаний			изоляцией - 0,50	
		- [Ì	указани				В			0,50	
		į				1	докумен	пац			документа				
					1		ии организ:	91112			Пии				
		1	ļ]			организ-	аца]	1	ļ	организац	1	1]	ļ
							изготови	гоел			изготовите				
			[$\mathbf{g}\mathbf{H}=0,$		1		ля Н =				
						j	 11 - 0,	03)			0,05)				
726		Обобщени	нет	Срок службы	Срок службы (за	лет	1,85 ≤ ₵	D/H 1,0 ≤ Φ/H	0,57 ≤ Φ/H	0,13 ≤ Φ/H	$\Phi/H < 0.13$	нет	нет	 1	при
720		ый узел		opon dilymost	исключением		-,	< 1,85	< 1,0	< 0,57	1,11	1101		1 *	констру
1		,			высоковольтных вводов)				, ,		İ	İ			ктивном
727	1				Срок службы	лет	1,85 ≤ 4	D/H 1,0 ≤ Φ/H	0,57 ≤ Φ/H	0,13 ≤ Φ/H	Φ/H < 0,13	нет	нет	7	наличии
		- 1			высоковольтного ввода	}		< 1,85	< 1,0	< 0,57					функцио
					(наибольшее значение)	1			1	1			1		нального
															узла
				1											«Высоко
															вольтны
									1		1	-			й ввод»
		1									1		1		(Э
											1		1		баковые
1		- 1	}	1	}	1		- 1	1	}	1	1	1	}	BK
				1				1							баковые
						1									MB
1				1											баковые
1						İ								1	- 0,10,
1									1		1				при
1] !	I	1	1	1	1			1		1	1	1	I	констру
					1	1				1	1	1	1		
															отсутст
															отсутств ии
													:		отсутств ии функцио
															отсутств ии функцио нального
												:			ктивном отсутств ии функцио нального узла «Высоко

							53									
																вольтны й ввод» (ММ, Э колонко вые, ВК, ВВ) -
728	Гидрогене ратор	Обмотка ротора	нет	Состояние	Сопротивление изоляции обмотки	МОм		Φ/0,5 < 1	1 ≤ Φ/0,5 ≤ 1,4	1,4 < Φ/0,5 ≤ 2	-	2 < Ф/0,5	нет	нет	0,35	0,17 0,09
729	TF			обмотки возбуждения	Пробои изоляции обмотки ротора при эксплуатации (за межремонтный период)	IIIT.		2<Φ	-	1≤Φ≤2	-	Φ=0	да	нет		
730					Количество замыканий обмотки возбуждения при эксплуатации (за межремонтный период)	шт.		2<Ф	1≤Φ≤2	-	•	$\Phi = 0$	нет	нет		
731					Увеличение сопротивления полюсов ротора постоянному току от значения при вводе в эксплуатацию Фо	Ом		-	0,02 < ((Φ - Φο)/Φο)	0,01 < ((Φ - Φο)/Φο) ≤ 0,02	0 < ((Φ - Φο)/Φο) ≤ 0,01	((Φ - Φο)/Φο) ≤ 0	нет	нет		
732					Следы перегрева межполюсных соединений		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству ют	нет	нет		
733					Аварии, связанные с разрушением межполюсных соединений в межремонтный период		Имеются/ отсутствуют	Имеются	-	-	-	Отсутству ют	нет	нет		
734				Витковая изоляция	Увеличение сопротивления обмоток полюсов переменному току от предыдущего замера Фпред	Ом		0,05 < ((Ф - Фпред)/Фпр ед)	0,03 < ((Ф Фпред)/Фп ред) ≤ 0,05	$0 < ((\Phi - \Phi_{\Pi})/\Phi_{\Pi}$ ред) $\leq 0,03$	-	((Ф - Фпред)/Фп ред) ≤ 0	нет	нет	0,25	
735					Аварии из-за витковых замыканий в межремонтный		Имеются/ отсутствуют	Имеются	-	-	•	Отсутству ют	нет	нет		
736				Состояние демпферной обмотки	период Следы термического воздействия на перемычках и стержнях демпферной системы в местах их контактных соединений и местах их заделки в замыкающие сегменты в процессе эксплуатации		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству кот	нет	нет	0,25	
737					Дефекты элементов демиферной системы	ШТ.		-	2 < Ф	1 ≤ Φ ≤ 2	-	$\Phi = 0$	нет	нет		
738				Тепловое состояние обмотки	Температура по результатам испытаний обмотки рогора на нагревание	°C		-	1 < Ф/Н	-	Φ/H = 1	Ф/Н < 1	нет	нет	0,15	
739				ротора	Тенденция отклонения температуры по результатам испытаний по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	°C		-	-	1 < (Φ - Φο)/5	0 < (Φ - Φο)/5 ≤ 1	(Φ - Φο)/5 ≤ 0	нет	нет		
740					Ограничение значения токовой нагрузки генератора по результатам испытаний обмотки ротора на нагревание		Имеется/ отсутствует	-	Имеется	-	-	Отсутству	нет	нет		
741		Обмотка статора	нет	Состояние изоляции обмотки	Пробой изоляции в эксплуатации за межремонтный период	шт.		2<Ф	1≤Φ≤2	-	•	Φ=0	нет	нет	0,4	0,16
742				статора	Пробои изоляции обмотки при высоковольтных испытаниях (за межремонтный период)	шт.		2<Ф	-	1 ≤ Φ ≤ 2	-	Φ=0	да	нет		
743	1				Коэффициент нелинейности		-	1 < Ф/3	$\Phi/3 = 1$	-	-	Φ/3 < 1	нет	нет		
744	1 I	1			Тенденция отклонения		1	<u> </u>			0 < (Ф - Фо)		нет	нет		1

1/2					34								
1-22 1-22			коэффициента нелинейности							0		-	
										1			
1													1
Temporary Compression monograms Mole				ļ					ļ				
Total Total parameter To	745			МОм		Φ/H < 1		 	Φ/H = 1	1 < D/H	HAT	Her.	
Telegrament encountered Misser Mi	'45			WICH	ļ	T		1	W/11 1	1 1 9/11	1101	пот	
Volume V	746			MOst				<u> </u>	0.02 < (0)	(A)			
200 1 200	/40		. , .	IVIOM	1	_	-	· •			Her	Hel]
1 1 2 2 2 2 2 2 2 2					1				Ψ)/Ψο				
1750 1750					ĺ	[ĺ	ĺ	0,02	Ĩ		[
1770 Town years Town year													
Total Tota													
Type	747		Токи угечки	MKA.		1 < Φ/H	-	$0.2 < \Phi/H \le$	-	Φ/H ≤ 0,2	нет	HeT	
Page Page					<u></u>			1					
Transparation processes March Ma			Коэффициент абсорбции					$\Phi/1,3=1$			нет	нет	
1	749		Уровень частичных разрядов	мкВ/м		1 < Φ/150	$\Phi/150 = 1$			Ф/150 < 1	нет	нет	
1	750	i	Тенденция отклонения уровня	мкВ/м		-	-	-	$0 < (\Phi - \Phi_0)$	(Φ - Φo) ≤	нет	нет	
Total Construction Constructio									` ´	, ,	1		
2				1									
751 Пережение полития Немента - -											1		
Повреждения положения													
752	751			1	Имеются/	Имеются	_	-	-	Отсутству	да	нет	
Техновое Пентиритура по результатим С - 1 < 60/H - 40/H - 1 40/H < 1 мет мет 0,1			обмотки статора в пазовой		1				1				
Тепловое состоямие обмотих ситоров С 1 < Ф/Н 0 / 1 1 1 1 1 1 1 1 1 1]			1	101			
1	752	Тепловое	<u> </u>	°C	 	 	1 < m/H	†	Ф/H = 1	∂/H < 1	LIGT	uer_	0.1
Обмотак Пазарревания С - 1 < (Ф - Фо)/5 Фо)/5 ≤ 1 5 0							1 - 3/11	_	*/11-1	w/11 \ 1	UCT.	HCI	0,1
Тецинения отключения С 1 < (Ф - 0 < (Ф - (Ф - 0 √ 0 − (Ф - 0 √ 0 − (Ф - 0 √ 0 − 0 √ 0 − (Ф - 0 √ 0 − 0 √ 0 − 0 ← 0 − 0 ← 0 − 0 ← 0 − 0 ← 0 − 0 ← 0 − 0 ← 0 ←													
1	752			00	 		<u> </u>	1 < (4)	0<0	(A A)/5			
1	733	Статора		-C		-	-				нет	нет	
Редициальный расправлений об (в соответствание с праведения об (в соответствание с праведения до соответствание с праведения завечения токновой выгружит инфераторы до результатим исплатилийй обмотки ститора зав Пагревание (подов части обмотки ститора за предъеме подовой части обмотки ститора (оказочество дажно и подовой части обмотки ститора (оказочество дажно и подовой части обмотки ститора (оказочество дажно и подовой части обмотки ститора (оказочество дажно и подовой части обмотки ститора (оказочество дажно и подовой части обмотки ститора (оказочество дажно и подовой части обмотки ститора (оказочество дажно и подовой части обмотки ститора (оказочество дажно и подовой части обмотки праведения и подовой части обмотки частий обмотки и паков состояблениям и подовой части обмотки и подовой части обмотки и паков состояблениям и подовой части обмотки и паков состояблениям и паков осояблениям и паков осояблениям и паков осояблениям и паков осояблениям и паков осояблениям и паков обмотки и паков обмотки и паков осояблениям и паков осояблениям и паков осояблениям и паков обмотки и паков о								Ψο)/5	Ψο)/ 5 ≤ 1	50			
Состоямие писков заителняя положняя писков заителняя положняя писков заителняя положняя писков заителняя положняя писков заителняя положняя писков заителняя положняя писков заителняя заителняя писков заителняя писков заителняя писков заителняя писков заителняя писков заителняя писков заителняя писков заителняя писков заителняя писков заителняя писков заителняя писков заителня писков заителняя заителняя писков заителняя заителняя писков заителняя заителня заителня за заителня за заителня за заителня за заителня за заителня за заителня за заителня за заителня за заителня за за за за за за за за за за за за за													
НПД Ограничение значенам токовой индумат специальной участия обмотям статоры за предъежние паков обмотям отвераторы обмотям отвераторы обмотям отвераторы обмотям отвераторы обмотям отвераторы обмотям отвераторы обмотям обмотям отвераторы обмотям об					ļ								
Огращичение выячения Имеетсы - Имеетсы - Отсутству нет нет													
токомой кагруамат генератора по результатвы изделяющих обмотите статора из нарование обмотите статора из нарование обмотите статора из нарование обмотите ответенов обмотите откутствуют откутствуют откутствуют откутствуют откутствуют откутствуют откутствии указаний в намодилех инаи обмотите обмотите обмотите откутствии указаний в намодилех инаи откутствии указаний в намодилех инаи откутствии указаний в намодилех инаи откутствии указаний в намодилем обмотите обмотите откутствии указаний в намодилем и откутствии указани													
то результатия менятавий обмотки ответация выправацие креднения дазвовой частие доботки ответация обмотки отмотителя обмотки обмотки обмотки обмотки обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя обмотки отмотителя отмотителя обмотки отмотителя обм	754					-	Имеется	-	-	Отсутству	нет	нет	
Обмотик статора за натревание меревание крепнения натревание крепнения натревание крепнения натревание крепнения натревание крепнения натревание крепнения натревание крепнения натревание крепнения на предвет на предв					огсутствует					ет			
155 15													
1			обмотки статора на	ļ		Į.	ļ	1	1))
Состоящие виденсивная пазовой части обмотки Обмотки Обмотки Обмотки Обмотки Обмотки Обмотки Обмотки Обмотки Обмотки Обмотки Обмотки Остабление заклиновки подомне шеха) Остабление заклиновки подомне шеха) Остабление заклиновки подомне шеха) Остабление заклиновки подомне шеха) Остабление заклиновки подомне шеха) Остабление заклиновки подомне шеха Остабление заклиновки подомне шеха) Остабление заклиновки подомне шеха Остабление заклиновки подом Остабление													
Подовой часты обмотки Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часты Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой часть Подовой ча	755	Состояние		%		-	_	1 < Φ/30	$0 < \Phi/30 \le 1$	$\Phi/30 = 0$	нет	He T	0.2
1													-,-
Обмотки Заклиновкия подиненнямя Ослебление заклиновкия стетрялей статора (количество назов с ослеблением заклиновки подине пиза) 1 < Ф/30 0,66 < 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0,66 0 < Ф/30 ≤ 0,66 0,66 0 < Ф/30 ≤ 0,66 0,66 0 < Ф/30 ≤ 0,66 0,66 0 < Ф/30 ≤ 0,66 0,66 0 < Ф/30 ≤ 0,66 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0 < Ф/30 ≤ 0,66 0		•				ļ							
Ослабление закливновки стержней статора (количество паков с ослаблением закливновки клиньев по длине паза) Имеются/ оботки частей обмотки частей обмотки на выводных частей обмотки и на выводных частей обмотки и на выводных пастей обмотки постоящному току Имеются Имеются Ослада перетрепов паек добых частей обмотки частей обмотки частей обмотки на выводных пастей обмотки и выводных пастей обмотки пата на паза Имеются Имеются Ослада перетрепов выводных и и меются Имеются Ослада перетрепов выводных и имеются Имеются Ослада перетрепов паек добых частей обмотки пата на паза Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добым постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Имеются Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному току Ослада перетрепов паек добых частей обмотки постоящному пак добых частей обмотки пак добых частей обмотки постоящному пак добых частей обмотки пак добых частей обмотки пак добых частей обмотки пак добых частей обмотки пак добых частей			1										
Состояние шек добовых частей обмотки отсутствуют ини изыварщых добовых частей обмотки отсутствуют отсутствуют нег нег нег отсутстви ини указаний в нег отсутстви обмоток постоянному току Н< (Ф- фанк) Фмн и указаний в нег отсутстви и указаний в нег отсутстви и и выводных добовоток постоянному току Н < (Ф- фо) Фо о обосостителя него обмоток постоянному току Н < (Ф- фо) Фо о обосостителя него обмоток постоянному току Н < (Ф- фо) Фо о обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо) Фо) Фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) Фо) Фо) Фо обосостителя него обмоток постоянному току Н < (Ф- фо) обосост	756			%	†	1 < Φ/30	0.66 <	0 < Ф/3 0 <	 	$\Phi/30 = 0$	цет	LIPT	
1	150			'		T - ±/50			_		1101	HC1	
Тородорова Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев по длине паза Портовновки клиньев паза Портовновки клиньев по длине паза Портовновки клиньев паза Портовки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовки клиньев паза Портовновки клиньев паза Портовновки клиньев паза Портовновка Портовновки клиньев паза Портовновки кли							=/3031	0,00					
Тендентии отклонения обмотки постоянному току Тендентии отклонения обмотки постоянному обмотки постоянному обмотки постоянному обмотки постоянному обмотки постоянному о								1					1 I
Состояние паек добовых частей обмотки частей обмотки и выводных шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы перегревов шии Следы пе							l	1					
758	757	Company			Magramas/	Инстител	 	+	<u> </u>	0			0.15
Тоба Тоба	131		следы перегревов паек		1	Имскотся	-	<u> </u>	-	1 -	нет	нет	0,15
Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения значений сопротивления обмотки постоянному току Тенденция отклонения отклонения значений сопротивления отклонения					отсутствуют			1		ют			
Тенденция отклонения обмотки постоянному току Тенденция обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения	 	1		 	ļ	7.7		-					
Разница значений	758					Имеются	-	-	_		нет	нет	
тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмоток постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току Тенденция отклонения обмотки постоянному току		шин		<u> </u>	отсутствуют								Į l
Тенденция отклонения обмотки постоянному току Фмин)/Фми н (при отсутствии указаний в НТД Н=0,02) Тенденция отклонения обмотки постоянному току Ом	759			Ом		Н < (Фмакс	-	-	-		нет	нет	
Н						-							
Н (при отсутствии указаний в НТД Н=0,02) Тенденция отклонения Ом			постоянному току	ļ.		Фмин)/Фми	1			ин≤Н			
Тенденция отклонения Ом			1		1	· ·	1						
Тенденция отклонения Ом			1	1		(при							
Тенденция отклонения обмотки постоянному току указаний в НТД Н=0,02) В НТД Н=0,02) Н=0,02) Н=0,02) Н=0,02) Н=0,02) Н=0,02) Н=0,02) Н=0,02) Н=0,02) Н=0,02) Н=0,02)													
Тенденция отклонения Ом			1										
Тенденция отклонения Ом			1										
760 Тенденция отклонения Ом - - - H < (Φ - (Φ - HeT HeT HeT HeT HeT HeT HeT HeT			1			H=0.02)	}			,,,,,,			
$\phi_0/\phi_0 = \phi_0/\phi_0 = \phi_0/\phi_0$ В начений сопротивления $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при $\phi_0/\phi_0 = \phi_0/\phi_0$ (при ϕ_0/ϕ_0	760		Тенлентия отклонения	Ом			- -		H<(\Phi -	(Φ -	рет	пет	
обмотки постоянному току (при Н	'00			~			_				no.	HC1	
				1			1						
по сравнению с исходным отсутствии (при				1									
		<u> </u>	1 по сравнению с исходным	ı	<u> </u>	1	<u></u>	<u> </u>	ј отсутствии	1 (ribn	<u> </u>		1

					значением Фо (в соответствии						указаний в	отсутстви				
					с применяемой НТД)						нтд	и указаний				1
]]				H=0,02)	вНТД				
												H=0,02)				
761	·				Разница значений	Ом		Н < (Фмакс	-	-	-	(Фмакс -	нет	нет		
					сопротивления ветвей		Į	-]		Фмин)/Фм				
					постоянному току			Фмин)/Фми				ин≤Н				
								н				(при				
		1	Į					(при				отсутстви				
								отсутствии				и указаний				
			İ					указаний в				в НТД				
]			нтд				H≃0,05)				
	İ		1					H=0,05)								
762					Тенденция отклонения	Ом		-	-	-	Н < (Ф -	(Φ-	нет	нет		
				-	значений сопротивления						Фо)/Фо	Фо)/Фо ≤				•
					ветвей постоянному току по						(при	H				•
		1			сравнению с исходным				1		отсутствии	(при				1
					значением Фо (в соответствии					i	указаний в	отсутстви				
					с применяемой НТД)						нтд	и указаний				
					• • • • • • • • • • • • • • • • • • • •						H=0,02)	вНТД				
							<u></u>		<u> </u>		L ´ ´	H=0,02)				
763				Состояние	Вибрация лобовых частей с	MKM		1 < Ф/100	0,5 <	$\Phi/100 = 0,5$	-	Ф/100 <	нет	нет	0,15	7
				крепления	полюсной частотой (100 Гц) в				Φ/100 ≤ 1	_		0,5		1		
				лобовых	режиме установившегося											
				частей	короткого замыкания при				İ						1	
1	1	1	ļ	1	номинальном токе статора		ļ	ļ		ļ]		ļ]	, ,
764					Тенденция вибрации лобовых	MKM		-	-	-	1 < (Ф -	(Ф-	нет	нет	1	
					частей с полюсной частотой						Фпред)/5	Фпред)/5 ≤				
	i				(100 Гц) в режиме					1	1	i				1
					установившегося короткого											
					замыкания по сравнению с											
					предыдущим замером Фпред											
765					Загрязнение и замасливание		Имеются/	_	Имеются			Отсутству	нет	нет	İ	
					лобовых частей		отсутствуют	_			_	ют				
766					Крепления лобовых частей		Имеются	Имеются	Имеются			В норме	нет	нет		
					1 1		разрушения/	разрушения	ослаблени				·			
1 1			1				имеются	* **	я						1	
					1		ослабления/									
							в норме									
767		Подпятни	нет	Состояние	Макронеровность в	мм		1 < Ф/Н	-	-	-	Φ/H ≤ 1	нет	нет	0,4	0,09
		ки		зеркального	радиальном направлении					L						
768		генератор		диска	Тенденция изменения	MM		_	-	0<(Ф-	-	(Φ-	нет	нет	1	
		ный			макронеровности в					Фпред)		Фпред) ≤ 0				
		подшилни			радиальном направлении по				ļ			1				
		ĸ	1		сравнению с предыдущим											
			1		замером Фпред					1						
769					Макронеровность в	мм		1 < Φ/H	-	-	-	Φ/ H ≤ 1	нет	нет	1	
					направлении вращения											
770					Тенденция изменения	мм		-	-	0 < (Ф-	-	(Φ -	нет	нет	1	
					макронеровности в					Фпред)	[Фпред) ≤ 0	_	1		
					направлении вращения по											
			1		сравнению с предыдущим							1		1		
					замером Фпред	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	İ			1	
771	1		1		Вертикальная вибрация	мкм		1 ≤ Φ/H	0,75 ≤ Φ/H	0,5 < Φ/H <	0,25 < Φ/H	Φ/H ≤ 0,25	нет	нет	1	
					грузонесущей крестовины				< 1	0,75	≤ 0,5	I		1		
772					Радиальная вибрация опоры	мкм	1	1 ≤ Φ/H		0,5 < Φ/H <	0,25 < Φ/H	Φ/H ≤ 0,25	нет	нет	1	
··-		1			подпятника (при			1	< 1	0,75	≤0,5					
					негрузонесущей крестовине)						- /-	1				
		1	l		Тенденция отклонения	мкм	1	-	1,0 < (Ф-	0,2 < (Ф-	-	(Ф-	нет	нет	1	
773	ľ					i	1	1	Фпред)/50	Фпред)/50	1	Фпред)/50			l .	
773					вертикальной вибрации	1		i .	чиреду эе	T III OAK V J V		A THOUGH N DO		i	l .	
773					вертикальной вибрации грузонесущей крестовины по				Фпредуго			≤ 0.2			-	
773		i			грузонесущей крестовины по				Фпредуго	≤1,0		≤ 0,2				
773					грузонесущей крестовины по сравнению с предыдущим				Фпреду 30			≤ 0,2				
					грузонесущей крестовины по сравнению с предыдущим замером Фпред	MKM		<u> </u>		≤1,0	-	≤0,2	нет	нет		
774					грузонесущей крестовины по сравнению с предыдущим	мкм		<u>-</u>	1,0 < (Ф- Фпред)/50	≤1,0 0,2<(Φ -	-	Фиред)/50≤ 0,2(Ф - Фпред)/50	нет	нет		

					20								
			подпятника по сравнению с					≤ 1,0		≤0,2			
			предыдущим замером Фпред										
			(при негрузонесущей										
			крестовине)										
775			Шероховатость зеркала	MKM		1 < Φ/0,32	-	$\Phi/0,32 = 1$	-	$\Phi/0,32 < 1$	нет	нет	
776			Тенденция отклонения	MKM		_	_	_	0 < (Ф -	(Ф-	нет	нет	
			шероховатости зеркала по						Фпред)	Фпред) ≤ 0			
			сравнению с предыдущим										
			замером Фпред				<u></u>						
777		Состояние	Температурный режим	°C	ļ	1 < Ф/Н	Ф/Н = 1	-	-	Φ/H < 1	нет	нет	0,25
778		сегментов	Распределение нагрузки	KT		0,2 <	-	(Фмакс-	-	(Фмакс-	нет	нет	
			между сегментами			(Фмакс-		Фмин)/Фма		Фмин)/Фм			
						Фмин)/Фма		кc = 0,2		акс < 0,2			
779			Различие значений	%	-	кс 1,5 <	-	(Фмакс-		(Ф			
'/9			1	76		1,3 < (Фмакс-	–	Фмин) =	•	(Фмакс-	нет	нет	
1 1			параметров регулировки эксцентриситетов			Фмин)	ĺ	1,5		Фмин) < 1,5			
780		Опорные	Дефекты опорных деталей		Имеются/	Имеются				Отсутству	нет	нет	0,25
/00		болты,	Action on object to the second		отсутствуют	114010101	-	-	_	ют	HUI	HOI	0,23
781		тарельчатые	Дефекты сферических	 	Смятие,	**	Смятие,			Отсутству	нет	нет	
'3'		опоры.	головок болтов		вмятины в	_	вмятины в		_	ют		1101	
		Упругие		1	местах		местах						
		камеры			контакта с		контакта с						
		(гофры)			опорными		опорными]			
		подпятника на			болтами		болтами						
		гидравлическо			поверхностей		поверхнос						
		й опоре			тарельчатых		тей	!					
			1		опор,		тарельчат						
					деформация		ых опор,						
					на опорах/		деформац						
					отсутствуют		ия на						
782			Дефекты упругих камер	 	Имеются/		опорах Имеются			0-0-0-			
/82			(гофр) подпятника на	1	отсутствуют	_	PIMEROICA	_	-	Отсутству	HeT	нет	
			гидравлической опоре		отсутствуют					ют			
783		Состояние	Температура сегментов	°C		1 < Φ/H	Φ/H = 1			Φ/H < 1	нет	нет	0,1
784		генераторного	Тенденция изменения	° C		-	2<(Φ-	1<(Ф-		(Φ - Φο)/5	нет	нет	0,1
'*'		подшинника	значений температуры				Фо)/5	Φo)/5 ≤ 2		(1101	noi	
		"	сегментов по сравнению с				,-	,					
			исходным значением Фо (в						:				
			соответствии с применяемой										
			НТД)					L					
785			Тенденция изменения	°C		-	-	1 < (Ф -	-	(Ф - Фо)/5	нет	нет	
			температуры сегментов по					Фо)/5		≤1			
			сравнению с предыдущим										
			замером Фпред		ļ							****	
786			Температура масла	°C	ļ	1 < Ф/Н	$\Phi/H = 1$	1 (0	-	Φ/H < 1	нет	нет	
787			Тенденция отклонения	°C		-	2 < (Φ -	1<(Φ-	-	(Ф - Фо)/5	нет	нет	
			значений температуры масла				Фо)/5	Φo)/5 ≤ 2		≤1			
			по сравнению с исходным значением Фо (в соответствии				ļ						
			с применяемой НТД)					1					
788			Вибрация корпуса	мкм		1 < Ф/Н	0,8 < Ф/Н	0,65 < Ф/Н	0,5 < Φ/H ≤	Φ/H ≤ 0,5	нет	нет	
/66			подшиника	1 11201		1 . 4,11	≤1	≤0,8	0,65	₽/11 ≥ 0,5	HCI	nei	
789		1	Тенденция изменения	мкм			1<(Ф-	0,2 < (Φ –		(Ф-	нет	нет	
'"			вибрации корпуса				Φο)/50	Φo)/50 ≤ 1		Φo)/50 ≤	1141	1.04	
			подшинника по сравнению с							0,2			
			исходным значением Фо в										
			сопоставимых условиях (в										
			соответствии с применяемой										
<u> </u>			НТД)					ļ]
790			Бой вала	мм		1 < Ф/Н	0,8 < Ф/Н	0,65 < Ф/Н	0,5 ≤ Φ/H ≤	Φ/H < 0,5	нет	нет	
				<u> </u>			≤1	≤0,8	0,65				
791			Тенденция увеличения боя	MM		-	-	1 < (Ф -	-	(Φ -	нет	нет	
		<u></u>	вала по сравнению с			l	<u> </u>	Фпред)/10	l	Фпред)/10			<u> </u>

<u> </u>		1	T -	1	предыдущим замером Фпред		T		1			≤1				
792					Выработка рубашки вала	мм	 	1 < Ф/Н	0,5 < Ф/Н	0 < Φ/H ≤	-	$\Phi/H=0$	нет	нет		
793					Дефекты уплотнения вала		Протечки	_	<u>≤ 1</u> Протечки	0,5 Имеются		Отсутству	нет	нет		
'/3	}				дофекты уплотнения вына		масла через		масла	без	_	ют	Hei	Hei		
							выгородки		через	протечек						
		•					масловани, фланцевые		выгородки маслованн							
			1				соединения и		,							
							уплотнения/и		фланцевые							
							меются без протечек/		к и							
							отсутствуют		уплотнени							
704						%			я/ 1 < Ф/8	0,38 < Φ/8		★ /0 < 0.20			0.05	0.15
794		Сталь ротора	да	Форма ротора	Степень искажения статической формы ротора	76		-	1 ~ Ψ/ο	0,38 < Ψ/8 ≤1	-	Ф/8 ≤ 0,38	нет	нет	0,25	0,17
795					Размах радиальной	мкм		-	1 < Ф/180	0,44 <	-	Φ/180 ≤	нет	нет		
					низкочастотной (оборотной)]			Φ/180 ≤1		0,44				
796				Состояние	вибрации сердечника статора Ослабление плотности		Имеется/	-	Имеется	<u> </u>		Отсутству	нет	нет	0,29	-
				конструкций	посадки обода на спицах		отсутствует					ет	1101	1101		
797					ротора Ослабление плотности		Имеется/	-	Имеется	-		Отсутству	нет	нет		-
					посадки полюсов на спицах		отсутствует					eт				_
798					«Выползание» клиньев полюсов	шт.	-	-	2 < Ф	$\Phi = 2$	Φ = 1	$\Phi = 0$	нет	нет		
799					Контактная коррозия клиньев полюсов	ШТ.		-	2<Ф	Φ=2	Φ=1	$\Phi = 0$	нет	нет		
800					Нарушение расположения	mr.		-	2<Ф	1≤Φ≤2	-	Φ=0	нет	нет		
					клиньев полюсов (выползание)											
801					Контактная коррозия обода		Имеется/	-	Имеется	•	-	Отсутству	нет	нет		
000							отсутствует Имеется/		II			ет				
802					Нарушение сварки, трещины запорных планок на шпонках		отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет		
					обода ротора											
803					Нарушение расположения клиньев обода (выползание)	DIT.		-	2<Ф	1≤Φ≤2	-	$\Phi = 0$	нет	нет		
804					Нарушение приварки	шт.	 	-	2<Ф	1≤Φ≤2	 	Φ=0	нет	нет		
					опорных «сухарей» закладных клиньев											
805					Нарушения приварок клиньев и шпонок обода	шт.		-	2 < Ф	1≤Φ≤2	-	Φ=0	нет	нет		
806					«Выползание» штифтов спиц ротора	шт.		-	2<Ф	1≤Φ≤2	-	$\Phi = 0$	нет	нет		
807					Натиры штифтов спиц ротора		Имеются/	-	Имеются	-	-	Отсутству	нет	нет		
808					Трещины и сколы заплечиков		отсутствуют Имеются/	-	Имеются	 	-	ют Отсутству	нет	нет		
000					клиновой полосы спиц		отсутствуют	 	M. sasa===	ļ	14	ют				
809					Трещины, нарушения сварных соединений		Имеются, более 100 мм/	-	Имеются, более 100		Имеются, не более	Отсутству ют	нет	нет		
					клиновых полос остова		имеются, не		мм		100 мм					
					ротора		более 100 мм		1		включитель					
							включительн о/				но					
						ļ	отсутствуют									
810				Tnerman	Ослабление затяжки гаек Трещины в сварных швах	шт.	Имеются/	-	2 < Ф Имеются	1≤Φ≤2	-	Φ = 0	нет	нет	0.15	4
811				Трещины в сварных швах	ротора, в том числе		отсутствуют	-	IMCOTO	_	-	Отсутству ют	нет	нет	0,15	
812		1		ротора Скрытые	устраненные ремонтом Устранение трещин	<u> </u>	Нет (не	_	<u> </u>	Нет	Да	Да	нет	нет	0,30	4
012				дефекты и	2 orbanomic rhoman		восстановлен			(не	(при сроке	(при сроке	Hei	Hei	υ, σ	
				восстановлени			о или			восстановл	службы 1,6	службы				
				е после ремонта			о не в полном			ено или восстановл	< Φ/H)	$\Phi/H \le 1,6$				
	<u> </u>			Бемонія	<u> </u>	1	To us a tronterow	1 		POCCISHORII	<u></u>	L	<u> </u>	I		L

	 					38									
						объеме)/ да (при сроке службы 1,6 < Ф/Н)/ да (при сроке службы Ф/Н ≤ 1,6)			ено не в полном объеме)						
813				Наличие скрытых дефектов		Привело к увеличению планируемых работ/ не привело к увеличению планируемых работ/ не обнаружено	•	-	Привело к увеличени ю планируем ых работ	Не привело к увеличению планируемы х работ	Не обнаружен о	нет	нет		
814			Группа ресурсоопреде ляющих параметров	Наличие дефектов: степень искажения статической формы ротора более 8% и размах радиальной низкочастотной (оборотной) вибрации сердечника статора более 180 мкм и ослабление плотности посадки обода на спицах ротора и ослабление плотности посадки полюсов на спицах и трещины в сварных швах ротора, в том числе устраненные ремонтом		Имеется/ отсутствует	Имеется	-		-	ет	нет	да	0,01	
815	Сталь	да	Тепловое	Наибольший перегрев стали	°C			1 < Φ/25	$\Phi/25 = 1$	-	Φ/25 < 1	нет	нет	0,15	0,29
816	статора		стали статора	при испытаниях Тенденция увеличения перегревов стали при испытаниях по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	°C		-	-	0 < (Ф - Фо)	-	(Φ - Φο) ≤ 0	нет	нет		
817				Разность температур между отдельными зубцами	°C		-	1 < Ф/15	$\Phi/15 = 1$	-	Ф/15 < 1	нет	нет		
818				Тенденция увеличения разности температур между отдельными зубцами по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	°C		-	-	0 < (Φ - Φο)	-	(Φ - Φο) ≤ 0	нет	нет		
819				Тенденция изменения удельных потерь по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	Вт/кг		-	-	0,1<(Φ- Φο)/Φο	-	(Φ-Φο)/Φο ≤ 0,1	нет	нет		
820				Наличие следов покальных нагревов	шт.		-	2<Ф	1 ≤ Φ ≤ 2	-	$\Phi = 0$	нет	нет		
821				Температура стали статора по результатам испытаний на нагревание	°C		-	1 < Ф/Н	-	Ф/Н = 1	Ф/Н < 1	нет	нет		
822				Тенденция отклонения температуры стали статора по	°C		-	-	1 ≤ (Φ - Φo)/5	0,6≤(Φ - Φo)/5 < 1	(Φ - Φο)/5 < 0,6	нет	нет		

					39			_					
			результатам испытаний на										
1			нагревание по сравнению с										
			исходным значением Фо (в								l		
1		1	соответствии с применяемой										
			нтд)										
823			Ограничения значения		Имеются/	-	Имеются	-	•	Отсутству	нет	нет	
			токовой нагрузки генератора		отсутствуют					ют			
			по результатам испытаний										
			стали статора на нагревание										
824		Форма статора	Искажение формы статора	%		-	$1 < \Phi/15$	0,67 ≤ Φ/15	0,33 ≤ Φ/15	Ф/15 <	нет	нет	0,15
								≤1	< 0,67	0,33			
825			Температура сегментов	°C		-	1 < (Φ -	0,5 < (Ф-	0,1 < (Ф-	(Φ-H) /10 ≤	нет	нет	
			направляющих подшипников				H)/10	H)/10 ≤ 1,0	H)/ $10 \le 0,5$	0,1			
826			Тенденция отклонения	°C		-	-	-	$0 < (\Phi - \Phi_0)$	$(\Phi - \Phi_0) \leq$	нет	нет	
			температуры сегментов							0			
			направляющих подшипников										
	1 1	Į į	по сравнению с исходным		Į l					Į Į	ļ		
			значением Фо (в соответствии										
			с применяемой НТД)				2 (4					_	
827			Дефект штифтов фланца	mr.		-	2<Φ	$\Phi = 2$	$\Phi = 1$	$\Phi = 0$	нет	нет	
			корпуса статора		TZ /	-	17						
828			Дефект распорных домкратов		Имеется/	-	Имеется		-	Отсутству	нет	нет	
920		<u></u>	Ослабление прессовки		отсутствует Имеется/		Имеется	 		Отогото			0,15
829		Состояние	Ослаоление прессовки			-	имеется		-	Отсутству	нет	нет	0,15
920		плотности	Francisco esperantes	3634	отсутствует		1 < Φ/5	$\Phi/5 = 1$		eτ Φ/5 < 1			
830		прессовки	Глубина проникновения	MM		-	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ψ^{IJ-1}	-	Ψ/3 < 1	нет	нет	·
921	1	стали статора	тарировочного ножа Количество			•	20 < Ф	10 < Φ ≤ 20	5 < Φ ≤ 10	0≤Φ≤5			
831			стеклотекстолитовых	шт.		_	20 \ 👽	10 \ Ψ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2 < Φ ≥ 10	05452	нет	нет	
			клиньев, необходимых для										
			уплотнения листов стали										
832		Į.	Контактная коррозия стали и]	Имеется/		Имеется	Имеются		Отсутству	нет	нет	\
632			клиньев		имеются		TIMOCICA	следы	_	er	HC1	HCI	
			KIMIBEB		следы			контактной					
					контактной			коррозии					
			-		коррозии на			на стали и					
					стали и			клиньях					
					клиньях/						Ì		
					отсутствует								
833			Наличие «волны» пакетов		Имеется/	-	Имеется	-		Отсутству	нет	нет	1
			стали		Отсутствует					ет			
834		1	«Распушение» пакетов	шт.		-	2<Φ	1≤Φ≤2	-	$\Phi = 0$	нет	нет	
			зубцовой зоны										
835		Вибрационное	Полюсная (100 Гц) вибрация в	мкм		-	1 < Φ/50	-	-	Φ/50 ≤ 1	нет	нет	0,15
		остояние	радиальном направлении на										
\ \ \ \ \	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	сердечника	холостом ходу с			<u> </u>	Ì	1)			
		статора	номинальным возбуждением	ļ									
836			Полюсная (100 Гц) вибрация	мкм		-	1 < Ф/30	-	-	Ф/30 ≤ 1	нет	нет]
			под нагрузкой в радиальном										
			направлении		<u></u>								
837			Низкочастотная (оборотная)	MKM		$1 < \Phi/180$	-	0,44 ≤	-	Ф/180 <	нет	нет	
			вибрация в радиальном					Ф /180 ≤ 1		0,44			
			направлении				<u></u>						
838			Контактная коррозия		Имеется на	-	Имеется	Имеется на	-	Отсутству	нет	нет	
			сердечника статора		спинке		на спинке	спинке		er			
					сердечника		сердечник	сердечника					
[статора и в		а статора и	статора					
				1	местах его		в местах						
			1		крепления/		его						
1			1]	имеется на		крепления]				
					спинке	1				1			
					сердечника		1		ŀ]
					статора/				l				
		I			CVPCVI/IVVIPD×10m	1			i .				
920			Траниции в полочило		отсутствует Имеются		Иметотоя	Изгатот	_	Onv	7700		
839			Трещины, выкрашивание		отсутствует Имеются	-	Имеются	Имеется		Отсутству	нет	нет	

г				T			I		-				
			листов пакетов сердечника		трещины/		трещины	выкрашива		ют			
1	}	1	}	1	имеется выкраппивани		}	ние	i	}	ł	Ì	}
					е/		1						
	I	1			отсутствуют								
840			Повреждение узлов	 	Имеется/		Имеется		-	Отсутству	нет	нет	
070			крепления сердечника к		отсутствует	_	TIMOUTUA	_	-	er	Hei	nei	
			корпусу		010,1012,01						i		
841			Разрушение узлов крепления		Имеется/	Имеется	-	-	-	Отсутству	нет	нет	
			сердечника к корпусу		отсутствует					ет			
842			Ослабление распорных		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	
			домкратов		отсутствует					e _T			
843			Нарушение крепления		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	
			корпуса статора в корпусе		отсутствует					ет			
			генератора										
844			«Выползание» штифтов		Имеется	-	Имеется	Имеется	-	Отсутству	нет	нет	
1			фланца корпуса	l	массовое	Ì	массовое	«выползан		ет	ľ		
			i e		«выползание		«выползан	ие»					
		1 1			»/		ие»	отдельных					
		1 1			имеется «выползание			штифтов					
		1 1			«выползание » отдельных		1						
					штифтов/						i		
					отсутствует	1							
845		Состояние	Ослабление стыковой	мм	1 222,222,01	-	1 < Ф/Н	0,67 < Ф/Н	0 < Φ/H ≤	Ф/Н = 0	нет	нет	0,10
- "		стыков стато	1		<u> </u>			<u>≤1</u>	0,67				-,
846		1	Контактная коррозия железа		Имеется/	-	Имеется	1	*	Отсутству	нет	нет	
			статора		отсутствует			L		er			
847			Полюсная (100 Гц) вибрация	мкм		-	1 < Ф/30	-	-	Φ/30 ≤ 1	нет	нет	
			железа статора в районе							l			
			стыков в радиальном	1									
 	[[Í	направлении	 	 	<u> </u>		<u> </u>	7 72	<u> </u>			
848			Тенденция изменения	MKM	1	-	-	-	1<(Ф-	Φ-	нет	нет	
			значения полюсной (100 Гц)						Фпред)/5	Фпред)/5 ≤			
			вибрации железа статора в				1			1			
			районе стыков в радиальном направлении по сравнению с					i					
			предыдущим замером Фпред					-					
849			Наличие «домиков» железа		Имеется/	-	Имеется	- -		Отсутству	нет	нет	
"			активной стали статора		отсутствует					ет		1101	
850]		Повреждения изоляции	<u> </u>	Имеется/	-	Имеется	-	-	Отсутству	нет	нет	
	l i		листов стали пазовой части		отсутствует					er			
851			Нарушение изоляции	шт.		-	2<Ф	1≤Φ≤2	-	$\Phi = 0$	нет	нет	
			стыковых стержней		<u> </u>		<u> </u>						
852	[[Скрытые	Восстановление крепления		Нет (не	-	-	Нет	Да	Да	нет	нет	0,28
	j l	дефекты и	сердечника к корпусу	1	восстановлен	J	J	(не	(при сроке	(при сроке	J		J
		восстановлен	и		оили			восстановл	службы 1,6	службы			
		е после			восстановлен			ено или	<Ф/H)	Φ/H ≤ 1,6)			
		ремонта			о не в полном	1	I	восстановл					
					объеме)/ да (при сроке		1	ено не в полном					
					службы 1,6 <		1	объеме)					
				1	Ф/Н)/		1	COBCMC)					
	1 [1	да (при сроке								
			1		службы Ф/Н								
	1 1				≤ 1,6)		L			<u> </u>			
853			Восстановление прессовки	1	Нет (не	-	-	Her	Да	Да	нет	нет	
			1		восстановлен			(не	(при сроке	(при сроке			
1					о или			восстановл	службы 1,6	службы			
					восстановлен		1	ено или	< Φ/H)	Φ/H ≤ 1,6)			
	1 1		}	1	о не в полном		1	восстановл	,	ļ ļ			
	[]				объеме)/			ено не в					
					да (при сроке	1		полном		[
					службы 1,6 < Ф/Н)/			объеме)					
					Ψ/π/	l	L	L					<u> </u>

			.=													
							да (при сроке								_	
				İ			службы Ф/Н ≤ 1,6)				1					
854					Наличие скрытых дефектов		Привело к		-	Привело к	Не привело	He	нет	нет		
634	ļ.		ļ	ļ	паличие скрытых дефектов		увеличению	-		увеличени	к к	обнаружен	HCI	Her		\
1	<u> </u>	}	l	1	1	}	планируемых			ю	увеличению	0				1
1 1							работ/			планируем	планируемы					
1 1				1	1		не привело к			ых работ	х работ					
1 1							увеличению			•	1					
1 1	İ						планируемых									
							работ/									
					•		не		İ							
		İ	İ				обнаружено		ļ						0.00	1
855				Группа	Наличие дефектов:		Имеется/	Имеется	-	-	-	Отсутству	нет	да	0,02	
				ресурсоопреде ляющих	(ослабление прессовки или		отсутствует					eT				
				параметров	«распущение» пакетов		1		ļ							
				параметров	зубцовой зоны	ļ										
					или		1									
		- 1	1	1	разрушение узлов крепления]]	}] .		
					сердечника к корпусу						1					
					или											
					повреждение изоляции											
					пазовой части обмотки]					Į.					
					статора), приводящих к: степени искажения формы											
					статора более 15%											
1 1	1				и	ľ	1				l					i i
					отклонению удельных потерь											
1 1					в стали более 10% от											
1 1					исходных значений											
1 1	}	1	1	İ	и	<u> </u>	}		\ \			!				\
			1		низкочастотной (оборотной)					1						
					вибрации в радиальном					J		J				J j
1 1	[[направлении более 180 мкм				[
!					и полюсной (100 Гц) вибрации											
	1				в радиальном направлении						1	1				ļ
					на холостом ходу с							,] [
			1		номинальным возбуждением				1	1						1 1
1 1		j			более 50 мкм											1 1
		- 1			и	1	Į		ļ	}	}	}				1 1
i			1		полюсной (100 Гц) вибрации		!									
:					в радиальном направлении					j						
			ļ		под нагрузкой более 30 мкм						<u> </u>					
856		Щеточно-	нет	Состояние в	Количество выводов в	шт.		6≤Ф	1<Ф<6	Ф = 1	-	$\Phi = 0$	нет	нет	0,6	0,05
	i	контактны		процессе	неплановый ремонт после		1						i			
857		й аппарат (далее –		эксплуатации	капитального ремонта Загрязнение контактных		Имеется/	-	- -	_	Имеется	Отсутству	нет		i	
65/	ĺ	ЩКА)	1	1	колец	ĺ	отсутствует	· -	-	_	FIMECICA	ет	Hel	нет		1 1
858		444.7			Следы эрозии на контактных		Имеются/			Имеются	<u> </u>	Отсутству	нет	нет		
		1			кольцах		отсутствуют		1			FOT				
859					Термические повреждения на		Имеются/	-	Имеются	_	-	Отсутству	нет	нет		
					контактных кольцах		отсутствуют					ют]]
860					Неравномерность износа		Имеется/	-	-	Имеется	-	Отсутству	нет	нет		
		1	1	1	контактных колец		отсутствует			<u> </u>	<u> </u>	ет				
861					Ослабление соединения колец		Имеется/	-	-	Имеется	-	Отсутству	нет	нет		
1	ļ				с шинами обмотки	Į.	отсутствует			ļ	1	ет				
963					возбуждения Матовая поверхность	 	Имеется/			Имеется	 	Ores	****	<u> </u>		
862					матовая поверхность контактных колец		отсутствует	-	ļ -	TIMOCICAL	1	Отсутству	нет	нет		ļ l
863					Остаточная длина щеток	%	1	-	-	Ф/30 < 1	 	1 ≤ Φ/30	нет	нет		
864					Повреждение		Имеется/	-	-	Имеется	-	Отсутству	нет	нет		
""	f	1	İ	(щеткодержателей	<u>L</u>	отсутствует	<u></u>			Ĺ	er				[
865				Искрение	Перегрев контактных колец и		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,4	1
			·		 									·——		

		 					02		1	-	, 				,·	
866					щеток Искрение в процессе работы		отсутствует Имеется/	-	-	Имеется		Отсутству	нет	нет	-	
867		Обобщенн	нет	Срок службы	Срок службы	лет	отсутствует	1,6 ≤ Φ/H	1,3 ≤ Φ/H	1 ≤ Φ/H <	0,6 ≤ Φ/H <	ет Ф/H < 0,6	нет	нет	0,8	0,15
868		ый узел		Энергетически е характеристик	Мощность	МВт		-	< 1,6 Φ/H < 0,98	1,3 0,98 ≤ Ф/H < 0,99	1 0,99 ≤ Ф/Н < 1	Ф/Н=1	нет	нет	0,2	
869	Реактор шунтирую щий	Высоково льтный ввод	нет	и Общие сведения	Течь масла		Интенсивная (не менее 2-х капель в сек.)/	Интенсивна я (не менее 2-х капель в сек.)	Капельная (не более 1 капли в сек.)	Намокание /отпотеван ие	-	Отсутству	нет	нет	Герметичны е вводы - 0,25; негерметич	0,12
							капельная (не более 1 каппя в сек.)/ намокание/от потевание/ отсутствует								ные вводы - 0,25; герметичны е вводы с твердой изоляцией -	
870				i	Наличие дефектов покрышки с характеристиками, превышающими значения, установленные НТД		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	нет	нет	0,5	
871				He pa	Неравномерное распределение температуры по результатам тепловизионного контроля		Имеется/ отсутствует	Имеется	-	-	-	Отсутству <u>е</u> т	нет	нет		
872		:			Давление масла	кгс/см2	II	Ф < 0,1 или 3 < Ф	-	-	•	0,1≤Φ≤3	нет	нет		
873					Маслоотборное устройство		Исправно/ не исправно	-	Не исправно	-	-	Исправно	нет	нет		
874					Аномальный локальный нагрев крышки измерительного вывода по результатам тепловизионного контроля		Имеется/ отсутствует	Имеется	•	-	-	Отсутству ет	нет	нет		
875					Степень развития дефекта контактных соединений по результатам тепловизионного контроля		Аварийный дефект/ дефект отсутствует	Аварийный дефект	-	-	-	Дефект отсутствуе т	нет	нет		
876				Хроматографи ческий анализ	Концентрация ацетилена С2H2	% об.		1 < Ф/Н	0,6 < Φ/H ≤ 1	0,3 < Φ/H ≤ 0,6	0,1 < Φ/H ≤ 0,3	Φ/H ≤ 0,1	нет	нет	Герметичны е вводы -	
877				газов, растворенных в масле	Суммарное содержание углеводородных газов в масле SCxHy	% об.		1,0 < Ф/Н	-		-	Φ/H ≤ 1,0	нет	нег	0,25; негерметич ные вводы -	
878				в масле Физико- химический анализ масла	Общее газосодержание масла (герметичные маслонаполненные вводы)	% об.		4<Ф	<u>.</u>	2<Φ≤4	-	Φ≤2	нет	нет	0; герметичны е вводы с твердой изоляцией - 0	
879					Пробивное напряжение	кВ		Ф/Н < 1	-	1 ≤ Ф/Н и Ф/(H+5) < 1	-	1 ≤ Φ/(H+5)	нет	нет	Герметичны е вводы - 0,25; негерметич	
880					Влагосодержание (для негерметичных вводов классом напряжения 110 кВ)	г/т		1,0 < Ф/Н	•	Φ/H≤1,0 и 1<Φ/(H- 5)	-	Φ/(H - 5) ≤ 1,0		нет	ные вводы - 0,25; герметичны е вводы с	
881			B _I	Влагосодержание (для герметичных вводов классом напряжения 110 - 750 кВ)	г/т		1,0 < Ф/Н	-	Φ/H ≤ 1,0 и 1 < Φ/(H - 5)	-	Φ/(H - 5) ≤ 1,0	нет	нет	твердой изоляцией - 0		
882				<u> </u>	Тангенс угла диэлектрических	%	T		-	L	-		нет	нет	1	

895		Емкость основной изоляции	пФ	Н < (Ф- Фо)/Фо (при отсутствии указаний в документац	-	-	-	(Ф-Фо)/Фо ≤ Н (при отсутстви и указаний в документа	нет	нет	0,5
894		Тангенс угла диэлектрических потерь (tgб) последних слоев изоляции, приведенный к 20 °C	%	1 < Ф/Н	-	0,8 ≤ Φ/H ≤ 1	0,66 ≤ Φ/H < 0,8	Φ/H < 0,66	нет	нет	о, у, герметичны е вводы с твердой изоляцией -
893		Тангенс угла диэлектрических потерь (tgδ) основной изоляции, приведенный к 20 °C	%	1 < Ф/Н	•	0,8 ≤ Φ/H ≤ 1	0,66 ≤ Φ/H < 0,8	Ф/Н < 0,66	нет	нет	0,25; негерметич ные вводы - 0,5;
892	Состояние изоляции	Сопротивление изоляции измерительного вывода	МОм	Φ < 500	-	-	-	500 ≤ Φ	нет	нет	Герметичны е вводы -
891		антиокислительной присадки (негерметичные вводы для класса напряжения свыше 110 кВ)	70	9/11 < 1	-	1≤Φ/H< 1,5	-	1,3 ≤ Ψ/11	нег	нет	
891		закрытом тигле по сравнению с предыдущим замером Фпред (для негерметичных маслонаполненных вводов) Содержание	%	Φ/H < 1	-	·		Φ) < 3 1,5 ≤ Φ/H	нет	HOT	
890		негерметичных маслонаполненных вводов) Тенденция изменения температуры вспышки в	°C	-	-	5 ≤ (Фпред - Ф)		(Фпред - Ф) < 5	нет	нет	
889		маслонаполненных вводов) Температура вспышки масла в закрытом тигле (для	°C	Φ < 125	-	-	-	125≤ Φ	нет	нет	
888		предыдущим замером Фпред Кислотное число (для негерметичных	мгКОН/г	0,25 < Ф	-	0,1 < Φ ≤ 0,25	-	Φ≤0,1	нет	нет	
887		Тенденция изменения класса промышленной чистоты масла по сравнению с	класс	-	-	-	1 < (Ф – Фпред)	(Ф- Фпред) ≤ 1	нет	нет	
886		замером Фпред Класс промышленной чистоты масла	класс	1,0 < Ф/Н	-	Φ/H = 1,0	-	Ф/Н < 1,0	нет	нет	
885		Тенденция изменения содержания водорастворимых кислот и щелочей в масле по сравнению с предыдущим	мгКОН/г	-	-	-	1,15 < Ф/Фпред	Ф/Фпред ≤ 1,15	нет	нет	
304		водорастворимых кислот и щелочей (для негерметичных вводов класса напряжения 110 кВ)				Φ/0,030	-	1,0			
884		водорастворимых кислот и щелочей (для герметичных вводов класса напряжения 110 кВ и выше) Содержание	мгКОН/г		_	Φ/0,014		0/0,030 ≤ 0/0,030 ≤	Her	IN I	
883		для класса напряжения 220 - 500 кВ (включительно) для класса напряжения 750 кВ и выше Содержание	мгКОН/г	5 < Ф	_	3 < Φ ≤ 5		Φ ≤ 3 Φ/0,014 ≤	нет	нет	
		потерь (tgδ) масла при 90 °C для класса напряжения 110 - 150 кВ (включительно)		15 < Ф 10 < Ф		$12 < \Phi \le 15$ $8 < \Phi \le 10$		Φ ≤ 12 Φ ≤ 8	1		

Γ		<u> </u>						изготовител				изготовите				1
								$_{\rm H} H = 0.05)$	·			ля H = 0,05)				
896	ļ.	Вспомогат ельное	нет	Дефекты бака, навесного	Механическое повреждение (деформация)		Имеется/ отсутствует	-	Имеется	1	-	Отсутству	нет	нет	0,5	0,075
897		оборудова ние		оборудования	Несоответствие величины наклона крышки бака по направлению к газовому реле значению, установленному НТД		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет		
898					Треск, шумы внутри бака		Имеется/	-	Имеется	-	-	Отсутству	нет	нет		
899					Течь масла через сварные швы		отсутствует Ингенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 капля в сек.)/ намокание/от потевание/ отсутствует	-	Интенсивн ая (не менее 2-х капель в сек.)	Капельная (не более 1 капли в сек.)	Намокание/ отпотевание	ет Отсутству ет	нет	нет		
900					Течь масла через уплотнение разъема бака, маслопровода, фланцев		Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 капия в сек.)/ намокание/от потевание/ отсутствует	•	Интенсивн ая (не менее 2-х капель в сек.)	Капельная (не более 1 капли в сек.)	Намокание/ отпотевание	Отсутству ет	нет	нет		
901					Наличие замечаний по системе охлаждения		Имеется/ отсутствует	-	_	Имеется	-	Отсутству	нет	нет		
902					Наличие замечаний по системе обогрева		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет		
903					Дефекты воздухоосущительного фильтра		Имеются/ отсутствуют	-	*	Имеются	-	Отсутству	нет	нет		
904					Неисправность термосигнализатора		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет		
905		:			Неисправность термосифонного фильтра		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет		
906					Неисправность системы охлаждения		Имеется/ отсутствует	-	-	Имеется	-	Отсутству	нет	нет		
907					Значительное нарушение лакокрасочного покрытия (со следами коррозии, потеками ржавчины)		Имеется/ отсутствует	-	•	•	Имеется	Отсугству ет	нет	нет		
908					Увлажнение силикагеля		Имеется/ отсутствует	-	-	-	Имеется	Отсутству	нет	нет		
909					Дефект защиты масла		Имеется/ отсутствует	-	-		Имеется	Отсутству	нет	нет		
910			ляцио нет С	Защитное оборудование	Разрушение (трещины) мембраны выхлопной трубы]	Имеется/ отсутствует	-	Имеется		-	Отсутству	нет	нет	0,5	1
911				20 PJ Monume	Неисправность газового реле		Имеется/ отсутствует	-	Имеется	-	-	Отсутству	нет	нет		
912		Изоляцио нная система		Состояние масла	Пробивное напряжение	кВ	22-12-23-25	Ф/Н < 1	-	1 ≤ Ф/Н и Ф/(H+5) < 1	•	1 ≤ Φ/(H+5)	Het	нет	0,5	0,37
913			: :		Влагосодержание масла (с пленочной или азотной защитой)	г/т		1,0 < Ф/Н	-	Φ/H ≤ 1,0 и 1 < Φ/(H - 5)	•	Φ/(H - 5) ≤ 1,0	нет	нет		

914			Влагосодержание масла (без	г/т	1,0 < Ф/Н	-	Φ/H ≤ 1,0	-	Φ/(H - 5) ≤	нет	нет	
			специальных защит)				и		1,0			
	1 1				1		1 < Ф/(H -		- [Į	
	1						5)					
915			Тенденция изменения	г/т	- 1	_	-	0,3≤(Φ-	(Φ -	нет	нет	
1			влагосодержания масла по	1 1				Фпред)/Фпр	Фпред)/Фп		1	
			сравнению с предыдущим				j	ед	ред < 0,3		1	
			замером Фпред				1	и	или			
							1	10 < Ф	Φ≤10		ļ	1
916			Класс промышленной	класс	1,0 < Φ/H		$\Phi/H = 1.0$		Φ/H < 1,0	нет	нет	
710			чистоты масла	Allace	1,0 (4/11		9/11 1,0	_	4/11 1,0	nei	Hei	
917			Тенденция изменения класса	Класс				1 < (Φ -	(Φ-	 -		
917				Kilacc	-	-	_			нет	нет	
			промышленной чистоты					Фпред)	Фпред) ≤ 1			
\ \	1 1	1	масла по сравнению с	1 1	1 1		ì		}	- 1	1	1
			предыдущим замером Фпред		1		0.4 . 7.77 .		2.55			
918			Кислотное число	мгКОН/г	1 < Ф/Н	-	0,4 < Φ/H ≤	-	Φ/H ≤ 0,4	нет	нет	
							1					1
919			Содержание	%	Φ/H < 1	-	$1 = \Phi/H$	-	1 < Φ/H	нет	нет	
			антиокислительной присадки								1	
			(без специальных защит		1		l			1		
			масла, для класса напряжения				1					
			свыше 110 кВ)									Ì
920	1 1		Температура вспышки в	°C	Φ < 125	-	· ·	-	125≤ Φ	нет	нет	
720			закрытом тигле						-		1101	1
021			Тенденция изменения	<u>~</u> C		-	5 ≤ (Фпред		(Фпред -	trem	110-	[
921					1 - 1	-	3 ≤ (Φπρεд - Φ)	-	Фпред - Ф) < 5	нет	нет	[
			температуры вспышки в				Ι -Ψ)		c^(uv			[
			закрытом тигле по сравнению] 1			1					[
			с предыдущим замером	1								l l
			Фпред	 								
922			Тангенс угла диэлектрических	%		-	1	-		нет	нет	
			потерь (tgδ) масла при 90 °C		1		Į.					
	1 1 1		для класса напряжения 110 -		15 < Φ		12 < Φ ≤ 15		Φ≤12			
			150 кВ (включительно)	i								
		1	для класса напряжения 220 -	1	10 < Φ		8 < Φ ≤ 10		Φ≤8			
			500 кВ (включительно)									
			для класса напряжения 750 кВ		5<Φ		3<Φ≤5		Φ≤3			
			и выше								ŀ	
923	1 1	Хроматографи	Концентрация водорода Н2	% об.	1 ≤ (Φ/H) _{H2}	-	1 ≤ (Φ/H) _{H2}	(Φ/H) _{H2} < 1	(Φ/H) _{H2} <	нет	нет	0,5
				% /Mec.		<u> </u>	^{1 S (Ф/П)Н2}		1			0,5
924		ческий анализ	Относительная скорость	/0 /Mec.	и 1<	-	1	и 1 <		нет	нет	
		газов,	нарастания концентрации		_		(Φ/10) _{VH2} ≤	-	И (Ф/10) <			
		растворенных	водорода V (H2)		(Φ/10) _{VH2}		1	(Φ/10) _{VH2}	(Φ/10) _{VH2} ≤			
L		в масле		 _ _ 		ļ	_	L	1 1			
925			Концентрация метана СН4	% об.	1 ≤ (Φ/H) _{CH4}	-	1 ≤	$(\Phi/H)_{CH4} < 1$	(Φ/H) _{CH4} <	нет	нет	
926			Относительная скорость	% /мес.	и	-	(Ф/Н)сн4	и	1 1	нет	нет	
			нарастания концентрации	1 1	1<		и	1 <	и		1	
		1	метана V (СН4)		(Φ/10) _{VCH4}		(Φ/10) _{VCH4}	(Φ/10) _{VCH4}	(Φ/10)V _{CH4}			
			` ′		' ' '		≤1		≤1			
927			Концентрация этилена С2Н4	% of.	1 ≤	_	1≤	(Φ/H) _{C2H4} <	(Φ/H) _{C2H4}	нет	нет	
928			Относительная скорость	% /mec.	(Φ/H) _{C2H4}	-	(Φ/H) _{C2H4}	1	< 1	нет		
920			нарастания концентрации	/0 /MCC.	(4/H)C2H4	-	и	и	и	Hel	нет	
					1 ×		(Φ/10) _{VC2H4}	1 <	(Φ/10) _{VC2H}			
1 1			этилена V (С2Н4)	1							1	
<u> </u>				+ a, , ,	(Φ/10) _{VC2H4}		≤1	(Φ/10) _{VC2H4}	4≤1	<u> </u>	ļ	
929	1 1		Концентрация этана С2Н6	% об.	1≤	-	1≤	(Ф/H) _{C2H6} <	(Φ/H) _{C2H6}	нет	нет	
930			Относительная скорость	% /мес.	(Φ/H) _{C2H6}	-	(Φ/H) _{C2H6}	1	< 1	нет	нет	
			нарастания концентрации		и		и	и	и			
i 1			этана V (С2Н6)		1 <		$(\Phi/10)_{VC2H6}$	1 <	(Ф/10) _{VC2H}			
1 1			1 ' '		(Φ/10) _{VC2H6}		≤1	$(\Phi/10)_{VC2H6}$	6≤1			
931			Концентрация ацетилена	% об.	1≤		1 ≤	(Φ/H) _{C2H2} <	(Φ/H) _{C2H2}	нет	нет	
			C2H2	'	(Φ/H) _{C2H2}		(Ф/H) _{С2H2}	1	< 1			
932			Относительная скорость	% /мес.	и	-	н	и	и	нет	нет	
334			нарастания концентрации	/U/MOU.	1<	-	(Φ/10) _{VC2H2}	1 <	(Φ/10) _{VC2H}	nei	Hei	
1 1			нарастания концентрации ацетилена V (C2H2)		(Φ/10) _{VC2H2}		(Φ /10)VC2H2 ≤1	(Φ/10) _{VC2H2}				
	1			1 0 5					2≤1			
										нет		1
933			Концентрация диоксида	% об.	1 ≤ (Φ/H) _{CO2}	-	1 ≤	$(\Phi/H)_{CO2} < 1$	(Φ/H) _{CO2} <	Hei	нет	l
933			Концентрация диоксида углерода СО2 Относительная скорость	% 00.	1 ≤ (Ф/H)со ₂ и 1 <		1 ≤ (Φ/H) _{CO2} μ	и 1 <	(Ф/П)со2 \ 1 и	нет	нет	

			нарастания концентрации			(Φ/10) _{VCO2}		(Φ/10) _{VCO2}	(Φ/10) _{VCO2}	(Φ/10) _{VCO2}		I	
			диоксида углерода V (CO2)			(#/10)VC02		(±/10)\cc2 ≤1	(\$\frac{10}{10}\text{VC02}	(4) 10) VCO2 ≤1			
935			Концентрация оксида углерода СО	% об.		1 ≤ (Ф/H) _{со} и	-	1 ≤ (Ф/H) _{со} и	(Ф/H) _{CO} < 1 и	(Φ/H) _{co} <	нет	нет	
936		:	Относительная скорость нарастания концентрации оксида углерода V (CO)	% /мес.		1 < (Ф/10) _{VCO}	-	(Φ/10) _{VCO} ≤	1 < (Ф/10) _{vco}	и (Ф/10) _{VCO} ≤1	нет	нет	
937		l	Общее газосодержание масла (с пленочной защитой, для	% об.	,	4<Ф	-	2 < Φ ≤ 4	-	-	нет	нет	
938			реактора 110 кВ и выше) Отношения концентраций пар газов (С2H2/С2H4, СН4/Н2, С2H4/С2H6), характерные для частичных разрядов с низкой плотностью энергии	% об.		-	Выполняе тся условие: $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2H2}/\Phi_{C2} + \Phi_{C2H2}/\Phi_{C2} + \Phi_{C2H2}/\Phi_{C2} + \Phi_{C2H2}/\Phi_{C2} + \Phi_{C2H2}/\Phi_{C2H2} + \Phi_{C2H2}/\Phi_$	•	-	He beinoiner cr (Φ_{C2H2}/Φ_{C2} Ha) < 0,1 H (Φ_{C2H4}/Φ_{H2}) < 0,1 H (Φ_{C2H4}/Φ_{C2} Ha) \leq 1,5 \leq Φ_{C2H2}/H_{C2H} 2 Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} 4 Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} 4 Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq Φ_{C2H4}/H_{C2H} Hinh 1,5 \leq	нет	нет	
939			Отношения концентраций пар газов (C2H2/C2H4, CH4/H2, C2H4/C2H6), карактерные для частичных разрядов с высокой плотностью энергии	% об.		Выполняетс я условие: $0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 < 0,1 $	-	-	-	Не выполняет ся условие: 0,1 < (Фс2H2/Фс2 H4) < 3,0 и (Фс2H4/Фн2) < 0,1 и (Фс2H4/Фс2 H6) ≤ 1 и (1,5 ≤ Фс2H2/Нс2H 4 или 1,5 ≤ Фс2H4/Нс2H 4 или 1,5 ≤ ФсH4/Нс4H или 1,5 ≤	нет	нет	

								07								
)				Φ_{H2}/H_{H2}		<u> </u>	I I
		I				İ			ĺ				или			
	j	J	J	J		J		ļ]		1,5 ≤]]]
											i		Фс2н6/Нс2н			
						Į.							6)			
940		ŀ				Отношения концентраций пар	% об.	***	Выполняетс	_	_		He			
740		1		İ		газов (С2Н2/С2Н4, СН4/Н2,	/8 OO.			-	_	-		нет	нет	
						1230B (C2H2/C2H4, CH4/H2,]	я условие:				выполняет			1
						С2Н4/С2Н6), характерные для		i	0,1 <				СЯ			
						разрядов малой мощности		ļ	$(\Phi_{C2H2}/\Phi_{C2H4})$				условие:			1
1)				0,1 <		1	l t
									И				(Φ_{C2H2}/Φ_{C2})			
		l l							0,1 ≤				н4)			
1									$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$				И			l l
	į				ı				≤ 1,0				0,1 ≤			
									И				$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$			
									1,0 ≤				≤ 1,0			
l i									$(\Phi_{C2H4}/\Phi_{C2H6})$				и 1,0			1 1
l i)≤3,0				1,0 ≤			1
								1	у <u>э</u> э,о				$(\Phi_{\text{C2H4}}/\Phi_{\text{C2}})$		}	
1 1	1	1						ļ	(1,5 ≤	}			(\$C2H4\\$C2	l	ł	
	l		1						$\Phi_{\text{C2H2}}/H_{\text{C2H2}}$				$_{H6}) \leq 3,0$			
								l	₩C2H2/ПC2H2				И		1	
									или				(1,5≤			
									1,5 ≤				$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H}}$		1	
									Φ_{C2H4}/H_{C2H4}				2		1	
1 1									или		1		или			1
									1,5 ≤				1,5 ≤			l i
1 1									$\Phi_{\text{CH4}}/\text{H}_{\text{CH4}}$				Φ_{C2H4}/H_{C2H}			
									MIN				4			1
	ļ	i	1						1,5 ≤				или			
1 [Φ_{H2}/H_{H2}				1,5 ≤			
									или				Фсн4/Нсн4			
						!			1,5 ≤				или			1
									$\Phi_{\text{C2H6}}/H_{\text{C2H6}}$				1,5 ≤			
)				Фн2/Нн2			
									,				или			
1 1													1,5 ≤			
1 1	ĺ	ĺ	ĺ			[ĺ			ĺ		A /II		ĺ	1 1
			ļ										Фс2н6/Нс2н		ŀ	
041		1					0/ -7			D			6)		 	-
941				İ		Отношения концентраций пар	% об.		-	Выполняе	-	-	He	нет	нет	
1						газов (С2Н2/С2Н4, СН4/Н2,				тся			выполняет			
						C2H4/C2H6), характерные для термических дефектов низкой				условие:			СЯ			
1 1						термических дефектов низкой				$(\Phi_{C2H2}/\Phi_{C2}$			условие:			<u> </u>
						температуры (<150°C)				_{H4}) < 0,1			(Φ_{C2H2}/Φ_{C2})			
1 1										и			$_{\rm H4}) < 0.1$			
										0,1 ≤			и			
· 1										(Φ_{CH4}/Φ_{H2})			0,1 ≤			
	j	ļ								≤ 1,0			(Φ_{CH4}/Φ_{H2})		1	
		l								DE	1		≤ 1,0			
1 1										1,0 ≤			и			
1										(Фс2на/Фсэ			1.0 <		1	
										$(\Phi_{\text{C2H4}}/\Phi_{\text{C2}} + H_6) \leq 3,0$			$1,0 \leq (\Phi_{\text{C2H4}}/\Phi_{\text{C2}}$		1	
										и			H ₆) ≤ 3,0		1	
1 1	1	ł		! I		}		l l		(1,5 ≤	}	1	H6) 2 3,0	1	1	
]		Φ _{C2H2} /H _{C2H}			(1,5 ≤		1	
													Φ		i	[1
							,			2			$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H}}$			
	1	ļ	į							или 1,5 <u>≤</u>			2		1	
		1								±,2∑			или			
										$\Phi_{\text{C2H4}}/\text{H}_{\text{C2H}}$			1,5 ≤		1	
1 1										4			$\Phi_{\rm C2H4}/{\rm H_{C2H}}$			
						į l				или			4		1	
						1				1,5 ≤]		или]
		Į								Фсни/Нсни			1,5 ≤			
										или			Фсни/Нсни			
			İ							1,5 ≤			или			
1										$\Phi_{\rm H2}/H_{\rm H2}$			1,5 ≤			
1								į į		или			Φ_{H2}/H_{H2}			
1 !																

						00						
							1,5 ≤		или			
1		1 1					Фс2н6/Нс2н		1,5 ≤			ı
							6)		$\Phi_{\rm C2H6}/{\rm H}_{\rm C2H}$			ı
i			1	1			"/		6)			
942	1				% об.		D			+	-	i l
942	1	1 1		Отношения концентраций пар	76 00. □	-	Выполняе	-	- He	нет	нет	
1	1	1		газов (С2Н2/С2Н4, СН4/Н2,		!	тся		выполняет			1
	1			С2Н4/С2Н6), характерные для		1	условие:		СЯ			1
	1			термических дефектов в		ļ	(Φ_{C2H2}/Φ_{C2})		условие:			i
	1			диапазоне низких температур	ŀ		_{H4}) < 0,1		$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}})$			1
	<u> </u>			(150 - 300°C)	l l		и		H4) < 0,1	1		1
	ļ		}	(130 300 6)			1,0 ≤			1		1
		1	1		ļ		(A /A)		И			1 1
	1	1 1		1			$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$		1,0 ≤			1 1
:	1			1	i i		И		$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$			1
						i i	(Φ_{C2H4}/Φ_{C2})		и			1
	[1 1				[_{H6}) < 1,0		$(\Phi_{\text{C2H4}}/\Phi_{\text{C2}})$	[ı [
	1		ļ.				и		_{H6}) < 1,0			ı
	1		i				(1,5≤		и и			ı
	1						A 70					ı
	1	1					$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H}}$		(1,5 ≤			,
	1						2		$\Phi_{\rm C2H2}/{ m H}_{\rm C2H}$,
	1						NIM		2			,
							1,5 ≤		NIIN			,
	1						Фс2н4/Нс2н		1,5 ≤			,
	<u> </u>						l I		Фс2н4/Нс2н			,
	!						4					,
	1 1						или		4	1		,
-							1,5 ≤		или			,
-					ľ		Фсн4/Нсн4		1,5 ≤			ı
							или		Фсн4/Нсн4			ı I I
							1,5 ≤		или			ı
ļ							Φ_{H2}/H_{H2}	Į.	1,5 ≤	İ		ı
							ИЛИ	[ı I I
							1.5		Φ_{H2}/H_{H2}			ı
	l	1					1,5 ≤		или			
	l i			l i			Φ_{C2H6}/H_{C2H}		1,5 ≤			i
	1 1						1 1	1				<i>i</i>
	1 1						6)	1	$\Phi_{\text{C2H6}}/H_{\text{C2H}}$		1	t
							6)		Ф _{С2Н6} /Н _{С2Н}			
943				Отношения концентраций пар	% об,	Выполняетс	6)	_	6)		нет	
943				Отношения концентраций пар	% об.	Выполняетс		-	6) - He	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2,	% об.	я условие:		-	6) - Не выполняет	нет	нет	
943				газов (С2H2/С2H4, СH4/H2, С2H4/С2H6), характерные для	% об.	я условие: (Ф _{С2H2} /Ф _{С2H4}		-	6) Не выполняет ся	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в	% o6.	я условие: (Ф _{С2Н2} /Ф _{С2Н4}) < 0,1		-	6) - Не выполняет ся условие:	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: (Ф _{С2H2} /Ф _{С2H4}) < 0,1 и		-	6) - Не выполняет ся условие: (Фс2H2/Фс2	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в	% об.	я условие: (Ф _{С2H2} /Ф _{С2H4}) < 0,1 и 1,0 ≤		-	6) - Не выполняет ся условие: (Фс2H2/Фс2	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Ф _{С2H2} /Ф _{С2H4}) < 0,1 и 1,0 ≤		-	6) - Не выполняет ся условие: (Фс2H2/Фс2 H4) < 0,1	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o5.	я условие: $(\Phi_{\text{C2H2}}/\Phi_{\text{C2H4}}) < 0,1$ и $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$		-	6) - Не выполняет ся условие: (Фс2H2/Фс2 H4) < 0,1	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: $(\Phi_{C2H2}/\Phi_{C2H4}) < 0,1$ и $1,0 \le (\Phi_{CH4}/\Phi_{H2})$		-	6) - Не выполняет ся условие: (Фс2H2/Фс2 H4) < 0,1 и 1,0 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: $(\Phi_{C2H2}/\Phi_{C2H4}) < 0,1$ и $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ и $1,0 \le (\Phi_{CH4}/\Phi_{H2})$		-	6) - Не выполняет ся условие: (Фс2+2/Фс2 н4) < 0,1 и 1,0 ≤ (Фсн4/Фн2)	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: $(\Phi_{\text{C2H2}}/\Phi_{\text{C2H4}}) < 0,1$ и $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ и $1,0 \le (\Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$		-	6) - Не выполняет ся условие: (Фс2H2/Фс2 H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: $(\Phi_{\text{C2H2}}/\Phi_{\text{C2H4}}) < 0,1$ и $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ и $1,0 \le (\Phi_{\text{C2H4}}/\Phi_{\text{C2H6}}) \le 3,0$		-	6) - He Выполняет ся условие: (Φ _{C2H2} /Φ _{C2} _{H4}) < 0,1 и 1,0 ≤ (Φ _{CH4} /Φ _{H2}) и 1,0 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: $(\Phi_{C2H2}/\Phi_{C2H4}) < 0,1$ и $1,0 \le (\Phi_{C4H4}/\Phi_{H2})$ и $1,0 \le (\Phi_{C2H4}/\Phi_{C2H6}) \le 3,0$		-	6) - He Выполняет Ся условие: (Φ _{C2H2} /Φ _{C2} _{H4}) < 0,1 и 1,0 ≤ (Φ _{CH4} /Φ _{H2}) и 1,0 ≤ (Φ _{C2H4} /Φ _{C2}	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: $(\Phi_{C2H2}/\Phi_{C2H4})$ > < 0,1 и 1,0 \leq (Φ_{CH4}/Φ_{H2}) и 1,0 \leq $(\Phi_{C2H4}/\Phi_{C2H6})$ \leq 3,0 и (1,5 \leq		-	6) - He Выполняет ся условие: (Φ _{C2H2} /Φ _{C2} _{H4}) < 0,1 и 1,0 ≤ (Φ _{CH4} /Φ _{H2}) и 1,0 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: $(\Phi_{C2H2}/\Phi_{C2H4}) < 0,1$ и $1,0 \le (\Phi_{C4H4}/\Phi_{H2})$ и $1,0 \le (\Phi_{C2H4}/\Phi_{C2H6}) \le 3,0$		-	6) He BEHIO//HAPT CM YC//OBME: (ΦC2H2/ΦC2 H4) < 0,1 M 1,0 ≤ (ΦCH4/ΦH2) M 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 M	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: $(\Phi_{\text{C2H2}}/\Phi_{\text{C2H4}}) < 0,1$ и $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ и $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ и $1,0 \le (\Phi_{\text{C2H4}}/\Phi_{\text{C2H6}}) \le 3,0$ и $(1,5 \le \Phi_{\text{C2H2}}/H_{\text{C2H2}})$		-	6) He BEHIO//HAPT CM YC//OBME: (ΦC2H2/ΦC2 H4) < 0,1 M 1,0 ≤ (ΦCH4/ΦH2) M 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 M	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: $(\Phi_{\text{C2H2}}/\Phi_{\text{C2H4}}) < 0,1$ и $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ и $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ и $1,0 \le (\Phi_{\text{C2H4}}/\Phi_{\text{C2H6}}) \le 3,0$ и $(1,5 \le \Phi_{\text{C2H2}}/H_{\text{C2H2}})$		-	6) - He BEHIOJHHET CR YCLOBHE: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) M 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 H (1,5 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: $(\Phi_{C2H2}/\Phi_{C2H4}) < 0,1$ и $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ и $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ и $1,0 \le (\Phi_{C2H4}/\Phi_{C2H6}) \le 3,0$ и $(1,5 \le \Phi_{C2H2}/H_{C2H2}$ или $1,5 \le$		-	$_{6}$) - Не выполняет ся условие: (Φ_{C2H2}/Φ_{C2}) $_{H4}$) < 0,1 и 1,0 ≤ (Φ_{CH4}/Φ_{H2}) и 1,0 ≤ (Φ_{C2H4}/Φ_{C2}) $_{H6}$) ≤ 3,0 $_{H6}$ (1,5 ≤ Φ_{C2H2}/H_{C2H}	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: $(\Phi_{C2H2}/\Phi_{C2H4}) < 0,1$ и $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ и $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ и $1,0 \le (\Phi_{C2H4}/\Phi_{C2H6}) \le 3,0$ и $(1,5 \le \Phi_{C2H2}/H_{C2H2}$ или $1,5 \le \Phi_{C2H4}/H_{C2H4}$		-	6) - He BEHIOJHSET CR YCJOBUE: (ΦC2H2/ΦC2 H4) < 0,1 If 1,0 ≤ (ΦCH4/ΦH2) M 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 M (1,5 ≤ ΦC2H2/HC2H 2	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/ФH2) и 1,0 ≤ (ФсZH4/Фс2H6) ≤ 3,0 и (1,5 ≤ ФсZH2/Нс2H2 илли 1,5 ≤ ФсZH4/Нс2H4 илли		-	6) He BEINOJHHET CR YCHOBUE: (ΦC2H2/ΦC2 H4) < 0,1 u 1,0 ≤ (ΦCH4/ΦH2) in 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 in (1,5 ≤ ΦC2H2/HC2H 2 или	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/ФH2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤		-	6) He BEIRIOJHHET CR YCHOBUE: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) I 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 I (1,5 ≤ ΦC2H2/HC2H 2 UIII 1,5 ≤ UIIII 1,5 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/ФH2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/Нс2H4		-	6) He BEINOJHHET CR YCHOBUE: (ΦC2H2/ΦC2 H4) < 0,1 u 1,0 ≤ (ΦCH4/ΦH2) in 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 in (1,5 ≤ ΦC2H2/HC2H 2 или	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/ФH2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤		-	6) He BEINOJHHET CR YCJOBUE: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) I 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 I (1,5 ≤ ΦC2H2/HC2H 2 UJU 1,5 ≤ ΦC2H4/HC2H	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/ФH2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/Нс4		-	6) He BEINOJHHET CR YCLOBUE: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) I 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 I (1,5 ≤ ΦC2H2/HC2H 2 UIIM 1,5 ≤ ΦC2H4/HC2H 4	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/Нс4 или 1,5 ≤		-	6) Не выполняет ся условие: (Фс2H2/Фс2 H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2 H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H 2 или 1,5 ≤ Фс2H4/Нс2H 4 или	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% об.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/Нс4 или 1,5 ≤ ФсH4/Нс4		-	6) He BENTIOJHMET CR yCLOBME: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) I 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 H (1,5 ≤ ΦC2H2/HC2H 2 HJIM 1,5 ≤ ΦC2H4/HC2H 4 HJIM 1,5 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤		-	6) - He BENTIOJHMET CR yCLOBME: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) M 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 H (1,5 ≤ ΦC2H2/HC2H 4 MIN 1,5 ≤ ΦC2H4/HC2H 4 MIN 1,5 ≤ ΦCH4/HC2H	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤		-	6) - Не выполняет ся условие: (Фс2н2/Фс2 н4) < 0,1 и 1,0 ≤ (Фсн4/Фн2) и 1,0 ≤ (Фс2н4/Фс2 н6) ≤ 3,0 и (1,5 ≤ Фс2н4/Нс2н 2 или 1,5 ≤ Фс2н4/Нс2н 4 или 1,5 ≤ Фсн4/Нс4 или	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤		-	6) He BEHIOJHHET CR YCJOBUE: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) I 1,0 ≤ (ΦCH4/ΦC2 H6) ≤ 3,0 I (1,5 ≤ ΦC2H2/HC2H 2 UJIU 1,5 ≤ ΦC2H4/HC2H 4 UJIU 1,5 ≤ ΦCH4/HCH4 UJIU 1,5 ≤ ΦCH4/HCH4 UJIU 1,5 ≤ ΦCH4/HCH4 UJIU 1,5 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤		-	6) - Не выполняет ся условие: (Фс2н2/Фс2 н4) < 0,1 и 1,0 ≤ (Фсн4/Фн2) и 1,0 ≤ (Фс2н4/Фс2 н6) ≤ 3,0 и (1,5 ≤ Фс2н4/Нс2н 2 или 1,5 ≤ Фс2н4/Нс2н 4 или 1,5 ≤ Фсн4/Нс4 или	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% 06.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4		-	6) - He BEINOJHHET CR YCJOBUE: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) I 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 I (1,5 ≤ ΦC2H2/HC2H 2 IIII 1,5 ≤ ΦC2H4/HC2H 4 IIII 1,5 ≤ ΦCH4/HCH4 IIII 1,5 ≤ ΦCH4/HCH4 IIII 1,5 ≤ ΦCH4/HCH4 IIII 1,5 ≤ ΦCH4/HCH4 IIIII 1,5 ≤ ΦCH4/HCH4 IIIII 1,5 ≤ ΦCH4/HCH4 IIIII 1,5 ≤ ΦCH2/HH2	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% 06.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4		-	6) He Beino, πhaete CR ychobue: (Φc2H2/Φc2 H4) < 0,1 I, 0 ≤ (ΦcH4/ΦH2) I, 0 ≤ (ΦcH4/Φc2 H6) ≤ 3,0 If (1,5 ≤ Φc2H2/Hc2H 4 IIII I,5 ≤ Φc2H4/Hc2H 4 IIII I,5 ≤ ΦcH4/HcH4 IIIII I,5 ≤ ΦcH6/HcH4 IIIII I,5 ≤ ΦcH6/HcH4 IIIII I,5 ≤ ΦcH6/HcH4 IIIII I,5 ≤ ΦcH6/HcH4 IIIII I,5 ≤ ΦcH6/HcH4 IIIII I,5 ≤ ΦcH6/HcH4 IIIIII I,5 ≤ ΦcH6/HcH4 IIIIII I,5 ≤ ΦcH6/HcH4 IIIIII I,5 ≤ ΦcH6/HcH4 IIIIII I,5 ≤ ΦcH6/HcH4 IIIIII I,5 ≤ ΦcH6/HcH4 IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% 06.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4		-	6) He BEIRIOJHHET CR YCLOBUE: (ΦC2H2/ΦC2 H4) < 0,1 I 1,0 ≤ (ΦCH4/ΦH2) I 1,0 ≤ (ΦC2H4/ΦC2 H6) ≤ 3,0 I (1,5 ≤ ΦC2H2/HC2H 4 IUIN 1,5 ≤ ΦC2H4/HC2H 4 IUIN 1,5 ≤ ΦCH4/HCH4 IUIN 1,5 ≤ ΦH2/HH2 IUIN 1,5 ≤ ΦH2/HC1 III 1,5 ≤ ΦH2/HC1 III 1,5 ≤ ΦH2/HC1 III 1,5 ≤ ΦH2/HC1 III 1,5 ≤ ΦH2/HC1 IIII 1,5 ≤ ΦH2/HC1 IIII 1,5 ≤	нет	нет	
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4		-	6) He Beino, πhaer CR ychobue: (Φc2H2/Φc2 H4) < 0,1 I, 0 ≤ (ΦcH4/ΦH2) I, 0 ≤ (Φc2H4/Φc2 H6) ≤ 3,0 II (1,5 ≤ Φc2H2/Hc2H 4 IIII 1,5 ≤ Φc2H4/Hc2H LITI 1,5 ≤ ΦcH4/HcH4 IIIII 1,5 ≤ ΦH2/HcH4 IIIII 1,5 ≤ ΦH2/HcH4 IIIII 1,5 ≤ ΦH2/HcH4 IIIIII 1,5 ≤ ΦH2/HcH4 IIIIII 1,5 ≤ ΦH2/HcH4 IIIIII 1,5 ≤ ΦH2/HcH4 IIIIIIIIIII 1,5 ≤ ΦH2/HcH4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	нет	нет	
				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних температур (300 - 700°С)		я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/ФH2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ ФH2/HH2 или 1,5 ≤ ФH2/HH2 или 1,5 ≤ ФH2/HH2 или 1,5 ≤	-		6) He Benionhert CR ychobue: (Φc2H2/Φc2 H4) < 0,1 I,0 ≤ (ΦcH4/ΦH2) I,0 ≤ (ΦcH4/ΦC2 H6) ≤ 3,0 I(1,5 ≤ ΦC2H2/HC2H 4 UIM 1,5 ≤ ΦC2H4/HC2H 4 UIM 1,5 ≤ ΦCH4/HCH UIM 1,5 ≤ ΦCH4/HCH UIM 1,5 ≤ ΦCH2/HH2 UIM 1,5 ≤ ΦCH4/HCH I,5 ≤ ΦCH4/HCH I,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤ ΦCH4/HCH IIM 1,5 ≤	нет		
943				газов (С2Н2/С2Н4, СН4/Н2, С2Н4/С2Н6), характерные для термических дефектов в диапазоне средних	% o6.	я условие: (Фс2H2/Фс2H4) < 0,1 и 1,0 ≤ (ФсH4/Фн2) и 1,0 ≤ (Фс2H4/Фс2H6) ≤ 3,0 и (1,5 ≤ Фс2H2/Нс2H2 или 1,5 ≤ Фс2H4/Нс2H4 или 1,5 ≤ ФсH4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4 или 1,5 ≤ Фн2H4/НсH4		-	6) He Beino, πhaer CR ychobue: (Φc2H2/Φc2 H4) < 0,1 I, 0 ≤ (ΦcH4/ΦH2) I, 0 ≤ (Φc2H4/Φc2 H6) ≤ 3,0 II (1,5 ≤ Φc2H2/Hc2H 4 IIII 1,5 ≤ Φc2H4/Hc2H LITI 1,5 ≤ ΦcH4/HcH4 IIIII 1,5 ≤ ΦH2/HcH4 IIIII 1,5 ≤ ΦH2/HcH4 IIIII 1,5 ≤ ΦH2/HcH4 IIIIII 1,5 ≤ ΦH2/HcH4 IIIIII 1,5 ≤ ΦH2/HcH4 IIIIII 1,5 ≤ ΦH2/HcH4 IIIIIIIIIII 1,5 ≤ ΦH2/HcH4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	нет	нет	

				·			09									
					газов (С2Н2/С2Н4, СН4/Н2,			я условие:				выполняет				
		1			С2Н4/С2Н6), характерные для			0,1 ≤			ļ	СЯ				
1					разрядов большой мощности			$(\Phi_{C2H2}/\Phi_{C2H4}$				условие:				
i l			l .				•)≤3				0,1 ≤				
		į.					1	и 01				(Φ_{C2H2}/Φ_{C2})				
		1						0,1≤(Φ _{CH4} /Φ				н4) ≤3				
								н2)≤1 и				и 0,1≤(Φ _{CH4} /				
							[[a 3 ≤		1		0,1≤(Φ _{CH4} / Φ _{H2})≤1				
								$(\Phi_{\rm C2H4}/\Phi_{\rm C2H6})$				¥H2)≤1 И				
í í		1					ĺ)			[3 ≤				1
								и				$(\Phi_{C2H4}/\Phi_{C2}$				
								(1,5 ≤				н6)				
1							1	$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H2}}$				и				
								или				(1,5 ≤				
			ļ					1,5 ≤				$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H}}$				
'		1						Фс2Н4/Нс2Н4		İ		2				
		1						или 1,5 ≲		1		или 1,5 ≤				
		1					1	т, Ј ⊆ Фсн₄/Н _{сн4}				1,5 ≤ Φ _{C2H4} /H _{C2H}				
		1		}			1 1	или		}	}	ФС2H4/ПС2H 4		l		1
								1,5 ≤				4 или				
								Φ_{H2}/H_{H2}				1,5 ≤				
								или				Фсн4/Нсн4				
								1,5 ≤				или				
		İ	1					$\Phi_{\rm C2H6}/{\rm H}_{\rm C2H6}$				1,5 ≤				
)				Φ_{H2}/H_{H2}				
												или				
												1,5≤				
		1										Φ _{C2H6} /H _{C2H} 6)				
945	1 1	[[Отношения концентраций пар	% o6.	1	Выполняетс	-	-	_	He	нег	нет		
			1		газов (С2Н2/С2Н4, СН4/Н2,			я условие:				выполняет		1.01		
					С2Н4/С2Н6), характерные для			$(\Phi_{C2H2}/\Phi_{C2H4})$				СЯ				
					термического дефекта с t >)≤0,1				условие:				
					700°C		1	и				(Φ_{C2H2}/Φ_{C2})				
								1,0≤		1		_{H4}) ≤ 0,1				
								$\left(\Phi_{\text{CH4}}/\Phi_{\text{H2}}\right)$				И				
								и 3≤			ŀ	1,0≤				
			1					$(\Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$				$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$				
1			Į				}	(C2H4) C2H6		ļ]	и 3 ≤				
								и				(Φ_{C2H4}/Φ_{C2})				
								(1,5 ≤				H6)				
				:				$\Phi_{\text{C2H2}}/H_{\text{C2H2}}$				И				
		1						или				(1,5 ≤				
								1,5 ≤				$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H}}$				
				1				Фс2н4/Нс2н4				2				
		1					1	или 15<				или 15/				
		1						1,5 ≤ Φ _{CH4} /H _{CH4}				$1,5 \leq \Phi_{\text{C2H4}}/H_{\text{C2H}}$				
							[ФСН4/ТІСН4 ИЛИ]]	ФС2H4/ПС2H				j
	[1					[1,5 ≤				или	[
							1	Φ_{H2}/H_{H2}				1,5 ≤				
								или				Фсн4/Нсн4				
		1						1,5 ≤		1		или				
		1						$\Phi_{\rm C2H6}/{\rm H}_{\rm C2H6}$				1,5 ≤				
		1)				Φ_{H2}/H_{H2}				
		1									[или				
] [1	1,5 ≤				
			1]					Фс2н6/НС2н				
946	1	Магнитоп	да	Потери	Изменение потерь холостого	%	 	-	0,30 < (Ф-	0,25 < (Ф-	0,20 < (Ф-	6) (Ф-Фо)/Фо	TTC***	110-	0.40	0.190
		ровод		холостого хода	хода от исходных значений	, ,		_	Фо)/Фо	Φο)/Φο <	Φο)/Φο <	≤ 0,20	нет	нет	0,49	0,180
					Фо (в соответствии с		[1		/	Фо)/Фо ≤ 0,30	Φo)/Φo ≤ 0,25					
1				<u> </u>	применяемой НТД)		<u> </u>				,					

						,			-							
947				Локальный нагрев бака	Аномальный локальный нагрев поверхности бака по результатам тепловизионного контроля		Имеется/ отсутствует	•	Имеется	-	-	Отсутству ег	нет	нет	0,30	
948				Состояние магнитопровод а	Наличие дефектов (прогар и оплавление активной стали, отсутствие изолящии между пластинами, ухудшение		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет	0,19	
949				Группа ресурсоопреде ляющих	магнитных свойств стали) Наличие: (дефектов магнитопровода или		Имеется/ отсутствует	Имеется	-	-	-	Отсутству ет	нет	да	0,02	_
				параметров	аномального локального нагрева поверхности бака) и потери холостого хода, превышающие 30 % от											
				<u>_</u>	исходных значений											<u></u>
950		Обмотка реактора	да	Состояние геометрии обмотки	Нарушение геометрии обмотки		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ег	нет	нет	0,06	0,180
951				Состояние изоляции	Сопротивление изоляции через 60 сек. после начала измерений (R60) в эксплуатации, приведенное к 20 °C, по сравнению с исходным значением Фо (в соответствии с применяемой НТД), приведенным к 20 °C	МОм		-	0,5 < (Фо- Ф)/Фо и Ф ≤ 3000	0,4 < (Фо- Ф)/Фо ≤ 0,5 и Ф ≤ 3000	-	(Фо-Ф)/Фо ≤ 0,4 или 3000 < Ф	нет	нет	0,31	
952					Тенденция изменения тангенса угла дизлектрических потерь (tgδ) обмотки, приведенный к 20 °C, по сравнению с исходным значением Фо (в соответствии с применяемой НТД), приведенным к 20 °C	%		-	0,5 < (Ф- Фо)/Фо и 1,0 < Ф	0,4 < (Ф- Фо)/Фо ≤ 0,5 и 1,0 < Ф	-	(Ф-Фо)/Фо ≤ 0,4 или Ф ≤ 1,0	нет	Het		
953				Состояние обмотки	Тенденция отклонения сопротивления обмотки постоянному току по сравнению со значением, указанном в техническом паспорте Фо	Ом		-	•	0,1 < (Φ - Φο) /Φο	-	(Ф - Фо) /Фо ≤ 0,1	нет	нет	0,31	
954				Состояние твердой изолящии	Влагосодержание твердой изоляции (для класса напряжения 110 кВ и выше, мощностью 60 МВА и более)	% массы		4<Ф	-	Φ = 4	2 ≤ Φ < 4	Ф<2	нет	нет	0,31	
955					Содержание фурановых производных (для класса напряжения 110 кВ и выше)	% массы		1 < Ф/Н	-	-	-	Φ/H ≤ 1	нет	нет		
956				Группа ресурсоопреде ляющих параметров	Степень полимеризации твердой изоляции	ед.		Φ≤250	250 < Φ ≤ 300	300 < Ф ≤ 400	-	400 < Ф	нет	да	0,01	
957		Обобщенн ый узел	нет	Срок службы	Срок службы (за исключением высоковольтных вводов)	лет		1,85 ≤ Φ/H	1 ≤ Ф/H < 1,85	0,57 ≤ Φ/H < 1	0,13 ≤ Φ/H < 0,57	Ф/Н < 0,13	нет	нет	1	0,075
958					Срок службы высоковольтного ввода (наибольшее значение)	лет		1,85 ≤ Φ/H	1 ≤ Φ/H < 1,85	0,57 ≤ Ф/H < 1	0,13 ≤ Φ/H < 0,57	Ф/Н < 0,13	нет	нет		
959	Преобразо вательная установка	Силовая часть преобразо	нет	Состояние преобразовател ыных блоков	Доля исправных силовых приборов ячеек	%		Ф/100 < 0,9	-	0,90 ≤ Φ/100 <0,95	0,95 ≤ Φ/100 <0,97	0,97 ≤ Φ/100	да	нет	0,400	0,6
960		вательног о			Доля исправных блоков управления ячеек	%		-	Φ/100 < 0,9	0,9 ≤ Φ/100 <0,95	0,95 ≤ Φ/100 <0,97	0,97 ≤ Φ/100	нет	нет		

044		, ,,,,,,,,			TT		17	77		76		^	~		,	
961		устройств			Наличие течей охлаждающей		Интенсивная (не менее 2-х	Интенсивна я (не менее	-	Капельная (не более l	Намокание/ оппотевание	Отсутству	нет	нет		
/ /	1	a	!	(жидкости	'	(не менее 2-х капель в	я (не менее 2-х капель в	i	(не оолеет капли в	OTHOTESAHME	eт	ľ		1 1	
i l							cex.)/	сек.)		cek.)	1	ļ				
i 1		1				'	капельная (не	,		,			, Į		[]	
(l							более 1 капли									
1							в сек.)/									
1 1							намокание/от									
1 1					i		потевание/									
962				Состояние	Замечания по результатам		отсутствует Имеются/		Имеются			Отсутству	нет	нет	0,300	
1 302				демпфирующи	высоковольтных испытаний		отсутствуют	_	Imacolca	_	_	ют	IICI	HOI	0,500	
1				х устройств на	изоляции				1							
963				постоянном	Неисправность		Имеется/	-	Имеется	•	•	Отсутству	нет	нет]	
				токе	измерительного оборудования цепи постоянного тока		отсутствует			_		ет				
964	-	1		Состояние	Неисправность заземляющих		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,300	ł
1 1				коммутационн	устройств		отсутствует					er				
1 1				oro												
		l		оборудования преобразовател	}										j l	
1 1		ļ		преооразовател												
965		Система	нет	Состояние	Наличие течей охлаждающей		Интенсивная	Интенсивна	-	Капельная	Намокание/	Отсутству	нет	нет	для	0,2
. ==		охлажден		теплообменной	жидкости		(не менее 2-х	я (не менее		(не более і	отпотевание	er			системы]
1 1		ня		части			капель в	2-х капель в		капии в					охлаждения	
		1					cex.)/	cer.)		cer.)			l	ı	водяной -	
	Ì		ļ				капельная (не более 1 капли							ı	0,4	
1			1	•			в сек.)/		}						воздушной - 0,7	
1 1	ļ						намокание/от							1	0,7	
							потевание/							ı		
j ,			!				отсутствует	1	ļ]]	ŀ
966					Доля исправных насосных	%		Φ/100 ≤ 0,5	0,5 <	0,6 ≤ Φ/100		0,9≤	нет	нет]	
					установок				Ф/100 <0,6	<0,8	<0,9	Ф/100			1	l
967					Доля исправных ионообменных фильтров	%		$\Phi/100 \le 0,5$	0,5 < Φ/100 <0,6	0,6 ≤ Φ/100 <0,8	0,8 ≤ Ф/100 <0,9	0,9 ≤ Φ/100	нет	HeT		
968					Доля исправных теплообменников	%		Ф/100 ≤ 0,5	0,5 < Ф/100 <0,6	0,6 ≤ Φ/100 <0,8	0,8 ≤ Φ/100 <0,9	0,9 ≤ Φ/100	нет	нет		
969					Доля исправных механических фильтров	%		Φ/100 ≤ 0,5	0,5 < Φ/100 <0,6	0,6 ≤ Φ/100 <0,8	0,8 ≤ Φ/100 <0,9	0,9 ≤ Φ/100	нет	нег		
970					Доля исправных запорной и регулирующей арматуры	%		Φ/100 ≤ 0,5	0,5 < Ф/100 <0,6	0,6 ≤ Φ/100 <0,8	0,8 ≤ Φ/100 <0,9	0,9 ≤ Φ/100	нет	нет	1	
971					Доля исправных вентиляторных установок	%		Φ/100 ≤ 0,5	0,5 < Φ/100 <0,6	0,6 ≤ Φ/100	0,8 ≤ Φ/100 <0.9	0,9 ≤ Φ/100	нет	нет	1	
972				Состояние	Наличие течей охлаждающей		Интенсивная	Интенсив на	-	Капельная	Намокание/	Отсутству	нет	нет	для	1
				системы	жидкости		(не менее 2-х	я (не менее		(не более1	отпотевание	eT			системы	
	1	1		водоподготовк			капель в	2-х капель в	[капли в			i i	1	охлаждения	1
	[и			cek.)/	сек.)		cer.)				ł	водяной -	
							капельная (не		1					ı	0,3	
	1						более 1 капли в сек.)/	1						I	воздушной -	
		1					намокание/от	1						I	"	
		1			l		потевание/]				·		I		
				1			отсутствует	<u></u>	L					i		
973					Доля исправных дистиляторов	%		Ф /100 ≤ 0,5	0,5 < Ф/100 <0,6	0,6 ≤ Φ/100 <0,8	0,8 ≤ Φ/100 <0,9	0,9 ≤ Φ/100	нет	нет]	
974					Неисправность насоса		Имеется/ отсутствует	Имеется	- '-		-	Отсутству	нет	нет	1	
975					Неисправность контрольно- измерительной и пусковой		Имеется/ отсутствует	Имеется	-	-	-	Отсутству	нет	нет		
]		аппаратуры	ļ	ļ	Φ/H ≤ 0,5	0,5 < Φ/H	0,6 ≤ Φ/H	0,8≤Φ/H<	1 = Φ/H	нет	нет	0,3	ļ
976	1	1	1	('Octobritise	Kimomethe rosmurs											
976				Состояние	Выполнение графика	шт.		\ \frac{\pi_{11}}{2} \ \text{0,5}			1	1-4/11	Hei	Rei	0,5	
976				состояние контрольно- измерительной	выполнение графика калибровки средств измерения (СИ)	шт.		0,11 _ 0,5	<0,6	<0,8	1	1-4/11	HCI	Her	0,3	

				Ta	Ta	Γ	I								т	,
978				аппаратуры	аппаратуры Неисправность	<u> </u>	отсутствует Имеется/	Имеется				ет			4	
3/6					технологических защит		OTCYTCIBYET	I I I I I I I I I I I I I I I I I I I	, and the second	_	_	Отсутству ег	Het	Het	r	
979		Система	нет	Состояние	Неисправность систем		Имеется/	Имеется	-			Отсутству	нет	нет	0,4	0,1
		управлени	1	системы	управления и регулирования		отсутствует					er	1101	1201	", "	-,-
980		R		управления	Ненсправность комплекта		Имеется/	Имеется	-	-	-	Отсутству	HeT	нет	1	
				преобразовател			отсутствует					ет			J	
981				ем	Неисправность систем		Имеется/	Имеется	-	-		Отсутству	Het	Het	1	
		1			аварийного		отсутствует					eт				
000			ļ		осциллографирования	 	Имеется/	Имеется							4	
982			-		Неисправность автоматики		отсутствует	PIMCCICA	<u>-</u>	-	-	Отсутству	Het	Het		
983			1	Состояние	Неисправность систем	<u> </u>	Имеется/	Имеется				ет			0,3	1
765				шкафов	управления		отсутствует	1220102				Отсутству	нет	H¢T	0,3	
984				управления и	Неисправность системы		Имеется/	Имеется	-	-		Отсутству	нет	Her	1	
				контроля	контроля и защиты		отсутствует					ет	10.	1101		
	!	:	Į.	преобразовател	_	ŀ			1							
			- [ьных блоков											<u> </u>]
985				Состояние	Доля исправных ИБП	%		$\Phi/100 \le 0,5$	0,5 <	0,6 ≤ Φ/100	0,8 ≤ Φ/100	0,9≤	нет	Het	0,3	
				источников			1		Ф/100 <0,6	<0,8	<0,9	Ф/100				
				о питания												•
				(далее – ИБП)											•	
986		Обобщени	нет	Состояние	Неисправность систем	† 	Имеется/	Имеется				Отсутству			0,5	0,100
700		ый узел		здания/	обогрева и вентиляции		отсутствует		1		i -	ет	нет	нет	0,5	3,100
987]	1	помещения	Наличие дефектов по		Имеется/	Имеется			-	Отсутству	нет	нет	1	1
				преобразовател	состоянию крыши, стен,		отсутствует			ļ		er	""			
				Я	полов, перекрытий,											
					требующих непланового											
					ремонта	<u> </u>	77 /								1	
988					Наличие дефектов дренажной	j	Имеется/	Имеется	-	-	-	Отсутству	нет	нет		
					системы, требующих непланового ремонта		отсутствует					er				
989				Срок службы	Средний срок службы	лет	 	1,85 ≤ Φ/H	1≤Φ/H<	0,57 ≤ Φ/ H	0,13 ≤ Φ/H	Φ/H < 0,13			0,5	1
767		j		Opon wiyanozi	преобразовательных блоков	""		2,05 _ 2,22	1,85	<1	< 0,57	Ψ/Η < 0,13	нет	нет	0,5	
990	1				Средний срок службы	лет		1,85 ≤ Ф/H	1 ≤ Φ/H <	0,57 ≤ Φ/H	0,13 ≤ Φ/H	Φ/H < 0,13	нет	нет	1	
					оборудования системы				1,85	< 1	< 0,57	l				
			ļ		охлаждения											
991				1	Средний срок службы	лет		1,85 ≤ Φ/H	1 ≤ Φ/H <	0,57 ≤ Φ/H	0,13 ≤ Φ/H	Ф/H < 0,13	нет	нет		
i					аппаратуры систем				1,85	< 1	< 0,57					
000	T1	. D		Общие	управления Течь масла		Интенсивная	Интенсивна	Varran		TI				 	
992		р Высоково льтный	нет	сведения	течь масла	1	(не менее 2-х	я (не менее	(не более 1	•	Намокание/ отпотевание	ет	Het	нет	Герметичны е вводы -	устройст
	матор	нс ввод		СВСДСНИИ			капель в	2-х капель в	каши в	ļ	Officiesaniac	61			0,25;	BOM
	формато						cek.)/	cer.)	сек.)		1				негерметич	регулир
	силовой						капельная (не	,	′						ные вводы -	кинваю
	(классом					ļ	более 1 капия								0,25;	напряже
	напряже						B CCR.)								герметичны	RNH
	ия 110 к						намокание/от								е вводы с	(далее –
	и выше)		1				потевание/		1	1	1	1			твердой	PIIH) -
993	d				Наличие дефектов покрышки	 	отсутствует Имеется/	Имеется	_	 	 	0			изолящией -	0,110
773					наличие дефектов покрышки с характеристиками,		отсутствует	PIMOSICA	-	1 -	-	Отсутству ет	нет	Het	0,5	без РПН - 0,120
					превышающими значения,		O10, loibyei		1	1	1	61				- 0,120
					установленные НТД											
994	1				Неравномерное	1	Имеется/	Имеется	-	-	-	Отсутству	нет	нет	1	
					распределение температуры		отсутствует			1		er	l			
					по результатам							1				
]				тепловизионного конгроля	ļ	<u> </u>				<u> </u>			<u> ,</u>	_	
995		- [Давление масла	кгс/см2		Φ<0,1	-	-	-	0,1 ≤ Φ ≤ 3	нет	Het		
								или		1	1	1				
000	- I) (1	Manager /	3<Ф	TT_		 	14	 		4	
996					Маслоотборное устройство	ł	Исправно/	-	Не	-	-	Исправно	HeT	нет		
997	∤				Аномальный локальный	 	не исправно Имеется/	Имеется	исправно			0			4	
77/	<u> </u>		_L		AUGUSTION NORSHPHIN	L	1 TIMECTON/	TIMOCIUM		<u> </u>	<u> </u>	Отсутству	нет	нет	<u> </u>	

					7.5								
			нагрев крышки]	отсутствует					ет			
			измерительного вывода по										
			результатам тепловизионного										
998			контроля Степень развития дефекта	 	Аварийный	Аварийный		_		Дефект	нет	нет	1
//3			контактных соединений по		дефект/	дефект	-	-	-	отсутствуе	HC1	HCI	
			результатам тепловизионного		дефект					т			
			контроля		отсутствует					_			
999		Хроматографи	Концентрация ацетилена	% об.	<u> </u>	1 < Ф/Н	0,6 < Ф/Н	0,3 < Φ/H ≤	0,1 < Φ/H ≤	Φ/H ≤ 0,1	нет	нет	Герметичны
		ческий анализ	C2H2				≤ 1	0,6	0,3				е вводы -
1000		газов,	Суммарное содержание	% об.		1,0 < Ф/Н	-		-	Φ/H ≤ 1,0	нет	нет	0,25;
İ		растворенных	углеводородных газов в масле							·			негерметич
		в масле	SCxHy		<u> </u>								ные вводы -
1001			Общее газосодержание масла	% об.		4<Ф	-	2<Φ≤4	-	Φ≤2	нет	нет	0;
			(герметичные										герметичны
			маслонаполненные вводы)	1									е вводы с
										1			твердой
		İ						i l					изолящией - 0
1002	1	Физико-	Пробивное напряжение	кВ	 	Φ/H < 1		1 ≤ Ф/Н		1≤	How	*****	
1002		химический	11pvondivo naupanenne	***	1	*/**	_	и п	-	Φ/(H+5)	нет	Het	Герметичны е вводы -
		анализ масла			1			Φ/(H+5) <		=,(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0,25;
					1			1 1					негерметич
1003			Влагосодержание (для	г/т		1,0 < Ф/Н	-	Φ/H ≤ 1,0	-	Φ/(H - 5) ≤	нет	нет	ные вводы -
			негерметичных вводов)			·		и		1,0			0,25;
1	1 1		1	}	1]		1 < Ф/(Н -					герметичны
								5)					е вводы с
1004			Влагосодержание (для	г/т		1,0 < Ф/Н	-	Φ/H ≤ 1,0	-	Φ/(H - 5) ≤	нет	нет	твердой
			герметичных вводов)		1			и		1,0			изоляцией -
					1			1 < Ф/(Н -		[[0
1005			T	B/	ļ			5)					4
1005			Тангенс угла диэлектрических	%	1		-		-		нет	нет	
		i	потерь (tgδ) масла при 90 °C для класса напряжения 110 -			15 < Ф		12 < Φ≤15		n - 12			
] [150 кВ (включительно)			13/Ψ		$\begin{bmatrix} 12 \setminus \Psi \leq 13 \end{bmatrix}$		Φ≤12			
			для класса напряжения 220 -			10 < Ф		8<Φ≤10		Φ≤8			
			500 кВ (включительно)			10 14		0 4 2 10		4 - 6			
			для класса напряжения 750 кВ			5<Φ		3<Φ≤5		Φ≤3			
			и выше							= = 3			
1006			Содержание	мгКОН/г		-	~	1,0 <		Φ/0,014 ≤	нет	нет	1
			водорастворимых кислот и					Ф/0,014		1,0			
1			щелочей (для герметичных		1								
			вводов класса напряжения 110		1								
			кВ и выше)		ļ]
1007			Содержание	мгКОН/г		-	-	1,0 <	-	Φ/0,030 ≤			
			водорастворимых кислот и					Ф/0,030		1,0			
ļ.			щелочей (для негерметичных										
1			вводов класса напряжения 110		1	1					ļ		
1000			кВ)	>=VOII/	-			ļ	1 15 -	0/0			4
1008			Тенденция изменения	мгКОН/г		-	-	-	1,15 <	Ф/Фпред ≤	нет	нет	
	j		содержания водорастворимых кислот и щелочей в масле по						Ф/Фпред	1,15			
			сравнению с предыдущим			[
			замером Фпред					1			1		
1009			Класс промышленной	класс	1	1,0 < Ф/Н	-	$\Phi/H = 1.0$	-	Φ/H < 1,0	нет	нет	┥ ┃
1307			чистоты масла			-,,-		,"	-	-/11 - 1,0	1101	1101	
1010			Тенденция изменения класса	класс	†		-	-	1 < (Ф	(Φ-	нет	нет	-
			промышленной чистоты						Фпред)	Фпред) ≤ 1		2404	
			масла по сравнению с										
	1 1		предыдущим замером Фпред		1		L]					
1011			Кислотное число (для	мгКОН/г		0,25 < Φ	-	0,1 < Φ ≤	•	Φ≤0,1	нет	нет	7
	j j		негерметичных					0,25		/-			
			маслонаполненных вводов)	<u> </u>]
			Температура вспышки масла в	°C		Φ<125	-	-		125≤ Φ	нет	нет	7 I
1012	, , , ,		закрытом тигле (для	•	1							1101	1 1

		· -					Ι.								1	
					негерметичных											
1013					маслонаполненных вводов) Тенденция изменения	°C				5 ≤ (Фпред		(Фпред -	нет	TIOT.	-	ļ
1013		:		ļ	температуры вспышки в		·	_	-	э ⊵ (Фифед - Ф)	-	Φ) < 5	HCI	нет		İ
					закрытом тигле по сравнению					- 4)		(4) \ 3				
					с предыдущим замером											
]]	ļ.		ļ	Фпред (для негерметичных]] ,	ļ
					маслонаполненных вводов)										-	. [
1014					Содержание	%		Φ/H < 1	-	1 ≤ Φ/H <		1,5 ≤ Φ/H	нет	нет	1	
1014				i	антиокислительной присадки	/•		2 /11 • 1		1,5	_	1,5 _ 4/11	HOI	HOI		i i
					(негерметичные вводы для					1,0						
		ļ			класса напряжения свыше 110											
					кВ)											
1015				Состояние	Сопротивление изоляции	МОм		Φ < 500	-	_	_	500 ≤ Φ	нет	нет	Герметичны	
				изоляции	измерительного вывода										е вводы -	
1016					Тангенс угла диэлектрических	%		1 < Ф/Н	•	0,8 ≤ Φ/H ≤	0,66 ≤ Φ/Η	Φ/H < 0,66	нет	нет	0,25;	
	1				потерь (tgб) основной					1	< 0,8	,			негерметич	
	1	ļ			изоляции, приведенный к 20						•				ные вводы -	
		ļ			l °C										0,5;	
1017					Тангенс угла диэлектрических	%		1 < Ф/Н	-	0,8 ≤ Φ/H ≤	0,66 ≤ Φ/Η	Φ/H < 0,66	нет	нет	герметичны	
					потерь (tgδ) последних слоев			!		1	< 0,8	·			е вводы с	
					изоляции, приведенный к 20										твердой	
1				1	°C										изолящией -	
1018				1	Емкость основной изоляции	пФ		Н<(Ф-	-		-	(Ф-Фо)/Фо	нет	нет	0,5	
		ĺ						Фо)/Фо				≤Н (при				
		1						(при				отсутстви				
	1							отсутствии				и указаний				
]	указаний в				В				
								документац				документа				1
						[ии				тіни				
((1		ĺ	[ĺ	ľ	организаци				организац			1	ľ
								и-				ии~				
		1						изготовител				изготовите				
								я Н = 0,05)				ля Н ==				
				<u> </u>								0,05)			<u> </u>	
1019		спомогат	нет	Дефекты бака,	Механическое повреждение		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,5	с РПН -
		њное		навесного	(деформация)		отсутствует					er			↓	0,070
1020		борудова		оборудования	Несоответствие величины		Имеется/	-	Имеется	-	-	Отсутству	Het	нет		без РПН
	HE	ие			наклона крышки бака по		отсутствует					ет				- 0,075
					направлению к газовому реле											
					значению, установленному	•										
1021					НТД Треск, шумы внутри бака		Имеется/		Имеется			<u> </u>			-	1
1021					треск, шумы внутри оака		1	-	PIMEETCM	-	-	Отсутству	нет	нет		
1022					Течь масла через сварные		отсутствует Интенсивная		Интенсивн	Капельная	Намокание/	ет Отсутству	TEAT	77070	-	
1022		Į.			пвы		(не менее 2-х	-	ая (не	(не более 1	отпотевание		нет	нет		
		ļ			Шъм		капель в		менее 2-х	капли в	Оппотевание	er				
ļ ļ							cek.)/		капель в	cer.)						
1 1							капельная (не		сек.)	*************************************						
	ļ	I						I	1 JUL,	I						
																: I
							более 1 каппя									1
							более 1 капля в сек.)/							i		•
							более 1 капля в сек.)/ намокание/от									
							более 1 капля в сек.)/ намокание/от потевание/									
1023					Течь масла через уплотнение		более 1 капля в сек.)/ намокание/от	-	Интенсивн	Капельная	Намокание/	Отсутству	нет	нет		
1023					Течь масла через уплотнение разьема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная	-	Интенсивн ая (не	Капельная (не более 1	Намокание/ отпотевание	Отсутству	нет	нет		
1023		ļ			разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х	-	Интенсивн ая (не менее 2-х			Отсутству	нет	нет		
1023		ļ					более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная	-	ая (не	(не более 1 капли в		1 1	нет	нет		
1023					разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х капель в	-	ая (не менее 2-х	(не более 1		1 1	нет	нет		
1023					разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х капель в сек.)/	-	ая (не менее 2-х капель в	(не более 1 капли в		1 1	нет	нет		
1023					разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х капель в сек.)/ капельная (не	-	ая (не менее 2-х капель в	(не более 1 капли в		1 1	нет	нет		
1023					разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 каппя в сек.)/ намокание/от	-	ая (не менее 2-х капель в	(не более 1 капли в		1 1	нет	нет		
1023					разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 каппя в сек.)/	-	ая (не менее 2-х капель в	(не более 1 капли в		1 1	нет	нет		
					разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 каппя в сек.)/ намокание/от потевание/ отсутствует	-	ая (не менее 2-х капель в сек.)	(не более 1 капли в сек.)	оппотевание	er	нет	нет		
1023					разъема бака, маслопровода,		более 1 каппя в сек.)/ намокание/от потевание/ отсутствует Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 каппя в сек.)/ намокание/от потевание/	-	ая (не менее 2-х капель в	(не более 1 капли в сек.)	оппотевание	er	нет	нет		

					75								
			«низкой» стороне		(не менее 2-х		ая (не	(не более 1	отпотевание	eт			
]]		1 1		капель в		менее 2-х	капли в					
		1	1		сек.)/		капель в	сек.)					
								CCR.)				ŀ	
1					капельная (не		сек.)				- 1	1	
					более 1 капля						1		
<u> </u>			1		в сек.)/								
			1		намокание/от								
					I .				ì				į
			1		потевание/		Į.						į.
	i l				отсутствует						l		!
1025			Наличие замечаний по		Имеется/	-	_	Имеется	-	Отсутству	нет	нет	1
1023			системе охлаждения		l .			111100101		1	1101	no.	
					отсутствует					ет			
1026			Наличие замечаний по		Имеется/	-	•	Имеется	-	Отсутству	нет	нет	
		1 1	системе обогрева		отсутствует					eт			
1027			Отсутствие масла в		Имеется/	-			Имеется	Отсутству	*****		
1027	i l	1 1	1 -			_	-	_	PIMEETCA		нет	нет	
		1 1	гидрозатворе		отсутствует					et			
1028	1 1	1 1	Неисправность обогрева		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	
		[шкафа автоматического		отсутствует					ет			Į.
		1			Oloy lolly Cl					\ \frac{1}{2}			
		i i	управления охлаждением				1					- 1	
			трансформатора (далее –	l	ĺ						ŀ	l	l
	i l	1 1	IIIAOT)	l							l	l	l
1020		1			Имеется/			Имеется	- -	0			I
1029			Дефект	I	1	-		KINCCICA	_	Отсутству	нет	нет	l
		1 1	воздухоосущительного		отсутствует					er	l	1	I
			фильтра						}		l		I
1030		1	Неисправное состояние		Имеется/	_	_		Имеется	Отсутству		From	l
1030			1 -		1	l -	· -	l -	KUIUUMII		нет	нет	I
			указателя уровня масла		отсутствует					er			l
1031	}	1 1	Неисправность автоматики		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	}
			обдува		отсутствует					er			
1000	1			 				17					
1032	1		Неисправность		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	
	1 1	1	термосигнализатора		отсутствует					eT			
1033		Į	Неисправность		Имеется/	-	-	-	Имеется	Отсутству	нет	нет	
1433		1	электродвигателя обдува		1								
	<u> </u>	1 1			отсутствует					ет			
1034	1 1	1 1	Неисправность		Имеется/	-	-	Имеется	-	Отсутству	нет	нет	
		1 1	термосифонного фильтра	ŀ	orcyrcrayer					ет			
1035	1 1	1 1	Течь масла из-под		Интенсивная		_	Интенсивн	Капельная	Отсутству		****	
1055	i i	1 1		•		_	_		1		нет	нет	
		1	маслоотборного устройства		(не менее 2-х			ая (не	(не более 1	er			
1	1	1		1	капель в			менее 2-х	капли в				
					сек.)/	i		капель в	сек.)				
1		1			1 '			I	COAL)				
	i I	1			капельная (не			сек.)					
		1 [более 1 капля						i		
! !		1 1	-		в сек.)/								
1	1	1 1	1		отсутствует						i		
		1 1		 					 				
1036		i i	Течь масла из-под привода		Интенсивная	-	-	Интенсивн		Отсутству	нет	нет	
]]		переключателя напряжения /	i	(не менее 2-х			ая (не	(не более 1	ет			1
			углового редуктора РПН		капель в			менее 2-х	капли в		l		l
		1	углового родуктора г пп	1				I					1
				I	сек.)/			капель в	сек.)				1
				I	капельная (не			сек.)					1
		1	1	I	более 1 капля			l			l		1
									1		l		ļ
				Į.	в сек.)/				1				į
				<u> </u>	отсутствует			<u> </u>					1
1037		1	Течь масла из-под сливной		Интенсивная	-	-	Интенсивн	Капельная	Отсутству	нет	нет	1
105/		1			(не менее 2-х				(не более 1		1101	HC1	1
		1	пробки		1 '			ая (не	1 '	ет	l	1	1
	1 1				капель в	1		менее 2-х	капли в		l		1
] [1		сек.)/			капель в	сек.)		l		1
			I		капельная (не			сек.)			l		1
]					~~.,	1		ļ		
	1		1	l	более 1 каппя			1	1				1
1			1	1	в сек.)/	1	1	1	1				1
1 1	Į I		1	1	отсутствует	1	1	I]	ļ		1
1020			V	 		 	 	II v	П.	- D			1
1038	į į	1	Уровень масла		Низкий/	-	-	Низкий	Повышенн	В норме	нет	нет	1
	j			1	повышенный/				ый				
			I	1	в норме	j	1	1	1				[
1000			2	 		 	 	 	+ + + + + + + + + + + + + + + + + + + +	<u> </u>			1
1039			Значительное нарушение		Имеется/	-	-	ı -	Имеется	Отсутству	нет	нет	1
	Į I		лакокрасочного покрытия (со	l	отсутствует	1	1	1	1	e _T			I
1 1	į l		следами коррозии, потеками	1	1 '	Į.	1	I	1				1
	j	1 [1	1	1		I	1				1
			ржавчины)	<u> </u>	ļ		 						1
													1
1040			Увлажнение силикагеля	1	Имеется/	-	-	-	Имеется	Отсутству	нет	нет	

		T		T	T		70	 		1		т	· · · · · · · · · · · · · · · · · · ·	Г		
1041					Дефект защиты масла		отсутствует Имеется/			-	Имеется	ет Отсутству	нет	нет		
							отсутствует					er		1101		
1042			ļ	Защитное оборудование	Разрушение (трещины) мембраны выхлопной трубы		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет	0,5	
1043					Неисправность газового реле	-	Имеется/ отсутствует	-	Имеется	-	•	Отсутству ет	нет	нет		
1044		Изолящио нная система	нет	Состояние масла	Пробивное напряжение	кВ		Ф/Н < 1	-	1 ≤ Ф/Н и Ф/(H+5) < 1	-	1 ≤ Φ/(H+5)	нет	нет	0,5	с РПН - 0,320без РПН - 0,370
1045					Влагосодержание масла (с пленочной или азотной защитой)	г/т		1,0 < Ф/Н	-	Φ/H≤1,0 и 1 < Φ/(H - 5)	-	Φ/(H - 5) ≤ 1,0	нет	нет		0,570
1046					Влагосодержание масла (без специальных защит)	г/т		1,0 < Ф/Н	<u>-</u>	Ф/H≤1,0 и 1<Ф/(H- 5)	-	Φ/(H - 5) ≤ 1,0	нет	нет		
1047					Тенденция изменения влагосодержания масла по сравнению с предыдущим замером Фпред	г/т		-	-	-	0,3 ≤ (Ф - Фпред)/Фпр ед и 10 < Ф	(Ф - Фпред)/Фп ред < 0,3 или Ф ≤ 10	нет	нет		
1048					Класс промышленной чистоты масла	класс		1,0 < Ф/Н	-	$\Phi/H = 1,0$		Φ/H < 1,0	нет	нет		
1049			i		Тенденция изменения класса промышленной чистоты масла по сравнению с предыдущим замером Фпред	класс		-	-	-	1 < (Ф – Фпред)	(Ф- Фпред) ≤ 1	нет	нет		
1050					Кислотное число	мгКОН/г		1 < Ф/Н	-	0,4 < Φ/H ≤	-	Φ/H ≤ 0,4	нет	нет		
1051					Содержание антиокислительной присадки (без специальных защит масла, для класса напряжения свыпие 110 кВ)	%		Ф/Н < 1	-	1 = Φ/H	-	1 < Ф/Н	нет	нет		
1052					Температура вспышки в закрытом тигле	°C		Φ < 125	-	-	-	125≤Φ	нет	нет		
1053					Тенденция изменения температуры вспышки в закрытом тигле по сравнению с предыдущим замером Фпред	°C		-	-	5 ≤ (Фпред - Ф)	-	(Фпред - Ф) < 5	нет	нет		
1054					Тангенс угла диэлектрических потерь (tgδ) масла при 90 °C для класса напряжения 110 - 150 кВ (включительно)	%		15 < Ф	_	12 < Φ ≤ 15	-	Φ≤12	нет	нет		
					для класса напряжения 220 - 500 кВ (включительно) для класса напряжения 750 кВ и выше			10 < Ф 5 < Ф		8 < Φ ≤ 10 3 < Φ ≤ 5		Φ ≤ 8 Φ ≤ 3				
1055					Содержание водорастворимых кислот и щелочей	мгКОН/г		-	-	1,0 < Ф/0,014	-	Φ/0,014 ≤ 1,0	нет	нет		
1056					Тенденция изменения содержания водорастворимых кислот и щелочей в масле по сравнению с предыдущим замером Фпред	мгКОН/г		-	-	-	1,15 < Ф/Фпред	Ф/Фпред ≤ 1,15	нет	нет		
1057					Содержание растворимого шлама (для класса напряжения свыше 110 кВ)	% массы		-	1 < Ф/Н	Ф/Н = 1		Ф/Н < 1	нет	нет		
1058]			Хроматографи	Концентрация водорода Н2	% об.		$1 \leq (\Phi/H)_{H2}$		$1 \leq (\Phi/H)_{H2}$	$(\Phi/H)_{H2} < 1$	(Φ/H) _{H2} <	нет	нет	0,5	
1059	<u> </u>		<u> </u>	ческий анализ	Относительная скорость	% /мес.		И	<u> </u>	и	И	1 1	нет	нет		<u> </u>

<u> </u>	газов,	нарастания концентрации	Т		1 <		(Φ/10) _{VH2} ≤	1 <		- 1		
	газов, растворенных	нарастания концентрации водорода V (H2)			(Φ/10) _{VH2}		(Ψ/10)VH2≤	1 < (Ф/10) _{VH2}	и (Ф/10) _{VH2} ≤			
	в масле								1			
1060		Концентрация метана СН4	% об.		1 ≤ (Φ/H) _{CH4}	-	1 ≤	(Φ/H) _{CH4} < 1	(Φ/H) _{CH4} <	нет	нет	
1061		Относительная скорость нарастания концентрации	% /мес.		и 1 <	-	(Ф/H) _{СН4} и	и 1 <		нет	нет	
		нарастания концентрации метана V (СН4)			(Φ/10) _{VCH4}		и (Ф/10) _{VCH4}	(Φ/10) _{VCH4}	и (Ф/10)V _{СН4}			
		Moralia V (CIIV)			(1710)(014		(±,10)vcn4 ≤1	(±/10)VCH4	(₩/10)VCH4 ≤1			
1062		Концентрация этилена С2Н4	% об.		1 ≤	-	1 ≤	(Ф/H) _{С2Н4} <	(Φ/H) _{C2H4}	нет	нет	
1063		Относительная скорость	% /мес.		(Ф/H) _{С2Н4}	-	$(\Phi/H)_{C2H4}$	1	< 1	нет	нет	
		нарастания концентрации этилена V (С2Н4)			и 1 <		и (Ф/10) _{VC2H4}	и 1 <	и (Ф/10) _{VC2H}			
		этилена V (С2Н4)			(Φ/10) _{VC2H4}		(Ф/10)VC2H4 ≤1	(Φ/10) _{VC2H4}	(Φ/10)VC2H 4≤1			
1064		Концентрация этана С2Н6	% об.		1≤	-	1 ≤	(Φ/H) _{C2H6} <	(Φ/H) _{C2H6}	нет	нет	
1065		Относительная скорость	% /мес.		(Ф/H) _{С2Н6}	•	$(\Phi/H)_{C2H6}$	1	<1	нет	нет	1
		нарастания концентрации			и		И (Т. (10)	И	и			
		этана V (С2Н6)			1 < (Φ/10) _{VC2H6}		(Φ/10) _{VC2H6} ≤ 1	1 < (Ф/10) _{VC2H6}	(Φ/10) _{VC2H} 6≤1			1
1066		Концентрация ацетилена	% об.		1 ≤	-	1 ≤	$(\Phi/H)_{C2H2}$	6≥1 (Φ/H) _{C2H2}	нет	нет	
		C2H2			(Φ/H) _{C2H2}		(Φ/H) _{C2H2}	1	< 1		1101	
1067		Относительная скорость	% /мес.		и	-	И	и	и	нет	нет	
		нарастания концентрации			1<		(Φ/10) _{VC2H2}	1 <	(Ф/10) _{VC2Н}			
1068		ацетилена V (С2Н2) Концентрация диоксида	% об.		$\frac{(\Phi/10)_{\text{VC2H2}}}{1 \le (\Phi/\text{H})_{\text{CO2}}}$		≤1 1≤	$(\Phi/10)_{VC2H2}$ $(\Phi/H)_{CO2} < 1$	2≤1			
1009		углерода СО2	/6 OO.		1 ⊵ (Ф/п)со2	-	1 ≥ (Φ/H) _{CO2}	(Ψ/H)C02 < 1 14	(Φ/H) _{CO2} <	нет	нет	
1069		Относительная скорость	% /мес.		1 <	-	и	1 <	и	нет	нет	
		нарастания концентрации			(Φ/10) _{VCO2}		(Φ/10) _{VCO2}	(Φ/10) _{VCO2}	(Φ/10) _{VCO2}			
1050		диоксида углерода V (CO2)	B		1 1/2 775		≤1		≤1			
1070		Концентрация оксида углерода СО	% об.		1 ≤ (Ф/H) _{со} и	-	1 ≤ (Ф/H) _{со} и	(Ф/H) _{co} < 1 и	(Φ/H)co<	нет	нет	
1071		Относительная скорость	% /мес.		1 <	-	ν (Φ/10) _{VCO} ≤	1 <	и	нет	нет	
		нарастания концентрации	7 - 1 - 1 - 1		(Φ/10) _{vco}		1	(Φ/10) _{vco}	(Φ/10) _{VCO}	1101	1101	
		оксида углерода V (CO)							≤1			
1072		Общее газосодержание масла	% об.	i	4 < Ф	-	2<Φ≤4	-	Φ≤2	нет	нет	
1073		(с пленочной защитой) Отношения концентраций пар	% об.			Выполняе			He			
10/3		газов (С2Н2/С2Н4, СН4/Н2,	/0 00.		-	TCH	_	_	гіс выполняет	нет	нет	
		С2Н4/С2Н6), характерные для				условие:			СЯ			
		частичных разрядов с низкой				$(\Phi_{C2H2}/\Phi_{C2}$			условие:			
		плотностью энергии				_{Н4}) < 0,1 и			$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}})$			
						(Φ_{CH4}/Φ_{H2})			_{Н4}) < 0,1 и			
						< 0,1			(Φ_{CH4}/Φ_{H2})			
	1					и			< 0,1			
						$(\Phi_{C2H4}/\Phi_{C2}$			и			
						{н6})≤1 и			(Φ{C2H4}/Φ_{C2})			
		1				(1,5≤			_{Н6})≤1 и			
						$\Phi_{\rm C2H2}/H_{\rm C2H}$			(1,5≤			
						2			$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H}}$			
						ИЛИ 1.5.			2			
						1,5 ≤ Φ _{C2H4} /H _{C2H}			или 1,5 ≤			
						4 4			Фс2н4/Нс2н			
						NIIN			4			
		1				1,5 ≤			или			
						Ф _{СН4} /Н _{СН4} или		1	1,5 ≤			
						или 1,5 ≤			Ф _{СН4} /Н _{СН4} или			
						Φ _{H2} /H _{H2}			1,5 ≤			
		1				или			Фн2/Нн2			
						1,5 ≤			или			
		1				Фс2н6/Нс2н			1,5 ≤			
						6)			Φ _{C2H6} /H _{C2H} 6)			
	 		l	L	l	L			e)			

					/8								
1074			Отношения в	концентраций пар % об	5. Выпол	іняетс -	-	-	He	нет	нет		
1 1			газов (С2Н2/	C2H4, CH4/H2,	я усло				выполняет				
ļ i	i l	i i	C2H4/C2H6)	, характерные для	0,1	<	l l		СЯ				
1 1	1	1	частичных ра	, мириктериме для	[(A),1	100	l i						
J J	, ,	J J	частичных ра	аэридов с	(Фс2н2/	7 ¥C2H4	1 1	J	условие:	j		J	
			высокой пло	гностью энергии)<:			ļ	0,1 <	- 1			
1					и	i			(Φ_{C2H2}/Φ_{C2})	1			
1		, I			(Φ _{CH4} /	/Φ _{H2})			$_{\rm H4})$ < 3,0				
1	[1 1			< 0	0.1			и				
i !	!	1			и				$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$				
1	1	1			(Фс2н4/				< 0,1				
	1 1	1 1			ΨC2H4/	/ VC2H6							
		1 1)≤				И				
	1	1		ŀ	и				(Φ_{C2H4}/Φ_{C2})				
	1 1	1 1		i	(1,5	5≤			_{H6}) ≤ 1				
		1		İ	$\Phi_{ m C2H2}$	H _{C2H2}			и				
1	1 1	1			ил				(1,5 ≤				
	1	1		İ	1,5	:<			Фс2H2/Нс2H				
	1	1		1	Фс2н4/	/ra							
	l	1		1					2				
	i	i i			ил	IN	1	1	или				
		j	 		1,5	25			1,5 ≤				
	1				Фсн4/	H _{CH4}			Φ_{C2H4}/H_{C2H}				
1		1			пи	TR.			4				
			1	1	1,5	5≤			или	İ			
			1	1	Φ _{H2} /	/H ₁₂₂		l	1,5 ≤				
		į l	1	1	ΨH2/ ил			ĺ	Ψ \tau				
1 1	1 1	1 1	1	ł) MII	LM	1 1	ł	Фсн4/Нсн4	ł			
[]] 1			I	1,5	<u> </u>			или	ļ			
	ļ I	1		· ·	Фс2н6/	H _{C2H6}			1,5 ≤	i			
	i 1	1 1		i)			Φ_{H2}/H_{H2}				
	1	ł I				i			или	- 1			
1 1	1	i I	l l	1	1	į.			1,5 ≤	1			
1 1	1	1 1			1				A /II	- 1			
				1	1				Фс2н6/Нс2н	1			
<u> </u>	4 1				_				6)				
1075			Отношения і	сонцентраций пар % об			-	-	He	нет	нет		
]]		газов (С2Н2/	C2H4, CH4/H2,	я усло	овие:]	выполняет				
	ļ l		C2H4/C2H6)	, характерные для	0,1	l <]	СЯ				
	1		разрядов маг	юй мощности	(Фс2н2)				условие:				
	1		puspings in a		(-0212)	1 20214			0,1 <				
	1					<u>'</u>			(3,1,4				
	1	i i		l l	Щ				(Φ_{C2H2}/Φ_{C2})				
	1	1 1		[0,1	1≤			H4)				
		1		į	(Фсн4/	/Φ _{H2})			и				
		1			<u>≤ 1</u>	1,0			0,1 ≤				
	1					1			$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$				
	i i				1,0	1<			≤1,0				
	1		1 1		(4)	(a)							
					(Фс2н4)	7 ¥ C2H6		l	и				
[[1	[[[ſ)≤:		[ĺ	1,0 ≤	1			
				1	и	đ			(Φ_{C2H4}/Φ_{C2})	ŀ			
				1	(1,5	5≤	ļ İ		$_{\rm H6}) \leq 3.0$				
]	1		1	Фент	H _{C2H2}			и	1		1	
	1				1 - 0212		!			1		l l	
1 1	1							l	(1.5 <	1			
1									(1,5 ≤ Φουνη/Hour				
					ил 1,5	ии 5 ≤			$\begin{array}{c c} (1,5 \leq \\ \Phi_{\text{C2H2}}/\text{H}_{\text{C2H}} \end{array}$				
					ил 1,5 Ф _{С214} /	и 5 ≤ /H _{C2H4}			$ \begin{array}{c c} (1,5 \leq \\ \Phi_{\text{C2H2}}/\text{H}_{\text{C2H}} \\ 2 \end{array} $				
					ил 1,5 Ф _{с244} / ил	и 5 ≤ /H _{C2H4} и			(1,5 ≤ Ф _{С2H2} /Н _{С2Н} 2 или				
					ил 1,5 Ф _{С2H4} / ил 1,5	и 5 ≤ /Нс _{2H4} и 5 ≤			(1,5 ≤ Ф _{С2H2} /Н _{С2Н} 2 или 1,5 ≤				
					ил 1,5 Ф _{С214} / ил 1,5 Ф _{С14} /	114 5 ≤ /H _{C2H4} 114 5 ≤ /H _{CH4}			(1,5 ≤ Ф _{С2H2} /Н _{С2Н} 2 или 1,5 ≤				
					ил 1,5 Ф _{С2H} / ил 1,5 Ф _{СН} /	114 5 ≤ (/H _{C2H4} 114 5 ≤ (/H _{CH4}			$(1,5 \le \Phi_{C2H2}/H_{C2H})$ $(1,5 \le \Phi_{C2H4}/H_{C2H})$				
					ил 1,5 Ф _{С2H} / ил 1,5 Ф _{СН} /	114 5 ≤ (/H _{C2H4} 114 5 ≤ (/H _{CH4}			(1,5 ≤ Фс2H2/Нс2H 2 или 1,5 ≤ Фс2H4/Нс2H 4				
					ил 1,5 Ф _{С2HA} / ил 1,5 Ф _{СH} / ил	III 5 ≤ VHc2144 III 5 ≤ VHcH4 III			(1,5 ≤ Фс2нд/Нс2н 2 или 1,5 ≤ Фс2нд/Нс2н 4 или				
					ил 1,5 Фс2на/ ил 1,5 Фсна/ ил 1,5	IM 5 ≤ VHc2144 IM 5 ≤ S IM 5 ≤ VHcH4 IM 5 ≤ VHcH4 VHR2			$(1,5 \le 4)$ Φ_{C2H2}/H_{C2H} 2 μ_{IJM} $1,5 \le 4$ Φ_{C2H4}/H_{C2H} 4 μ_{IJM} $1,5 \le 4$				
					ил 1,5 Ф _{С2H4} / ил 1,5 Ф _{СH} / ил 1,5	IM 5 ≤ 1/H _{C2H4} IM 5 ≤ 1/H _{CH4} IM 5 ≤ 1/H _{CH4} IM 5 ≤ 1/H _{CH2} IM 10 IM			$\begin{array}{c} (1,5 \leq \\ \Phi_{\text{C2H2}}/H_{\text{C2H}} \\ 2 \\ \text{или} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H}} \\ 4 \\ \text{или} \\ 1,5 \leq \\ \Phi_{\text{CH}}/H_{\text{CH4}} \end{array}$				
					ил 1,5 Ф _{С2НА} / ил 1,5 Ф _{СН} / ил 1,5 Ф _{Н2} / ил	110 5 ≤ (H _{C2H4} 110 5 ≤ (H _{CH4} 110 5 ≤ (H _{H2} 110 110 15 ≤			(1,5 ≤ Фс2H2/Нс2H 2 или 1,5 ≤ Фс2H4/Нс2H 4 или 1,5 ≤ Фсн4/НсH4 или				
					ил 1,5 Ф _{С2H4} / ил 1,5 Ф _{СH} / ил 1,5	110 5 ≤ (H _{C2H4} 110 5 ≤ (H _{CH4} 110 5 ≤ (H _{H2} 110 110 15 ≤			$(1,5 \le \Phi_{C2H2}/H_{C2H})$ 2 MUM $1,5 \le \Phi_{C2H4}/H_{C2H}$ 4 MUM $1,5 \le \Phi_{CH4}/H_{CH4}$ MUM $1,5 \le \Phi_{CH4}/H_{CH4}$ MUM $1,5 \le \Phi_{CH4}/H_{CH4}$ MUM $1,5 \le \Phi_{CH4}/H_{CH4}$				
					ил 1,5 Ф _{С2НА} / ил 1,5 Ф _{СН} / ил 1,5 Ф _{Н2} / ил	IM 5 ≤ 7Hc2H4 IM 5 ≤ 6 ≤ 7HcH4 IM 5 ≤ 7HcH4 IM 5 ≤ 7HH2 IM 5 ≤ 7Hc2H6			$(1,5 \le \Phi_{C2H2}/H_{C2H})$ 2 MUM $1,5 \le \Phi_{C2H4}/H_{C2H}$ 4 MUM $1,5 \le \Phi_{CH4}/H_{CH4}$ MUM $1,5 \le \Phi_{CH4}/H_{CH4}$ MUM $1,5 \le \Phi_{CH4}/H_{CH4}$ MUM $1,5 \le \Phi_{CH4}/H_{CH4}$				
					ил 1,5 Ф _{С2НА} / ил 1,5 Ф _{СН} / ил 1,5 Ф _{Н2} / ил 1,5	IM 5 ≤ 7Hc2H4 IM 5 ≤ 6 ≤ 7HcH4 IM 5 ≤ 7HcH4 IM 5 ≤ 7HH2 IM 5 ≤ 7Hc2H6			$\begin{array}{l} (1,5 \leq \\ \Phi_{C2H2}/H_{C2H} \\ 2 \\ \text{with} \\ 1,5 \leq \\ \Phi_{C2H4}/H_{C2H} \\ 4 \\ \text{with} \\ 1,5 \leq \\ \Phi_{CH}/H_{CH4} \\ \text{with} \\ 1,5 \leq \\ \Phi_{H2}/H_{H2} \end{array}$				
					ил 1,5 Ф _{С2НА} / ил 1,5 Ф _{СН} / ил 1,5 Ф _{Н2} / ил 1,5	IM 5 ≤ 7Hc2H4 IM 5 ≤ 6 ≤ 7HcH4 IM 5 ≤ 7HcH4 IM 5 ≤ 7HH2 IM 5 ≤ 7Hc2H6			$(1,5 \le \Phi_{C2H2}/H_{C2H})$ 2 μ_{UIM} $1,5 \le \Phi_{C2H4}/H_{C2H}$ 4 μ_{IJM} $1,5 \le \Phi_{CH4}/H_{CH4}$ μ_{UIM} $1,5 \le \Phi_{H2}/H_{H2}$ μ_{UIM}				
					ил 1,5 Ф _{С2НА} / ил 1,5 Ф _{СН} / ил 1,5 Ф _{Н2} / ил 1,5	IM 5 ≤ 7Hc2H4 IM 5 ≤ 6 ≤ 7HcH4 IM 5 ≤ 7HcH4 IM 5 ≤ 7HH2 IM 5 ≤ 7Hc2H6			$\begin{array}{l} (1,5 \leq \\ \Phi_{C2H2}/H_{C2H} \\ 2 \\ \text{with} \\ 1,5 \leq \\ \Phi_{C2H4}/H_{C2H} \\ 4 \\ \text{with} \\ 1,5 \leq \\ \Phi_{CH4}/H_{CH4} \\ \text{with} \\ 1,5 \leq \\ \Phi_{H2}/H_{H2} \\ \text{with} \\ 1,5 \leq \\ \end{array}$				
					ил 1,5 Ф _{С2НА} / ил 1,5 Ф _{СН} / ил 1,5 Ф _{Н2} / ил 1,5	IM 5 ≤ 7Hc2H4 IM 5 ≤ 6 ≤ 7HcH4 IM 5 ≤ 7HcH4 IM 5 ≤ 7HH2 IM 5 ≤ 7Hc2H6			$\begin{array}{l} (1,5 \leq \\ \Phi_{\text{C2H2}}/H_{\text{C2H}} \\ 2 \\ \text{with} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H}} \\ 4 \\ \text{with} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{C44}} \\ \text{with} \\ 1,5 \leq \\ \Phi_{\text{H2}}/H_{\text{H2}} \\ \text{with} \\ 1,5 \leq \\ \Phi_{\text{C2H6}}/H_{\text{C2H}} \end{array}$				
					ил 1,5 Фс2на/ ил 1,5 Фсна/ ил 1,5 Фнд/ ил 1,5 Фс2на/	IM 5 ≤ 7-Hc2144 IM 5 ≤ 7-Hc644 IM 5 ≤ 7-Hc64 IM 5 ≤ 7-Hc64 IM 5 ≤ 7-Hc64 IM 5 ≤ 7-Hc64 IM 6 ≤ 7-Hc64 IM 6 ≤ 7-Hc64 IM 6 ≤ 7-Hc64 IM 6 ≤			$(1,5 \le \Phi_{C2H2}/H_{C2H})$ 2 MIM $1,5 \le \Phi_{C2H4}/H_{C2H}$ 4 MIM $1,5 \le \Phi_{CH4}/H_{CH4}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MODELLE (A)				
1076			Отношения 1	концентраций пар % об	ил 1,5 Фс2на/ ил 1,5 Фсна/ ил 1,5 Фнд/ ил 1,5 Фс2на/	III 5 ≤ 1/Hc2H4	-	_	$\begin{array}{c} (1,5 \leq \\ \Phi_{C2H2}/H_{C2H} \\ 2 \\ \mu_{IJM} \\ 1,5 \leq \\ \Phi_{C2H4}/H_{C2H} \\ 4 \\ \mu_{IJM} \\ 1,5 \leq \\ \Phi_{CH4}/H_{CH4} \\ \mu_{IJM} \\ 1,5 \leq \\ \Phi_{H2}/H_{H2} \\ \mu_{IJM} \\ 1,5 \leq \\ \Phi_{C2H6}/H_{C2H} \\ 6 \\ \end{array}$	нет	нет		
1076			Отношения газов (С2Н2/	концентраций пар % об С2Н4, СН4/Н2,	ил 1,5 Фс2на/ ил 1,5 Фсна/ ил 1,5 Фнд/ ил 1,5 Фс2на/	IM 5 ≤ 7-Hc2144 IM 5 ≤ 7-Hc644 IM 5 ≤ 7-Hc64 IM 5 ≤ 7-Hc64 IM 5 ≤ 7-Hc64 IM 5 ≤ 7-Hc64 IM 6 ≤ 7-Hc64 IM 6 ≤ 7-Hc64 IM 6 ≤ 7-Hc64 IM 6 ≤	-	_	$(1,5 \le \Phi_{C2H2}/H_{C2H})$ 2 MIM $1,5 \le \Phi_{C2H4}/H_{C2H}$ 4 MIM $1,5 \le \Phi_{CH4}/H_{CH4}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MIM $1,5 \le \Phi_{H2}/H_{H2}$ MODELLE (A)	нет	нет		

C214CC260, separnyman zara speparnessa																
Properties and approximate analysis of 1972 Properties and approximate app					C2H4/C2H6), xapa	актерные для				условие:			СЯ			
10 0 1 0 0 1 0 0 0 0		,			термических леф	ектов низкой				(Ферна/Фер						
10	1		1	1	температуры (<14	50°C)			1	(102122 1 C2 (114) < 0 1			(Фонт/Фон	1		1
Constitute transport to the constitute transport to the constitute transport to the constitute transport to the constitute transport transport to the constitute transport tra	1 1		l l		Tomitoparypor (12]							(\$C2H2/\$C2			
(Pr. 40-00) (S.1	1 1	l l				Į.				01.						
S D C C C C C C C C C	1 1		!				ļ			0,1≤						
15.5 1.0	1 1			1			1		ļ	(Φ_{CH4}/Φ_{H2})			0,1 ≤	į		1
10 10 10 10 10 10 10 10					İ				i	≤ 1,0			$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$	1		
10 10 10 10 10 10 10 10		1	J I		ļ		J	ļ				J	< 1.0	j]]
19.5 19.5		İ	[1			[10<				1		
1077 1077	1 1									(Φονν./Φ						
1077	1 1					Į				(\$C2H4/\$C2			1,0 \(\)			
1077	1 1		!			İ							(Φ_{C2H4}/Φ_{C2})			
1077						1	ļ			И			$_{H6}) \leq 3,0$			
2]			İ			(1,5 ≤	j		и			
1077 1.5			l i		l		1			Фс2н2/Нс2н			(1.5 <			
1077		l l							1				Формун/Нови	ļ.		
1.5 1.5								i						İ		
0 0 0 0 0 0 0 0 0 0		1														
1.5	1	1	!	1	ł	1	1	ł	ł	1,5 ≤	1		или	- 1		1 1
1077 1077 1.5 1.	1									Φ_{C2H4}/H_{C2H}		İ	1,5 ≤			
1077 1077 1.5 1.										ı			Фс2н4/Нс2н			
1.5 200]	1	l l		ŀ	ļ	l				L L			
1077 1077	1		[į			15<						
1077 1077			1		I		1			Δ /rt						
1,5	1 1		į l				I	Į	1		•		_ 1,5 ≤			
1,5	1 1		; l				I		l		l		$\Phi_{\text{CH4}}/\text{H}_{\text{CH4}}$			
1077 Отношения концентраций пар нег мет мет мет мет мет мет мет мет мет мет	1 1		, I				I		l	1,5 ≤			или			
1077 1077			1			ŀ	I		l	$\Phi_{\rm H2}/{\rm H}_{\rm H2}$				1		1
1,5 <			[I		l				Oun/Him	j		
Отвестения монивистропний тар 1,5 ≤ 0 cms 1	1 [ſ	í í	1	[1	[ſ	ſ	15<	[[[
1077		i i			ĺ		l	1		т, ли			nun 1.5.			
1077 1077 1077 1077 1077 1077 1077 1077 1078			l				1						1,5 ≤			
Отношения концитураций гар 1078 Выплоляет Не 1078 Не		1	j						1	6)	i		Φ_{C2H6}/H_{C2H}			
темое (СЕНЕ/СЕНЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬЬ, СДЕНАСЕНЬЬЬ, СДЕНАСЕНЬЬЬ, СДЕНАСЕНЬЬЬЬ, СДЕНАСЕНЬЬЬЬ, СДЕНАСЕНЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬ													6)			
темое (СЕНЕ/СЕНЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬ, СДЕНАСЕНЬЬЬ, СДЕНАСЕНЬЬЬ, СДЕНАСЕНЬЬЬ, СДЕНАСЕНЬЬЬЬ, СДЕНАСЕНЬЬЬЬ, СДЕНАСЕНЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬ	1077	1			Отношения конце	ентраций пар	% об.		-	Выполняе	-		He	нет	нет]
С2H4/C2H6), дарактерыме для теринтеских дефесте в данноснае вижных температур (150 - 300°С) принясное вижных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных температур (150 - 300°С) принясных темп		1			газов (С2Н2/С2Н	4. CH4/H2.										1
1, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		ł			C2H4/C2H6) xan	aktenutie mig								i		1
1, 1, 2, 3, 3, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		i			CELLY/CELLO), Aap											1
105 - 300°C)				I	manuscrama and	arman n	i	1			i			1		1
1,0 ≤ (Ости/Фид) 1,0 ≤ (Ос					термических деф	ектов в	ļ			(Φ_{C2H2}/Φ_{C2})			условие:			
1,0 ≤ (диапазоне низких	ектов в к температур				$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}} \ _{\text{H4}}) < 0,1$			условие: (Ф _{С2H2} /Ф _{С2}			
(Осым/Фед) (По (Осым/Фед) (Оси					диапазоне низких	ектов в к температур				$(\Phi_{\rm C2H2}/\Phi_{\rm C2} \ _{ m H4}) < 0,1$ и			условие: (Ф _{С2H2} /Ф _{С2}			
В					диапазоне низких	ектов в к температур				$(\Phi_{\rm C2H2}/\Phi_{\rm C2} \ _{ m H4}) < 0,1$ и			условие: $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}) < 0,1$			
1078 Отмощения концентраций пар газов (СДНУСДНА, СДНАГДНА давательных дефектов в даватования и в деманизация даватеренциях дефектов в даватеренциях дефектов в давательных дефектов в даватеренциях и в деманизация даватеренциях и в деманизация в деман					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}} \ _{\text{H4}}) < 0,1$ μ $1,0 \le$			условие: $(\Phi_{C2H2}/\Phi_{C2} H_4) < 0,1$ и			
1078 1					диапазоне низких	ектов в к температур				$(\Phi_{C2H2}/\Phi_{C2} + 4) < 0.1$ μ $1,0 \le (\Phi_{CH4}/\Phi_{H2})$			условие: $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2}/\Phi_{C2})$ $(\Phi_{C2H2}/\Phi_{C2}/\Phi_{C2} + \Phi_{C2}/\Phi_{C2}$			
1078 1078					диапазоне низких	ектов в с температур				(Φ_{C2H2}/Φ_{C2}) $_{H4}) < 0,1$ $_{I}$ $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ $_{I}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + \Phi_{C2}) = 0.1$ и $1.0 \le (\Phi_{CHA}/\Phi_{H2})$			
1078					диапазоне низких	ектов в к температур				$(\Phi_{C2H2}/\Phi_{C2} \atop_{H4}) < 0,1$ u $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ u (Φ_{C2H4}/Φ_{C2})			условие: $(\Phi_{C2HZ}/\Phi_{C2} + \Phi_{C2}) = 0.1$ и $1.0 \le (\Phi_{CHA}/\Phi_{H2})$ и			
1078					диапазоне низких	ектов в к температур				$(\Phi_{C2H2}/\Phi_{C2} \atop_{H4}) < 0,1$ u $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ u (Φ_{C2H4}/Φ_{C2})			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{CHA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 4)$			
Фезиг/Недн (1,5 ≤					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}}) < 0,1$ $_{\text{H4}}$ $1,0 \le 0$ $(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ $_{\text{H6}}$ $(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H6}}$ $(\Phi_{\text{C2}}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{CHA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 4)$			
2 нли 1,5 ≤ Фсль/Нсль 4 Фсль/Нсль 4 нли 1,5 ≤ ми 1,5 ≤					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}}) < 0,1$ $_{\text{H4}}$ $1,0 \le 0$ $(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ $_{\text{H6}}$ $(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H6}}$ $(\Phi_{\text{C2}}$			условие: $(\Phi_{C2H2}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2H4}/\Phi_{H2})$ и (Φ_{C2H4}/Φ_{H2}) и $(\Phi_{C2H4}/\Phi_{C2} + 6) < 1,0$			
1,5 ≤					диапазоне низких	ектов в к температур				(Φ_{C2H2}/Φ_{C2}) $_{H4}) < 0,1$ $_{H4}$ $1,0 \le (\Phi_{CH4}/\Phi_{H2})$ $_{H6}$ (Φ_{C2H4}/Φ_{C2}) $_{H6}) < 1,0$ $_{H6}$ $(1,5 \le 0.0)$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HZ}/\Phi_{H2})$ и $(\Phi_{C2HZ}/\Phi_{C2} + 6) < 1,0$ и			
1,5 ≤ ФСЗН/НСЗН 1,5 ≤ ФС					диапазоне низких	ектов в с температур				$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}})$ $_{\text{H4}}) < 0,1$ $_{\text{H4}}$ $1,0 \le 0$ $(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ $(\Phi_{\text{C2H4}}/\Phi_{\text{C2}})$ $_{\text{H6}}) < 1,0$ $_{\text{H6}}$ $(1,5 \le 0$ $_{\text{C2H2}}/H_{\text{C2H}}$			условие: (Φ_{C2HZ}/Φ_{C2}) (Φ_{C2HZ}/Φ_{C2}) (Φ_{C1}/Φ_{C2}) (Φ_{C2HA}/Φ_{H2}) (Φ_{C2HA}/Φ_{C2}) (Φ_{C3HA}/Φ_{C2}) (Φ_{C3HA}/Φ_{C2}) (Φ_{C3HA}/Φ_{C3}) $(\Phi_{C3HA}/\Phi_{C3}/\Phi_{C3})$ $(\Phi_{C3HA}/\Phi_{C3}/\Phi_{C3})$ $(\Phi_{C3HA}/\Phi_{C3}/\Phi_{C3}/\Phi_{C3}/\Phi_{C3})$ $(\Phi_{C3HA}/\Phi_{C3}/\Phi_{C$			
Феди/Недн 4 Феди/Недн 4 Феди/Недн 4 млн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 6) Феди/Недн 6) Феди/Недн 6 ; Феди/Неди 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Недн 1,5 ≤ Феди/Неди 1,5 ≤ Феди					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}})$ $_{\text{H4}}) < 0,1$ $_{\text{H4}}$ $1,0 \le 0$ $(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ $_{\text{H}}$ $(\Phi_{\text{C2H4}}/\Phi_{\text{C2}})$ $_{\text{H6}}) < 1,0$ $_{\text{H}}$ $(1,5 \le 0$ 0 0 0 0 0 0 0 0 0			условие: $(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} + 0.1)$ и $1.0 \le (\Phi_{\text{C2Ha}}/\Phi_{\text{H2}})$ и $(\Phi_{\text{C2Ha}}/\Phi_{\text{H2}})$ и $(\Phi_{\text{C2Ha}}/\Phi_{\text{C2}} + 0.0) \le 1.0$ и $(1.5 \le \Phi_{\text{C2Hz}}/H_{\text{C2H}})$			
1078 1078					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}})$ $_{\text{H4}} > 0,1$ $_{\text{H}}$ $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ $_{\text{H}}$ $(\Phi_{\text{C2H4}}/\Phi_{\text{C2}})$ $_{\text{H6}} > 1,0$ $_{\text{H}}$ $(1,5 \le \Phi_{\text{C2H2}}/H_{\text{C2H}})$ $_{\text{C2H2}}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$			
1078 1078					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}})$ $_{\text{H4}} > 0,1$ $_{\text{H}}$ $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ $_{\text{H}}$ $(\Phi_{\text{C2H4}}/\Phi_{\text{C2}})$ $_{\text{H6}} > 1,0$ $_{\text{H}}$ $(1,5 \le \Phi_{\text{C2H2}}/H_{\text{C2H}})$ $_{\text{2}}$ $_{\text{HJIM}}$ $1,5 \le \theta_{\text{1}}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H})$			
1078 1,5 ≤					диапазоне низких	ектов в с температур				$(\Phi_{\text{C2H2}}/\Phi_{\text{C2}})$ $_{\text{H4}} > 0,1$ $_{\text{H}}$ $1,0 \le (\Phi_{\text{CH4}}/\Phi_{\text{H2}})$ $_{\text{H}}$ $(\Phi_{\text{C2H4}}/\Phi_{\text{C2}})$ $_{\text{H6}} > 1,0$ $_{\text{H}}$ $(1,5 \le \Phi_{\text{C2H2}}/H_{\text{C2H}})$ $_{\text{2}}$ $_{\text{HJIM}}$ $1,5 \le \theta_{\text{1}}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$			
1,5 ≤ ФСВИ/НСВИ ВИЛИ 1,5 ≤ ФСВИ/НСВИ ВИЛИ 1,5 ≤ ФСВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ 1,5 ≤ ФОВИ/НСВИ ВИЛИ ВИЛИ ВИЛИ ВИЛИ ВИЛИ ВИЛИ ВИЛИ В					диапазоне низких	ектов в к температур				$\begin{array}{l} (\Phi_{\rm C2Hz}/\Phi_{\rm C2} \\ _{14}) < 0,1 \\ \text{u} \\ 1,0 \leq \\ (\Phi_{\rm CHz}/\Phi_{\rm H2}) \\ \text{u} \\ (\Phi_{\rm C2Hz}/\Phi_{\rm C2} \\ _{16}) < 1,0 \\ \text{u} \\ (1,5 \leq \\ \Phi_{\rm C2Hz}/H_{\rm C2H} \\ \\ \\ 2 \\ \text{utilu} \\ 1,5 \leq \\ \Phi_{\rm C2Hz}/H_{\rm C2H} \end{array}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$			
1,5 ≤ Фсн/Нсни или 1,5 ≤ Фсн/Нсни или 1,5 ≤ Фсн/Нер					диапазоне низких	ектов в к температур				$\begin{array}{c} (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{u} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{u} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{u} \\ (1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ \\ 2 \\ \text{udiu} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 4 \end{array}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$			
1078 Нии 1,5 ≤					диапазоне низких	ектов в с температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}} > 0,1$ $_{\text{H4}} = 0,1$ $_{\text{H4}} = 0,1$ $_{\text{H4}} = 0,1$ $_{\text{H5}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H7}} = 0$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и (Φ_{C2HA}/Φ_{H2}) и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2)$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 4)$			
1,5 ≤					диапазоне низких	ектов в с температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}}) < 0,1$ $_{\text{H}}$ $1,0 \le (\Phi_{\text{CHz}}/\Phi_{\text{H2}})$ $_{\text{H}}$ $(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H6}}) < 1,0$ $_{\text{H6}}$ $(1,5 \le \Phi_{\text{C2Hz}}/H_{\text{C2H}})$ $_{\text{UIIII}}$ $1,5 \le \Phi_{\text{C2Hz}}/H_{\text{C2H}}$ $_{\text{UIIIII}}$ $_{\text{UIIIII}}$ $_{\text{UIIIII}}$ $_{\text{UIIIII}}$ $_{UIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HZ}/H_{C2H} + 2 + 2 + 2 + 2 + 2 + 4 + 4 + 4 + 4 + 4$			
1,5 ≤					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}}) < 0,1$ $_{\text{H}}$ $1,0 \le (\Phi_{\text{CHa}}/\Phi_{\text{H2}})$ $_{\text{H}}$ $(\Phi_{\text{C2Ha}}/\Phi_{\text{C2}})$ $_{\text{H6}}) < 1,0$ $_{\text{H6}}$ $(1,5 \le \Phi_{\text{C2Hz}}/H_{\text{C2H}})$ $_{\text{2}}$ $_{\text{HIIM}}$ $1,5 \le \Phi_{\text{C2Ha}}/H_{\text{C2H}}$ $_{\text{4}}$ $_{\text{HIIM}}$ $1,5 \le \Phi_{\text{C2Ha}}/H_{\text{C2H}}$ $_{\text{4}}$ $_{4$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и (Φ_{C2HA}/Φ_{H2}) и $(0,5 \le \Phi_{C2HZ}/H_{C2H} + 4)$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
1,5 ≤ Ф _{H2} /H _{H2} или					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}} > 0,1$ $_{\text{H}}$ $1,0 \le (\Phi_{\text{CHa}}/\Phi_{\text{H2}})$ $_{\text{H}}$ $(\Phi_{\text{C2Ha}}/\Phi_{\text{C2}})$ $_{\text{H6}} > 1,0$ $_{\text{H}}$ $(1,5 \le \Phi_{\text{C2Hz}}/H_{\text{C2H}})$ $_{\text{2}}$ $_{\text{2}}$ $_{\text{2}}$ $_{\text{2}}$ $_{\text{2}}$ $_{\text{3}}$ $_{\text{4}}$ $_{\text{2}}$ $_{\text{4}}$ $_{$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и (Φ_{C2HA}/Φ_{H2}) и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2)$ или $1,5 \le \Phi_{C2HA}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
1078					диапазоне низких	ектов в с температур				$\begin{array}{c} (\Phi_{\text{C2H2}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2H2}}/H_{\text{C2H}} \\ \\ 2 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H}} \\ 4 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H}} \\ 4 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{CH4}} \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{CH4}} \\ \text{NIIM} \\ 1,5 \leq \\ \end{array}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H})$ 2 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
1,5 ≤ Фс2H6/Hc2H					диапазоне низких	ектов в с температур				$\begin{array}{c} (\Phi_{\text{C2H2}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2H2}}/H_{\text{C2H}} \\ \\ 2 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H}} \\ 4 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H}} \\ 4 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{CH4}} \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{CH4}} \\ \text{NIIM} \\ 1,5 \leq \\ \end{array}$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H})$ 2 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
1,5 ≤ Фс2H6/Hc2H 6 1,5 ≤					диапазоне низких	ектов в к температур				$\begin{array}{c} (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ (\Phi_{\text{C1Hz}}/\Phi_{\text{C2}} \\ (\text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{C2Hz}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 2 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 4 \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{CHz}}/H_{\text{CHz}} \\ \text{NIIM} \\ 1,5 \leq \\ \Phi_{\text{CHz}}/$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H})$ 2 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C3H}$ или $1,5 \le \Phi_{C2HA}/H_{C3H}$			
1078					диапазоне низких	ектов в к температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}} > 0,1$ $_{\text{II}}$ $_{\text{II}} = 0,0$ $_{\text{II}} = 0,0$ $_{\text{III}} = 0,0$ $_{\text{III}} = 0,0$ $_{\text{IIII}} = 0,0$ $_{\text{IIII}} = 0,0$ $_{\text{IIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{\text{IIIII}} = 0,0$ $_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H})$ 2 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
Отношения концентраций пар газов (С2H2/С2H4, СН4/H2, С2H4/С2H6), характерные для термических дефектов в диапазоне средних Отношения концентраций пар % об. Выполняетс Не нет нет выполняет ся условие: (Фс2H2/Фс2H4) ся условие: (Фс2H2/Фс2H4) условие: (Фс2H2/Фс2)					диапазоне низких	ектов в с температур				$(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})$ $_{\text{H4}} > 0,1$ $_{\text{H4}} = 0,1$ $_{\text{H4}} = 0,1$ $_{\text{H4}} = 0,1$ $_{\text{H5}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H6}} = 0,1$ $_{\text{H7}} = 0$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и (Φ_{C2HA}/Φ_{H2}) и $(\Phi_{C2HA}/\Phi_{C2} + 16) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 16)$ и и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 16)$ и или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
Отношения концентраций пар газов (С2H2/С2H4, СН4/H2, С2H4/С2H6), характерные для термических дефектов в диапазоне средних					диапазоне низких	ектов в с температур				$\begin{split} &(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})\\ &(\Phi_{\text{C3Hz}}/\Phi_{\text{C2}})\\ &(0,1)$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и (Φ_{C2HA}/Φ_{H2}) и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2)$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
газов (С2H2/С2H4, СН4/H2, С2H4/С2H6), характерные для термических дефектов в диапазоне средних я условие: (Фс2H2/ФС2H4) > <0,1 условие: (Фс2H2/ФС2 Фс2H2/ФС2					диапазоне низких	ектов в к температур				$\begin{split} &(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})\\ &(\Phi_{\text{C3Hz}}/\Phi_{\text{C2}})\\ &(0,1)$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и (Φ_{C2HA}/Φ_{H2}) и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2)$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
газов (С2H2/С2H4, СН4/H2, С2H4/С2H6), характерные для термических дефектов в диапазоне средних я условие: (Фс2H2/ФС2H4) > <0,1 условие: (Фс2H2/ФС2 Фс2H2/ФС2					диапазоне низжих (150 - 300°C)	с температур				$\begin{split} &(\Phi_{\text{C2Hz}}/\Phi_{\text{C2}})\\ &(\Phi_{\text{C3Hz}}/\Phi_{\text{C2}})\\ &(0,1)$			условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{CHA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2)$ 2 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$			
С2H4/C2H6), характерные для термических дефектов в разон средних (Фс2H2/Фс2H4) < 0,1 условие: фс2H2/Фс2 фс2H2/Фс2	1078				Диапазоне низжих (150 - 300°С)	с температур	% об.			$\begin{array}{l} (\Phi_{\text{C2H2}}/\Phi_{\text{C2}} \\ _{\text{H4}}) < 0,1 \\ \text{u} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{u} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ _{\text{H6}}) < 1,0 \\ \text{u} \\ (1,5 \leq \\ \Phi_{\text{C2H2}}/H_{\text{C2H}} \\ \\ ^{2} \\ \text{utim} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H}} \\ \\ ^{4} \\ \text{utim} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{CH4}} \\ \\ \text{utim} \\ 1,5 \leq \\ \Phi_{\text{H2}}/H_{\text{H2}} \\ \\ \text{utim} \\ 1,5 \leq \\ \Phi_{\text{H2}}/H_{\text{C2H}} \\ \\ \end{array}$	-		условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{CHA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2)$ 2 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$	нет	нет	
термических дефектов в	1078				Отношения концу газов (С2H2/С2H	ентраций пар 4, СН4/Н2,	% of.		Выполняетс	$\begin{array}{l} (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 2 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 4 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{CHz}}/H_{\text{CHz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{Hz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{C2H}} \\ 6 \end{array}$	-	-	условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{CHA}/\Phi_{H2})$ и $(\Phi_{C2H4}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2H2}/H_{C2H} + 2)$ гили $1,5 \le \Phi_{C2H2}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2H2}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2H2}/H_{C2H}$ или $1,5 \le \Phi_{C2H2}/H_{C2H}$ или $1,5 \le \Phi_{C2H2}/H_{C2H}$ или $1,5 \le \Phi_{C2H2}/H_{C2H}$ или $1,5 \le \Phi_{C2H2}/H_{C2H}$ или $1,5 \le \Phi_{C2H2}/H_{C2H}$ или $1,5 \le \Phi_{C2H2}/H_{C2H}$	нет	нет	
диапазоне средних и (Фс2н2/Фс2	1078				Отношения концу газов (С2H2/С2H	ентраций пар 4, СН4/Н2,	% об.	1	Выполняетс я условие:	$\begin{array}{l} (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 2 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 4 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{CHz}}/H_{\text{CHz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{Hz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{C2H}} \\ 6 \end{array}$	-	-	условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{C2} + 4) < 1,0$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2)$ 2 или $1,5 \le \Phi_{C2HA}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ 4 или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$	нет	нет	
	1078				Отношения конц газов (С2H2/С2H С2H4/С2H6), хар	ентраций пар 4, СН4/Н2, актерные для	% of.	1	Выполняетс я условие: (Фс2нг/Фс2ни	$\begin{array}{l} (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 2 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 4 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{CHz}}/H_{\text{CHz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{Hz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{C2H}} \\ 6 \end{array}$	-	-	условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{CHA}/\Phi_{H2})$ и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2)$ и $1,5 \le \Phi_{C2HA}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$ или $1,5 \le \Phi_{C2HA}/H_{C2H}$	нет	нет	
	1078				Отношения конце газов (С2H2/С2H С2H4/С2H6), хар термических деф.	ентраций пар 4, СН4/Н2, актерные для ектов в	% об.	1	Выполняетс я условие: (Фс2нг/Фс2ни) < 0,1	$\begin{array}{l} (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 2 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 4 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{CHz}}/H_{\text{CHz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{Hz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{C2H}} \\ 6 \end{array}$	-	-	условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{C2HA}/\Phi_{H2})$ и (Φ_{C2HA}/Φ_{H2}) и $(\Phi_{C2HA}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2HA}/H_{C2H} + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	нет	нет	
	1078				Отношения конц газов (С2Н2С2Н6), хар термических деф диапазоне средне	ентраций пар 4, СН4/Н2, актерные для ектов в	% of.	1	Выполняетс я условие: (Фс2H2/Фс2H4) < 0,1 и	$\begin{array}{l} (\Phi_{\text{C2Hz}}/\Phi_{\text{C2}} \\ \text{H4}) < 0,1 \\ \text{N} \\ 1,0 \leq \\ (\Phi_{\text{CH4}}/\Phi_{\text{H2}}) \\ \text{N} \\ (\Phi_{\text{C2H4}}/\Phi_{\text{C2}} \\ \text{H6}) < 1,0 \\ \text{N} \\ (1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 2 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ 4 \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{C2Hz}}/H_{\text{C2H}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{CHz}}/H_{\text{CHz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{Hz}} \\ \text{NIM} \\ 1,5 \leq \\ \Phi_{\text{Hz}}/H_{\text{C2H}} \\ 6 \end{array}$	-	-	условие: $(\Phi_{C2HZ}/\Phi_{C2} + 4) < 0,1$ и $1,0 \le (\Phi_{CHA}/\Phi_{H2})$ и $(\Phi_{C2H4}/\Phi_{C2} + 6) < 1,0$ и $(1,5 \le \Phi_{C2H2}/H_{C2H} + 2)$ или $1,5 \le \Phi_{C2H2}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2H2}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2H2}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2H2}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2H2}/H_{C2H} + 4$ или $1,5 \le \Phi_{C2H2}/H_{C2H} + 6$ Не выполняет $(\Phi_{C2H2}/\Phi_{C2} + 4)$	нет	нёт	

						$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$			и	Γ			
					İ	и			1,0 ≤				
į						1,0 ≤			$(\Phi_{\text{CH4}}/\Phi_{\text{H2}})$				
				1		$(\Phi_{C2H4}/\Phi_{C2H6})$			и				
])≤3,0	l 1	1	1,0 ≤			1	
		į	1			N N			(Φ_{C2H4}/Φ_{C2})				l
	1	1				(1,5 ≤			$_{H6}$) \leq 3,0				
i						$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H2}}$]						- 1
1							1		И	ŀ			
			i			или 1,5 ≤			(1,5≤				- 1
	1					1,5 \(\tau_1,0 \)			$\Phi_{\text{C2H2}}/\text{H}_{\text{C2H}}$				l
						$\Phi_{\rm C2H4}/{ m H}_{ m C2H4}$			2				- 1
						или			или	ļ			1
						1,5 ≤	1		1,5 ≤				1
						Фсн4/Нсн4	1		$\Phi_{\rm C2H4}/H_{\rm C2H}$				
	ļ l					или	1		4				1
			1		i	1,5 ≤	1	!	или				
						$\Phi_{\rm H2}/H_{\rm H2}$		1	1,5 ≤				
						или			Фсни/Нсни				
	1					1,5 ≤		1 1	или				
1						Фс2н6/Нс2н6			1,5 ≤				
1						ФС2Н6/ПС2Н6	1		1,7 \				
									Φ_{H2}/H_{H2}]	
									или				
									1,5 ≤			1	
1	1							1 1	Φ_{C2H6}/H_{C2H}	ļ.			
	」								6)				
1079	J J	ļ	, ,	Отношения концентраций пар	% об.	Выполняетс	- -	J - 1	He	нет	нет] }	ļ
1			[газов (С2Н2/С2Н4, СН4/Н2,		я условие:			выполняет				
			l i	С2Н4/С2Н6), характерные для		0,1≤			СЯ				
				разрядов большой мощности		$(\Phi_{C2H2}/\Phi_{C2H4})$		1	условие:				
				1 1 1 1)≤3		1	0,1≤	1			1
						и			(Φ_{C2H2}/Φ_{C2})				
						0,1≤(Фсн₄/Ф			H4)≤3				
						H2)≤1						1	
1		1											
•	1	1						1	И 0.1-(Ф. /				
						И			0,1≤(Φ _{CH4} /				
						и 3 ≤			0,1≤(Φ _{CH4} / Φ _{H2})≤1				
						И			0,1≤(Ф _{СН4} / Ф _{Н2})≤1 и				
		:				$3 \le \Phi_{C2H4}/\Phi_{C2H6}$			$\begin{array}{c} 0,1 \leq (\Phi_{CH4}/\\ \Phi_{H2}) \leq 1\\ \text{ if }\\ 3 \leq \end{array}$				
						$ \begin{array}{c} $			$\begin{array}{c} 0,1 \!\! \leq \!\! (\Phi_{\text{CH4}}\!/ \\ \Phi_{\text{H2}}\!) \!\! \leq \!\! 1 \\ \text{u} \\ 3 \!\! \leq \!\! (\Phi_{\text{C2H4}}\!/\! \Phi_{\text{C2}} \end{array}$				
						$ \begin{array}{c} $			$\begin{array}{c} 0,1 \!\! \leq \!\! (\Phi_{\text{CH4}}\!/ \\ \Phi_{\text{H2}}\!) \!\! \leq \!\! 1 \\ \text{u} \\ 3 \!\! \leq \!\! (\Phi_{\text{C2H4}}\!/\! \Phi_{\text{C2}} \end{array}$				
						$ \begin{array}{c} $			$\begin{array}{c} 0,1 \!\!\leq\!\! (\Phi_{\text{CH4}}\!/\!$				
						$egin{array}{c} \mathbf{u} & 3 \leq & \\ (\Phi_{\mathrm{C2HA}}/\Phi_{\mathrm{C2H6}}) & \\ \mathbf{u} & \\ (1,5 \leq & \\ \Phi_{\mathrm{C2H2}}/H_{\mathrm{C2H2}} & \\ \mathbf{u}\mathbf{u}\mathbf{u} & \\ \end{array}$			$\begin{array}{c} 0,1 \!\!\leq\!\! (\Phi_{\text{CH4}}\!/\!$				
						и 3 ≤ (Фс2н4/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤			$\begin{array}{c} 0,1 {\leq} (\Phi_{CH4}/\\ \Phi_{H2}) {\leq} 1\\ \text{ if }\\ 3 {\leq}\\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{ if }\\ 0\\ \text{ if }\\ (1,5 {\leq} \\ \end{array}$				
						и 3 ≤ (Фс2н4/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤			$\begin{array}{c} 0.1 {\leq} (\Phi_{CH4}/\\ \Phi_{H2}) {\leq} 1\\ \text{if}\\ 3 {\leq}\\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{if}\\ 1.5 {\leq}\\ \Phi_{C2H2}/H_{C2H} \end{array}$				
						и 3 ≤ (Фс2н4/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2н4/Нс2н4 или			$\begin{array}{c} 0.1 {\leq} (\Phi_{CH4} / \\ \Phi_{H2}) {\leq} 1 \\ \text{M} \\ 3 {\leq} \\ (\Phi_{C2H4} / \Phi_{C2} \\ \text{H6}) \\ \text{M} \\ (1.5 {\leq} \\ \Phi_{C2H2} / H_{C2H} \\ \end{array}$				
						и 3 ≤ (Фс2н4/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2н4/Нс2н4 или			$\begin{array}{c} 0.1 {\leq} (\Phi_{\text{CH4}} / \\ \Phi_{\text{H2}}) {\leq} 1 \\ \text{u} \\ 3 {\leq} \\ (\Phi_{\text{C2H4}} / \Phi_{\text{C2}} \\ \text{H6}) \\ \text{u} \\ (1.5 {\leq} \\ \Phi_{\text{C2H2}} / H_{\text{C2H}} \\ 2 \\ \text{utill} \end{array}$				
						и 3 ≤ (Ф _{С2Н4} /Ф _{С2Н6}) и (1,5 ≤ Ф _{С2H2} /H _{C2H2} или 1,5 ≤ Ф _{С2Н4} /H _{C2H4} или 1,5 ≤			$\begin{array}{c} 0.1 {\leq} (\Phi_{CH4}/\\ \Phi_{H2}) {\leq} 1\\ \text{ if } \\ 3 {\leq} \\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{ if } \\ 1,5 {\leq} \\ \Phi_{C2H2}/H_{C2H}\\ \text{ 2}\\ \text{ in the } \\ 1,5 {\leq} \\ \end{array}$				
						$^{\rm M}$ $_3 \le$ $_{\rm (}\Phi_{\rm C2H4}/\Phi_{\rm C2H6})$ $_{\rm)}$ $_{\rm H}$ $_{\rm (}1,5 \le$ $_{\rm \Phi_{\rm C2H2}}/H_{\rm C2H2}$ $_{\rm MJM}$ $_{\rm 1,5} \le$ $_{\rm \Phi_{\rm C2H4}}/H_{\rm C2H4}$ $_{\rm MJM}$ $_{\rm 1,5} \le$ $_{\rm \Phi_{\rm C2H4}}/H_{\rm C2H4}$ $_{\rm MJM}$ $_{\rm 1,5} \le$ $_{\rm \Phi_{\rm C1H}}/H_{\rm C2H4}$			$\begin{array}{c} 0.1 {\leq} (\Phi_{CH4} / \\ \Phi_{H2}) {\leq} 1 \\ \text{if} \\ 3 {\leq} \\ (\Phi_{C2H4} / \Phi_{C2} \\ \text{if}) \\ \text{if} \\ (1.5 {\leq} \\ \Phi_{C2H2} / H_{C2H} \\ 2 \\ \text{init} \\ 1.5 {\leq} \\ \Phi_{C2H4} / H_{C2H} \end{array}$				
						и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2на/Нс2н2 или 1,5 ≤ Фс2н4/Нс2на или 1,5 ≤ Фс2н4/Нс2на или 1,5 ≤ Фсна/Нсна или			$\begin{array}{c} 0.1 {\leq} (\Phi_{CHA}/\\ \Phi_{H2}) {\leq} 1\\ \text{u}\\ 3 {\leq}\\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{h6})\\ \text{u}\\ (1.5 {\leq}\\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{und}\\ 1.5 {\leq}\\ \Phi_{C2H4}/H_{C2H}\\ 4\\ \end{array}$				
						и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2на/Нс2н2 или 1,5 ≤ Фс2на/Нс2н4 или 1,5 ≤ Фсна/Нс2н4 или 1,5 ≤			$\begin{array}{c} 0.1 \leq (\Phi_{CHA}/\\ \Phi_{H2}) \leq 1\\ \text{ if } 3 \leq \\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{ if } 0\\ \text{ if } (1.5 \leq \\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{ in if } 1.5 \leq \\ \Phi_{C2H4}/H_{C2H}\\ 4\\ \text{ in if } \end{array}$				
						$\begin{array}{c} \mathbf{n} \\ 3 \leq \\ \left(\Phi_{\text{C2HA}}/\Phi_{\text{C2H6}}\right) \\) \\ \mathbf{n} \\ \left(1,5 \leq \\ \Phi_{\text{C2H2}}/H_{\text{C2H2}} \\ \mathbf{n} \\ \mathbf{n} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H4}} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{CH4}} \\ \mathbf{n} \\$			$\begin{array}{c} 0.1 \leq (\Phi_{CHA}/\\ \Phi_{H2}) \leq 1\\ \text{ if } \\ 3 \leq \\ (\Phi_{C2HA}/\Phi_{C2}\\ \text{ if } \\ \text{ if } \\ (1,5 \leq \\ \Phi_{C2H2}/H_{C2H}\\ \text{ if } \\ 1,5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ \text{ if } \\ 4\\ \text{ if } \\ 1.5 \leq \\ \end{array}$				
						$^{\text{M}}$ $^{3} \leq$ $^{(} \Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$ $^{\circ}$			$\begin{array}{c} 0.1 {\le} (\Phi_{CHA}/\\ \Phi_{H2}) {\le} 1\\ \text{ if } \\ 3 {\le} \\ (\Phi_{C2HA}/\Phi_{C2}\\ \text{ if } \\ 1.5 {\le} \\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{ in if } \\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 4\\ \text{ in if } \\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 4\\ \text{ in if } \\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 4\\ \text{ in if } \\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 4\\ \text{ in if } \\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 4\\ \text{ in if } \\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 {\le} \\ \Phi_{C2HA}/H_{C2HA}\\$				
						$^{\text{M}}$ $^{3} \leq$ $^{(} \Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$ $^{\circ}$			$\begin{array}{c} 0.1 {\le} (\Phi_{CHA}/\\ \Phi_{H2}) {\le} 1\\ \text{ if } \\ 3 {\le} \\ (\Phi_{C2HA}/\Phi_{C2}\\ \text{ if })\\ \text{ if } \\ (1,5 {\le}\\ \Phi_{C2H2}/H_{C2H}\\ \text{ 2}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ 4}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ 4}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ 4}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ 4}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ with } \\ \Phi_{C2HA}/H_{C$				
						$\begin{array}{c} \mathbf{n} \\ 3 \leq \\ \left(\Phi_{\text{C2HA}}/\Phi_{\text{C2H6}}\right) \\) \\ \mathbf{n} \\ \left(1,5 \leq \\ \Phi_{\text{C2H2}}/H_{\text{C2H2}} \\ \mathbf{n} \\ \mathbf{n} \\ 1,5 \leq \\ \Phi_{\text{C2H4}}/H_{\text{C2H4}} \\ \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \\ 1,5 \leq \\ \Phi_{\text{CH4}}/H_{\text{CH4}} \\ \mathbf{n} \\$			$\begin{array}{c} 0.1 {\le} (\Phi_{CHA}/\\ \Phi_{H2}) {\le} 1\\ \text{ if } \\ 3 {\le} \\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{ if })\\ \text{ if } \\ (1.5 {\le}\\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{ in in } \\ 1.5 {\le}\\ \Phi_{C2H4}/H_{C2H}\\ 4\\ \text{ in in } \\ 1.5 {\le}\\ \Phi_{C3H4}/H_{C4H}\\ \text{ in in } \\ 1.5 {\le}\\ \Phi_{C3H4}/H_{C4H}\\ \text{ in in } \\ 1.5 {\le}\\ \end{array}$				
						$^{\text{M}}$ $^{3} \leq$ $^{(} \Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$ $^{\circ}$			$\begin{array}{c} 0.1 {\le} (\Phi_{CHA}/\\ \Phi_{H2}) {\le} 1\\ \text{ if } \\ 3 {\le} \\ (\Phi_{C2HA}/\Phi_{C2}\\ \text{ if })\\ \text{ if } \\ (1,5 {\le}\\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{C2HA}/H_{C2H}\\ 4\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{CHA}/H_{CHA}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{CHA}/H_{CHA}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{CHA}/H_{CHA}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{CHA}/H_{CHA}\\ \text{ with } \\ 1,5 {\le}\\ \Phi_{H2}/H_{H2}\\ \end{array}$				
						$^{\text{M}}$ $^{3} \leq$ $^{(} \Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$ $^{\circ}$			$0,1 \le (\Phi_{CHA}/\Phi_{H2}) \le 1$ u $3 \le (\Phi_{C2HA}/\Phi_{C2})$ u $(1,5 \le \Phi_{C2H2}/H_{C2H})$ u $1,5 \le \Phi_{C2H2}/H_{C2H}$ u u u u u u u u u u				
						$^{\text{M}}$ $^{3} \leq$ $^{(} \Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$ $^{\circ}$			$\begin{array}{c} 0.1 \leq (\Phi_{CHA}/\\ \Phi_{H2}) \leq 1\\ \text{ w} \\ 3 \leq \\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{ h6})\\ \text{ w} \\ (1.5 \leq \\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{ with} \\ 1.5 \leq \\ \Phi_{C2H4}/H_{C2H}\\ 4\\ \text{ with} \\ 1.5 \leq \\ \Phi_{CH4}/H_{CH4}\\ \text{ with} \\ 1.5 \leq \\ \Phi_{H2}/H_{H2}\\ \text{ with} \\ 1.5 \leq \\ \Phi_{H2}/H_{H2}\\ \text{ with} \\ 1.5 \leq \\ \end{array}$				
						$^{\text{M}}$ $^{3} \leq$ $^{(} \Phi_{\text{C2H4}}/\Phi_{\text{C2H6}})$ $^{\circ}$			$\begin{array}{c} 0.1 \leq (\Phi_{CHA}/\\ \Phi_{H2}) \leq 1\\ \text{ w} \\ 3 \leq \\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{ h6})\\ \text{ w} \\ (1.5 \leq \\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{ with} \\ 1.5 \leq \\ \Phi_{C2H4}/H_{C2H}\\ 4\\ \text{ with} \\ 1.5 \leq \\ \Phi_{CH4}/H_{CH4}\\ \text{ with} \\ 1.5 \leq \\ \Phi_{H2}/H_{H2}\\ \text{ with} \\ 1.5 \leq \\ \Phi_{H2}/H_{H2}\\ \text{ with} \\ 1.5 \leq \\ \end{array}$				
						$^{\rm M}$ $3 \le$ $(\Phi_{\rm C2H4}/\Phi_{\rm C2H6})$ $^{\rm N}$ $^{\rm M}$ $(1,5 \le$ $\Phi_{\rm C2H2}/H_{\rm C2H2}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm C2H4}/H_{\rm C2H4}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm CH4}/H_{\rm CH4}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm CH4}/H_{\rm H2}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm CH6}/H_{\rm C2H6}$ $^{\rm N}$ $^{\rm M}$ $^{\rm N}$ $^{\rm$			$\begin{array}{c} 0.1 \leq (\Phi_{CHA}/\\ \Phi_{H2}) \leq 1\\ \text{ w} \\ 3 \leq \\ (\Phi_{C2H4}/\Phi_{C2}\\ \text{ h6})\\ \text{ w} \\ (1,5 \leq \\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{ with}\\ 1,5 \leq \\ \Phi_{C2H4}/H_{C2H}\\ 4\\ \text{ with}\\ 1,5 \leq \\ \Phi_{CH4}/H_{CH4}\\ \text{ with}\\ 1,5 \leq \\ \Phi_{H2}/H_{H2}\\ \text{ with}\\ 1,5 \leq \\ \Phi_{H2}/H_{H2}\\ \text{ with}\\ 1,5 \leq \\ \Phi_{H2}/H_{H2}\\ \text{ with}\\ 1,5 \leq \\ \Phi_{C2H6}/H_{C2H}\\ \end{array}$				
1080				Отношения концентраций пар	% of.	$^{\rm M}$ $3 \le$ $(\Phi_{\rm C2H4}/\Phi_{\rm C2H6})$ $^{\rm N}$ $^{\rm M}$ $(1,5 \le$ $\Phi_{\rm C2H2}/H_{\rm C2H2}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm C2H4}/H_{\rm C2H4}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm CH4}/H_{\rm CH4}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm CH4}/H_{\rm H2}$ $^{\rm MIN}$ $1,5 \le$ $\Phi_{\rm CH6}/H_{\rm C2H6}$ $^{\rm N}$ $^{\rm M}$ $^{\rm N}$ $^{\rm$			$\begin{array}{c} 0.1 \leq (\Phi_{CHA}/\\ \Phi_{H2}) \leq 1\\ \text{M}\\ 3 \leq \\ (\Phi_{C2HA}/\Phi_{C2}\\ \text{H6})\\ \text{M}\\ (1.5 \leq \\ \Phi_{C2H2}/H_{C2H}\\ 2\\ \text{MUTM}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 4\\ \text{MUTM}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1.5 \leq \\ \Phi_{C2HA}/H_{C2H}\\ 1$	нёт	нет		
1080				Отношения концентраций пар газов (С2Н2/С2Н4, СН4/Н2,	% o6.	и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2н4/Нс2ни или 1,5 ≤ Фс2н4/Нс2ни или 1,5 ≤ Фс2н4/Нс4 или 1,5 ≤ Фс2н4/Нс4 или 1,5 ≤ Фн2/Н ₁₂ или 1,5 ≤ Фн2/Н ₁₂ или 1,5 ≤ Фс2н6/Н ₁)		_	$\begin{array}{c} 0,1{\leq}(\Phi_{CHA'}\\ \Phi_{H2}){\leq}1\\ \text{ if } \\ 3{\leq}\\ (\Phi_{C2HA}/\Phi_{C2}\\ \text{ if })\\ \text{ if } \\ (1,5{\leq}\\ \Phi_{C2H2}/H_{C2H}\\ \text{ 2}\\ \text{ in }\\ 1,5{\leq}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ 4}\\ \text{ in }\\ 1,5{\leq}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ in }\\ 1,5{\leq}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ in }\\ 1,5{\leq}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ in }\\ \text{ in }\\ 1,5{\leq}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ in }\\ \text{ in }\\ \text{ if }\\ 1,5{\leq}\\ \Phi_{C2HA}/H_{C2H}\\ \text{ in }\\ \text{ if }\\ $	нет	нет		
1080				T330B (C2H2/C2H4 CH4/H2	% o б .	и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2н4/Нс2ни или 1,5 ≤ Фс2н4/Нс2ни или 1,5 ≤ Фс2н4/Нс4 или 1,5 ≤ Фс2н4/Нс4 или 1,5 ≤ Фн2/Н ₁₂ или 1,5 ≤ Фн2/Н ₁₂ или 1,5 ≤ Фс2н6/Н ₁)		_	0,1≤(Фсни/ Фн2)≤1 и 3 ≤ (Фс2ни/Фс2 н6) и (1,5 ≤ Фс2ни/Нс2н 2 или 1,5 ≤ Фс2ни/Нс2н 4 или 1,5 ≤ Фсни/Нсни или 1,5 ≤ Фсни/Нсни или 1,5 ≤ Фсни/Нсни или 1,5 ≤ Фсни/Нсни или 1,5 ≤ Фсни/Нсни или 1,5 ≤ Фн2/Н,6 на или 1,5 ≤ Фи2/Н,6 на или 1,5 ≤ Фи2/Н,6 на или 1,5 ≤ Фи2/Н,6 на или 1,5 ≤ Фи2/Н,6 на или 1,5 ≤ Фи2/Н,6 на или 1,5 ≤ Фи2/Н,6 на или 1,5	нет	нет		
1080				T330B (C2H2/C2H4 CH4/H2	% o5.	и 3 ≤ (Фс2на/Фс2на) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фсна/Нсна или 1,5 ≤ Фн2/Н-12 или 1,5 ≤ Фн2/Н-2 или 1,5 ≤ Фс2на/Нс2на) Выполняетс я условие: (Фс2на/Фс2на		_	0,1≤(Φ _{CH4} / Φ _{H2})≤1 и 3 ≤ (Φ _{C2H4} /Φ _{C2} H6) и (1,5 ≤ Φ _{C2H2} /H _{C2H} 2 или 1,5 ≤ Φ _{C2H4} /H _{C2H} 4 или 1,5 ≤ Φ _{CH4} /H _{CH4} или 1,5 ≤ Φ _{CH4} /H _{CH4} или 1,5 ≤ Φ _{CH4} /H _{CH4} или 1,5 ≤ Φ _{C2H5} /H _{C2H} 6) Не выполняет Ся	нет	нет		
1080				T330B (C2H2/C2H4 CH4/H2	% об.	и 3 ≤ (Фс2на/Фс2на)) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс4на или 1,5 ≤ Фс2на/Нс4на или 1,5 ≤ Фн2/Н ₁ или 1,5 ≤ Фн2/Н ₁ или 1,5 ≤ Фс2на/Н ₁ или 1,5 ≤ Фс2на/Н ₁ или 1,5 ≤ Фс2на/Н ₁ или 1,5 ≤ Фс2на/Н ₁ или 1,5 ≤ Фс2на/Н ₂ или 1,5 ≤ Фс2на/Н ₂ или 1,5 ≤ Фс2на/Н ₂ или 1,5 ≤ Фс2на/Н ₂ или 1,5 ≤ Фс2на/Н ₂ или 1,5 ≤ Фс2на/И ₂ или 1,		-	0,1≤(Фсна/ Фн2)≤1 и 3 ≤ (Фс2на/Фс2 н6) и (1,5 ≤ Фс2на/Нс2н 2 или 1,5 ≤ Фс2на/Нс2н 4 или 1,5 ≤ Фсна/Нсна/Нсна или 1,5 ≤ Фсна/Нсна/Нсна/Нсна/Нсна/Нсна/Нсна/Нсна/Н	нет	нет		
1080				Отношения концентраций пар газов (С2H2/С2H4, СH4/H2, С2H4/С2H6) характерные для термического дефекта с t > 700°C	% o 6 .	и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2на/Нс2н2 или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фсна/Нс2на или 1,5 ≤ Фсна/Нсна или 1,5 ≤ Фн2/Н ₁₂ или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс2на) ≤ 0,1		-	0,1≤(Φ _{CH4} / Φ _{H2})≤1 и 3 ≤ (Φ _{C2H4} /Φ _{C2} н6) и (1,5 ≤ Φ _{C2H2} /H _{C2H} 2 или 1,5 ≤ Φ _{C2H4} /H _{C2H} 4 или 1,5 ≤ Φ _{CH4} /H _{CH4} или 1,5 ≤ Φ _{CH4} /H _{CH4} или 1,5 ≤ Φ _{C2H6} /H _{C2H} 6) Не выполняет ся условие: (Φ _{C2H2} /Φ _{C2}	нет	нет		
1080				T330B (C2H2/C2H4 CH4/H2	% об.	и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2н4/Нс2на или 1,5 ≤ Фсна/Нсна или 1,5 ≤ Фн2/Нс2на или 1,5 ≤ Фн2/Нн2 или 1,5 ≤ Фн2/Нн2 или 1,5 ≤ Фс2н6/Нс2н6) Выполняетс я условие: (Фс2н2/Фс2на) ≤ 0,1 и 1,0 ≤		-	0,1≤(Φ _{CH4} / Φ _{H2})≤1 и 3 ≤ (Φ _{C2H4} /Φ _{C2} н6) и (1,5 ≤ Φ _{C2H2} /H _{C2H} 2 или 1,5 ≤ Φ _{C2H4} /H _{C2H} 4 или 1,5 ≤ Φ _{CH4} /H _{CH4} или 1,5 ≤ Φ _{C2H6} /H _{CH4} или 1,5 ≤ Φ _{C2H6} /H _{C2H} 6) Не выполняет ся условие: (Φ _{C2H2} /Φ _{C2} н4) ≤ 0,1	нет	нет		
1080				T330B (C2H2/C2H4 CH4/H2	% o б .	и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2н4/Нс2на или 1,5 ≤ Фсн4/Нс4 или 1,5 ≤ Фн2/Нс2на или 1,5 ≤ Фн2/Нн2 или 1,5 ≤ Фс2н6/Нс2н6) Выполняетс я условие: (Фс2н2/Фс2на) ≤ 0,1 и 1,0 ≤ (Фсн4/Фн2)		-	$0,1 \le (\Phi_{CHA}/\Phi_{H2}) \le 1$ u $3 \le (\Phi_{C2HA}/\Phi_{C2} + H6)$ u $(1,5 \le \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/\Phi_{C2}$	нет	нет		
1080				T330B (C2H2/C2H4 CH4/H2	% oб.	и 3 ≤ (Фс2на/Фс2на)) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фсна/Нс2на или 1,5 ≤ Фсна/Нс4 или 1,5 ≤ Фн2/н/Нс4 или 1,5 ≤ Фн2/н/Нс2на или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс2на или 1,5 ≤ Фс2на/Нс2на) и 1,0 ≤ (Фс2на/Фн2) и			0,1≤(Φ _{CHA} / Φ _{H2})≤1 μ 3 ≤ (Φ _{C2HA} /Φ _{C2} μ6) μ (1,5 ≤ Φ _{C2HA} /H _{C2H} 2 μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} 4 μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2H} β ₁ μυτα 1,5 ≤ Φ _{C2HA} /H _{C2} μοτα 1,0 ≤ 1,0 ≤	нет	нет		
1080				T330B (C2H2/C2H4 CH4/H2	% oб.	и 3 ≤ (Фс2на/Фс2н6) и (1,5 ≤ Фс2н2/Нс2н2 или 1,5 ≤ Фс2н4/Нс2на или 1,5 ≤ Фсн4/Нс4 или 1,5 ≤ Фн2/Нс2на или 1,5 ≤ Фн2/Нн2 или 1,5 ≤ Фс2н6/Нс2н6) Выполняетс я условие: (Фс2н2/Фс2на) ≤ 0,1 и 1,0 ≤ (Фсн4/Фн2)			$0,1 \le (\Phi_{CHA}/\Phi_{H2}) \le 1$ u $3 \le (\Phi_{C2HA}/\Phi_{C2} + H6)$ u $(1,5 \le \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/H_{C2H} + \Phi_{C2H2}/\Phi_{C2}$	нет	нет		

					_			01									
									$(\Phi_{C2H4}/\Phi_{C2H6})$				и	1			
)	·			3 ≤				
1	! !								и		i		$ \Phi_{C2H4}/\Phi_{C2} $				
		ļ							(1,5 ≤				H6)	j			
									Фс2H2/Нс2H2				и	1	l		<u> </u>
									или				(1,5≤	- 1	1		
									1,5 ≤		1		Фс2н2/Нс2н	- 1			
									Фс2н4/Нс2н4		1		2	- 1			
									или				или	- 1			
								Į	1,5 ≤				1,5 ≤	ŀ			
									Фсн4/Нсн4				Фс2н4/Нс2н				
								!	или		J		4]	J		J J
-				[[1,5 ≤				или				ŀ
									Фн2/Нн2				1,5 ≤	1			l
									или				Фсн4/Нсн4	- 1			
				1					1,5 ≤				или	- 1			1
									Фс2н6/Нс2н6		1		1,5 ≤	- 1			1
)				Фн2/Нн2	- 1			
ľ									,				или	-			
													1,5 ≤	1			
		1		Į.	[[l	[Фс2н6/Нс2н				l l
													6)		ļ		i i
108	<u> </u>		Магнитоп	да	Потери	Изменение потерь холостого	%		-	0,30 < (Ф-	0,25 < (Ф-	0,20 < (Ф-	(Ф-Фо)/Фо	нет	нет	0,49	0,180
	1 1	l	ровод	"	холостого хода	хода от исходных значений		ł]	Φο)/Φο	Фо)/Фо≤	Фо)/Фо≤	≤0,20			-,	,
			•			Фо (в соответствии с				ŕ	ó,30 [—]	0,25		. 1			
				•		применяемой НТД)					,	,		.			1
108				1	Локальный	Аномальный локальный		Имеется/	-	Имеется	-	•	Отсутству	нет	нет	0,30	1
					нагрев бака	нагрев поверхности бака по		отсутствует					er			-,	
					•	результатам тепловизионного											
						контроля											
108					Состояние	Наличие дефектов (прогар и		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,19	1
					магнитопровод	оплавление активной стали,		отсутствует					er	. 1		-,	
			· '	1	a	отсутствие изоляции между									ļ		
						пластинами, ухудшение		1	i						,		
						магнитных свойств стали)									1		}
108			[ĺ	Группа	Наличие:		Имеется/	Имеется	-	•	-	Отсутству	нет	да	0,02	1 1
					ресурсоопреде	(дефектов магнитопровода		отсутствует					er	. 1		.,	
					хидина	или								. 1			1
					параметров	аномального докального								.			
				1		нагрева поверхности бака)		ŀ						. 1			
ļ						и		l									
						потери холостого хода,							1 1				
ł	1		 	1		превышающие 30 % от		1	\	\			1 1	. 1	}		Y Y
						исходных значений		<u> </u>									
108	5	,	Обмотки	да	Состояние	Тенденция отклонения	Ом		-	0,03 < (Ф -	-	-	(Ф - Фо) /	нет	нет	0,10	0,180
1	i		трансфор		геометрии	сопротивления короткого				Фо)/Фо			$\Phi_0 \leq 0.03$		ļ		
	1 1		матора	ł	обмотки	замыкания Zk по сравнению с		1	}	}	}		!	. 1	1		1 1
						исходным значением Фо (в									ļ		1
						соответствии с применяемой			i						ļ		
						НТД) (для трансформаторов									ļ		
			1			мощностью 125 МВА и более)											
108	5					Нарушение геометрии		Имеется/	-	Имеется	-	-	Отсутству	нет	нет		
				i		обмотки (сдвиг в осевом		отсутствует					ет	i			
						направлении, радиальная			1								
			 			потеря устойчивости,									1		L
						деформация проводников											
			1			обмотки)		<u> </u>									<u>.</u>
108	7]		1		Состояние	Тенденция отклонения	Ом]		-	0,05 < (Φ -	-	(Φ -	нет	нет	0,30]
[обмотки	сопротивления обмотки		1			Фо) /Фо		$ \Phi_0 /\Phi_0 \le \Phi_0 $				1
						постоянному току по		1			1		0,05				
			l			сравнению со значением, при								. 1			
-						вводе в эксплуатацию Фо (для											
	j		1			однофазных				1				, I			
			l			трансформаторов)		 	ļ	ļ							į į
			1		1	L Hooverson component water	1 0/2										
108	8			1		Разница сопротивлений обмоток постоянному току,	%		-	-	1 < Ф/Н	-	Φ/ H ≤ 1	нет	нет		

	T	1			измеренные на одинаковых								T			
	l l				ответвлениях разных фаз при								-			1
					одинаковой температуре (для							ļ		ŀ		1 1
1					трехфазных				Į							1
					трансформаторов)]
1089				Состояние	Тенденция изменения	%		-	0,5 < (Ф-	0,4 < (Ф-		(Φ-Φο)/Φο	нет	нет	0,30	1 1
			1	изоляции	тангенса угла				Фо)/Фо	Фо)/Фо≤		≤0,4				1 1
				l '	диэлектрических потерь (tgδ)				и 1,0 < Ф	0,5		или Ф ≤				
					обмотки, приведенный к 20					и 1,0 < Ф		1,0		1		
	,				°C, по сравнению с исходным					-		'				1
	i				значением Фо (в соответствии							1				
			ļ		с применяемой НТД),		:									1 1
			l	ľ	приведенным к 20 °C		:									1 1
1090			1		Сопротивление изоляции	МОм		-	0,5 < (Фо-	0,4 < (Фо-	-	(Фо-Ф)/Фо	нет	нет		1
1050					через 60 сек. после начала				Φ)/Φο	Ф)/Фо ≤		`≤0,4				
1 1					измерений (R60) в				иФ≤3000	0,5		или 3000				
		j		1	эксплуатации, приведенное к				_	иФ≤3000		<ф				1
					20 °C, по сравнению с	ŀ				-		_				
_ [исходным значением Фо (в							! !				1 1
					соответствии с применяемой											
1 1					НТД), приведенным к 20 °C											1
1091				Состояние	Влагосодержание твердой	% массы		4<Ф	-	Φ=4	2≤Φ<4	Φ<2	нет	нет	0,29	1
1051		1		твердой	изоляции (для	/								2.52	-,=-	
				изодящии	трансформаторов мощностью	ŀ			i							1
1 1				I I SWIMIN	60 МВА и более)	j										
1092					Содержание фурановых	% массы		1 < Ф/Н	-	_		Φ/H ≤ 1	нет	нет		1
1 1002	[ſ		производных	/ / / / / / / / / / / / / / / / / / / /		1 - 1/11	ſ	['		1101			1 1
1093		ļ		Группа	Нарушение геометрии		Имеется/	Имеется				Отсутству	нет	да	0,01	- 1
1093				ресурсоопреде	обмотки		отсутствует	PIMOCICA		-	_	er	Hei	Да	0,01	
1 1					и		Отсутствует					61				
1				ляющих	отклонение Zк от исходных	ļ										1
				параметров	значений более 3 %				İ			1				
1094					Степень полимеризации	ед.		Φ≤250	250 < Φ ≤	300 < Φ ≤		400 < Φ	нет			-
1094					т слепень полимеризации				1 230 > 40 >	1 300 ~ W ~ 1		1 400 \ W I	Her I	да		
i I						ОД .		T _ 250								1
1005				G	твердой изоляции				300	400				, .	0.224	- DELL
1095		Система	нет	Состояние		кВ		Φ/H < 1		400 1 ≤ Φ/H	-	1 ≤	нет	нет	0,334	с РПН -
1095		регулиров	нет	изолящионной	твердой изоляции				300	400				, .	0,334	0,070
		регулиров ания	нет	изоляционной системы	твердой изоляции Пробивное напряжение		The second	Ф/Н < 1	300	400 1 ≤ Ф/Н и Ф/(H+5)< 1	-	1 ≤ Φ/(H+5)	нет	нет	0,334	0,070 без РПН
1095		регулиров ания напряжен	нет	изолящионной	твердой изоляции		Имеется/		300	400 1 ≤ Φ/H		1 ≤ Ф/(H+5)		, .	0,334	0,070
1096		регулиров ания	нет	изоляционной системы (масло)	твердой изоляции Пробивное напряжение Влагосодержание масла		отсутствует	Ф/Н < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	-	1 ≤ Ф/(H+5) Отсутству ет	нет	нет	·	0,070 без РПН
	ļ	регулиров ания напряжен	нет	изоляционной системы (масло) Состояние	твердой изоляции Пробивное напряжение		отсутствует Исправны/	Ф/Н < 1	300 - Имеется Не	400 1 ≤ Ф/Н и Ф/(H+5)< 1	-	1 ≤ Ф/(H+5)	нет	нет	0,334	0,070 без РПН
1096		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы		отсутствует Исправны/ не исправны	Φ/H < 1 -	300 - Имеется Не исправны	400 1 ≤ Φ/H μ Φ/(H+5)< 1 -	-	1 ≤ Ф/(H+5) Отсутству ет Исправны	нет нет	нет	·	0,070 без РПН
1096		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла		отсутствует Исправны/ не исправны Исправны/	Ф/Н < 1	300 Имеется Не исправны Не	400 1 ≤ Φ/H μ Φ/(H+5)< 1	-	1 ≤ Ф/(H+5) Отсутству ет	нет	нет	·	0,070 без РПН
1096 1097 1098		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов	твердой изоляции Пробивное напряжение Влагосодержание масла ППунтирующие резисторы Цепи управления		отсутствует Исправны/ не исправны Исправны/ не исправны	Φ/H < 1 - -	300 Имеется Не исправны Не исправны	400 1 ≤ Φ/H μ Φ/(H+5)< 1 -	-	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны	HCT HCT HCT	нет	·	0,070 без РПН
1096		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/	Φ/H < 1 -	300 Имеется Не исправны Не исправны Не	400 1 ≤ Φ/H μ Φ/(H+5)< 1 -	-	1 ≤ Ф/(H+5) Отсутству ет Исправны	нет нет	нет	·	0,070 без РПН
1096 1097 1098 1099		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Піунтирующие резисторы Цепи управления Редуктор привода		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен	Φ/H < 1 - -	300 - Имеется Не исправны не исправны не исправен	400 1 ≤ Φ/H μ Φ/(H+5)< 1 -	-	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен	HCT HCT HCT	нет нет	·	0,070 без РПН
1096 1097 1098		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла ППунтирующие резисторы Цепи управления		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен Исправен/	Φ/H < 1 - -	300 - Имеется Не исправны Не исправны Не исправен Не	400 1 ≤ Φ/H μ Φ/(H+5)< 1 -	-	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны	HCT HCT HCT	нет нет	·	0,070 без РПН
1096 1097 1098 1099		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен Исправен/ не исправен	Φ/H < 1 - -	300 Имеется Не исправны Не исправны не исправен Не исправен	400 1 ≤ Φ/H μ Φ/(H+5)< 1 -		1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен	Het Het Het Het	Het Het Het	·	0,070 без РПН
1096 1097 1098 1099		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Піунтирующие резисторы Цепи управления Редуктор привода		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен Исправен/ не исправен Не исправен Не исправен	Φ/H < 1 - -	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1 -		1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен	Het Het Het Het	Het Het Het	·	0,070 без РПН
1096 1097 1098 1099		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен не исправен исправен не исправен отсутствует	Φ/H < 1	300	400 1≤Φ/H μΦ/(H+5)< 1 -	- - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен	Het Het Het Het Het	HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен Исправен/ не исправен Не исправен Не исправен	Φ/H < 1	300	400 1≤Φ/H μΦ/(H+5)< 1 -	- - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен	Het Het Het Het Het	HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен не исправен исправен не исправен отсутствует	Φ/H < 1	300	400 1≤Φ/H μΦ/(H+5)< 1 - -		1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен	Het Het Het Het Het Het	HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправен Исправен Исправен Исправен Исправен Исправен Не исправен Не исправен Рессоединен Не рассоединен	Φ/H < 1	300	400 1≤Φ/H μΦ/(H+5)< 1 - -		1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Инфестся	Het Het Het Het Het Het	HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправен не исправен Не исправен Исправен Тисправен Имеется/ отсутствует Рассоединен/ не	Φ/H < 1	300	400 1≤Φ/H μΦ/(H+5)< 1 - -		1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Инфется Не рассоедин	Het Het Het Het Het Het	HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал		отсутствует Исправны/ не исправны Исправны Исправны Исправен/ не исправен Исправен Исправен Исправен Осправен Исправен Имеется/ отсутствует Рассоединен Исправен/ не рассоединен Исправен/ не исправен	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Имеется Не рассоедин ен	Het Het Het Het Het Het	HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправен Исправен Исправен Исправен Исправен Исправен Ине исправен Имеется/ отсутствует Рассоединен Исправен/	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Не рассоедин ен	Het Het Het Het Het Het	HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор		отсутствует Исправны/ не исправны Исправны Исправны Исправен/ не исправен Исправен Исправен Исправен Осправен Исправен Имеется/ отсутствует Рассоединен Исправен/ не рассоединен Исправен/ не исправен	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Имеется Не рассоедин ен Исправен	Het Het Het Het Het Het Het Het Het Het	Het Het Het Het Het Het	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправен/ не исправен Исправен Исправен Исправен Ине исправен Имеется/ отсутствует Рассоединен не рассоединен Исправен/ не исправен Исправен Исправен Исправен	Φ/H < 1	300 - Имеется Не исправны Не исправен Не исправен Стсутству ет Рассоедин ен Не исправен	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Имеется Не рассоедин ен Исправен	Het Het Het Het Het Het Het Het Het Het	Het Het Het Het Het Het	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен Исправен Исправен Исправен Ине исправен Имеется/ отсутствует Рассоединен не рассоединен Исправен Исправен Исправен Исправен не исправен не исправен не исправен	Φ/H < 1	300 - Имеется Не исправны Не исправен Не исправен Стсутству ет Рассоедин ен Не исправен	400 1 ≤ Φ/H μ Φ/(H+5)< 1		1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправен	HeT HeT HeT HeT HeT HeT HeT	HET HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102 1103 1104		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода Автоматика привода		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен Исправен Исправен Ине исправен Имеется/ отсутствует Рассоединен не исправен/ не исправен Исправен/ не исправен Исправен/ не исправен исправен исправен исправен исправны не исправны не исправны не исправны	Φ/H < 1	300 - Имеется Не исправны Не исправен Не исправен Стсутству ет Рассоедин ен Не исправен	400 1 ≤ Φ/H μ Φ/(H+5)< 1	He	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправен Исправны	Het Het Het Het Het Het Het Het	HET HET HET HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода Автоматика привода		отсутствует Исправны/ не исправны Исправны/ не исправны Исправен/ не исправен Исправен Исправен Ине исправен Имеется/ отсутствует Рассоединен не рассоединен Исправен/ не исправен Исправен/ не исправен Исправен Исправен Исправны/ не исправны Исправны	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - - - - - - - - - - - - - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправен	HeT HeT HeT HeT HeT HeT HeT	HET HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода Автоматика привода Привод устройства регулирования напряжения		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправен не исправен Исправен Исправен Исправен Не исправен Имется/ отсутствует Рассоединен Не рассоединен Исправен не исправен исправен исправны не исправны не исправны не исправна не исправна не исправна не исправна не исправен не исправна	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - - - - - - - - - - - - - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправны Исправны Исправны Исправны Исправна Исправна	Het Het Het Het Het Het Het Het Het Het	HET HET HET HET HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102 1103 1104		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода Автоматика привода Привод устройства регулирования напряжения Механическая блокировка		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправен Не исправен Исправен Исправен Исправен Не исправен Не исправен Не исправен Не исправен Не исправен Не исправен Не исправен Не исправен Исправны Исправны Исправны Исправна Не исправен Не исправен Не исправен Исправен Исправен Исправен Не исправен	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - - - - - - - - - - - - - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправен Исправны	Het Het Het Het Het Het Het Het	HET HET HET HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода Автоматика привода Привод устройства регулирования напряжения Механическая блокировка привода		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправны Исправен Не исправен Исправен Исправен Имеется/ отсутствует Рассоединен Исправен/ не исправен Исправен исправен исправны Исправны Исправны Исправны Исправны Исправна не исправен не исправен не исправен не исправен не исправен не исправен не исправен	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - - - - - - - - - - - - - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправны Исправны Исправны Исправна Исправна	HeT HET HET HET HET HET HET HET HET HET HE	HET HET HET HET HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода Автоматика привода Привод устройства регулирования напряжения Механическая блокировка привода Указатель положения на щите		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправны Исправен Исправен Исправен Исправен Исправен Имеется/ отсутствует Рассоединен Исправен не исправен Исправен исправен исправны Исправны Исправны Исправна Исправна Не исправен Исправна Не исправен Исправна Исправна Исправна Исправна Исправна Исправна	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - - - - - - - - - - - - - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправны Исправны Исправны Исправны Исправна Исправна	Het Het Het Het Het Het Het Het Het Het	HET HET HET HET HET HET HET HET HET HET	·	0,070 без РПН
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107		регулиров ания напряжен	нет	изоляционной системы (масло) Состояние механизмов привода и	твердой изоляции Пробивное напряжение Влагосодержание масла Шунтирующие резисторы Цепи управления Редуктор привода Электродвигатель Смазка в редукторе привода Приводной вал Угловой редуктор Электронные блокировки привода Автоматика привода Привод устройства регулирования напряжения Механическая блокировка привода		отсутствует Исправны/ не исправны Исправны Исправны Исправны Исправны Исправен Не исправен Исправен Исправен Имеется/ отсутствует Рассоединен Исправен/ не исправен Исправен исправен исправны Исправны Исправны Исправны Исправны Исправна не исправен не исправен не исправен не исправен не исправен не исправен не исправен	Φ/H < 1	300	400 1 ≤ Φ/H μ Φ/(H+5)< 1	- - - - - - - - - - - - - - - - - - -	1 ≤ Ф/(H+5) Отсутству ет Исправны Исправны Исправен Исправен Исправен Имеется Не рассоедин ен Исправен Исправны Исправны Исправны Исправна Исправна	HeT HET HET HET HET HET HET HET HET HET HE	HET HET HET HET HET HET HET HET HET HET	·	0,070 без РПН

							83									
1110					регулятора напряжения		не исправны		T #		исправны	0				
1110					Наличие «земли» в цепях управления		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет		
1111					Струйное реле		Повреждено/ исправно	-	Поврежде но	-	•	Исправно	нет	нет		
1112		Обобщенн ый узел	нет	Срок службы	Срок службы (за исключением высоковольтных вводов и системы регулирования	лет		1,85 ≤ Φ/H	1 ≤ Φ/H < 1,85	0,57 ≤ Φ/H < 1	0,13 ≤ Φ/H < 0,57	Ф/Н < 0,13	нет	нет	1	с РПН - 0,070 без РПН - 0,075
1113					напряжения)			1,85 ≤ Φ/H	1≤Φ/H<	0,57 ≤ Φ/H	0,13 ≤ Φ/H	Φ/H < 0,13	нет	Victor		,,,,,
					Срок службы высоковольтного ввода (наибольшее значение)	лет			1,85	<1	< 0,57		HCT	нет		
1114					Срок службы системы регулирования напряжения (наибольшее значение)	лет		1,85 ≤ Ф/H	1 ≤ Φ/H < 1,85	0,57 ≤ Φ/H < 1	0,13 ≤ Φ/H < 0,57	Ф/Н < 0,13	нет	нег		
1115	Трансфор матор (автотранс форматор)	Высоково льтный ввод	Het	Общие сведения	Наличие дефектов покрышки с характеристиками, превыплающими значения, установленные НТД		Имеется/ отсутствует	Имеется	•	-	-	Отсутству ет	нет	нет	1	с РПН - 0,11 без РПН - 0,14
1116	силовой (классом напряжен ия 35 кВ)				Неравномерное распределение температуры по результатам тепловизионного конгроля		Имеется/ отсутствует	Иместся	•	-	-	Отсутству ет	нет	нет		
1117					Степень развития дефекта контактных соединений по результатам тепловизионного контроля		Аварийный дефект/ дефект отсутствует	Аварийный <i>де</i> фект	•	•	-	Дефект отсутствуе т	нет	нет		
1118		Вспомогат ельное	нет	Дефекты бака, навесного	Механическое повреждение (деформация)		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет	0,5	с РПН - 0,07
1119		оборудова ние		оборудования	Течь масла через сварные швы		Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 капля в сек.)/ намокание/от потевание/ отсутствует	•	Интенсивн ая (не менее 2-х капель в сек.)	Капельная (не более 1 капли в сек.)	Намокание/ отпотевание	Опсупству ет	Het	нет		без РПН - 0,10
1120					Течь масла через уплотнение разъема бака, маслопровода, фланцев		Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 капля в сек.)/ намокание/от потевание/ отсутствует	-	Интенсивн ая (не менее 2-х капель в сек.)	(не более 1 капли в сек.)	Намокание/ отнотевание	Опсупству ет	HCT	HCT		
1121					Течь масла из проходного изолятора		Интенсивная (не менее 2-х капель в сек.)/ капельная (не более 1 капля в сек.)/ намокание/от потевание/ отсутствует	-	Интенсивн ая (не менее 2-х капель в сек.)	Капельная (не более 1 капли в сек.)	Намокание/ отнотевание	Отсутству ет	нет	нет		
1122					Наличие замечаний по системе охлаждения		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет		
1123					Наличие замечаний по системе обогрева		Имеется/ отсутствует	-	-	Имеется	-	Отсутству ет	нет	нет		
1124					Неисправность обогрева		Имеется/	_	Имеется	_		Отсутству	нет	нет		

	<u> </u>			<u> </u>	ШАОТ		отсутствует					ет				
1125					Уровень масла		Низкий/	-	-	Низкий	Повышенн	В норме	нет	нет		
							повышенный/				ый	_				
1126				2	D		в норме Имеется/	•	Имеется			0			0.5	4
1126				Защитное оборудование	Разрушение (трещины) мембраны выхлопной трубы	ļ	отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет	0,5	1
1127				ооорудование	Неисправность газового реле		Имеется/		Имеется	_		Отсутству	нет	нет		1
			İ				отсутствует					ет	1101	1101		
1128		Обмотки	да	Состояние	Нарушение геометрии		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,1	0,5
		трансфор		геометрии	обмотки (сдвиг в осевом		отсутствует					ет				
		матора		обмотки	направлении, радиальная потеря устойчивости,											
					деформация проводников											
					обмотки)											
1129				Состояние	Разница сопротивлений	%		-	-	1 < Ф/Н	-	Φ/H ≤ 1	нет	нет	0,3	1
			<u> </u>	обмотки	обмоток постоянному току,											
					измеренные на одинаковых ответвлениях разных фаз при				1							
					одинаковой температуре (для											
					трехфазных					İ						1 1
					трансформаторов)											
1130	İ			Состояние	Сопротивление изоляции	МОм	·	1	0,5 < (Φο-	0,4 < (Фо-	_	(Фо-Ф)/Фо	нет	нет	0,3	7
				изолящии	через 60 сек. после начала				Ф)/Фо	Φ)/Φ ₀ ≤		≤ 0,4				1 1
					измерений (R60) в эксплуатации, приведенное к				и Ф<300	0,5 B		или 300 ≤ Ф				
	J]			эксплуатации, приведенное к 20 °C, по сравнению с]	J		V > 300	Φ < 300	j] 300 ≥ Φ				
		1			исходным значением Фо (в					1 200						
					соответствии с применяемой											
					НТД), приведенным к 20 °C											_
1131				Состояние	Пробивное напряжение	кВ r/т		•	Φ/H < 1 1,0 < Φ/H	- -	<u> </u>	1 ≤ Φ/H	нет	нет	0,29	
1132				масла	Влагосодержание масла (с пленочной или азотной	171	1	-	1,0 \ Ψ/Η	Φ/H ≤ 1,0 и	-	$\Phi/(H-5) \le 1,0$	нет	нет		i
					защитой)					1 < Ф/(H -		1,0				ŀ
										5)						
1133					Влагосодержание масла (без	г/т		-	1,0 < Ф/Н	Φ/H ≤ 1,0	-	Φ/(H - 5) ≤	нет	нет] [
					специальных защит)		-		ĺ	и 1 < Ф/(H -		1,0			į	
										5)						1
1134					Тенденция изменения	г/т		_	-	-	0,3 ≤ (Φ -	(Φ-	нет	нет		
					влагосодержания масла по						Фпред)/Фпр	Фпред)/Фп				
					сравнению с предыдущим						ед	ред < 0,3				
					замером Фпред						и 10 < Ф	или				
1135					Кислотное число	мгКОН/г			1 < Ф/Н	0,4 < Φ/H ≤		$\Phi \le 10$ $\Phi/H \le 0,4$	нет			
1133					KACHOTHOC TRESTO	MINOINI		_	1 . 4/11	1	_	₩711 ≥ 0,4	Hei	нет		
1136					Температура вспышки в	°C		-	Φ < 125	-	-	125≤ Φ	нет	нет		
	j				закрытом тигле	<u> </u>										j
1137					Тенденция изменения	°C		-	-	5 ≤ (Фпред	-	(Фпред -	нет	нет		1
					температуры вспышки в					-Ф)		Φ) < 5				
					закрытом тигле по сравнению с предыдущим замером					ļ						
					Фпред					İ						
1138		1		Группа	Нарушение геометрии		Имеется/	Имеется	-	-	-	Отсутству	нет	да	0,01	╡ !
				ресурсоопреде	обмотки, приводящее к:	1	отсутствует					eт				1
				хишони	(превышению разности											1
				параметров	сопротивлений обмоток трехфазных трансформаторов				1							
					па одинаковых ответвлениях											
					разных фаз более значения,											
					установленного НТД,											
					или											
					снижению сопротивления изоляции до величины ниже											
1 1					300 МОм и изменению более											j [
		ł			чем на 50% по сравнению с											
			'		<u> </u>				•			·				

<u> </u>	<u> </u>	 		T	исходным значением)	·	1			<u> </u>		r 1		-		1
1139		Магнитоп	да	Потери	Изменение потерь холостого	%	<u> </u>	-	0,30 < (Ф-	0,25 < (Ф-	0,20 < (Φ-	(Ф-Фо)/Фо	нет	нет	0,49	0,18
1135		ровод	да	холостого хода	хода от исходных значений	, ,		•	Фо)/Фо	Фо)/Фо≤	Фо)/Фо ≤	≤0,20	1101	1101	0,12	","
				, ,	Фо (в соответствии с					0,30	Ó,25					
					применяемой НТД)											<u> </u>
1140				Локальный	Аномальный локальный		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,30	
				нагрев бака	нагрев поверхности бака по		отсутствует]		ет				1
					результатам тепловизионного					1						
<u> </u>	i	İ			контроля				77							4
1141				Состояние	Наличие дефектов (прогар и		Имеется/	-	Имеется	-	-	Отсутству	нет	нет	0,19	
	1			магнитопровод а	оплавление активной стали, отсутствие изоляции между		отсутствует					ет				
				a a	пластинами, ухудшение											
					магнитных свойств стали)		1		İ							
1142				Группа	Наличие:		Имеется/	Имеется	-	-	-	Отсутству	нет	да	0,02	1
				ресурсоопреде	(дефектов магнитопровода		отсутствует					ет		, .	•	
		1		ляющих	или											
				параметров	аномального локального											1
					нагрева поверхности бака)		!									
					и						İ					
					потери холостого хода,											
					превышающие 30 % от исходных значений]					
1143		Система	нет	Состояние	Пробивное напряжение	кВ	<u> </u>	Φ/H < 1	<u> </u>	•		1 ≤ Φ/H	нет	нет	0,334	с РПН -
1173		регулиров	1.00	изоляционной	1.poomino marpamento			=/-* - *			_	1 _ 4/11	124/1	1101	0,554	0,070
		ания]	системы]		1			1] :				без РПН
		напряжен		(масло)												_] -0
1144		ия		Состояние	Шунтирующие резисторы		Исправны/	-	He	-	-	Исправны	нет	нет	0,666	
				механизмов			не исправны		исправны	.		ļ				
1145				привода и	Цепи управления		Исправны/	-	He	-	-	Исправны	нет	нет		
1146			ł	контактора	Paraverson marinaria		не исправны Исправен/		исправны Не			Исправен	*****	*****		
1140		!			Редуктор привода		не исправен	_	исправен		_	Рісправен	нет	нет		
1147					Электродвигатель		Исправен/	-	He	_	_	Исправен	нет	нет		
							не исправен		исправен			1				
1148					Смазка в редукторе привода		Имеется/	-	Отсутству	-	-	Имеется	нет	нет		
							отсутствует		er							
1149					Приводной вал		Рассоединен/	-	Рассоедин	-	-	He	нет	нет		
							не		ен			рассоедин				
1150					V		рассоединен		He		 	ен				
1150					Угловой редуктор		Исправен/ не исправен	-	исправен	_	-	Исправен	нет	нет		
1151					Электронные блокировки		Исправны/	_	He	-	-	Исправны	нет	нет		
	1				привода		не исправны		исправны			Trompubliba	1101	1101		
1152	1				Автоматика привода		Исправна/	-	-	_	He	Исправна	нет	нет		1
							не исправна				исправна	<u> </u>				1
1153					Привод устройства		Исправен/	-	He	-	-	Исправен	нет	нет		
		1			регулирования напряжения		не исправен		исправен		 	 				
1154		1			Механическая блокировка		Исправна/	-	He	-	-	Исправна	нет	нет		
1155					привода Указатель положения на щите		не исправна		исправна Не		 	Ha				
1155					1		Исправен/ не исправен	-	не исправен	-	-	Исправен	нет	нет		
1156					управления Устройства автоматического	-	Исправны/	_	исправен	-	He	Исправны	нет	нет		
1150				1	регулятора напряжения		не исправны			1	исправны	TAMPEDI	l HC1	Hei		
1157					Наличие «земли» в цепях		Имеется/	-	Имеется	-	-	Отсутству	нет	нет		
					управления		отсутствует				<u> </u>	er	L :			1
1158					Струйное реле		Повреждено/	-	Поврежде	-	_	Исправно	нет	нет		
				<u> </u>			исправно	1.02	но	0.55						<u> </u>
1159		Обобщени	нет	Общие	Срок службы (за	лет		1,85 ≤ Ф /H	1 ≤ Φ/H	0,57 ≤ Φ/H	0,13 ≤ Φ/H	Φ/H <0,13	нет	нет	1	с РПН -
		ый узел		сведения	исключением		1		<1,85	<1	<0,57					0,07
					высоковольтных вводов и системы регулирования						1					без РПН - 0,08
					напряжения)							1				- 0,00
1160		1			Срок службы системы	лет	<u>† </u>	1,85 ≤ Φ/H	1 ≤ Φ/H <	0,57 ≤ Φ/H	0,13 ≤ Φ/H	Φ/H < 0,13	нет	нет		
***					регулирования напряжения		1		1,85	<1	< 0,57					
..					1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			J	<u> </u>	·						

1161					Срок службы высоковольтного ввода (наибольшее значение)	лет		1,85 ≤ Φ/H	1≤Φ/H < 1,85	0,57≤ Φ/H < 1	0,13≤ Φ/H < 0,57	Φ/H < 0,13	нет	нет		
1162	Турбогене ратор	Обмотка ротора	нет	Состояние корпусной	Сопротивление изоляции обмотки ротора	МОм		-	Φ/H < 1	-	Φ/H = 1	1 < Ф/Н	нет	нет	0,25	при
1163		, cospa		изоляции	Пробои изоляции обмотки ротора при эксплуатации (за межремонтный период)	шт.		2<Φ	-	1≤Φ≤2	-	Φ=0	да	нет		ЩКА и системы водосна
1164					Температура по результатам испытаний обмотки рогора на нагревание	℃		-	1 < Ф/Н	-	Ф/Н = 1	Φ/H < 1	нет	нет		бжения охладите лей,
1165					Тенденция отклонения температуры обмотки ротора по результатам испытаний на нагревание по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	°C		-	-	1 ≤(Φ - Φο)/5	0,6 ≤ (Φ - Φο) /5 < 1	(Φ - Φο)/5 < 0,6	нет	нет		системы водяног о охлажде ния обмоток статора
1166					Ограничение мощности (по результатам испытаний обмотки ротора на нагревание)		Имеется/ отсутствует	-	Имеется	-	-	Отсутству	нет	нет		и ротора (далее – CBO) - 0,229;
1167				Состояние витковой изолящии	Тенденция отклонения значения сопротивления обмотки ротора переменному току по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	Ом		-	-	-	0,05 < (Φ - Φο) / Φο	(Φ - Φο) / Φο ≤ 0,05	нет	нет	0,25	при наличии СВО и отсутств ии ЩКА - 0,239; при
1168					Отклонение характеристики короткого замыкания (далее – отклонение ХКЗ) от исходной с учетом скачкообразного изменения сопротивления обмотки ротора переменному току при изменении частоты вращения (далее – Δ Z)		Имеется отклонение XK3 и Δ Z/ имеется (отклонение XK3 или Δ Z) и отсутствует (отклонение Δ Z или XK3 соответствен но)/ отсутствует отклонение XK3 или Δ Z	Имеется отклонение ХКЗ и ∆ Z	-	Имеется (отклонени е ХКЗ или Δ Z) и отсутствуе т (отклонени е Δ Z или ХКЗ соответств енно)	-	отсутству ет отклонени е XK3 или Δ Z	нет	Het		наличии ЩКА и отсутств ии СВО - 0,248; при отсутств ии ЩКА и СВО - 0,259
1169					Дефекты витковой изоляции обмотки ротора		Имеются/ отсутствуют	Имеются	-	-	-	Отсутству	нет	нет		
1170				Состояние катушек обмотки возбуждения, паяных межкатушечны х соединений	Тенденция отклонения значения сопротивления обмотки ротора и паяных соединений постоянному току по сравнению с исходным значением Фо (в соответствии с применяемой НТД)			-	-	-	0,02 < (Φ - Φο)/Φο	(Φ - Φο)/Φο ≤ 0,02	нет	нет	0,25	
1171				х соединении	с применяемой н гд) Аварии, связанные с разрушением межкатущечных соединений обмотки ротора в процессе эксплуатации, в межремонтный период	wr.		0 < Ф	-	-	<u>-</u>	Φ = 0	нет	нет		
1172				Состояние узла центрального токоподвода	межремонтный период Доля площади, имеющей нарушение серебряного покрытия контактных поверхностей пластин токоведущих шин, токоведущих болгов и контактного винта	%		-	_	1 ≤ Φ/10	-	0 ≤ Φ/10 < 1	нет	нет	0,25	

	,	_			<u></u>		0/	1 7			T					
1173					Трещины или разрывы пластин токоведущих шин		Имеются/ отсутствуют	Имеются	-	-	-	Отсутству ют	нет	нет		
1174					центрального токоподвода Пробои изоляции токоведущих шин		Имеются/ отсутствуют	-	Имеются	<u>-</u>	-	Отсутству	нет	нет		
1175		Обмотка статора	нет	Состояние изоляции обмотки	Сопротивление изоляции обмотки статора в «холодном» состоянии	МОм		•	Ф/Н < 1	Φ/H = 1	-	1 < Ф/Н	нет	нет	0,25	при наличии ЦКА и
1176				статора	Пробои изоляции статора при высоковольтных испытаниях (за межремонтный период)	шт.		2<Φ	-	1≤Φ≤2	-	Φ = 0	да	нет		СВО - 0,130; при
1177					Температура стержней обмотки статора по результатам испытаний	°C		-	1 < Ф/Н	-	Ф/Н = 1	Ф/Н < 1	нет	нет		наличии СВО и отсутств
1178				:	генератора на нагревание Тенденция отклонения значения температуры стержней обмотки статора по результатам испытаний генератора на нагревание по сравнению с исходным	°C		-	-	1 ≤ (Φ - Φο) /5	0,6≤(Ф - Фо) /5 < 1	(Ф - Фо)/5 < 0,6	нет	нет		ии ЩКА - 0,140; при наличии ЩКА и отсутств ии СВО
1179					значением Фо (в соответствии с применяемой НТД) Ограничения мощности генератора (в связи с		Имеются/ отсутствуют	-	Имеются	<u>-</u>	•	Отсутству	нет	нет		- 0,149; при отсутств ии ЩКА и СВО -
1180					повышенным нагревом обмотки статора) Повреждения изоляции обмотки статора в пазовой		Имеются/ отсутствуют	Имеются	-	-	-	Отсутству	да	нет		0,160
1181				Состояние	части Вибрация лобовых частей	мкм		1 < Ф/Н	-	-	Φ/H = 1	Ф/Н <1	нет	нет	0,25	
1182				крепления лобовых частей	обмотки статора Тенденция отклонения вибрации лобовых частей обмотки статора по сравнению с предыдущим замером Фпред	мкм		-	-	0 < (Ф - Фпред)	-	(Ф - Фпред) ≤ 0	нет	нет		
1183				Состояние элементарных проводников и паяных соединений обмотки статора	Разница значений сопротивления обмоток постоянному току	Ом		Н < (Фмакс Фмин)/Фми н (при отсутствии указаний в НТД	-	_	_	(Фмакс - Фмин)/Фм ин ≤ Н (при отсутстви и указаний в НТД Н=0,02)	нет	нет	0,25	
1184					Разница значений сопротивления ветвей постоянному току	Ом		H=0,02) H < (Фмакс - Фмин)/Фми н (при отсутствии указаний в НТД H=0,05)	-	-	_	(Фмакс - Фмин)/Фм ин ≤ Н (при отсутстви и указаний в НТД Н=0,05)	нет	нет		
1185					Тенденция отклонения значений сопротивления обмотки постоянному току по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	Ом		-	-	-	Н < (Ф - Фо) /Фо (при отсутствии указаний в НТД Н=0,02)	(Ф • Фо) /Фо ≤ Н (при отсутстви и указаний в НТД Н=0,02)	нет	нет		
1186	;				Тенденция отклонения значений сопротивления ветвей постоянному току по	Ом		-	-	-	Н < (Ф - Фо) /Фо (при	(Ф - Фо) /Фо ≤ Н (при	нет	нет		

				сравнению с исходным значением Фо (в соответствии						отсутствии указаний в	отсутстви и указаний				
				с применяемой НТД)			!			НТД H=0,02)	в НТД H=0,02)				
1187			Состояние полых проводников	Наибольшая температура стержней обмотки статора по результатам испытаний	°C		-	1 < Ф/Н	77	$\Phi/H = 1$	Φ/H < 1	нет	нет	0,25	
1188			стержней обмотки статора	генератора на нагревание Тенденция отклонения средней температуры стержней обмотки статора при испытаниях на	°C		•	-	1 ≤ (Ф - Фо) /5	0,6≤(Φ - Φο) /5 < 1	(Φ - Φο) /5 < 0,6	нет	нет		
				нагревание при номинальном расходе дистиллята по сравнению с исходным значением Фо (в соответствии с применяемой НТД)											
1189				Наибольшая разность температур между наиболее и наименее нагретыми стержнями обмотки статора	°C		-	-	1 < Ф/Н	Ф/Н = 1	Ф/Н < 1	нет	нет		
1190				Количество стержней обмотки статора, имеющих превышения норматива по разности температур между наиболее и наименее нагретыми частями в разных фазах	шт,		3<Ф	2≤Φ≤3	-	-	Φ<2	нет	нет		
1191				Разность температур дистиллята на входе и выходе обмотки статора	°C		-	-	1 < Ф/Н	Ф/Н = 1	Φ/H < 1	нет	нет		
1192				Расход дистиплята через обмотку статора	м3/ч		-	-	1 < Ф/Н	$\Phi/H = 1$	Φ/H < 1	нет	нет		
1193				Содержание водорода в «газовой ловушке»	%		1 < Φ/20	0,5 < Φ/20 ≤ 1	0,15 < Φ/20 ≤ 0,5	0,05 < Φ/20 ≤ 0,15	Φ/20 ≤ 0,05	да	нет		
1194				Пузырьки водорода в струе дистиллята, сливающегося из дренажей «газовой ловушки»		Имеются/ отсутствуют	-	Имеются			Отсутству	нет	нет		
1195	Подшипн ики, уплотнени я вала	нет	Состояние в процессе эксплуатации	Дефекты системы, устраняемые без отключения генератора в межремонтный период		Имеются/ отсутствуют	-	=	Имеются	-	Отсутству ют	нет	нет	1	0,077
1196				Дефекты системы, устраняемые с отключением генератора в межремонтный период	шт.		2≤Φ	Φ = 1	-	-	Φ=0	нет	нет		
1197	Система водоснаб жения газоохлад	нет	Состояние в процессе эксплуатации	Дефекты системы, устраняемые без отключения генератора в межремонтный период		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет	1	при наличии СВО - 0,077;
1198	ителей, система водяного охлажден ия обмоток статора и ротора			Дефекты системы, устраняемые с отключением генератора в межремонтный период	шт.		2≤Φ	Φ = 1	-	-	Φ = 0	нет	нет		при отсутств ии СВО - 0
1199	(СВО) Система возбужден ия	нет	Состояние в процессе эксплуатации	Дефекты системы, устраняемые без отключения генератора в межремонтный		Имеются/ отсутствуют	<u>-</u>	<u>-</u>	Имеются	-	Отсутству	нет	нет	1	0,042
1200				период Дефекты системы, устраняемые с отключением	шт.		2 ≤ Φ	Φ = 1	_	-	$\Phi = 0$	нет	нет		

															
				генератора в межремонтный период											
1201	Сталь ротора	да	Состояние металла ротора	Подкалы, оплавления		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству	нет	нет	0,33	при наличии
1202	poropu		(«бочка» ротора)	Превышение твердости металла вала в местах оплавлений и ожогов после удаления дефектов по сравнению с основным	НВ		-	1 < Ф/40	Φ/40 ≤ 1	-	-	нет	нет		ЩКА и СВО - 0,229; при наличии
1203				металлом Превышение твердости металла вала в местах подкала после удаления дефектов по сравнению с основным металлом	НВ		-	1 < Ф/40	Φ/40 ≤ 1	-	-	нет	нет		СВО и отсутств ии ЩКА - 0,240; при наличии
1204			Состояние	Повреждения опорных шеек			-	1 < Ф/10	0,5 < Φ/10 ≤ 1	0 < Φ/10 ≤ 0,5	$\Phi/10 = 0$	нет	нет	0,33	ЩКА и
1205			поверхностей уплотнений вала, шейки	Оплавления и ожоги посадочных поверхностей уплотнений вала		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству ют	нет	нет		ии СВО - 0,248; при
1206			вала, галтельных переходов	Усталостные трещины в зонах галтельных переходов, маслоуловительных канавок		Имеются/ отсутствуют	-	-	Имеются	_	Отсутству	HCT	нет		отсутств ии ЩКА и СВО -
1207				Усталостные трещины на шейках вала из-за их подкала при потере маслоснабжения и повреждения вкладыша подпишника		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству	нет	нет		0,258
1208			Состояние бандажных колец ротора	Превышения максимально- допустимой величины токов обратной последовательности при длительной работе генератора		Имеются/ отсутствуют	-	Имеются	-	-	Отсутству кот	нет	HeT	0,33	
1209				Продолжительная работа генератора в несимметричных режимах с максимально допустимыми величинами токов обратной последовательности		Имеется/ отсутствует	-	Имеется	-	<u>-</u>	Отсутству ет	нет	нет		
1210				Дефекты бандажного узла		Отклонения размеров сопряжения составных частей бандажного узла/ отклонение состояния сплошности металла с учетом изменения размеров после удаления выявленных дефектов/ зазор между бандажным и центрирующ им кольцом/ наклепы, ожоги, точечная коррозия,	-	Отклонени я размеров сопряжени я составных частей бандажног о узла/ отклонени е состояния сплошност и металла с учетом изменения размеров после удаления выявленных дефектов	Зазор между бандажным и центрирую щим кольцом	Наклепы, ожоги, точечная коррозионн ые изъязвления и растрескива ния	ЮТ	нет	нет		

1211			Группа ресурсоопреде ляющих параметров	Наличие дефектов: повреждение опорных шеек и усталостных трещин (в зонах галтельных переходов и маслоуловительных канавок или на шейках вала)		коррозионны е изъязвления и растрескиван ия/ отсутствуют Имеется/ отсутствует	Имеется	-	-	-	Опсутству ет	нет	да	0,01	
1212	Сталь	да	Состояние изоляции листов стали	Температура (максимальная разность между отдельными зубцами) при испытаниях стали методом кольцевого намагничивания при индукции 1 – 1,4 Тл	°C		-	1 < Ф/15	Ф/15 = 1	-	Ф/15 < 1	нет	нет	0,33	при наличии ЩКА и СВО - 0,130;
1213				Перегрев зубцов (повышение температуры за время испытания стали методом кольцевого намагничивания при индукции 1 – 1,4 Тл относительно начальной)	°C		-	1 < Φ/25	Φ/25 = 1	-	Φ/25 < 1	нет	нет		при наличии СВО и отсутств ии ЦЦКА - 0,141; при
1214				Тенденция изменения удельных потерь при испытаниях стали методом кольцевого намагничивания при индукции 1 – 1,4 Тл по сравнению с исходным значением Фо (в соответствии с применяемой НТД)	Вт/кг		-	-	0,1 < (Ф - Ф0) /Ф0	-	(Ф - Ф0) /Ф0 ≤ 0,1	нет	нст		наличии ПЦКА и отсутств ии СВО - 0,150; при отсутств ии ПЦКА
1215				Разрушение изоляции между листами	·	Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет		и CBO - 0,160
1216				Наибольшая температура сердечника	°C		-	1 < Ф/Н			Ф/Н≤1	нет	нет		
1217				Тенденция отклонения значения наибольшей температуры сердечника по сравнению с предыдущим замером Фпред	°C		•	-	1 < (Ф - Фпред) /5	-	(Ф - Фпред) / 5 ≤ 1	нег	нет		
1218				Ограничение мощности генератора в связи с повышенным нагревом активных элементов		Имеется/ отсутствует	-	Имеется	-	-	Отсутству ет	нет	нет		
1219			Состояние плотности прессовки стали статора	Ослабление плотности прессовки листов стали, проведение уплотнения стеклотекстолитовыми клиньями		Имеется/ отсутствует	-	-	-	Имеется	Отсутству ет	нет	нет	0,33	
1220				Дефект зубцов первых-вторых пакетов (доля распушенных	шт.		-	1 ≤ Φ/10	0,5 ≤ Φ/10 < 1	0 < Φ/10 < 0,5	$\Phi/10 = 0$	нет	нет		
1221				пакетов) Дефект зубцов первых-вторых пакетов (доля разрушенных пакетов)	шт.		-	1 ≤ Φ/5	-	0 < Ф/5 < 1	$\Phi/5=0$	нет	нет		
1222			:	Дефект подвижных смещенных нажимных нальцев стали статора	шт.		-	1 ≤ Φ/10	0,5 ≤ Φ/10 < 1	0 < Ф/10 < 0,5	Ф/10 = 0	нет	нет		
1223	i			Разрушения запечки и распушения в зубцах третьих пакетов стали статора	шт.		-	1 ≤ Φ/5	0 < Ф/5 < 1	-	Φ/5 = 0	нет	нет		

1224					Сгустки магнитной грязи черного цвета в районе распушенного зубца стали статора		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству ют	нет	нет		
1225				Состояние крепления сердечника статора	Контактная коррозия на спинке сердечника статора (порошок красно-бурого цвета)		Имеется/ отсутствует	-	-	Имеется	•	Отсутству ет	нет	нет	0,33	
1226				турбогенератор а	Признаки повреждения узлов крепления сердечника статора		Имеются/ отсутствуют	•	Имеются	-	-	Отсутству ют	нет	нет		
1227					Вибрация сердечника статора	MKM		-	_	1 < Ф/Н	Φ/H = 1	Ф/Н < 1	нет	нет		
1228					Тенденция отклонения значений вибрация сердечника статора по сравнению с предыдущим	мкм		-	-	0 < (Ф - Фпред)	-	(Ф - Фпред) ≤ 0	нет	нет		
1229				Группа ресурсоопреде ляющих параметров	замером Фпред Наличие дефектов: (ослабление прессовки листов стали или разрушение изоляции между листами стали), приводящих к: изменению удельных потерь в стали более 10% от исходных значений или (наибольшему перегреву зубцов (повышению температуры относительно начальной) более 25°С при испытаниях и к наибольшей разности нагрева различных зубцов более 15°С при испытаниях)		Имеется/ отсутствует	Имеется	-	-	-	ет	нет	да -	0,01	
1230		ЩКА	нет	Состояние в процессе эксплуатации	Дефекты системы, устраняемые без отключения генератора в межремонтный период		Имеются/ отсутствуют	-	-	Имеются	-	Отсутству кот	нет	нет	1	при наличии ПЦКА - 0,042;
1231					Дефекты системы, устраняемые с отключением генератора в межремонтный период	mr.		2≤Φ	Φ=1	-	-	Φ = 0	нет	н с т		при отсутств ии ЩКА - 0
1232	İ	1			Вибрация контактных колец	мкм		1 < Ф/Н	-	$\Phi/H = 1$	-	Φ/H < 1	нет	нет		
1233	:				Контактные кольца		Повреждены/ не повреждены	-	Поврежде ны	-	-	Не поврежден ы	нет	нет		
1234		Обобщенн ый узел	нет	Срок службы	Срок службы	лет		2 ≤ Ф /H	1,5 ≤ Φ/H < 2	1 ≤ Φ/H < 1,5	0,5 ≤ Φ/H < 1	Φ/H < 0,5	нет	нет	1	0,044

Приложение № 2 к изменениям, которые вносятся в методику оценки технического состояния основного технологического оборудования и линий электропередачи электрических станций и электрических сетей, утвержденную приказом Минэнерго России от 26 июля 2017 г. № 676, утвержденным приказом Минэнерго России от «17» марта 2020 г. № «192»

«Таблица 4.4 Определение приведенной мощности электротехнического оборудования и линий электропередачи (далее – ЛЭП)

Вид объекта	Единица измерения	Приведенная мощность на единицу, пр. МВт		
F	Воздушные линии электропередачи (,	далее – ВЛ)		
Линии 330 - 750 кВ	100 км	2,74		
Линии 35 - 220 кВ	100 км	1,66		
]	Кабельные линии электропередачи (д	далее – КЛ)		
35 кВ и выше	100 км	8,78		
	Подстанции (ПС)	-		
ПС 35 - 110 кВ	1 ПС	1,96		
ПС 220 - 330 кВ	1 ПС	5,68		
ПС 400 кВ и выше	1 ПС	11,36		
	Системы (секции) шин, выключ	атели		
35 кВ	1 система (секция) шин, выключатель	1,0		
110 кВ	1 система (секция) шин, выключатель	1,96		
220 - 330 кВ	1 система (секция) шин, выключатель	5,68		
400 кВ и выше	1 система (секция) шин, выключатель	11,36		

*Расчет приведенной мощности ЛЭП ($N_{\rm np}^{\rm KBЛ}$), состоящей из сегментов ВЛ и КЛ, осуществляется по формуле (6):

$$\mathbf{N}_{\mathrm{np}}^{\mathrm{KBJ}} = \frac{\sum_{i} (\mathbf{N} \mathrm{np} \mathbf{i} \times \mathbf{L}_{i})}{\sum_{i} \mathbf{L}_{i}} , \qquad (6)$$

где:

Nпрі – приведенная мощность і-ого сегмента ЛЭП;

Li – протяженность і-ого сегмента ЛЭП.».