МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

ИЗМ № 1/45-2019 РД 52.04.562-96

Изменение РД 52.04.562-1996

Наставление гидрометеорологическим станциям и постам Выпуск 5

Актинометрические наблюдения

Часть І. Актинометрические наблюдения на станциях

Предисловие

- 1 РАЗРАБОТАНО Федеральным государственным бюджетным учреждением «Главная геофизическая обсерватория им. А. И. Воейкова» (ФГБУ «ГГО»)
- 2 РАЗРАБОТЧИКИ С.Ю. Гаврилова, канд. географ. наук (руководитель разработки); Л.В. Луцько, канд. техн. наук (ответственный исполнитель); Е.Л. Махоткина, канд. географ. наук; А.Е. Ерохина, А.Н. Махоткин, А.П. Бычкова, О.Б. Бекенева
 - 3 СОГЛАСОВАНО
- с Управлением государственной наблюдательной сети (УГНС) Росгидромета 17.12.2019;
- с Федеральным государственным бюджетным учреждением «Научно-производственное объединение «Тайфун» (ФГБУ «НПО «Тайфун») 12.12.2019
- 4 УТВЕРЖДЕНО Руководителем Росгидромета 20.12.2019
 ВВЕДЕНО В ДЕЙСТВИЕ приказом Росгидромета от 20.12.2019
 № 727
- 5 ЗАРЕГИСТРИРОВАНО головной организацией по стандартизации Росгидромета ФГБУ «НПО «Тайфун» 24.12.2019
 ОБОЗНАЧЕНИЕ ИЗМЕНЕНИЯ ИЗМ № 1/45–2019 РД 52.04.562–96

Изменение

РД 52.04.562–1996 Наставление гидрометеорологическим станциям и постам. Выпуск 5. Актинометрические наблюдения. Часть І. Актинометрические наблюдения на станциях

Дата введения - 2020-05-06

- 1 Элемент «Содержание»:
- а) ввести после заголовка подраздела 9.4 заголовки раздела 10 и подразделов 10.1–10.5:
 - «10 Выполнение наблюдений актинометрическими комплексами
 - 10.1 Назначение и составы актинометрических комплексов
- 10.2 Требования к размещению актинометрических комплексов
- 10.3 Проведение наблюдений автоматизированным актинометрическим комплексом
 - 10.3.1 Обслуживание и контроль работоспособности ААК
 - 10.3.2 Обработка данных ААК
- 10.4 Проведение наблюдений актинометрическим измерительным комплексом
 - 10.4.1 Обслуживание и контроль работоспособности АИК
 - 10.4.2 Обработка данных АИК
 - 10.5 Порядок передачи материалов наблюдений ААК и АИК;
- б) исключить обозначение, заголовок и номер страницы приложения Н «Библиография»;

- в) дополнить заголовками приложений П, Р, С, Т, У и библиографии:
 - «Приложение П (справочное) Пример суточного файла со средними часовыми значениями данных ААК и АМК, формируемого ПО ААК (папка «Н»)
 - Приложение Р (справочное) Пример файла «ССС» с часовыми суммами продолжительности солнечного сияния (папка «НААК»)
 - Приложение C (обязательное) Расчет переводных множителей датчиков AAK для обработки данных системой SONE
 - Приложение Т (справочное) Пример файла средних часовых значений радиации, формируемый ПО АИК (папка «1H»)
 - Приложение У (обязательное) Расчет переводных множителей приборов АИК для обработки данных системой SONE

Библиография»

2 Дополнить разделом 10 и приложениями П, Р, С, Т, У:

«10 Выполнение наблюдений актинометрическими комплексами

10.1 Назначение и составы актинометрических комплексов

10.1.1 Актинометрические комплексы – автоматизированный актинометрический комплекс (ААК) и актинометрический измерительный комплекс (АИК) предназначены для проведения непрерывных (круглосуточных) измерений радиационного баланса

и его составляющих¹⁾ (по программе регистрации) в наблюдательных подразделениях (НП) с персоналом.

- 10.1.2 Принцип действия ААК и АИК основан на дистанционном измерении первичными измерительными преобразователями (далее датчики) основных составляющих радиационного баланса. Значения измеряемых величин преобразовываются в цифровой код вторичным преобразователем (контроллером) и передаются по каналам связи на персональный компьютер (ПК).
- 10.1.3 ААК и АИК различаются по составу оборудования и состоят из актинометрических датчиков, контроллера, ПК и вспомогательного оборудования. Составы ААК и АИК приведены в таблице 13.

Таблица 13 – Составы ААК и АИК

Nº	Наименование	Назначение	Тип комплекса	Размещение, состояние при измерениях
1	Пиргелиометр	Измерение прямой солнечной радиации S	ААК	На следящей системе, постоянно нацеливается на солнце
2	Актинометр	Измерение прямой солнечной радиации S	АИК	На следящей системе, постоянно нацеливается на солнце
3	Пиранометр	Измерение рассеянной радиации D	ААК, АИК	На следящей системе, постоянно затеняется от прямых солнечных лучей
4	Пиранометр	Измерение суммарной радиации Q	ААК, АИК	На следящей системе для ААК, на стойке-стреле для АИК, не затеняется
5	Пиранометр	Измерение отраженной радиации R	ААК, АИК	На конце стойки-стрелы, обращен приемной поверхностью вниз
6	Пиргеометр	Измерение приходящей длинноволновой радиации Ed	AAK	На следящей системе, постоянно затеняется от прямых солнечных лучей
7	Пиргеометр	Измерение уходящей длинноволновой радиации Eu	ААК	На конце стойки-стрелы, обращен приемной поверхностью вниз

 $^{^{1)}}$ Определения радиационного баланса и его составляющих приведены в [1].

Окончание таблицы 13

Nº	Наименование	Назначение	Тип комплекса	Размещение, состояние при измерениях
8	Балансомер	Измерение радиацион- ного баланса без прямой солнечной радиации на горизонтальной поверхности B-S´	АИК	В теневом кольце
9	Ультрафиолет- метр	Измерение ультрафиолетовой радиации UV_a и UV_b	AAK	Над торцом стойки- стрелы, обращен вверх
10	Следящая система	Автоматическое нацеливание пиргелиометра или актинометра на солнце и затенение пиранометра и пиргеометра	ААК, АИК	На метеорологической площадке, на платформе или стойке
11	Теневое кольцо	Затенение балансомера	АИК	На метеорологической площадке, забетонировано в грунт
12	Стойка-стрела	Размещение датчиков для измерения Eu, R, UV_a, UV_b,	AAK,	На метеорологической площадке,
		Размещение датчиков для измерения Q, R	АИК	забетонирована в грунт
13	Контроллер	Сбор, первичная обработка и передача данных в ПК	ААК, АИК	На метеорологической площадке в боксе на стойке
14	ПК с ПО ААК или ПО АИК	Обработка и архивация данных	ААК, АИК	В помещении НП
15	Источник бесперебойного питания	Обеспечение непрерывной работы ААК и АИК	ААК, АИК	В помещении НП

10.1.4 Следящая система обеспечивает постоянное нацеливание на солнце пиргелиометра ААК и актинометра АИК путём непрерывного поворота по азимуту и угловой высоте в соответствии с перемещением солнца по небосводу.

В комплект следящей системы ААК входит кожух, предназначенный для обеспечения ее работоспособности при температуре воздуха менее 0 °C. Кожух сделан из прочной нейлоновой ткани, заполненной изоляционным материалом.

Установленные на следящей системе ААК пиранометр, измеряющий рассеянную радиацию, и пиргеометр, измеряющий

приходящую длинноволновую радиацию, располагаются горизонтально и постоянно затеняются экранами (зачернёнными шарами), которые следящая система перемещает по азимуту и угловой высоте в соответствии с движением солнца по небосводу.

П р и м е ч а н и е — Пиранометры и пиргеометры, входящие в состав ААК, могут оснащаться вентиляционной защитой (устройством принудительного обдува) для предотвращения отложения гидрометеоров (инея, изморози, обледенения), а также капель дождя и снега на защитных колпаках датчиков.

Установленный на следящей системе АИК пиранометр. измеряющий рассеянную радиацию, постоянно затеняется экраном.

Установленные на следящих системах ААК и АИК пиранометры, измеряющие суммарную радиацию, не затеняются.

10.1.5 Стойка-стрела в составе ААК предназначается для размещения на ее конце пиранометра для измерения отраженной радиации и пиргеометра для измерения уходящей длинноволновой радиации. Оба датчика обращены приемной поверхностью вниз. На торце стойки-стрелы устанавливается ультрафиолетметр.

В зависимости от комплектации в состав ААК могут входить два ультрафиолетметра: один для измерения ультрафиолетовой радиации UV_а в спектральном диапазоне от 315 до 400 нм, другой для измерения ультрафиолетовой радиации UV_b в спектральном диапазоне от 280 до 315 нм. Ультрафиолетметры UV_а и UV_b устанавливаются на торце стойки-стрелы.

В АИК на стойке-стреле размещаются два пиранометра, один из которых для измерения суммарной радиации и обращен приемной поверхностью вверх, а другой для измерения отраженной радиации расположен на конце стрелы и обращен вниз.

10.1.6 Теневое кольцо в составе АИК предназначается для постоянного затенения приемной поверхности балансомера от прямой солнечной радиации непрозрачным кольцевым экраном, закрывающим от приемника зону неба угловой шириной 10°.

Внутренняя часть кольца зачернена, а наружная окрашена в белый цвет.

10.1.7 Контроллер обеспечивает сбор показаний актинометрических датчиков, преобразование их в цифровой код и передачу информации в ПК со специализированным программным обеспечением для AAK - APM оператора автоматизированного актинометрического комплекса» (далее – AAK), а для AUK - APM оператора измерительного комплекса» (далее – AAK).

10.2 Требования к размещению актинометрических комплексов

- 10.2.1 Принципиальные схемы размещения ААК и АИК на метеорологической площадке и в помещении НП представлены на рисунках 8 и 9 соответственно.
- 10.2.2 Технические средства для установки на них датчиков размещаются, как правило, в юго-восточной части метеорологической площадки. Допускается установка оборудования актинометрических комплексов в другой части метеорологической площадки более репрезентативной для производства актинометрических наблюдений.

Конкретная схема размещения автоматизированных комплексов в каждом НП составляется ФГБУ «УГМС» по согласованию с ФГБУ «ГГО» с учетом особенностей метеорологической площадки и ее ближайшего окружения.

В помещении НП размещается ПК с установленным на нем ПО ААК или ПО АИК и источник бесперебойного питания.

¹⁾ ПО ААК разработано в ФГБУ «ГГО», зарегистрировано в ФГБУ «ФИПС», свидетельство о государственной регистрации программы для ЭВМ № 2013660165 от 25.10.2013.

²⁾ ПО АИК разработано в ФГБУ «ГГО», зарегистрировано в ФГБУ «ФИПС», свидетельство о государственной регистрации программы для ЭВМ № 2017616912 от 19.06.2017.

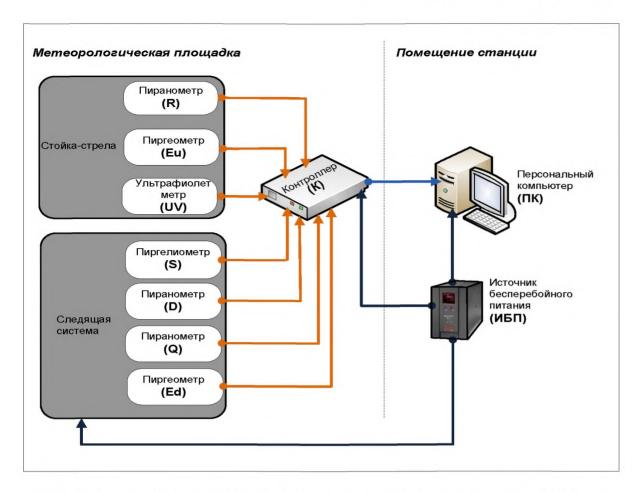


Рисунок 8 – Принципиальная схема размещения ААК на метеорологической площадке и в помещении НП

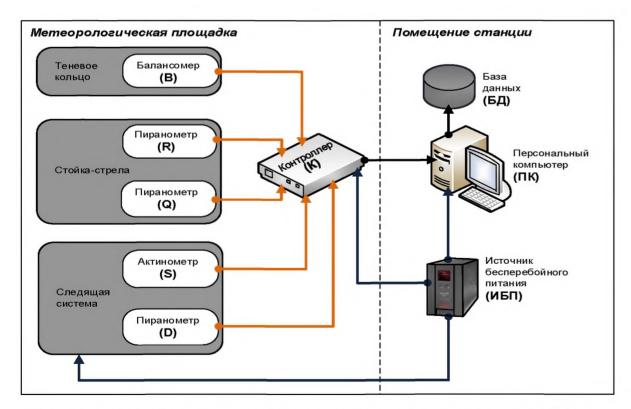


Рисунок 9 – Принципиальная схема размещения АИК на метеорологической площадке и в помещении НП

10.2.3 Следящая система ААК монтируется на платформе, которая закрепляется в грунте (бетонируется). Высота платформы должна быть не менее максимальной наблюденной высоты снежного покрова в данном пункте наблюдений.

Следящая система АИК закрепляется на специальной стойке, которая бетонируется в грунт, как правило, на глубину ниже слоя промерзания почвы (в целях исключения подвижек при промерзании и таянии почвы).

Примечание — В случае, если закрытость горизонта в месте установки следящей системы в азимутальных направлениях восхода и захода Солнца превышает 3° по угловой высоте, а в остальных направлениях — 5°, следящую систему допускается устанавливать на специальной вышке или на крыше здания. Размещение следящей системы должно быть согласовано с ФГБУ «ГГО».

- 10.2.4 Основание стойки-стрелы ААК и АИК бетонируется в грунт. Стрела стойки имеет длину 1,5 м. Она должна быть расположена горизонтально на высоте 1,5 м над земной поверхностью и ориентирована на юг. Стойка имеет устройство для подъема стрелы при установлении устойчивого снежного покрова. Подъем стрелы осуществляется при высоте снежного покрова более 0,5 м.
- 10.2.5 Контроллеры ААК и АИК размещаются в специальных боксах. Боксы могут быть закреплены на отдельной стойке или на опоре платформы следящей системы для ААК и на стойке-стреле для АИК.
- 10.2.6 Для обеспечения корректной работы ААК и АИК, особенно в ночное время, актинометрические датчики не должны освещаться искусственными источниками света.

10.3 Проведение наблюдений автоматизированным актинометрическим комплексом

10.3.1 Обслуживание и контроль работоспособности ААК

- 10.3.1.1 В процессе проведения актинометрических наблюдений с помощью ААК должны проводиться регулярный и текущий осмотр состояния приборов и оборудования, периодическая проверка технического состояния, а также работы по поддержанию метеорологической площадки в надлежащем состоянии.
- 10.3.1.2 Текущий осмотр состояния приборов и оборудования ААК выполняет дежурный техник-метеоролог.

В процессе текущего осмотра ежедневно после восхода солнца, в полуденное время, перед заходом солнца, а также после прекращения атмосферных осадков необходимо:

- а) проверить визуально чистоту входных окон датчиков, отсутствие на них пыли, капель дождя, снега, инея и т. п. При необходимости входные окна датчиков очищают мягкой гигроскопичной салфеткой;
- б) проверить срабатывание следящей системы и правильность нацеливания пиргелиометра, правильность затенения экранами пиранометра и пиргеометра (рисунок 10).

Рисунок 10 – Размещение на следящей системе пиргелиометра (*слева*), пиранометров и пиргеометра (*справа*)

При правильной работе следящей системы световое пятно, создаваемое солнечным лучом на фланце пиргелиометра, не должно быть смещено относительно черной марки более чем на 1 мм, а пиранометр рассеянной радиации и пиргеометр должны полностью затеняться экранами;

в) оценить состояние подстилающей поверхности.

В летний период высота травы должна быть не более 20 см; в зимний период при высоте снежного покрова более 0,5 м должна быть поднята стойка-стрела.

В холодный период, в течение которого температура воздуха опускается ниже 0 °C, на следящую систему ААК следует надеть утепляющий кожух, входящий в комплект ААК.

10.3.1.3 Для контроля работы ААК в течение суток дежурный техник-метеоролог или специалист, отвечающий за производство актинометрических наблюдений, должен проверять правильность значений радиации, отображающихся на мониторе ПК.

При правильном функционировании ААК:

- а) в ночное время пиргелиометр и пиранометры для измерения рассеянной, суммарной и отраженной радиации должны показывать нулевые значения. В случае выявления нарушений следует проверить правильность места нуля в каналах измерения. Место нуля определяется по результатам измерения радиации в ночное время, которые не должны превышать ±1 Вт/м². Место нуля для каналов, на которых измеряются Eu, Ed, не определяется;
- б) в дневные часы значения суммарной радиации должны быть выше значений отражённой радиации и радиационного баланса;
- в) в дневные часы при открытом солнечном диске значения рассеянной радиации должны быть ниже суммарной;
- г) в ясные и малооблачные дни изменения показаний составляющих радиационного баланса должны быть плавными.

Контроль характера хода кривых начинают с суммарной радиации, если ее ход плавный, то ход всех остальных составляющих радиационного баланса должен быть плавным.

Наличие хаотичного разброса измеряемых значений указывает на нарушение контакта в измерительной цепи. Проверку нарушения контакта в цепи рекомендуется начинать от датчика.

- 10.3.1.4 Один раз в 10 дней специалист, отвечающий за производство актинометрических наблюдений, должен выполнить периодическую проверку технического состояния ААК, в процессе которой проверяется:
- а) состояние проходящих снаружи соединительных проводов, кабелей, которые не должны иметь повреждения изоляции. В зависимости от характера обнаруженного повреждения изолируют оголённые участки кабеля либо заменяют его;
- б) состояние наружной окраски приборов, стойки-стрелы, затеняющих экранов на следящей системе. При необходимости окраска восстанавливается;
- в) состояние трущихся частей вспомогательного оборудования. При необходимости очищают их от загрязнений и смазывают (в соответствии с рекомендациями, содержащимися в эксплуатационной документации ААК);
- г) горизонтальность расположения пиранометров и пиргеометров;
- д) цвет силикагеля (силикагелевый поглотитель влаги). Если цвет полностью прозрачный (обычно это происходит через несколько месяцев), то силикагель необходимо заменить на свежий.
- 10.3.1.5 Причинами возникновения ошибочных результатов измерений ААК могут являться:
- а) нерегулярность проведения технического осмотра и операций по уходу за оборудованием;

- б) обновление ПО контроллера или ААК;
- в) выполнение отладки оборудования ААК;
- r) нарушение синхронизации времени между контроллером AAK и ПК;
 - д) проведение поверки ААК.
- 10.3.1.6 При выходе на станции оборудования ААК из строя следует незамедлительно сообщить в УГМС (ЦГМС).

В случае выхода из строя любого из датчиков ААК наблюдения по нему прекращаются до его ремонта или замены.

В случае выхода из строя следящей системы ААК следует прекратить наблюдения за прямой и рассеянной радиацией для чего закрыть крышками пиргелиометр и пиранометр, измеряющий рассеянную радиацию. Наблюдения по установленным на следящей системе пиранометру, измеряющему суммарную радиацию, и пиргеометру, измеряющему приходящую длинноволновую радиацию, должны быть продолжены.

10.3.1.7 Сведения о всех проводимых работах по обслуживанию ААК, выявленных нарушениях в установке и работе комплекса следует фиксировать в «Журнале работы ААК».

В «Журнал работы ААК» ежедневно по среднему солнечному времени заносятся сведения о выполненных операциях по уходу за датчиками, сбоях в работе ААК и произведённых корректировках. Фиксируются даты скоса травы и изменения высоты стойки-стрелы. Примеры записей в «Журнале работы ААК» показаны в таблице 14.

10.3.1.8 В процессе проведения непрерывных измерений составляющих радиационного баланса с помощью ААК необходимо отмечать сопутствующие метеорологические условия в соответствии с 8.2 и заносить в табличный файл согласно 10.3.2.6.

Таблица 14 – Пример заполнения «Журнала работы ААК»

Дата	Время	Наименование операции	Исполнитель
01.07	В течение дня	Замечаний по состоянию приборов нет.	Петрова П.П.
05.07	12:30	Входные окна приборов протерты.	Иванов А.А.
09.07	10:00 – 11:00	Выполнен контроль пиргелиометра (S).	Смирнова С.С.
10.07	10:30 – 11:30	Заменен силикагель.	Иванов А.А.
13.07	15:45	Входные окна приборов протерты после дождя.	Петрова П.П.
14.07	9:00 – 9:30	Обнаружено смещение «зайчика» у пиргелиометра на 3 – 4 мм, сообщено в ССИ УГМС А.А. Шустову.	Иванов А.А.
15.07	В течение дня	Осмотр не проводился.	Иванов А.А.
21.07	8:30 – 10:45	Скошена трава на площадке.	Иванов А.А.
22.07	14:05 – 17:06 15:14– 17:13	Отключена электроэнергия. Питание от АКБ.	Петрова П.П.
30.07	C 10:30	Не работает вентилятор у пиранометра (D), сообщено в ССИ УГМС А.А. Шустову.	Иванов А.А.
31.07	В течение дня	Замечаний по состоянию приборов нет.	Петрова П.П.

10.3.2 Обработка данных ААК

10.3.2.1 Обработка данных ААК в НП производится с использованием ПО ААК.

ПО ААК обеспечивает взаимодействие с контроллером и предназначено для сбора, накопления, обработки и визуализации результатов измерений, а также для архивации данных.

10.3.2.2 ПО ААК автоматически формирует месячные массивы данных измерений ААК в истинном солнечном времени и распределяет файлы в следующие папки:

- папка «ТААК», содержащая файлы со средними минутными и часовыми значениями параметров, измеряемых комплексом ААК,

 $Bт/м^2$, а также данные о сопутствующей метеорологической информации, полученные автоматизированным метеорологическим комплексом (AMK);

- папка «НААК», содержащая файлы значений ультрафиолетовой радиации, приходящей длинноволновой радиации, уходящей длинноволновой радиации, Вт/м²;
- папка «VODAAK», содержащая файлы с исходными данными, сформированными для ввода в систему обработки SONE.
- 10.3.2.3 В папке «ТААК» содержатся две идентичные по структуре папки:
- «Н» набор суточных файлов со средними часовыми значениями;
- «М» набор суточных файлов со средними минутными значениями.

Пример файла средних часовых данных ААК в папке «Н» представлен в приложении П.

Суточные файлы «Н» и «М» представляют собой таблицу, содержащую 22 столбца:

- в первом столбце файла «Н» указан часовой интервал по истинному солнечному времени, обозначенный концом часа, а в файле «М» минутный интервал по истинному солнечному времени в формате 00:00:00 (час : минута : секунда);
- в столбцах 2 9 содержатся средние часовые или минутные значения радиации Q, S, D, R, UV_a, UV_b, Eu, Ed, выраженные в BT/M^2 ;
- в столбцах 10 14 содержатся средние часовые или минутные метеорологические характеристики, измеренные AMK:
 - T температура воздуха, °C;
 - Rh относительная влажность воздуха, %;
 - Р атмосферное давление, гПа;

- WS скорость ветра, м/с:
- GrTemp температура подстилающей поверхности, °С;
- в столбцах 15-22 содержатся средние часовые или минутные значения напряжения на выходе актинометрических датчиков, выраженные в мВ.
- 10.3.2.4 Папка «НААК» предназначена для хранения данных за месяц о длинноволновой, ультрафиолетовой радиации и продолжительности солнечного сияния. В папке «НААК» содержатся следующие файлы:
- «ЗНСС» значения продолжительности солнечного сияния за каждые три часа, ч;
- «ССС» значения продолжительности солнечного сияния за каждый час, ч. Пример данного файла приведен в приложении Р;
- «UV_A» значения часовых сумм ультрафиолетовой радиации в спектральном диапазоне от 315 до 400 нм, МДж/м²;
- «UV_B» значения часовых сумм ультрафиолетовой радиации в спектральном диапазоне от 280 до 315 нм, МДж/м²;
- «Ed» значения часовых сумм длинноволновой приходящей радиации, МДж/м²;
- «Eu» значения часовых сумм длинноволновой уходящей радиации, МДж/м 2 .
- 10.3.2.5 Папка «VODAAK» содержит исходные данные, необходимые для обработки месячного массива информации системой SONE, представляющей материалы измерений в форматах режимно-справочного банка данных (РСБД) «Актинометрия». В папке «VODAAK», содержатся следующие файлы:
 - «В» значения радиационного баланса, кВт/м²;
- «D» значения напряжения на выходе датчика рассеянной радиации, мВ;

- «Q» значения напряжения на выходе датчика суммарной радиации, мВ;
- «R» значения напряжения на выходе датчика отраженной радиации, мВ;
- «S» значения напряжения на выходе датчика прямой радиации, мВ.

В файлах «D», «Q», «R», «S» содержатся средние часовые значения напряжения на выходе датчиков, разделённые на 4 с точностью до 0,01 мВ и занесённые в файл как целое число.

В файле «В» содержатся средние часовые значения радиационного баланса, кВт/м².

10.3.2.6 Для проведения дальнейшей обработки данных ААК в системе SONE требуется подготовить вспомогательные файлы «pr_srb», «MET», «TM13TI».

В файл «pr_srb» заносятся переводные множители согласно приложению С.

В файл «МЕТ» в табличном виде заносятся данные о продолжительности солнечного сияния за сутки (ПСС), преобладающем за день состоянии подстилающей поверхности (ПП), характеристике ясности дня (ясность дня) и атмосферных явлениях (вид, интенсивность, время начала и окончания по среднему солнечном времени). Фрагмент файла «МЕТ» приведен в таблице 15.

Таблица 15 – Фрагмент файла «МЕТ»

			_	1-е атмосферное явление									
Дата	псс	Состояние	Ясность дня	D: -	14	Продолжительность							
		1111	дпя	Вид	Интенсивность	Нач.	Кон.						
1	10,8	60	3	11	0	0000	0929						
2	2,5	60	3	63	0	1544	1749						
3	0,0	60	2	71	0	0110 _	1244						

Для сведений об атмосферных явлениях отведено не более пяти граф. В случае, если в течение суток наблюдалось более пяти атмосферных явлений, то из числа наблюдавшихся выбирают пять, оказавших наибольшее влияние на значения радиации.

В файл «ТМ13TI» для формирования титульного листа заносятся сведения о станции, рабочих и контрольных проборах, изменениях в установке, выходе из строя оборудования и условиях производства измерений.

10.3.2.7 После подготовки вспомогательных файлов запускается обработка данных ААК в системе SONE. В результате обработки формируются файлы для долговременного архивного хранения исходных и обработанных материалов актинометрических наблюдений за данный месяц в форматах РСБД «Актинометрия», размещенные в папках «ARH», «REZ», «TAB», «VOD».

10.4 Проведение наблюдений актинометрическим измерительным комплексом

10.4.1 Обслуживание и контроль работоспособности АИК

- 10.4.1.1 В процессе проведения актинометрических наблюдений с помощью АИК должны проводиться регулярный и текущий осмотр состояния приборов и оборудования, периодическая проверка технического состояния, а также работы по поддержанию метеорологической площадки в надлежащем состоянии.
- 10.4.1.2 Текущий осмотр состояния приборов и оборудования АИК выполняет дежурный техник-метеоролог.

В процессе текущего осмотра ежедневно после восхода солнца, в полуденное время, перед заходом солнца и после прекращения атмосферных осадков необходимо:

- а) проверить визуально чистоту и состояние входного окна актинометра, защитных колпаков пиранометров. При наличии на них пыли, капель дождя, снега, инея и т.п. приборы следует очистить мягкой гигроскопичной салфеткой. В случае запотевания изнутри защитных колпаков пиранометров следует заменить силикагель;
- б) проверить визуально состояние приемных поверхностей балансомера. При появлении на них пыли, соринок, росы или изморози следует их сдуть резиновой грушей либо осторожно смахнуть мягкой кисточкой, чтобы не повредить черное покрытие;
- в) проверить срабатывание следящей системы и правильность нацеливания актинометра, и затенения пиранометра, измеряющего рассеянную радиацию (рисунок 11).

Рисунок 11 – Размещение на следящей системе актинометра (слева) и пиранометра (справа)

При правильной работе следящей системы световое пятно, создаваемое солнечным лучом на фланце актинометра, не должно быть смещено относительно черной марки более чем на 1 мм, а пиранометр должен полностью затеняться экраном;

г) оценить состояние подстилающей поверхности.

В летний период высота травы должна быть не более 20 см; в зимний период при высоте снежного покрова более 0,5 м должна быть поднята стойка-стрела.

10.4.1.3 Для контроля работы АИК в течение суток дежурный техник-метеоролог или специалист, отвечающий за производство актинометрических наблюдений, должен проверять правильность значений радиации, отображающихся на мониторе ПК.

При правильном функционировании АИК:

- а) в ночное время при высоте солнца менее 0° актинометр и пиранометры для измерения рассеянной, суммарной и отраженной радиации должны показывать нулевые значения. В случае выявления нарушений следует проверить правильность места нуля в каналах измерения. Место нуля определяется по результатам измерения радиации в ночное время, которые не должны превышать ±1 Вт/м²;
- б) в дневные часы значения суммарной радиации должны быть выше значений отражённой радиации и радиационного баланса;
- в) в дневные часы при открытом солнечном диске значения рассеянной радиации должны быть ниже суммарной;
- г) в ясные и малооблачные дни изменения показаний составляющих радиационного баланса должны быть плавными. Контроль характера хода кривых начинают с суммарной радиации, если ее ход плавный, то ход всех остальных составляющих радиационного баланса должен быть плавным.

Наличие хаотичного разброса измеряемых значений указывает на нарушение контакта в измерительной цепи. Проверку нарушения контакта в цепи рекомендуется начинать от датчика.

д) в ночное время показания балансомера должны быть отрицательными за исключением случаев сильной температурной инверсии.

- 10.4.1.4 Один раз в 10 дней специалист, отвечающий за производство актинометрических наблюдений, должен выполнить периодическую проверку технического состояния АИК, в процессе которой проверяется:
- а) состояние проходящих снаружи соединительных проводов, кабелей, которые не должны иметь повреждения изоляции. В зависимости от характера обнаруженного повреждения изолируют оголённые участки кабеля либо заменяют его;
- б) состояние наружной окраски приборов, стойки-стрелы, теневого кольца, затеняющих экранов на следящей системе. При необходимости окраска восстанавливается;
- в) состояние трущихся частей вспомогательного оборудования. При необходимости очищают их от загрязнений и смазывают (в соответствии с рекомендациями, содержащимися в эксплуатационной документации АИК);
- г) горизонтальность положения пиранометра, измеряющего рассеянную радиацию, по показанию уровня на столе следящей системы. В случае необходимости горизонтальность положения стола восстанавливается регулировкой болтов у основания следящей системы:
- д) горизонтальность расположения приемных поверхностей балансомера, а также наклон плоскости теневого кольца в направлении север юг и горизонтальность в направлении востокзапад;
- е) цвет силикагеля (силикагелевый поглотитель влаги). Если цвет полностью прозрачный (обычно это происходит через несколько месяцев), то силикагель необходимо заменить на свежий.
- 10.4.1.5 Первого числа каждого месяца в утренние часы необходимо производить смену сторон балансомера путем его поворота на 180° относительно горизонтальной оси.

- 10.4.1.6 Причинами возникновения ошибочных результатов измерений АИК могут являться:
- а) нерегулярность проведения технического осмотра и операций по уходу за оборудованием;
 - б) обновление ПО контроллера или АИК;
 - в) выполнение отладки оборудования АИК;
- г) нарушение синхронизации времени между контроллером АИК и ПК;
 - д) проведение поверки АИК.
- 10.4.1.7 При выходе на станции оборудования АИК из строя следует незамедлительно сообщить в УГМС (ЦГМС).

В случае выхода из строя любого из датчиков АИК наблюдения по нему прекращаются до его ремонта или замены.

В случае выхода из строя следящей системы АИК следует прекратить наблюдения за прямой и рассеянной радиацией для чего закрыть крышками актинометр И пиранометр. измеряющий рассеянную радиацию. Наблюдения по установленным на стойкестреле пиранометрам, измеряющим суммарную и отраженную радиацию, и балансомеру в теневом кольце должны быть продолжены.

10.4.1.8 Сведения о всех проводимых работах по обслуживанию АИК, выявленных нарушениях в установке и работе комплекса, следует фиксировать в «Журнале работы АИК».

В «Журнал работы АИК» ежедневно по среднему солнечному времени заносятся сведения о выполненных операциях по уходу за датчиками, сбоях в работе АИК и произведённых корректировках. Фиксируются даты скоса травы и изменения высоты стойки-стрелы. Примеры записей в «Журнале работы АИК» показаны в таблице 16.

10.4.1.9 В процессе проведения непрерывных измерений составляющих радиационного баланса с помощью АИК необходимо

отмечать сопутствующие метеорологические условия в соответствии с 8.2 и заносить в табличный файл согласно 10.3.2.6.

Таблица 16 – Пример заполнения «Журнала работы АИК»

Дата	Время	Наименование операции	Исполнитель
1.05	06:50-07:10	Произведена смена сторон балансомера.	Миронова А.И.
02.05	11:25–12:10	Выполнена корректировка работы следящей системы.	Богданов Р.Н.
11.05	В течение дня	Замечаний нет.	Миронова А.И.
12.05	9:00 – 13:00	Выполнен контроль датчиков D, Q, R и S по солнцу без отключения от комплекса.	Рыбакова М.М.
		···	
23.05	07:18–07:27	Приборы протерты от росы.	Миронова А.И.
24.05	9:00 – 9:30	Замечаний нет.	Миронова А.И.
25.05	10:45–16:30	Отключена электроэнергия. Перерыв в наблюдениях.	Миронова А.И.
26.05	В течение дня	Замечаний нет.	Миронова А.И.
30.05	12:30	Вышла из строя следящая система, S и D не измеряются. Сообщено в ССИ УГМС A.A. Петрову.	Миронова А.И.

10.4.2 Обработка данных АИК

10.4.2.1 Обработка данных АИК в НП производится с использованием ПО АИК.

ПО АИК обеспечивает взаимодействие с контроллером и предназначено для сбора, накопления, обработки и визуализации результатов измерений, а также для архивации данных.

10.4.2.2 ПО АИК автоматически формирует месячные массивы данных измерений АИК в истинном солнечном времени (папка «TST») и всемирном скоординированном времени (папка «UTC»).

Информация папки «UTC» предназначается для специализированных задач геофизического мониторинга и в данном документе не рассматривается.

Папка «TST» содержит шесть папок:

- «1H» набор суточных файлов со средними часовыми значениями радиации и выходного напряжения датчиков;
- «10MIN» набор суточных файлов за месяц со средними десятиминутными значениями радиации и выходного напряжения датчиков;
- «ССС» файл с часовыми и суточными данными о продолжительности солнечного сияния, определяемой на основании показаний актинометра;
- «LOG» набор суточных файлов с минутными значениями радиации и выходного напряжения датчиков ;
- «РТNA» файл с минутными значениями расчетных характеристик прозрачности атмосферы (коэффициент прозрачности, фактор и индекс мутности, оптическая плотность) в полуденные часы;
- «VOD» набор файлов с исходными данными, сформированными для ввода в систему обработки SONE.
- 10.4.2.3 Файлы в папках «1H», «10MIN», «LOG» идентичны по структуре. Пример суточного файла со средними часовыми значениями параметров, сформированного ПО АИК в папке «1H», представлен в приложении Т.

Суточный файл представляет собой таблицу, содержащую 17 столбцов:

- в первом столбце указана дата (число, месяц, год) и время, отнесенное к середине интервала осреднения;

- во втором столбце приведена высота солнца Н в градусах;
- в столбцах 3 7 содержатся средние за определенный интервал времени измеренные АИК значения радиации S, D, Q, R, B*, выраженные в BT/M^2 ;
- в столбцах 8 12 содержатся средние за определенный интервал времени расчетные значения радиации:
 - B радиационный баланс (полный), Bт/м²;
- S* прямая солнечная радиация на горизонтальной поверхности, Вт/м²;
 - Ak альбедо подстилающей поверхности, %;
 - Bk радиационный баланс коротковолновый, Bт/м²;
 - Bd радиационный баланс длинноволновый, Bт/м²;
- в столбцах 13 17 содержатся средние за определенный интервал времени значения напряжения на выходе датчиков АИК, выраженные в мВ.
- 10.4.2.4 Папка «VOD», автоматически сформированная ПО АИК, содержит исходные данные, необходимые для обработки месячного массива информации системой SONE, представляющей материалы измерений в форматах РСБД «Актинометрия».

В папке VOD содержатся следующие файлы:

- «b» значения напряжения на выходе балансомера, мВ.
- «d» значения напряжения на выходе датчика рассеянной радиации, мВ,
- «q» значения напряжения на выходе датчика суммарной радиации, мВ,
- «г» значения напряжения на выходе датчика отраженной радиации, мВ,
- «s» значения напряжения на выходе датчика прямой радиации, мВ.

В файлах, «b», «d», «q», «r», «s» содержатся средние часовые значения напряжения на выходе датчиков (мВ), разделённые на 4 с точностью до 0.01 и занесённые как целое число.

10.4.2.5 Для проведения дальнейшей обработки данных АИК в системе SONE требуется подготовить вспомогательные файлы «pr srb», «MET», «TM13TI».

В файл «pr_srb» заносятся переводные множители согласно приложению У.

В файлы «МЕТ» и «ТМ13TI» заносится информация в соответствии с 10.3.2.6.

10.4.2.6 После подготовки вспомогательных файлов запускается обработка данных АИК в системе SONE. В результате обработки формируются файлы для долговременного архивного хранения исходных и обработанных материалов актинометрических наблюдений за данный месяц в форматах РСБД «Актинометрия», размещенные в папках «ARH», «REZ», «TAB», «VOD».

10.5 Порядок передачи материалов наблюдений ААК и АИК

- 10.5.1 Схема подготовки и передачи месячных массивов актинометрических наблюдений из НП в УГМС (ЦГМС) и ФГБУ «ГГО» регламентируется [2].
- 10.5.2 В УГМС (ЦГМС) по окончании месяца из НП передается в электронном виде полный комплект данных ААК или АИК.

Комплект данных ААК включает сформированные ПО ААК папки «ТААК», «НААК», «VODAAK», вспомогательные файлы «pr_srb», «МЕТ», «ТМ13TI» и «Журнал работы ААК».

Комплект данных АИК включает сформированные ПО АИК папки «1H», «10MIN», «LOG», «ССС», «РТNА», «VOD», вспомогательные файлы «pr srb», «МЕТ», «ТМ13TI» и «Журнал работы АИК».

10.5.3 УГМС (ЦГМС) осуществляет:

- прием и учет месячных массивов актинометрических наблюдений, поступающих из НП;
- первичный контроль информации и при необходимости исправление ошибок в файлах исходных данных;
- обработку и получение полного месячного комплекта файлов, сформированных системой «SONE» (файлов в папках «ARH», «REZ», «TAB», «VOD»);

П р и м е ч а н и е – Допускается по согласованию с УГМС проведение полной обработки информации системой «SONE» непосредственно в НП;

- пополнение фонда данных УГМС стандартным комплектом месячных таблиц ТМ-13 в бумажном и/или электронном виде в установленные в УГМС (ЦГМС) сроки;
- передачу в ФГБУ «ГГО» по электронной почте полного месячного комплекта файлов в папках «ARH», «REZ», «TAB», «VOD», а также «Журнал работы ААК (AИК)», в течение 20 дней после окончания месяца наблюдений;
- передачу в ФГБУ «ГГО» сведений об обнаруженных ошибках и исправлениях в файлах исходных данных.
- 10.5.4 В ФГБУ «ГГО» информация отправляется в виде электронного архива XXXRYYMMaaк.rar или XXXRYYMMaak.zip, XXXRYYMMauk.rar или XXXRYYMMauk.zip, в названии которых:

XXX – актинометрический индекс станции,

R – тип обработки (в данном случае «регистрация»),

ҮҮ – год (последние две цифры),

ММ - месяц,

аак или аик – признак данных ААК или АИК.

10.5.5 ФГБУ «ГГО» осуществляет:

- прием и учет поступившей от УГМС обработанной и прошедшей первичный контроль актинометрической информации;

- контроль качества, редактирование и в случае необходимости переработку поступившей актинометрической информации;
- подготовку и передачу в УГМС замечаний по качеству материалов актинометрических наблюдений;
- накопление годовых исходных и обработанных материалов актинометрических наблюдений AAK (AИК) объемов проконтролированной информации по УГМС и станциям;
- формирование архивных ЯОД-файлов с годовой информацией по станциям Росгидромета;
- ведение и пополнение материалами актинометрических наблюдений информационной базы РСБД «Актинометрия»;
- передачу в Российский государственный фонд данных о состоянии окружающей среды (ФГБУ «ВНИИГМИ-МЦД») архивных ЯОД-файлов.»
 - 3 Ввести приложения П, Р, С, Т, У:

Приложение П (справочное)

Пример суточного файла со средними часовыми значениями данных ААК и АМК, формируемого ПО ААК (папка «Н»)

			Pa	адиаці	 ия, Вт	/м ²		_	Мете	роло	огичес	 кие па	араметры				Си	игнал,	мВ		
Час	Q	S	D			UV_b	Eu	Ed	T,	Rh,	Ρ,	WS,		Q	S	D	R	UV a	UV b	Eu	Ed
						0.1_0			°C	%	гПа	м/с	°C			4-7					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	0.00	16	17	18	19	20	21	22
1	0,0	0,1	0,0	0,0	0,00	0,00	375,8			69	992_	1	12,3	-,	_	0,00			0,00	-0,34	-1,20
2	0,0	0,0	0,0	0,0	0,00		371,7		13,3	73_	993	0	11,4		_	0,00			0,00	-0,37	-1,22
3	0,0	0,2	0,0	0,0	0,01	0,00		312,6		73_	993	2	10,5	_ <u>-</u>	_	0,00			0,00	-0,36	-1,21
4	0,3	4,6	0,7	0,0	0,54	0,00	<u> </u>	310,5		71	994	2	10,5			0,01			0,00	-0,32	-1,18
5	44,3	300,2	16,6	11,6	3,11	0,02		306,9		71	994	_ 3	12,1	0,88	,	0,26		0,10	0,01	-0, 29	-1,22
6	141,6	540,2	31,9	33,1	7,81			305,6		70	995	3	15,7			0,50			0,03	-0,26	-1,28
7	262,3	691,4	40,4	53,0	14,56	0,15	395,4	308,2	16,0	64	995	2	19,1			0,64			0,07	-0,23	-1,42
8	387,4	785,2	45,9	70,2	22,90	0,30	416,3	313,1	18,3	54	996	2	22,9	7,67	6,30	0,73	1,08	0,76	0,15	-0,19	-1,57
9	500,2	837,7	50,3	83,4	31,13	0,50	435,2	317,7	20,0	44	996	2	25,7	9,91	6,72	0,80	1,28	1,04	0,25	-0,12	-1,66
10	592,1	870,2	52,8	92,9	38,24	0,71	451,9	322,3	21,1	38	996	2	28,5	11,73	6,98	0,84	1,42	1,28	0,35	-0,05	-1,71
11	657,4	891,2	53,2		43,53		468,3	327,0	22,2	37	997	3	31,2	13,02	7,15	0,84	1,51	1,45	0,44	0,02	-1,78
12	688,8	896,5	54,4	101,0		0,99	479,5		23,5	37	997	2	34,1	13,65	7,19	0,86	1,55	1,55	0,50	0,06	-1,81
13	684.2	892.1	54.4	100,2	46.90	1.00	488.3	_	24.2	36	997	2	35,3	13,55	7,15	0,86	1,54	1,57	0,50	0,07	-1,86
14	645,6	878,5			44,67	0,90	492,1	335,1	24,6	35	997	2		12,79			1,48	1,49	0,45	0,06	-1,87
		857,8		89.5	39,92	0,72		332,5	25,3	33	997	2	34,7	11,44	6,88	0,84	1,37	1,33	0,36	0,01	-1,89
	484,4		52,2	81,2	33,05		481,1	336,8		38	998	2	32,4	9,60	6,59	0,83	1,24	1,10	0,26	-0,04	-1,84
17	367,6	_	55,4	66,9	24,24			347,5	24,0	40	998	3	29,4	7,28	5,93	0,88	1,03	0,81	0,15	-0,08	-1,68
18	247,6	656,7	46,5	50,1	15,70	0,15	450,3		23,7	41	998	2	26,5	4,90	5,27	0,74	0,77	0,52	0,08	-0,17	-1,64
19			32,1	30,1	8,09	0,06	433,5	345,1	22,6	42	999	2	22,8	2,55		0,51		0,27	0,03	-0,29	-1,63
20		230,9	12,4	7,3	2,94	0,02	409,2		20,1	53	999	1	20,0	0,57		0,20		0,10	0,01	-0,48	-1,62
21	0,0	0,4	0,4	0,0	0,49	0,00	388,3		14,3	80	1000	0	17,5	0,00	0,00	0,01	0,00	0,02	0,00	-0,40	-1,32
22	0,0	0,3	0,0	0,0	0,01	0,00		329,8		80	1000	1	15,8	0,00	0,00	0,00	0,00	0,00	0,00	-0,32	-1,15
23	0,0	0,2	0,0	0,0	0,00	0,00	372,3		11,6	85	1000	1	14,7	0,00	0,00	0,00	0,00	0,00	0,00	-0,27	-1,03
24	0,0	0,1	0,0	0,0	0,00	0,00		327,0	10,6	89	1001	1	13,9	0,00	0,00	0,00	0,00		0,00	-0,26	-0,98

Приложение Р (справочное)

Пример файла «ССС» с часовыми суммами продолжительности солнечного сияния (папка «НААК»)

												11.												
День					-		7	_				Ч;				- 40								
	1	2	3	4	5	6		8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	0	0	0	0	0	0,3	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
2	0	0	0	0	0	0,6	1	1	1	1	1	1	0,7	0	0,8	0,8	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0,9	1	1	1	1	1	1	1	1	0,8	0	0	0	0	0
4	0	0	0	0	0	0	0,5	1	1	1	1	1	1	1	1	1	1	1	0,7	0	0	0	0	0
5	0	0	0	0	0	0	0,4	0,1	0,8	0,7	0,3	0,6	0,4	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0,4	0,7	0,8	1	1	1	1	1	1	1	0,1	0	0	0	0	0
7	0	0	0	0	-	0	0	0	0,6	1	1	1	1	1	1	1	0,6	0,7	0,2	0	0	0	0	0
8	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0	0,2	Ö	Ó	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0,3	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	Ó	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0	0	0	0	0,1	0,6	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0	0	ō	0	0	0	0	0	0	0	0	0	ō	0	ō
28	0	0	0	0	0	0	0	0	0	0	0	0.3	0.1	0	0.1	0,5	0,5	0	0	0	0	0	0	ō
29	0	0	0	0	0	0	0	0,4	0.9	1	1	1	1	1	1	0.8	0.8	1	0.7	0	n	0	0	0
30	0	0	0	0	0	0.1	0.8	0.6	0.8	1	1	1	1	1	1	1	1	0.8	0,7	0	0	0	0	0
_ 50	J			J		Ι Ο, Ι	0,0	0,0	0,0	'								0,0		J				

Приложение С (обязательное)

Расчет переводных множителей датчиков ААК для обработки данных системой SONE

Для датчиков ААК, измеряющих виды радиации S, D, Q, R, в свидетельстве о поверке указывается коэффициент преобразования показаний датчика (K), м $B \cdot M^2/\kappa B\tau$. На основании значений коэффициентов преобразования рассчитываются переводные множители (a) по формуле

$$a = 1/(2.5 \text{ K}),$$
 (C.1)

Переводной множитель рассчитывается с точностью до 0,0001 кВт/мВ⋅м².

Значения переводных множителей для датчиков ААК заносятся в файл «pr_srb» как целое число.

Для обработки данных ААК по радиационному балансу В в качестве переводного множителя всегда принимается значение 0,0999, которое в файл «pr srb» вводится как 999.

В случае изменения по результатам поверки ААК значения коэффициента преобразования показаний датчика следует рассчитать новый переводной множитель и внести соответствующие изменения в файл «pr_srb» и сделать необходимые записи в «Журнале работы ААК».

Пример — Пусть в свидетельстве о поверке на ААК для датчиков указаны следующие значения К:

- 8.29 мВ•м²/кВт для пиргелиометра (S):
- 19,81 мВ•м²/кВт для пиранометра суммарной радиации (Q);
- 15.20 мВ•м²/кВт для пиранометра рассеянной радиации (D):
- 15,32 мВ•м²/кВт для пиранометра отражённой радиации (R).

Расчет значений переводных множителей по формуле С.1 выглядит следующим образом:

- $a = 1/(2.5 \cdot 8.29) = 0.0483 \text{ кВт/мВ•м}^2$ для пиргелиометра (S);
- $a=1/(2,5\cdot 19,81)=0,0202$ кВm/мВ• m^2 для пиранометра суммарной радиации (Q);
- $a=1/(2,5\cdot 15,20)=0,0253\ кВт/мВ•м²$ для пиранометра рассеянной радиации (D);
- a=1/(2,5-15,32)=0,0261 кВm/мВ• m^2 для пиранометра отражённой радиации (R).

Файл «pr srb» будет выглядеть следующим образом:

483

202

253

261

999

ИЗМ № 1/45-2019 РД 52.04.562-96

Приложение Т (справочное)

Пример файла средних часовых значений радиации, формируемый ПО АИК (папка «1H»)

Дата, время	Н	S	D	Q	R	B*	В	S*	Ak,%	Bk	Bd	S	D	Q	R	B*
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
01/08/2015 00:30	-19,7	0,0	0,0	0,0	0,0	-37,7	-37,7	0,0	####	0,0	-37,7	0	0	0	0	-0,66
01/08/2015 01:30	-17,3	0,0	0,0	0,0	0,0	-35,2	-35,2	0,0	####	0,0	-35,2	0	0	0	0	-0,62
01/08/2015 02:30	-12,8	0,0	0,0	0,0	0,0	-35,1	-35,1	0,0	####	0,0	-35,1	0	0	0	0	-0,61
01/08/2015 03:30	-6,5	0,0	0,0	0,0	0,0	-33,2	-33,2	0,0	####	0,0	-33,2	0	0	0	0	-0,58
01/08/2015 04:30	1,1	32,1	7,0	10,6	2,4	-28,2	-27,6	0,6	22,7	8,2	-35,7	0,31	0,07	0,11	0,05	-0,49
01/08/2015 05:30	9,7	305,2	35,4	86,0	19,4	-31,5	19,8	51,3	22,6	66,6	-46,8	2,99	0,36	0,93	0,21	-0,55
01/08/2015 06:30	18,7	510,6	58,0	225,8	48,5	-49,5	114,4	163,9	21,5	177,3	-62,9	5	0,58	2,44	0,53	-0,86
01/08/2015 07:30	28	635,9	69,0	388,3	75,7	-89,5	208,7	298,2	19,5	312,6	-103,9	6,23	0,69	4,19	0,83	-1,56
01/08/2015 08:30	37	656,3	91,7	496,3	96,4	-113,7	281,4	395,1	19,4	399,9	-118,5	6,43	0,92	5,36	1,06	-1,99
01/08/2015 09:30	45,2	739,0	80,8	605,2	116,1	-157,3	367,4	524,7	19,2	489,0	-121,7	7,24	0,82	6,54	1,28	-2,75
01/08/2015 10:30	51,8	753,9	90,7	681,5	130,3	-179,4	413,1	592,5	19,1	551,3	-138,2	7,39	0,91	7,36	1,43	-3,13
01/08/2015 11:30	55,6	767,6	89,9	708,3	138,3	-202,4	430,9	633,2	19,5	569,9	-139,1	7,52	0,9	7,65	1,52	-3,54
01/08/2015 12:30	55,6	710,3	106,3	686,9	134,2	-189,2	396,7	586,0	19,5	552,7	-156,0	6,96	1,07	7,42	1,48	-3,31
01/08/2015 13:30	51,8	654,3	154,1	676,3	132,9	-138,3	376,0	514,3	19,6	543,4	-167,5	6,41	1,55	7,3	1,46	-2,42
01/08/2015 14:30	45,1	522,9	143,8	526,1	106,8	-101,6	269,7	371,2	20,3	419,4	-149,7	5,12	1,45	5,68	1,18	-1,77
01/08/2015 15:30	36,9	517,7	114,4	448,7	92,9	-103,3	208,3	311,6	20,7	355,8	-147,5	5,07	1,15	4,85	1,02	-1,81
01/08/2015 16:30	27,9	617,9	78,5	413,4	89,2	-111,6	194,9	306,5	21,6	324,2	-129,3	6,06	0,79	4,46	0,98	-1,95
01/08/2015 17:30	18,6	544,4	55,7	258,3	64,6	-91,4	83,4	174,8	25,0	193,7	-110,4	5,34	0,56	2,79	0,71	-1,6
01/08/2015 18:30	9,6	378,4	35,4	112,3	28,3	-64,8	-1,2	63,6	25,2	84,0	-85,2	3,71	0,36	1,21	0,42	-1,13
01/08/2015 19:30	1,1	84,9	7,3	14,5	3,7	-52,7	-51,0	1,6	25,5	10,8	-61,9	0,83	0,07	0,16	0,09	-0,92
01/08/2015 20:30	-6,5	0,0	0,0	0,0	0,0	-52,5	-52,5	0,0	####	0,0	-52,5	0	0	0	0	-0,92
01/08/2015 21:30	-12,8	0,0	0,0	0,0	0,0	-50,6	-50,6	0,0	####	0,0	-50,6	0	0	0	0	-0,88
01/08/2015 22:30	-17,4	0,0	0,0	0,0	0,0	-49,1	-49,1	0,0	####	0,0	-49,1	0	0	0	0	-0,86
01/08/2015 23:30	-19,7	0,0	0,0	0,0	0,0	-42,2	-42,2	0,0	####	0,0	-42,2	0	0	0	0	-0,74

Примечание – «####» – значение не определено (Ak, % при R и Q равных нулю, не определяется).

Приложение У (обязательное)

Расчет переводных множителей датчиков АИК для обработки данных системой SONE

Для датчиков АИК, измеряющих виды радиации S, D, Q, R, B, в свидетельстве о поверке указывается коэффициент преобразования показаний датчика (K), м $B \cdot m^2/kBT$. На основании значений коэффициентов преобразования рассчитываются переводные множители (a) по формуле

$$a = 1/(2.5 \text{ K}),$$
 (y.1)

Переводной множитель рассчитывается с точностью до 0,0001 кВт/мВ⋅м².

Значения переводных множителей для датчиков АИК заносятся в файл «pr_srb» как целое число.

В случае изменения по результатам поверки АИК значения коэффициента преобразования показаний датчика следует рассчитать новый переводной множитель, внести соответствующие изменения в файл «pr_srb» и сделать необходимые записи в «Журнале работы АИК».

Пример — Пусть в свидетельстве о поверке на АИК для датчиков указаны следующие значения К:

- 8,98 мВ•м²/кВт для актинометра (S);
- 11.35 мВ•м²/кВт для пиранометра суммарной радиации (Q);
- 12,95 мВ•м²/кВт для пиранометра рассеянной радиации (D);
- 15,65 мВ•м²/кВт для пиранометра отражённой радиации (R);
- 14.14 мВ•м²/кВт для балансомера (В).

Расчет значений переводных множителей по формуле У.1 выглядит следующим образом:

```
a = 1/(2.5 \cdot 8.89) = 0.0445 \text{ кВт/мВ•м}^2 для пиргелиометра (S);
```

 $a = 1/(2.5 \cdot 11,35) = 0.0352 \ кВт/мВ•м²$ для пиранометра суммарной радиации (Q):

а = 1/(2,5 · 12,95) = 0,0309 кВт/мВ•м² для пиранометра рассеянной

радиации (D); a = 1/(2,5 · 15,65) = 0,0256 кВт/мВ•м² для пиранометра отражённой радиации (R;

 $a = 1/(2.5 \cdot 14.14) = 0.0283 \text{ кВт/мВ•м}^2$ для балансомера (В).

Файл «pr srb» будет выглядеть следующим образом:

445

352

309

256

283».

4 Приложение Ф «Библиография» заменить структурным элементом «Библиография»:

«Библиография

[1]	Отраслевой стандарт	Актинометрия. Термины, буквенные
	OCT 52.04.10-82	обозначения и определения
		основных величин

[2] Руководящий Краткие схемы обработки документ гидрометеорологической PД 52.19.704–2013 информации»

Ключевые слова: актинометрия, метеорологическая станция, автоматизированный актинометрический комплекс, актинометрический измерительный комплекс, следящая система, режимно-справочный банк данных

Подписано в печать 07.02.2020. Формат 60×84 1/₁₆. Гарнитура Arial. Бумага офсетная. Усл. печ. л. 2,09. Тираж 276 экз. Заказ № 425-20/07020.