

МИНИСТЕРСТВО СТРОИТЕЛЬСТВА И ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

(МИНСТРОЙ РОССИИ)

ПРИКАЗ

от"<u>3 " декабря</u> 2016 г

№ 882/1p

Москва

Об утверждении Изменения № 1 к СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»

В соответствии с Правилами разработки, утверждения, опубликования, изменения и отмены сводов правил, утвержденными постановлением Правительства Российской Федерации от 1 июля 2016 г. № 624, подпунктом 5.2.9 пункта 5 Положения о Министерстве строительства и жилишно-коммунального хозяйства Российской Федерации, утвержденного постановлением Правительства Российской Федерации от 18 ноября 2013 г. № 1038, пунктом 196 Плана разработки и утверждения сводов правил и актуализации ранее утвержденных сводов правил, строительных норм и правил на 2015 г. и плановый период до 2017 г., утвержденного приказом жилишно-коммунального Министерства строительства И Российской Федерации от 30 июня 2015 г. № 470/пр с изменениями, Министерства приказом строительства и коммунального хозяйства Российской Федерации от 14 сентября 2015 г. № 659/пр, приказываю:

- 1. Утвердить и ввести в действие через 6 месяцев со дня издания настоящего приказа Изменение № 1 к СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов», утвержденному приказом Министерства регионального развития Российской Федерации от 27 декабря 2011 г. № 608, согласно приложению.
- Департаменту градостроительной деятельности и архитектуры в течение 15 дней со дня издания приказа направить утвержденное Изменение № 1 к СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция

оборудования и трубопроводов» на регистрацию в национальный орган Российской Федерации по стандартизации.

- 3. Департаменту градостроительной деятельности и архитектуры обеспечить опубликование на официальном сайте Минстроя России в информационно-телекоммуникационной сети «Интернет» текста утвержденного Изменения № 1 к СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов» в электронно-цифровой форме в течение 10 дней со дня регистрации свода правил национальным органом Российской Федерации по стандартизации.
- 4. Контроль за исполнением настоящего приказа возложить на заместителя Министра строительства и жилищно-коммунального хозяйства Российской Федерации Х.Д. Мавлиярова.

И.о. Министра

(e/

Е.О. Сиэрра

Изменение № 1 к СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»

Утверждено и введено в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 3 декабря 2016 г. № 882/пр

Дата введения 2017-06-04

Содержание. Наименование приложения Б изложить в новой редакции: «Технические характеристики теплоизоляционных, покровных и пароизоляционных материалов и изделий».

Раздел 1. Первый абзац после слов «при всех способах прокладки» дополнить словами: «и трубопроводов с обогревающими их паровыми и водяными спутниками».

Раздел 3. Первый абзац изложить в новой редакции:

«В настоящем своде правил применены термины по ГОСТ 31913, а также следующие термины с соответствующими определениями:»;

дополнить пунктом -3.14:

«3.14 **Паровые и водяные спутники:** Трубопроводы малого диаметра, предназначенные для обогрева основного трубопровода и расположенные в общей с основным трубопроводом теплоизоляционной конструкции.».

Пункт 4.3 после слов «месторасположение изолируемого объекта» дополнить ссылкой: СП 131.13330.

Пункт 5.15 изложить в новой редакции:

«5.15 Покровный слой допускается не предусматривать в теплоизоляционных конструкциях на основе изделий из волокнистых материалов с покрытием (кэшированных) из алюминиевой фольги или стеклоткани (стеклохолста, стеклорогожи), вспененного синтетического каучука и вспененного полиэтилена для изолируемых объектов, расположенных в помещениях, тоннелях, подвалах и чердаках зданий, и при канальной прокладке трубопроводов».

1

Пункт 5.16. Заменить слова: «рекомендуется принимать по таблице 1» на «рекомендуется принимать по приложению Б (таблица Б.4)»;

таблицу 1 исключить.

Раздел 5 дополнить пунктом – 5.23:

«5.23 Тепловая изоляция трубопроводов с обогревающими их спутниками предусматривает их совместную прокладку в общей теплоизоляционной конструкции. Конструктивные решения тепловой изоляции определяются числом спутников и их расположением относительно трубопровода в конструкции. Применяются системы обогрева, предусматривающие частичный и полный обогрев трубопровода. Для повышения эффективности теплообмена между спутником и трубопроводом применяются конструктивные решения (распорки, подкладки), обеспечивающие максимальное использование теплоотдающей поверхности спутника и тепловоспринимающей поверхности трубопровода в пространстве, ограниченном теплоизоляционной конструкцией. Для снижения тепловых потерь через участок теплоизоляционной конструкции, контактирующий с воздухом в пространстве, ограниченном теплоизоляционной конструкцией, за счет уменьшения радиационной составляющей теплового потока, могут применяться внутренние обкладки (экраны) из алюминиевой фольги толщиной 0,1 мм или фольгированных листовых и рулонных материалов, с учетом допустимой температуры их применения».

Пункт 6.1. Наименование изложить в новой редакции: «Расчет толщины теплоизоляционного слоя по нормированной плотности теплового потока».

Пункт 6.3. Наименование изложить в новой редакции: «Определение толщины тепловой изоляции по технологическим требованиям».

Пункты 6.2 - 6.6 изложить в новой редакции:

- «6.2 При расчете толщины тепловой изоляции по заданной величине теплового потока расчетные температуры теплоносителя и окружающего воздуха принимают в соответствии с пунктами 6.1.5 и 6.1.6.
- 6.3 При расчете толщины тепловой изоляции оборудования и трубопроводов с положительными температурами, расположенных на открытом воздухе, в качестве расчетной температуры окружающего воздуха принимается средняя температура наиболее холодной пятидневки с обеспеченностью 0.92:

При расчете толщины тепловой изоляции оборудования и трубопроводов с отрицательными температурами, расположенных на открытом воздухе, в качестве расчетной температуры окружающего воздуха принимается средняя максимальная температура наиболее жаркого месяца.

Для оборудования и трубопроводов, расположенных в помещении, расчетная температура окружающего воздуха принимается в соответствии с

заданием на проектирование, а при отсутствии указаний о температуре окружающего воздуха, принимается равной 20 °C.

Расчетная температура теплоносителя принимается в соответствии с заданием на проектирование.

6.4 При расчете толщины тепловой изоляции по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами, расчетную температуру окружающей среды следует принимать для трубопроводов, расположенных:

на открытом воздухе и в помещении – в соответствии с 6.3; в тоннелях – 40 °C:

в каналах или при бесканальной прокладке трубопроводов – минимальную среднемесячную температуру грунта на глубине заложения оси трубопровода.

Расчетную температуру теплоносителя принимают в соответствии с заданием на проектирование.

6.5 При расчете толщины тепловой изоляции паропроводов перегретого и насыщенного пара расчетную температуру окружающего воздуха следует принимать в соответствии с 6.3.

Расчетные параметры пара принимают в соответствии с заданием на проектирование.

6.6 При расчете толщины тепловой изоляции по заданному времени приостановки движения жидкости в трубопроводах в целях предотвращения его замерзания или увеличения вязкости расчетные параметры окружающего воздуха и теплоносителя следует принимать в соответствии с 6.3 и заданием на проектирование.».

Пункт 6.7. Наименование изложить в новой редакции: «Расчет толщины тепловой изоляции по заданной температуре на поверхности изоляции».

Пункты 6.8-6.10 изложить в новой редакции:

«6.8 Расчет толщины тепловой изоляции с целью предотвращения конденсации влаги из окружающего воздуха на покровном слое тепловой изоляции оборудования и трубопроводов, содержащих вещества с температурой ниже температуры окружающего воздуха

Данный расчет следует выполнять только для изолируемых поверхностей, расположенных в помещении.

Расчетная температура и относительная влажность воздуха принимаются в соответствии с заданием на проектирование.

Для изолируемых поверхностей с отрицательными температурами, расположенных в помещении, толщина теплоизоляционного слоя, определенная по условиям 6.1, 6.2, должна быть проверена по 6.8. В результате сравнения принимается большее значение толщины слоя.

6.9 При расчете толщины тепловой изоляции с целью предотвращения конденсации влаги на внутренних поверхностях газоходов, транспортирующих газы, содержащие водяные пары или водяные пары и газы, которые при

растворении в сконденсировавшихся водяных парах могут привести к образованию агрессивных продуктов, расчетную температуру окружающей среды следует принимать в соответствии с 6.3.

Расчетные параметры газов принимают в соответствии с заданием на проектирование.

6.10 При расчете тепловой изоляции трубопроводов с обогревающими их паровыми или водяными спутниками расчетную температуру окружающего воздуха следует принимать:

на открытом воздухе – среднюю наиболее холодной пятидневки или в соответствии с заданием на проектирование;

в помещении — в соответствии с заданием на проектирование, а при отсутствии указаний о температуре окружающего воздуха -20 °C;

в тоннелях -40 °C:

Расчетную температуру теплоносителя в трубопроводе и обогревающем его спутнике принимают в соответствии с заданием на проектирование.».

Пункт 6.18 изложить в новой редакции:

«6.18 Толщину металлических и композиционных материалов, применяемых в качестве покровного слоя, в зависимости от наружного диаметра трубопровода или конфигурации теплоизоляционной конструкции следует принимать по приложению Б (таблицы Б.2 и Б.3).»;

таблицу 16 исключить.

Раздел 6 дополнить пунктом – 6.33:

«6.33 При расчете тепловой изоляции трубопроводов со спутниками расчетную температуру окружающей среды t_0 следует принимать:

на открытом воздухе — среднюю наиболее холодной пятидневки или в соответствии с заданием на проектирование;

в помещении — в соответствии с заданием на проектирование, а при отсутствии данных о температуре окружающего воздуха -20 °C;

в тоннелях - 40 °C;

Расчетную температуру теплоносителя в трубопроводе и обогревающем его спутнике принимают в соответствии с заданием на проектирование тепловой изоляции.».

Приложение А (обязательное) Перечень нормативных документов, на которые имеются ссылки в тексте, изложить в новой редакции:

«ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний

ГОСТ 17314-81 Устройства для крепления тепловой изоляции стальных сосудов и аппаратов. Конструкция и размеры. Технические требования

ГОСТ 25100-2011 Грунты. Классификация

ГОСТ 25898-2012 Материалы и изделия строительные. Методы определения паропроницаемости и сопротивления паропроницанию

ГОСТ 30244-94 Материалы строительные. Методы испытаний на горючесть

ГОСТ 31913-2011 Материалы и изделия теплоизоляционные. Термины и определения

ГОСТ 32025 – 2012 (EN ISO 8497:1996) Тепловая изоляция. Метод определения характеристик теплопереноса в цилиндрах заводского изготовления при стационарном тепловом режиме

СП 124.13330.2012 «СНиП 41-02-2003 Тепловые сети»

СП 131.13330.2012 «СНиП 23-01-99* Строительная климатология» (с изменением № 2)».

Приложение Б (справочное). Наименование изложить в новой редакции: «Технические характеристики теплоизоляционных, защитис-покровных и пароизоляционных материалов и изделий»;

таблицу Б.1 изложить в новой редакции:

Таблица Б.1

Наименование материала, изделия	Средняя плотность в конструкции, кг/м³	Теплопроводность материала (изделия) в конструкции лада Вт/(м.°С), для поверхностей с температурой, °С 20 и выше 19 и ниже		Температура применения, °С	Группа горючести
		20 и выше	19 и ниже		
Маты из минеральной ваты про- шивные теплоизоляционные, в том числе в обкладке из метал-	100	0,038+0,00021 t _m	0,038-0,027	От минус 180 до 700	нг
лической сетки, базальтовой и кремнеземной ткани	125	0,038+0,0002 t _m	0,038-0,027	700	
Маты из минеральной ваты про- шивные теплоизоляционные в	100	0,038+0,00021 tm	0,038-0,027	От минус 180 до	нг
обкладке из стеклосетки, стекло- ткани, стеклохолста	125	0,038+0,0002 t _m	0,038-0,027	450	***
Маты из минеральной ваты про- шивные гофрированной структу-	80	0,036+0,00022 tm	0,035-0,027	От минус 180 до	нг
ры	100	0,038+0,00021 tm	0,038-0,027	700	
Маты из минеральной ваты ру- лонированные на синтетическом связующем	60-80	0,036+0,00022 t _m	0,035-0,027	От минус 60 до 400	нг
Плиты из минеральной ваты на синтетическом связующем теп- лоизоляционные мягкие	60-80	0,038+0,00029 t _m	0,038-0,029	От минус 60 до 400	нг-г1

Продолжение таблицы Б.1

4			***************************************			
	Сполияя	Теплопроводност	гь мат ериа ла			
Наименование	Средняя (изделия) в конструкции λ_{H3} ,		Томпонения	P		
материала, изделия	плотность в	Вт/(м.°С), для по		Температура применения, °С	Группа горючести	
материала, изделия	конструкции, кг/м ³	температур	оой, °С	применения, С		
	KI7M*	20 и выше	19 и ниже			
Плиты из минеральной ваты на						
синтетическом связующем теп-	90	0,039+0,00022 tm	0,039-0,030			
лоизоляционные полужесткие		,		От минус 60 до		
Плиты из минеральной ваты на	2			400	HC-C1	
синтетическом связующем теп-	100-140	0,039+0,00021 tm	0,039-0,029			
лоизоляционные жесткие		-,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	80	0,044+0,00022 tm	0,043-0,032			
Полуцилиндры и цилиндры ми-	100	0,049+0,00021 tm	0,048-0,036	От минус 180 до	НΓ	
нераловатные	150	0,050+0,0002 t _m	0,049-0,035	400	* * * *	
Маты и вата из супертонкого		0,050 10,0005 1///	0,015 0,000			
базальтового волокна без связу-	40-60	$0,032+0,00019 t_m$	0,031-0,024	От минус 180 до	нг	
ющего	10 00	0,052.0,00017,7	0,05. 0,021	700	m	
Шнур теплоизоляционный из				От минус 180 до		
минеральной ваты	200	0,056+0,00019 t _m	0,055-0,04	600	HC-C1	
			<u> </u>	От плюс 20 до		
Шнур асбестовый	100-160	0,093+0,00019 t _m	-	220	Г1	
Маты прошивные гофрирован-				220		
ной структуры из стеклянного	50					
штапельного волокна, в том чис-		0,036+0,0002 t _m	0,037-0,03	От минус 60 до	нг	
ле в обкладке из металлической	30	0,030+0,0002 im	0,037-0,03	450	LIT.	
* *						
Матт и рата из существого						
Маты и вата из супертонкого стеклянного волокна без связу-	40-60	0.02210.00014.4	0.022.0.024	От минус 180 до	THE	
ющего	40-60	0,033+0,00014 t _m	0,032-0,024	400	нг	
Теплоизоляционные изделия из	130	$0,005+0,0002 t_m$	0,005-0,038	От минус 150 до	нг	
пеностекла		0,000 0,000 2 1,,,		350		
Армопенобетон	200-300	0,055+0,0002tm	0,055	От минус 60 до	нг	
Армоненоветон	200-300	0,033+0,00021m		300	LI1	
Hanny war war war at a name war	110	$0,052+0,00012 t_m$	0,051-0,038	On 1477712 200	· · · · · · · · · · · · · · · · · · ·	
Песок перлитовый, вспученный, мелкий	150	0,055+0,00012 t _m	0,054-0,04	От минус 200 до 875	нг	
мелкии	225	0,058+0,00012 tm	0,057-0,042	0/3		
Теплоизоляционные изделия из	17	0,039+0,00018 tm	0,038-0,025	От минус 100 до	TO 574	
пенополистирола	25	0,036+0,00018 tm	0,035-0,029	80	Г3-Г4	
	40	0,030+0,00015 tm	0,029-0,024			
Теплоизоляционные изделия из	50	0,032+0,00015 tm	0,031-0,025	От минус 180 до	Г2-Г4	
пенополиуретана	70	$0,037+0,00015 t_m$	0,036-0,027	140		
	· · · ·		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
LI AVIONO TUDICADO CULVADA T	270	0.03640.00034	0,041	От минус 60 до	Г2-Г4	
Пенополимерминерал	2/0	0,036+0,0002 t _m	0,041	150	1 2-1 4	
Теплоизоляционные изделия из	60-80	0,034+0,0002 tm	0,033	От минус 60 до	Г1-Г3	
вспененного каучука				125		
Теплоизоляционные изделия из	20	0,039+0,0002 t _m	0,035	От минус 70 до	Г1-Г4	
пенополиэтилена	50	0,035+0,00018 tm	0,033	70	1 1 T	
Маты иглопробивные из базаль-		0,038+0,00013 t _m	0,037	0	***************************************	
товых волокон	100-140			От минус 260 до	ΗΓ	
		,	,	800	_	
TC	60.00	0.00010.00010	0.001	От минус 200 до	***	
Картон из базальтового волокна	50-80	$0,032+0,00012 t_m$	0,031	800	ΗΓ	

Примечания

¹ Средняя температура теплоизоляционного слоя, °C: $t_m = (t_b + 40)/2$ — на открытом воздухе в летнее время, в помещении, в каналах, тоннелях, технических подпольях, на чердаках и в подвалах зданий;

 $t_m = t_b / 2$ — на открытом воздухе, воздухе в зимнее время, где t_b — температура среды внутри изолируемого оборудования (трубопровода).

3 Коэффициент теплопроводности определяется в соответствии с ГОСТ 7076, ГОСТ 32025.

4 Группа горючести определяется по ГОСТ 30244.

приложение Б дополнить таблицами – Б.2 –Б.4.:

Таблица Б.2 – Толщина металлических листов для покровного слоя тепловой изоляции

Наименование	Толщина листа, мм, при диаметре изоляции, мм								
материала покровного слоя	350 и менее	св. 350 до 600	св. 600 до 1600	св.1600 и плос- кие поверхности					
Листы и ленты из нержавею- щей стали	0,35 - 0,5	0,5	0,5-0,8	0,8					
Сталь тонколистовая оцинкованная с непрерывных линий	0,35-0,5	0,5-0,8	0,8	1,0					
Листы из тонколистовой ста- ли, в том числе с полимерным покрытием	0,35 - 0,5	0,5 - 0,8	0,8	1,0					
Листы из алюминия и алюминиевых сплавов	0,3	0,5 - 0,8	0,8	1,0					
Ленты из алюминия и алюминиевых сплавов	0,25-0,3	0,5-0,8	0,8	1,0					

Таблица Б.3 – Композиционные рулонные материалы для покровного слоя тепловой изоляции

141420011 11000D111111							
Наименование материала	Толщина, мм	Группа горючести					
Рулонный стеклопластик	0,30-0,50	Γ1-Γ2					
Стеклоткань, дублированная алюминиевой фольгой	0,15-0,5	Г1					
Фольга алюминиевая дублированная для теплоизоляционных конструкций	0,25 – 1,5	Г1					

Таблица Б.4 — Количество слоев пароизоляционного материала в зависимости от температуры изолируемой поверхности и срока эксплуатации

Наименование пароизоляционного материал		Сопротив-		Число слоев пароизоляционного материала при температуре				
	Толщина, мм	олщина, проница- мм нию,	от минус 60 до 19 °C		от минус 61 до минус 100 °C		ниже минус 100 °C	
	(м²⋅ч⋅Па)/мг		nj	ои сроке	эксплуатац	ии		
			8 лет	12 лет	8 лет	12 лет	8 лет	12 лет

² Большее значение расчетной теплопроводности теплоизоляционного материала в конструкции для поверхностей с температурой 19 °C и ниже относится к температуре изолируемой поверхности от минус 60 °C до 19 °C, меньшее − к температуре минус 61 °C и ниже.

Продолжение Изменения № 1 к СП 61.13330.2012

Полиэтиленовая пленка	0,15-0,2	7-9	2	2	2	2	3	-
Полиэтиленовая пленка термоусадочная	0,21-0,3	9-13	1	1	1	1	2	2
Фольга алюминиевая	0,06-0,1	5-10	1	2	2	2	2	2
Defenses	1	0,5	3	-	-	-	-	-
Рубероид	1,5	1,1	2	3	3	-	-	-

Примечания

3 Сопротивление паропроницанию определяется по ГОСТ 25898.

Приложение В. Пункт В.2.1. Заменить слова: «Для плоских и цилиндрических поверхностей с диаметром 2 м и более используется формула» на «Для плоских и цилиндрических поверхностей с диаметром 1,4 м и более ис-

пользуется формула»;

«Для однослойных цилиндрических поверхностей диаметром менее 2 м используется формула» на «Для однослойных цилиндрических поверхностей с диаметром менее 1,4 м используется формула».

Подраздел В.2 дополнить пунктами – В.2.5–В.2.7:

B.2.5 Расчет тепловой изоляции паропроводов по заданным параметрам пара

Для паропроводов насыщенного пара заданными параметрами являются давление, температура и допустимая доля конденсата в паропроводе. Толщина тепловой изоляции рассчитывается по следующей формуле

$$lnB = ln\frac{d^{\text{HS}}}{d_{\text{H}}^{\text{cr}}} = 2\pi \cdot \lambda_{\text{HS}} \left[\frac{(t_{\text{B}} - t_{\text{H}})L_{\text{pacq}}}{K_{\text{конн}}r_{\text{конн}}} - \frac{1}{\alpha_{\text{H}}\pi d^{\text{HS}}} \right], \quad (B.34a)$$

где $K_{\text{конд}}$ – допустимое количество конденсата по длине паропровода, кг/с;

 $L_{
m pac-q}$ — расчетная длина паропровода, принимаемая с учетом тепловых потерь через опоры, арматуру и фланцевые соединения, м;

 $r_{\text{конд}}$ — скрытая теплота конденсации, кДж/кг.

Для паропроводов перегретого пара заданными параметрами являются начальные и конечные температура и давление пара и допустимое падение температуры по длине паропровода. Требуемая толщина тепловой изоляции определяется по следующей формуле

¹ Допускается применение других материалов, обеспечивающих уровень сопротивления паропроницанию не ниже, чем у приведенных в таблице.

² Для материалов с закрытой пористостью, имеющих коэффициент паропроницаемости менее

^{0,01} мг/ (м-ч-Па), во всех случаях принимается один пароизоляционный слой.

$$lnB = ln\frac{d^{\text{us}}}{d_{\text{H}}^{\text{cr}}} = 2\pi \cdot \lambda_{\text{HS}} \left[\frac{(t_{\text{B}}^{\text{cp}} - t_{\text{H}}) L_{\text{pacq}}}{(i^{\text{Haq}} - i^{\text{KOH}}) G_{\text{nap}}} - \left(\frac{1}{\alpha_{\text{B}} \pi d_{\text{B}}^{\text{cr}}} + \frac{1}{\alpha_{\text{H}} \pi d^{\text{HS}}} \right) \right], \quad (B.346)$$

где $t_{\rm a}^{\rm cp} = \frac{t_{\rm a}^{\rm min} - t_{\rm a}^{\rm min}}{2}$ – средняя температура пара в паропроводе, равная среднеарифметическому значению начальной и конечной температуры пара, °C:

і^{нач}, і^{кон} — удельная энтальпия пара, соответственно, в начале и конце паропровода, определяемая по таблицам термодинамических свойств воды и водяного пара при заданных температуре и давлении перегретого пара в начале и конце паропровода, кДж/кг;

 $G_{\text{пар}}$ – массовый расход пара в паропроводе, кг/с;

 d_{*}^{er} – внутренний диаметр паропровода, м.

Уравнения (В.34а), (В.34б) решаются методом последовательных приближений. Толщина изоляции δ_{13} вычисляется по формуле (В.20).

В.2.6. Расчет тепловой изоляции с целью предотвращения конденсации влаги на внутренних поверхностях газоходов

Для газоходов прямоугольного сечения и цилиндрических, диаметром более 2 м, расчет требуемой толщины изоляции выполняется по формуле

$$\delta_{_{\rm H3}} = \lambda_{_{\rm H3}} \left[\frac{(t_{_{\rm BH}}^{\rm cr} - t_{_{\rm H}})}{\alpha_{_{\rm BH}}(t_{_{\rm R}} - t_{_{\rm BH}}^{\rm cr})} - \frac{1}{\alpha_{_{_{\rm H}}}} \right], (B.34B)$$

где $t_{\text{вн}}^{\text{er}}$ – температура внутренней поверхности стенки газохода, ${}^{0}\text{C}$;

 $\alpha_{\text{вн}}$ — коэффициент теплоотдачи от газа к внутренней поверхности стенки газохода, Вт/(м². 0 С);

Для газоходов диаметром менее 2 м, расчет выполняется по формуле

$$lnB = 2\pi \cdot \lambda_{_{\text{HS}}} \left[\frac{(t_{_{\text{BH}}}^{\text{cr}} - t_{_{\text{H}}})}{\alpha_{_{\text{BH}}} \pi d_{_{\text{BH}}}^{\text{cr}} (t_{_{\text{B}}} - t_{_{\text{BH}}}^{\text{cr}})} - \frac{1}{\alpha_{_{\text{H}}} \pi d_{_{\text{BH}}}^{_{\text{HS}}}} \right]. \tag{B.34r}$$

где $d_{\text{вн}}^{\text{ст}}$ — внутренний диаметр стенки газохода.

Температура внутренней стенки газохода устанавливается в техническом задании на проектирование тепловой изоляции в зависимости от температуры и влажности транспортируемого газа. Выпадение конденсата из газа, протекающего в газоходе, происходит при условии, что температура внутренней стенки газохода оказывается ниже, чем температура конденсации влаги из газа («точка росы») при заданной его температуре и влажности. По-

этому расчетная температура внутренней стенки газохода $t_{\rm sit}^{\rm er}$ принимается на 2 °C-3 °C выше температуры конденсации («точки росы») $t_{\rm конд}$ при заданной температуре и влажности транспортируемого газа.

Коэффициент теплоотдачи $\alpha_{\rm BH}$ рассчитывается по эмпирическим (критериальным) формулам теплообмена при вынужденном движении газа (жидкости) в трубах и каналах прямоугольного сечения в зависимости от температуры и скорости движения газа и режима течения, определяемого отношением длины газохода к его диаметру.

При турбулентном режиме движения газа в газоходе расчет $\alpha_{\text{вн}}$ выполняется по формуле

$$Nu=0,021\cdot Re^{0,8}\cdot Pr^{0,43}$$
. (В.34д) где $Nu=\frac{\alpha_{_{
m BH}}\cdot d}{\lambda}$ — критерий Нуссельта; $Re=\frac{w\cdot d}{v}$ — критерий Рейнольдса; $Pr=\frac{v}{a}$ — критерий Прандтля;

w — скорость движения газа в газоходе, м/с;

d – диаметр трубопровода или эквивалентный диаметр канала, м;

 λ , ν , α — соответственно, коэффициент теплопроводности [Bт/(м·K)], кинематическая вязкость (м²/с) и коэффициент температуропроводности газа (м²/с), принимаемые по таблицам физических свойств газов.

При ламинарном и переходном режимах течения газа (при отношении длины газохода к его диаметру – l/d менее 50), к коэффициенту теплоотдачи $\alpha_{\rm BH}$ вводится поправочный множитель $\epsilon=1,3$ при значении $l/d=1,0\div10$ и $\epsilon=1,1$ при значении $l/d=10\div50$.

Уравнение (В.34г) решается методом последовательных приближений. Толщина изоляции $\delta_{\rm из}$ вычисляется по формуле (В.20).

В.2.7 Расчет тепловой изоляции трубопроводов с целью предотвращения замерзания содержащейся в них жидкости при остановке ее движения

Расчет толщины изоляции трубопровода по заданному времени отсутствия движения жидкости Z основан на уравнении теплового баланса, в соответствии с которым тепло, аккумулированное в жидкости, и тепло, выделяющееся при замерзании некоторой части жидкости (25 % сечения трубопровода), приравнивается количеству тепла, отдаваемого изолированным трубопроводом в окружающую среду за период остановки движения жидкости.

Процесс теплообмена при охлаждении и замерзании жидкости в трубопроводе является нестационарным. Расчет требуемой в этом случае толщины тепловой изоляции с достаточной для инженерной практики степенью точности выполняется по формулам стационарного теплообмена.

Толщина изоляционного слоя определяется по формуле

$$lnB = ln\frac{d_{\rm H}^{\rm M3}}{d_{\rm H}^{\rm CT}} = 2\pi\lambda_{\rm M3} \left(R_{\rm M3}^{\rm L} - R_{\rm H}^{\rm L}\right) =$$

$$= 2\pi\lambda_{\rm M3} \left[\frac{3,6KZ}{\frac{2(t_{\rm B} - t_3)(V_{\rm M}\rho_{\rm M}c_{\rm M} - V_{\rm CT}\rho_{\rm CT}c_{\rm CT})}{t_{\rm B} + t_3 - 2t_{\rm H}} + \frac{0,25V_{\rm M}\rho_{\rm M}r_{\rm M}}{t_3 - t_{\rm H}} - \frac{1}{\alpha_{\rm H}\pi d_{\rm H}^{\rm M3}}\right], \qquad (B.34e)$$

где $t_{\rm B}$ – температура жидкости до остановки ее движения, °С;

 t_3 – температура замерзания жидкости, °C;

 $t_{\rm H}$ – температура окружающего воздуха °C;

Z – заданное время остановки движения жидкости, ч;

 $V_{\rm ж}$ – объем жидкости, м³;

 $\rho_{\text{ж}}$ – плотность жидкости, кг/м³;

 $c_{\text{ж}}$ – удельная теплоемкость жидкости, кДж/(кг. 0 С);

 $V_{\rm cr}$ – объем материала стенки трубопровода, м³;

 ρ_{cr} – плотность материала стенки, кг/м³;

 c_{cr} – удельная теплоемкость материала стенки, кДж/(кг. 0 С);

0,25 – допустимая доля замерзания жидкости (25 % от объема);

 $r_{\rm *}$ – скрытая теплота замерзания жидкости, кДж/кг;

K – коэффициент, учитывающий потери тепла через опоры.

Уравнение (В.34 е) решается методом последовательных приближений. Толщина изоляции $\delta_{\rm H3}$ вычисляется по формуле (В.20)».

Приложение В дополнить подразделом – В.4:

В.4 Расчет тепловой изоляции трубопроводов, обогреваемых паровыми или водяными спутниками

В.4.1 Обшие положения

В.4.1.1 Проектирование системы обогрева трубопроводов с паровыми и водяными спутниками осуществляется на основании технологических требований к конкретному объекту и технико-экономических расчетов.

Выбор числа и диаметров обогревающих спутников, системы их теплоснабжения и схемы подключения осуществляется на основании результатов теплового и гидравлического расчета системы обогрева с учетом вида теплоносителя, протяженности обогреваемого участка, располагаемого давления в системе теплоснабжения и других факторов.

Проектирование тепловой изолящии трубопроводов со спутниками выполняется на основании технологических требований с учетом расположения объекта, конструктивных и технологических параметров обогреваемого трубопровода и обогревающих его спутников, расчетных параметров окружающей среды.

В.4.2 Расчет тепловой изоляции трубопроводов, обогреваемых паровыми или водяными спутниками

В.4.2.1 Тепловая изоляция предназначена для обеспечения заданной температуры теплоносителя в любом сечении по длине трубопровода при условии безостановочного движения теплоносителя.

Методика расчета реализует следующую физическую модель теплообмена спутника с трубопроводом и теплоизоляционной конструкции с окружающей средой:

- тепло от спутника передается воздуху в пространстве, ограниченном теплоизоляционной конструкцией;
- тепло от воздуха в пространстве, ограниченном теплоизоляционной конструкцией, передается теплоносителю через поверхность трубопровода, контактирующую с воздухом в пространстве и наружному воздуху через поверхность теплоизоляционной конструкции, контактирующей с воздухом в пространстве;
- количество тепла, передаваемого через поверхность теплоизоляционной конструкции, контактирующей с трубопроводом, наружному воздуху равно количеству тепла, получаемого трубопроводом от воздуха в конструкции.

Указанная модель описывается двумя уравнениями теплового баланса:

$$Q_1 = Q_2 + Q_3$$
, (B.51)

$$Q_3 = Q_4$$
, (B.52)

где Q_1 – удельный тепловой поток от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, Вт/м;

 Q_2 — удельный тепловой поток от воздуха в пространстве, ограниченном тепловой изоляцией, через теплоизоляционный слой к окружающему воздуху, B_T/M ;

 Q_3 — удельный тепловой поток от обогреваемого трубопровода к окружающему воздуху через теплоизоляционный слой в части, контактирующей с трубопроводом, B_T/m ;

 Q_4 – удельный тепловой поток от воздуха в пространстве, ограниченном тепловой изоляцией, к трубопроводу, $B_{\rm T}/M$.

Уравнения (В.51), (В.52) могут быть представлены в виде:

$$\frac{t_{\rm en} - t_{\rm B}}{R_{\rm i}} = \frac{t_{\rm B} - t_{\rm 0}}{R_{\rm 2}} + \frac{t_{\rm rp} - t_{\rm 0}}{R_{\rm 3}}$$
 (B.53)

$$\frac{t_{\rm B} - t_{\rm rp}}{R_{\rm 4}} = \frac{t_{\rm rp} - t_{\rm 0}}{R_{\rm 3}} \tag{B.54}$$

где $t_{\rm rp}$ – температура трубопровода, ⁰C;

 t_0 – температура окружающего воздуха, 0 С;

 $t_{\rm B}$ — температура воздуха в пространстве, ограниченном изоляцией, ${}^{0}{\rm C};$

 R_1 — удельное термическое сопротивление теплоотдаче от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, (м·°C)/Вт;

 R_2 — термическое сопротивление теплоизоляционного слоя, в части, контактирующей с воздухом в пространстве, ограниченном тепловой изоляцией, (м.°С)/Вт;

 R_3 — термическое сопротивление теплоизоляционного слоя, в части, контактирующей с трубопроводом, (м·°C) /Вт;

 R_4 — удельное термическое сопротивление теплоотдаче от воздуха в пространстве, ограниченном тепловой изоляцией к трубопроводу, (м·°C)/Вт.

В.4.2.2 Требуемая толщина тепловой изоляции рассчитывается путем совместного решения уравнений (В.53), (В.54) методом последовательных приближений. Расчет выполняется в следующей последовательности.

На первом этапе рассчитываются термические сопротивления R_1 , R_2 , R_3 , R_4 .

Далее, решением уравнения (В.53) определяется температура воздуха в пространстве, ограниченном теплоизоляционной конструкцией – $t_{\rm B}$.

При найденном значении $t_{\rm B}$ уравнение (B.54) решается методом последовательных приближений относительно $\ln{(d_{\rm H}/d_{\rm TD})}$.

В.4.2.3 Температура спутника $t_{\rm cn}$ в расчетах принимается:

- при обогреве паром равной температуре насыщения при заданном давлении пара в спутнике;
 - при обогреве водой вычисляется по формуле

$$t_{\rm cn} = \frac{t_{\rm cn}^{\rm H} + t_{\rm cn}^{\rm K}}{2},$$
 (B.55)

где t_{cn}^{H} – температура воды на входе в спутник, °С;

 t_{cn}^{κ} – температура воды на выходе из спутника, °С.

В.4.2.4 Удельное термическое сопротивление теплоотдаче от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, (м·°C) /Вт, следует вычислять по формуле

$$R_{\rm i} = \frac{1}{n\alpha_{\rm en}\pi d_{\rm en}},\tag{B.56}$$

где n — число спутников;

 α_{cn} — коэффициент теплоотдачи спутника, Вт/(м². °С);

 $d_{\rm cn}$ — наружный диаметр спутника, м.

Коэффициент теплоотдачи от спутника в пространство, ограниченное изоляцией, определяется по формуле

$$\alpha_{\rm cn} = \frac{Nu_{\rm sp} 2t_{\rm cn} \lambda_{\rm s}}{(t_{\rm cn} - t_{\rm m})d_{\rm cn}},$$
 (B.57)

где $Nu_{\rm sph}$ — эффективный критерий Нуссельта;

 λ_{B} — коэффициент теплопроводности воздуха, Bт/(м·K).

Критерий $Nu_{_{3\varphi}}$ является функцией произведения ($Gr\cdot Pr$) и рассчитывается по эмпирической формуле

$$Nu_{ab} = 0.25 \cdot 10^{-2} \cdot (Gr \cdot Pr)^{0.78},$$
 (B.58)

где
$$Gr = \frac{g\beta d_{\text{cn}}^3}{v^2}(\frac{t_{\text{cn}}-t_{\text{тр}}}{2})$$
 — критерий Грасгофа;

$$Pr = \frac{v}{a}$$
 – критерий Прандтля.

Произведение критериев Грасгофа и Прандтля ($Gr\cdot Pr$) рассчитывается по формуле

$$Gr \cdot Pr = \frac{g\beta d_{\text{cr}}^3}{v^2} \left(\frac{t_{\text{cr}} - t_{\text{pp}}}{2}\right) \cdot \frac{v}{a}; \tag{B.59}$$

где g – ускорение свободного падения, равное 9,807 м/с²;

 β — коэффициент объемного расширения воздуха, равный 3.664·10⁻³ 1/К;

a – коэффициент температуропроводности воздуха, м²/с;

v – кинематическая вязкость воздуха, м²/с.

Физические параметры сухого воздуха — λ , β , a, ν принимаются по таблице В.7 при средней температуре воздуха в конструкции, определяемой по формуле

$$t_{cp} = \frac{t_{cn} + t_{\tau p}}{2}.$$
 (B.60)

Таблица В.7 – Физические свойства сухого воздуха при давлении 0,1 МПа

t, °C	ρ, κ г/ м ³	$\mathbf{c}_{p,}$	λ·10²,	ν·10 ⁶ ,	a·106,	Pr
		кДж/(кг·К)	Вт/(м·К)	м ² /с	м ² /с	
0	1,293	1,005	2,44	13,28	18,8	0,707
10	1,247	1,005	2,51	14,16	20,0	0,705
20	1,205	1,005	2,59	15,06	21,4	0,703
30	1,165	1,005	2,67	16,00	22,9	0,701
40	1,128	1,005	2,76	16,96	24,3	0,699
50	1,093	1,005	2,83	17,95	25,7	0,698
60	1,060	1,005	2,90	18,97	26,2	0,696
70	1,029	1,009	2,96	20,02	28,6	0,694
80	1,000	1,009	3,05	21,09	30,2	0,692
90	0,972	1,009	3,13	22,10	31,9	0,690
100	0,946	1,009	3,21	23,13	33,6	0,688
120	0,898	1,009	3,34	25,45	36,8	0,686
140	0,854	1,013	3,49	27,80	40,3	0,684
160	0,815	1,017	3,64	30,09	43,9	0,682
180	0,779	1,022	3,78	32,49	47,5	0,681
200	0,746	1,026	3,93	34,85	51,4	0,680
250	0,674	1,038	4,27	40,61	61,0	0,677
300	0,615	1,047	4,60	48,33	71,6	0,674

В.4.2.5 Термическое сопротивление теплоизоляционного слоя R_2 , (м². 0 С)/Вт, рассчитывается по формуле теплопередачи через плоскую стенку:

$$R_2 = \frac{1}{\alpha_{_{13}}^{_{13}} l_{_{13}}^{_{13}}} + \frac{\delta_{_{13}}}{\lambda_{_{13}} l_{_{13}}^{_{19}}} + \frac{1}{\alpha_{_{13}}^{_{11}} l_{_{13}}^{_{13}}},$$
 (B.61)

где $\delta_{\mu 3}$ – толщина изоляции, м;

 $l_{\mu 3}^{BH}$ — длина внутренней образующей изоляции, м;

 l_{us}^{H} – длина наружной образующей изоляции, м;

$$I_{u_3}^{cp} = \frac{I_{u_3}^{H} + I_{u_3}^{BH}}{2}.$$
 (B.62)

При расчете R_2 принимается приближенное значение толщины изоляции $\delta_{\text{из}}$.


Геометрические характеристики конструкции l_{18}^{BH} , l_{18}^{H} рассчитываются в зависимости от вида конструкции (рисунок В.1) с использованием соотношений элементарной геометрии и тригонометрических функций.

Коэффициент теплопроводности изделий в конструкции λ_{10} , Вт/(м·К), принимается по таблице Б.1 приложения Б при средней температуре слоя:

$$t_{\rm cp}^{\rm H3} = \frac{t_{\rm B} + t_0}{2}$$
. (B.63)

Коэффициент теплоотдачи от воздуха внутри пространства, ограниченного изоляцией, к внутренней поверхности изоляции $\alpha_{\rm из}^{\rm вн}$ следует принимать равным 11,6 ${\rm Bt/m^{2.0}C}$.

Коэффициент теплоотдачи от наружной поверхности изоляции в окружающий воздух $\alpha_{_{\rm HS}}^{_{\rm H}}$, ${\rm Br/}({\rm M}^{2.0}{\rm C})$, следует принимать по таблице B.2.

1 — диаметр обогреваемого трубопровода; 2 — диаметр спутника; 3 — толщина теплоизоляционного слоя; 4 — длина линейного участка образующей в конструкции m_1 ; 5 — длина образующей l_{13}^{H} в формуле (В.68) для конструкции с одним и с двумя спутниками; 6

— угол α — в конструкции с одним спутником; угол ϕ — в конструкции с двумя спутниками; 7 — угол β — в конструкции с одним спутником; угол τ — в конструкции с двумя спутниками; θ — длина линейного участка образующей в конструкции с двумя спутниками m_2 ;

Рисунок В.1 — Конструкции тепловой изоляции трубопроводов с обогревающими их паровыми и водяными спутниками:

а) – с одним спутником; б) – с двумя спутниками

В.4.2.6 Термическое сопротивление изоляционного слоя R_3 , (м^{2.0}С)/Вт, вычисляется по формуле

$$R_{3} = \frac{2\pi}{\alpha} \left[\frac{1}{\alpha_{19}^{\text{H}} \pi \left(d_{1p} + 2\delta_{19} \right)} + \frac{1}{2\pi \lambda_{19}} ln \frac{d_{1p} + 2\delta_{19}}{d_{1p}} \right], \quad (B.64)$$

где α — угол, характеризующий геометрию теплоизоляционной конструкции (рисунок В.1), радиан.

В.4.2.7 Удельное термическое сопротивление теплоотдаче от воздуха внутри пространства, ограниченного изоляцией, к трубопроводу, (м \cdot ⁰C)/Вт, следует вычислять по формуле

$$R_4 = \frac{2\pi}{\beta} \cdot \frac{1}{\alpha_m \pi d_m},\tag{B.65}$$

где β — угол, характеризующий геометрию теплоизоляционной конструкции (рисунок В.1), радиан.

Коэффициент теплоотдачи α_{rp} от воздуха внутри пространства, ограниченного изоляцией, к трубопроводу следует принимать равным 17,4 т/(м².0С).

В.4.2.8 Расчет толщины теплоизоляционного слоя выполняется по формуле

$$ln\left(\frac{d_{19}}{d_{1p}}\right) = ln\left(\frac{d_{1p} + 2\delta_{10}}{d_{1p}}\right) = 2\pi\lambda_{113}\left(\frac{R_3 \cdot \alpha}{2\pi} - \frac{1}{\alpha_{113}^{11}\pi(d_{1p} + 2\delta_{103})}\right), (B.66)$$

Формула (В.66) решается методом последовательных приближений. Первое приближение толщины изоляции принимается равным принятому при расчете термического сопротивления R_2 . Толщина изоляции $\delta_{\text{из}}$ вычисляется по формуле (В.20).

В.4.2.9 Расчетную толщину изоляции вычисляют по формуле

$$\delta_{p} = \delta_{H3} \cdot K \cdot \psi, \tag{B.67}$$

где K – коэффициент, учитывающий дополнительные тепловые потери через опоры и арматуру. Для трубопроводов, расположенных в помещении и тоннелях, K=1,15-1,2; для трубопроводов, расположенных на открытом воздухе, K=1,25-1,3;

 ψ – поправочный коэффициент. При расчетах теплоизоляционных конструкций с естественным углом обогрева без подкладки (рисунок В.1) вводится ψ =1,15.

В.4.2.10 При использовании экрана из алюминиевой фольги, укладываемой в качестве подстилающего слоя под теплоизоляционный слой, расчетную толщину изоляции следует уменьшать на 20 %.

Приложение Д (справочное). Таблицу Д.1 дополнить примечанием: «П р и м е ч а н и е — Сжимаемость — относительная деформация материала под нагрузкой 2 кПа, определяется по ГОСТ 17177».