

извешение

О Дополнении № I "Норы технологического проектирования морских каналов" ВСН 19-70/ы№

Заместитель директора Союзморнишероекта, д.т.н. В.Д.Костиков / И.о.главного инденера Совзморикипроекта

¥-A.Undhenruruă

Зам. Деректора

Черном римпроекта, к.т.н.

В.С.Зеленский

I. Hyner 4.I

а) формулу (6) заменить формулой

$$H_{H} = (T + \Delta T) + \sum Z_{0-3} \pm \Delta H$$

б) пояснение величин, входящих в формулу (6), дополнять:

 Λ Т — поправла на изменение осадки расчетного судна при плотности γ (солености, 0 /оо) води в районе проектируемото канала, отличанцейся от стандартной γ = 1025 кг/и 3 , величина Λ Т определяется по табл. 7а.

Таблица 7а Поправка осадки судна Т на плотностъ водн

Licteoctb / ,ep/m3	COMERCITE, 0/00	∆Т,ы	
IC25	32	0,000 T	
1020 .	26	0,604 T	
1015	20	0,008 T	
1010	I3	0,012 T	
1005	7	0,016 T	
1000	0	0,020 T	

Премечание. Грузовая шкала морских судов и их грузовой размер строятся в предположении, что судно плавает в воде стандартной плотности (— 1025 кг/м³).

2. Пункт 4.3. Изложить в новой редакции:

Минимальный вавигационный запас Z_I определяется по табл.? в зависимости от осадки судна T и вида грунта.

Теблита 7 Минимальный навигационный запас Z_{4}

Прунт дна в интервале между Н _н и (Н _н + 0,5),м	Z _f ,×
Ил	0,04 T
Наносной грунт (песок заиленный, ракуша, гравий)	0,05 T
Плотный слежавшийся грунт (песок,глина,супесь, суглинки,галька)	0,06 T
Скальный грунт, валуни, сцементированние породи -	.
песчаники, известняки, мел и др.	0,07 T

- Примечания: І. При неоднородных грунтах в интервале между H_{H} и (H_{H} + 0,5), и в расчет принимается наиболее плотный грунт.
 - 2. При плотном слежавшемся грунте, скальном грунте, грунте с вильчением валунов и спементерованемых породами дноуглубительные работи должни заканчиваться проверкой глубини гидрогратическим тралением, о чем необходемо указивать в проектно сметной документации.

Meah

3. Пункт 4.4. Изложить в новой редакции:

Волновой запас Z_2 ,м для одиночного и расходятихся судов определяется по графикам на рис. 2 и 2а в зависимости от висоти волни h ,м, обеспеченностью 4% в режиме и $\mathbb Z$ в системе волн наиболее спасного направления в районе судового исла, джини расчетного судна и чесла фруда ($F_r = \frac{V}{\sqrt{JL}}$). Вехичина расчетного ветра принимается не более указанной в п.3.4.

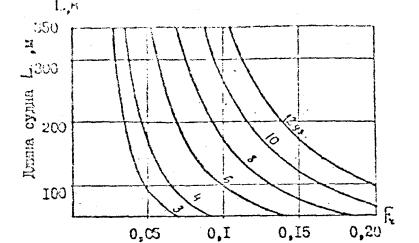


Рис. 2. Спределение числа Фруда Fr по длине L , ч и скорости V , уз. расчетного судна.

3,

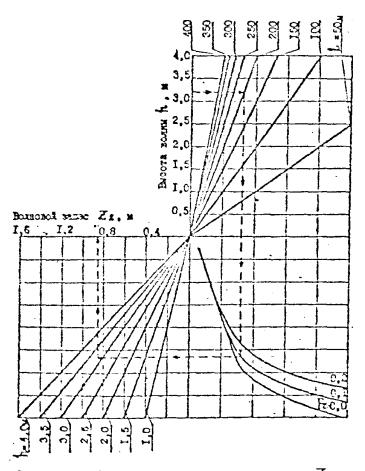


Рис. 2a. Спределение волнового запаса Z2, м по высоте волны h, длине гасчетного судна L, числу Фруда Fr при курсовом угле волнения 90.

В табл. 8 приводятся значения волнового задаса для различных велючия L и h при Fr=0.0; 0.1; 0.2 и курсовом угле его для промежуточных значений L , h , Fr необходимо производить линейное интерполирование.

Табляца 8 Волновой запас Z_2 , м для расчетного (по осадке) судна при курсовсм угле волнения 90^{0}

c	L.H	h, m						
Fr		1,0	I,5	2,0	2,5	3,0	3;5	4,0
	100	0,20	0,40	0,65	0,85	I,05	I,30	I,50
0,0	I50	0,10	0,25	0,50	G,75	0,95	I, 15	I,35
	200	0, 05	0,15	0,30	0,55	0,85	I,05	I,30
	250	0	0,10	0,25	0,45	0,65	0,90	I,15
	300	0	0,10	0,20	0,35	0,50	0,75	I,00
	350	0	0,05	0,10	0,20	0,40	0,55	0,90
	400	0	0,05	0,10	0,15		0,50	0,65
	I00	0,20	0,40	0,55	0,80	0,95	1,20	I,40
	I50	0,10	0,25	0.45	0,70	0,90	I,05	I,25
	200	0,10	0,20	0,35	0,55	0,75	1,0	I,15
0, I	250	0,05	0,15	0,25	0,45	0,65	0,85	1,05
	300	0	0,10	0,20	0,35	0.50	0,70	0,90
	350	0	0,10	0,15	0,30	0,40	0,60	0,50
	400	0	0,05	0,10	0,20	0,35	0,55	0,70
	ICO	0,15	0,35	0,50	0,70	0,90	I,05	1,30
0,2	I50	0,10	0,25	0,40	0,60	0,80	0,95	I,10
	200	0, 10	0,20	0,30	0,50	0,70	0,85	I,05
	250	0, 05	0,15	0,25	0,40	0,60	0,75	0,95
	300	0,05	0,10	0,20	0,35	0,50	0,65	0,5=
	350	0	0,10	0,20	0,30	0,40	0.55	0.70
	400	0	0,05	O,IC	0.20	0,35	0,50	0,65

Примечание При курсовых углах волнения относительно оси канала, отличных от 90° , Z_2 выбирлется из графиков Рис.И. I приложения 3.

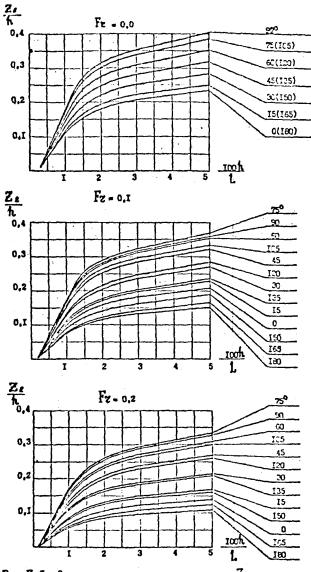


Рис.П.І. Определение волнового запаса $\frac{7}{2}$, м при различных курсовых углах волнения и числах Фруда $\frac{1}{6} = \frac{1}{\sqrt{nL}}$.

- 4. Приложение З. Пункт 10 издежить в следущей редакции: Для каждого колена канала рассчитывается минимельный на вигационный запас в соответствии с табл. 7 п.4.3. Волновой запас выбирается по графикам рис. 2, 2а или из табл. 8 п.4.4. При необходимости пользуртся графиками рис. П.І при пожения З.
 - 5. Приложение 3. Таблицу 7 изложить в следующей редакции:

Таблина 7.

		І колено			онеком П		
		в нача-	в сере-	B KOH-	в на-	в сере-	B KOH-
		де	дине	це	чале	дине	це
Запас	Z_{I}						
	h						
Расчет	Fr			,			
запаса	КУ ,						,
	Z						,

Примечание. KY_{a} - курсовой угол набегающей волны относи — темьно оси колена канала.

7. Приложение 3. Врести рио. !!. I.

Спределение волнового запаса Z_2 ,м при различных курсових углах волнения и числем Фруда Г., =

Исполнители:

Черно::оризипроект

Зав. III порских каналов и диналики серегов, к.т.н.

Главный специалист по норма-тивно-техническим документам

Руководитель группы исследовани условий судоходства НИЛ МКДБ

Илалияй научний сотрудня

В Г. Имрошниченко

И.С. Вулоксан

В.Т. Соколов

Li.A. Краснова

0122:15

Старыні научный сотруднік, к.т.н. Оком — Б.Л. Ворообев — Э.В. Коханов