Группа Л52

Изменение № 2 ГОСТ 3117-78 Реактивы. Аммоний уксусно-кислый. Технические условия

Утверждено и введено в действие Постановлением Госстандарта России от 20 10.92 № 1419 Дата введения 01.07.93

Вводная часть. Третий абзац. Заменить слово и дату: «Молекулярная» «Относительная молекулярная», 1971 на 1985;

дополнить абзацем: «Допускается изготовление уксусно-кислого аммония по ИСО 6353/2—83 (Р.4) (приложение 1) и проводить анализы по ИСО 6353/1—82» (приложение 2).

(Продолжение см. с. 96) 95

(Продолжение изменения к ГОСТ 3117—78)

Пункт 3.1а. Второй, третий абзацы изложить в новой редакции: «При взвешивании применяют лабораторные весы общего назначения типов ВЛР-200г и ВЛЭ-200г или ВЛКТ-500г-М.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в настоящем стандарте».

Пункт 3.2.1. Третий абзац Исключить ссылку: ГОСТ 5072-79:

четвертый абзац изложить в новой редакции: «Термометр со шкалой до 100°C»:

пятый абзац. Заменить обозначение: 1(3)—50(100) на 1(3)—50(100)—2, седьмой абзац. Заменить слово: «концентрации» на «молярной концентрации»;

(Продолжение см. с. 97)

десятый абзац. Заменить слово и ссылку: ГОСТ 1625—75 на ГОСТ 1625—89, «концентрации» на «молярной концентрации».

Пункты 3.2.2, 3.2.3 (экспликация к формуле). Заменить слово: «концентрании» на «молярной концентрации» (3 раза).

Пункт 3.3.1. Третий абзац. Заменить обозначение: 1(3)—50 на 1(3)—50—2. Пункт 3.5. Первый абзац после слова «помещают» изложить в новой редакции: «в коническую колбу, растворяют в 10 см³ воды, отмеряя воду цилиндром, и далее определение проводят методом с применением индигокармина».

Пункт 3.6. Первый абзац. Заменить слова: «в колбу Кн-2—50—18 ТХС (ГОСТ 25336—82)» на «в коническую колбу»; исключить обозначение и ссылку:

1—25 (ΓΟCT 1770—74).

Пункт 3.7. Первый абзац. Заменить слова: «в колбу Кн-2—50—18 ТХС (ГОСТ 25336—82)» на «коническую колбу»;

четвертый абзац. Заменить слово: «заканчивать» на «проводить».

Пункт 3.8 Первый абзац. Заменить слова: «в колбу Кн-2—100—22 (ГОСТ 25336—82)» на «в коническую колбу»; исключить обозначение и ссылку: 1—25 (ГОСТ 1770—74).

Пункт 3.9. Первый абзац. Заменить слова: «колбу 2—100—2 (ГОСТ 1770—

—74)» на «колбу вместимостью 100 см³»;

второй абзац. Заменить слова: «колбу 2—50—2» на «колбу вместимостью 50 см³»;

шестой абзац. Заменить значение: 0,04 на 0,040.

Пункт 3.10. Первый абзац. Заменить слова: «Для этого 10,00» на «Для этого 10.00 г»

Пункт 3.11.1. Третий абзац. Заменить обозначение: 6(7)—2—10 на 6—2—10;

четвертый абзац. Исключить ссылку: ГОСТ 5072—79;

шестой абзац после слова «раствор» изложить в новой редакции: «молярной концентрации c (1/5 KMnO₄) = 0,05 моль/дм³; готовят по ГОСТ 25794.3—83».

Пункт 3.11.3. Первый абзац. Формула. Экспликация, Заменить слово: «кон-

центрации» на «молярной концентрации» (2 раза).

Пункт 3.12. Первый абзац. Исключить слова: «или другом приборе с допускаемой основной погрешностью ± 0.05 pH»;

третий абзац. Исключить слово: «абсолютная».

Пункт 4.1. Четвертый абзац после слова «наносят» изложить в новой редакции: «классификационный шифр 9163 по ГОСТ 19433—88».

Стандарт дополнить приложениями — 1, 2:

«ПРИЛОЖЕНИЕ 1 Обязательное

ИСО 6353/2—83 «Реактивы для химического анализа. Технические условия. Первая серия»

Р.4. Аммоний уксусно-кислый CH₃COONH₄

Относительная молекулярная масса — 77,08

Р.4.1. Технические требования

Массовая доля уксусно-кислого аммония								
(CH ₃ COONH ₄), %, не менее			99					
рН раствора препарата с массовой долей 5 %			6,5-7,5					
			0,0005					
Массовая доля нитратов (NO₃), %, не более .			0,001					
Массовая доля сульфатов (SO ₄), %, не более .			0,002					
Массовая доля меди (Си), %, не более			0,0005					
Массовая доля железа (Fe), %, не более			0,0005					
Массовая доля свинца (Pb), %, не более .			0,0005					
Массовая доля остатка после прокаливания (в виде								
сульфатов, %, не более			0,01					

(Продолжение см. с. 98)

Р.4.2. Приготовление испытуемого раствора

Растворяют 40 г образца в 100 см³ воды (раствор должен быть чистым и бесцветным) и разбавляют до 200 см³.

Р.4.3. Методы анализа

Р.4.3.1. Определение массовой доли уксусно-кислого аммония

1,5 г образца взвешивают с точностью до 0,0001 г и растворяют приблизительно в $20~{\rm cm^3}$ воды

К этому раствору прибавляют предварительно нейтрализованную по фенолфталенну смесь раствора формалина с массовой долей 35 % и 25 см³ воды. Песле выдержки в течение 30 мин прибавляют 0,2 см³ раствора фенолфталенна с массовой долей 1 % и титруют титрованным раствором гидроокиси натрия, с (NaOH) = 1 моль/дм³, до слабо-розового окрашивания.

1,00 см³ раствора гидроокиси натрия, c (NaOH) = 1,000 моль/дм³, соответ-

ствует 0,07708 r CH₃COONH₄.

Р.4.3.2. Определение рН раствора с массовой долей 5 %

Величину рН раствора образца с массовой долей 5 % определяют по ОМ 31 1*, используя стеклянный индикаторный электрод.

Р.4.3.3. Определение массовой доли хлоридов

Берут 20 см³ испытуемого раствора (Р.4.2) и проводят анализ по ОМ 2*.

Готовят контрольный раствор, используя 10 см³ хлоридного раствора сравнения II (1 см³ = 0,0005 % Cl). Раствор сравнения II готовят непосредственно перед применением разбавлением основного раствора сравнения в мерной колбе в соотношении 1:100: Основной раствор сравнения готовят следующим образом: 1,65 г NaCl растворяют в воде, разбавляют до метки в мерной колбе вместимостью 1000 см³ и перемешивают.

Р.4.3.4. Определение массовой доли нитратов

Берут 5 см³ испытуемого раствора (P.4.2), прибавляют 0,2 см³ раствора бруцина с массовой долей 0,5 % в уксусной кислоте и осторожно прибавляют

при охлаждении и перемешивании 10 см3 серной кислоты.

Желтое окрашивание испытуемого раствора не должно быть интенсивнее окраски контрольного раствора, приготовленного с использованием нитратсодержащего раствора сравнения II (1 см³ = 0,001 NO₃). Раствор сравнения II готовят непосредственно перед применением разбавлением основного раствора сравнения в мерной колбе в соотношении 1:100. Основной раствор сравнения готовят следующим образом: 1,37 г NaNO₃ растворяют в воде, разбавляют до метки в мерной колбе вместимостью 1000 см³ и перемешивают.

Р.4.3.5. Определение массовой доли сульфатов

Берут 10 см³ испытуемого раствора (Р.4.2) и далее проводят анализ по ОМ 3*.

Готовят контрольный раствор, используя 4 см³ сульфатсодержащего раствора сравнения II (4 см³ = 0,002 % SO₄). Раствор сравнения II готовят непосредственно перед применением разбавлением основного раствора сравнения в мерной колбе в соотношении 1:100. Основной раствор сравнения готовят следующим образом: 1,81 г K₂SO₄ растворяют в воде, разбавляют водой до метки в мерной колбе вместимостью 1000 см³ и перемешивают.

Р.4.3.6. Определение массовой доли меди и свинца

Определение этих элементов проводят атомно-абсорбционным методом по ОМ 29*, используя 30 г образца, при следующих условиях:

Элемент	Қонцентрация раствора	Пламя	Резонансная линия, ны
Cu Pb	Испытуемый раствор (Р. 4.2) Используют экстракционный растворитель по ОМ 35*	Воздух- ацетилен	324,7 217,0 или 283,3

Общие методы анализа (ОМ) — по ИСО 6353/1—82.

Р.4.3.7. Определение массовой доли железа

Берут 20 см3 испытуемого раствора (Р.4.2) и применяют ГОСТ 10555—75

(фенантролиновый метод).

Готовят контрольный раствор, используя 2 см³ железосодержащего раствора сравнения II (2 см³ = 0,0005 % Fe). Раствор сравнения II готовят непосредственно перед применением разбавлением основного раствора сравнения в мерной колбе в соотношении 1:100.

Основной раствор сравнения готовят следующим образом: 8,63 г NH_4 Fe(SO_4) $_2 \cdot 12H_2O$ растворяют в 10 см³ раствора серной кислоты с массовой долей 25%, разбавляют до метки водой в мерной колбе вместимостью 1000 см³ н перемешивают.

Р.4.3.7. Определение массовой доли остатка после прокаливания в виде

сульфатов

Берут 10 г образца и проводят анализ по ОМ 16*.

Масса остатка не должна превышать 1 мг.

ПРИЛОЖЕНИЕ 2 Обязательное

ИСО 6353/1—82 «Реактивы для химического анализа. Часть 1. Общие метолы испытаний»

5.31.1. Определение pH (ОМ 31.1)

5.31.1.1. Общие положения

Рассмотрим гальванический элемент: электрод сравнения — насыщенный раствор КСІ — раствор $R/Pt\cdot H_2$. Для буферных растворов R_1 и R_2 с известными значениями рН — соответственно р H_{R_1} и рН R_2 , измеренные значения разности потенциалов составляют соответственно E_1 и E_2 .

Если раствор R в рассматриваемом гальваническом элементе заменить исследуемым раствором с неизвестным pH, то по различию измеренных значений

потенциалов можно рассчитать рН исследуемого раствора.

Если все измерения проведены при одинаковой температуре и при неизменной концентрации хлорида калия, pH исследуемого раствора может быть рассчитан по следующим формулам:

$$\frac{E_1 - E_{\text{HC}}}{S} + \text{pH}_{R_1};$$

$$\frac{E_2 - E_{\text{HC}}}{S} + \text{pH}_{R_2};$$

$$S = \left(\frac{mV}{\text{pH}}\right) = \frac{E_1 - E_2}{\text{pH}_{R_2} - \text{pH}_{R_2}},$$

где $E_{
m Hc}$ — электродвижущая сила гальванического элемента с исследуемым раствором:

S — угловой коэффициент.

5.31.1.2. Аппаратира

рН-метр со стеклянным (менее применим водородный) электродом, соединенным с милливольтметром с большим сопротивлением и со шкалой, откалиброванной в единицах рН. Такой прибор, регистрируя разность потенциалов между рН-чувствительным электродом (стеклянным, сурьмяным) и электродом сравнения, соединенным электрическим мостиком (например, насыщенный раствор КС1) дает возможность непосредственно считывать со шкалы значение рН.

5.31.1.3. *Калибровка*

рН-метр калибруют, используя растворы с известной активностью ионов водорода, такие как, например:

^{*} Общие методы анализа (ОМ) — по ИСО 6353/1—82.

- а) оксалатный буферный раствор;
- б) тартратный буферный раствор:
- в) фталатный буферный раствор;
- г) фосфатный буферный раствор; д) боратный буферный раствор;
- е) буферный раствор гидроксида кальция.

В таблице приведены значения рН перечисленных буферных растворов интервале температур 15-35 °C.

Температура, С	рН бу∮ерного раствора					
	a	б	В	r	д	e
15 20 25 30 35	1,67 1,68 1,68 1,69 1,69	3,56 3,55 3,55 3,55	4,00 4,00 4,01 4,01 4,02	6,90 6,88 6,86 6,85 6,84	9,27 9,22 9,18 9,14 9,10	12,81 12,63 12,45 12,30 12,14

Р.31.1.4. Методика измерения

Готовят испытуемый раствор (кроме тех случаев, когда испытуемый раствор — непосредственно сам реактив) заданной концентрации, применяя воду, свободную от двускиси углерода.

Одновременно готовят два буферных раствора, среднее значение которых примерно равно предполагаемому значению рН испытуемого раствора. Температуру всех трех растворов, а также ячейки прибора *<u>VСТАНАВЛИВАЮТ</u>* (25 ± 1) °C.

Прибор калибруют с помощью двух буферных растворов, промывая измерительный электрод перед применением буферных растворов. Затем после промывания электрода водой и испытуемым раствором измеряют рН испытуемого раствора.

Для получения точных результатов необходимо повторить измерения с различными порциями испытуемого раствора без промывания электрода между последовательными измерениями до тех пор, пока значение рН не будет сохраняться постоянным по крайней мере в течение 1 мин.

5.2. Определение хлоридов (OM 2)

Подкисляют указанный объем раствора 1 см3 раствора азотной кислоты с массовой долей 25 % и прибавляют 1 см³ азотно-кислого серебра с массовой долей около 1,7 %. Через 2 мин опалесценцию испытуемого раствора сравнивают с опалесценцией контрольного раствора.

(OM 3)5.3. Определение сульфатов

Смешивают 0,25 см³ раствора серно-кислого калия с массовой долей 0,02 % в этиловом спирте с объемной долей 30 % с 1 см³ раствора дигидрата бария с массовой долей 25 % (затравочный раствор). Точно через 1 мин к этой смеси прибавляют указанный объем испытуемого раствора, который предварительно подкисляют 0,5 см3 раствора соляной кислоты с массовой долей 20 %. Через 5 мин опалесценцию испытуемого раствора сравнивают с опалесценцией контрольного раствора

5.29. Атомно-абсорбционная спектрометрия ААС (ОМ 29)

5.29.1. Общие указания

Испытуемый образец или его раствор всасывается в высокотемпературное пламя, создаваемое подходящей смесью горючего газа и газа, поддерживающего горение, обеспечивающее испарение испытуемого образца и диссоциацию его молекул на атомы. Может быть использован прибор с беспламенным нагревом, Источник, представляющий собой электронную лампу с полым катодом или безэлектродную разрядную трубку, активизируемую микроволновым излучением,

продуцирует излучение с длиной волны, соответствующей энергии возбуждения атомов испытуемого вещества. Атомы определяемого элемента поглощают определенную долю этого излучения, пропорциональную их количеству в основном (невозбужденном) состоянии, и это поглощение регистрируется подходящим атомно-абсорбционным спектрометром.

5.29.2. Методика

Сущность метода, многообразие существующих приборов, обилие параметров, связанных с испытуемым образцом и с прибором, и множественность влияю-

щих факторов не позволяют дать подробных инструкций.

Выбор методики определяется требуемой степенью точности. Следует принимать во внимание возможность возникновения помех от пламенных и беспламенных источников нагрева. Если прибор укомплектован пламенным источником нагрева, определение обычно проводят, используя водные растворы испытуемых веществ, слегка подкисленных азотной или соляной кислотой.

В целях учета эффектов раствора рекомендуется пользоваться методом добавок. Этот метод состоит в том, что определение осуществляется для серии (размер которой зависит от требуемой точности, но не меньше двух) аликвот испытуемого раствора, к которым добавлены известные количества определяемого вещества

(Продолжение см. с. 102)

Длины волн, соответствующие резонансным линиям, и другая специальная информация приводятся в описаниях, относящихся к определяемому конкретному реактиву.

5.16. Определение остатка после прокаливания (ОМ 16) Помещают указанную навеску в подходящий тигель или посуду, предварительно нагретую в печи, отрегулированной на температуру (650±50) °С в течение 15 мин, охлажденную и взвешенную с точностью до 0,1 мг. Нагревают, медленно поднимая температуру до тех пор, пока навеска не улетучится полностью или не обуглится, избегая возгорания органических продуктов. Охлаждают, прибавляют 0,25 см³ раствора серной кислоты к остатку и продолжают слабое нагревание до полното исчезновения паров серной кислоты. Затем нагревают посуду и остаток в печи, отрегулированной на температуру (650±50) °С, в течение 15 мин (если не оговорено иначе), охлаждают в эксикаторе и взвешивают с точностью до 0,1 мг.

Примечание. Может оказаться более удобным испарять и обугливать

большие навески несколькими последовательными порциями».

(ИУС № 1 1993 г.)