Л. ХИМИЧЕСКИЕ ПРОДУКТЫ И РЕЗИНОАСБЕСТОВЫЕ ИЗДЕЛИЯ

Группа Л07

Изменение № 1 ГОСТ 26952—86 Порошки огнетушащие. Общие технические требования и методы испытаний

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 03.12.90 № 3027 Дата введения 01.07.91

На обложке и первой странице под обозначением стандарта дополнить обозначением: (СТ СЭВ 6851—89).

Вводная часть Третий абзац исключить;

дополнить абзацем «Требования настоящего стандарта являются обязательными».

Разделы 1, 2 изложить в новой редакции

«1. Технические требования

1.1. Основные показатели качества огнетушащих порошков должны соответствовать нормам, приведенным в табл. 1.

Таблица 1

Наименование подгруппы однородной продукции	Наименование показателя	Норма	Метод испытания
Огнетуша- щие порошки	Кажущаяся плотность неуплотненного порошка, кг·м-3, не менее Кажущаяся плотность уплотненного порошка, кг·м-3, не менее Показатель огнетушащей способности, не более: при тушении пожаров класса А, кг·м-2 при тушении пожаров класса В, кг·м-2 Текучесть при массовой доле остатка порошка не более 15%, кг·с-1, не менее Устойчивость к термическому воздействию, %, не менее Устойчивость к вибрации, %, не	700 900 0,42 0,80 0,28	По п 2.2 По п 2.2 По п. 2.3 По п 2.4 По п. 2.5 По п. 2.6
	менее Срок сохраняемости, лет, не менее	85 5	По п. 2.7 По п. 2.8

2. Методы испытаний

2.1. Отбор проб

Пробу отбирают произвольно не менее чем из пяти мест упаковки в равных количествах и общей массой не менее 12 кг. Пробу хранят в отдельных чистых сухих воздухонепроницаемых емкостях, изготовленных из инертных материалов. Емкости с пробами для испытаний не должны открываться до тех пор, пока температура стенки емкости не достигнет температуры воздуха в лаборатории. Пробы выдерживают в лаборатории не менее 12 ч.

22. Определение кажущейся плотности

221. Сищность метода

(Продолжение см. с. 138)

Метод основан на определении отношения массы порошка к занимаемому им объему при свободном засыпании порошка и последующем уплотнении вибрацией в течение определенного времени

222 Аппаратира

Стеклянный мерный цилиндр с ценой деления не более 2 см³, по ГОСТ 1770—74. высота 320 мм. внутренний диаметр 40 мм

Весы с неной наименьшего деления не более 0.01 г

Вибростенд, обеспечивающий вибрацию с частотой 100 Гц и амплитудой 0,15—0,30 мм

223 Проведение испытания

В чистый сухой цилиндр через воронку помещают $(100\pm0,1)$ г порошка Цилиндр закрывают притертой пробкой и переворачивают вращательными движениями в вертикальной плоскости, делая 10 полных оборотов с частотой 0.5 с $^{-1}$. Сразу после окончания вращений цилиндр ставят вертикально, дают порошку отстояться в течение (180 ± 5) с, определяют объем V_1 , см 3 , занимаемый навеской порошка Затем цилиндр ставят на поверхность столика вибростенда, уплотняют порошок в течение (180 ± 5) с при частоте 100 Γ ц и амплитуде 0.15-0.30 мм и определяют объем V_2 , см 3 , занимаемый порошком

224 Обработка результатов

Кажущуюся плотность неуплотненного порошка при свободной засыпке (ρ_1) в килограммах на кубический метр вычисляют по формуле

$$\rho_n = \frac{m}{V_1} \cdot 1000,$$

где m — масса пробы порошка, г,

 V_1 — объем, занимаемый навеской порошка после отстаивания в течение (180 ± 5) с. см³.

Кажущуюся плотность уплотненного порошка (ру) в килограммах на кубический метр вычисляют по формуле

$$\rho_{y} = \frac{m}{V_{0}} \cdot 1000,$$

где V_2 — объем, занимаемый навеской порошка после уплотнения в течение (180 ± 5) с, см 3

За результат испытаний принимают среднее арифметическое результатов трех параллельных определений

23 Определение огнетушащей способности при тушении пожаров класса А

231 Сущность метода

Метод основан на определении массы порошка, необходимой для тушения из испытательного прибора типа огнетушителя единицы площади открытой поверхности модельного очага пожара класса 4

232 Аппаратура

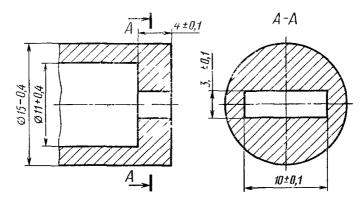
Весы с ценой наименьшего деления не более 0,01 кг Секундомер СОСпр-26-2—221 по ГОСТ 5072—79

Бензин автомобильный марки А 76 летний по ГОСТ 2084-77.

Испытательный прибор типа огнетушителя

Технические характеристики испытательного прибора

вместимость корпуса $(6^{+0}_{-0,25})$ дм³,


баллончик для сжатого воздуха или азота,

масса сжатого воздуха или азота $(28\pm2,0)\cdot10^{-3}$ кг, обеспечивающая исходное давление внутри испытательного прибора, равное $(0,70\pm0,05)\,\mathrm{M\Pi a}$,

длина рукава (500 + 10) мм,

внутренний диаметр рукава $(14 \stackrel{+}{=} 2)$ мм, насадки пистолета распылителя (чертеж)

(Продолжение см с. 139)

Влагомер по ГОСТ 16483 7—71, обеспечивающий измерение влажности древерины в диапазоне от 5 до 20~%

Модельный очаг пожара класса A, который представляет собой деревянный штабель, помещенный на двух металлических уголках $63\times10\times4$ мм или других уголках размерами от 40×40 до 70×70 мм и установленный на бетонные блоки так, чтобы расстояние от основания штабеля до пола равнялось (400 ± 10) мм. В качестве материала штабеля используют 78 брусков квадратного сечения с размером стороны (38^{+3}_{-1}) мм, длиной (650 ± 10) мм из древесины хвойных пород с содержанием влаги от 9 до 13%. Штабель состоит из 13 слоев по 6 брусков в каждом, расположенных параллельно и на одинаковом расстоянии так, чтобы образовался квадрат со стороной (650 ± 10) мм. Бруски каждого последующего слоя перпендикулярны брускам нижележащего слоя. Бруски, образующие внешние края штабеля, крепятся для прочности гвоздями или скобами

233 Проведение испытаний

В испытательный прибор типа огнетущителя загружают (5·10 $^{-3}$ ·ру \pm \pm 0,01) кг порошка, где ру — кажущаяся плотность уплотненного порошка, 5·10 $^{-3}$ — объем огнетущителя, м³.

Испытания проводят на открытом воздухе при скорости ветра не более 3 м·c^{-1} . Под штабель симметрично модельному очагу помещают металлический противень размером $686 \times 686 \times 102$ мм В противень наливают 3.8 дм^3 автомобильного бензина Горючее поджигают После выгорания горючего противень извлекают из-под штабеля Дают штабелю гореть в течение 8 мин после поджога После этого оператор приводит в действие испытательный прибор и начинает тушение с расстояния не менее 1.8 м Затем постепенно сокращают расстояние до очага по мере воздействия на него с трех боковых сторон, снизу и сверху штабеля. Проводят три опыта по тушению. Испытательный прибор типа огнетушителя с порошком взвешивают до и после тушения.

Очаг считается потушенным, если отсутствуют очаги горения и тления и в течение 15 мин не произошло повторного воспламенения.

234. Обработка результатов

.Показатель огнетушащей способности порошка $(E_{\rm A})$ в килограммах на квадратный метр при тушении модельного очага класса ${\rm A}$ вычисляют по формуле

$$E_{\rm A} = \frac{m_1 - m_2}{6.7}$$
,

где m_1 — масса снаряженного испытательного прибора до тушенчя, кг, m_2 — масса снаряженного испытательного прибора после тушения, кг;

(Продолжение см с 140)

6,7 — максимально возможная суммарная площадь поверхности горения модельного очага, \mathbf{m}^2 .

За результат испытаний принимают среднее арифметическое результатов

трех параллельных определений

2.4 Определение огнетушащей способности при тушении пожаров класса В

241 Сущность метода

Метод основан на определении массы порошка, необходимой для тушения из испытательного прибора типа огнетушителя единицы площади горения модельного очага класса В

2.4.2 Аппаратура

Весы с ценой наименьшего деления не более 0,01 кг Секундомер СОСпр-26-2—221 по ГОСТ 5072—79.

Испытательный прибор типа огнетушителя по п 23.2

Бензин автомобильный марки А-76 летний по ГОСТ 2084-77.

Модельный очаг пожара класса В, представляющий собой круглый противень из листовой стали диаметром (1500^{+0}_{-20}) мм, высотой (150 ± 5) мм и толщиной стенок (2.5 ± 0.2) мм.

243 Проведение испытаний

В испытательный прибор загружают (5·10 $^{-3}$ - ρ_y \pm 0,01) кг порошка, где ρ_y — кажущаяся плотность уплотненного порошка, 5·10 $^{-3}$ — объем огнетуши-

теля, м³.

Испытания проводят на открытом воздухе при скорости ветра до 3 м·с $^{-1}$. Противень устанавливают на бетонную или земляную площадку горизонтально и заливают в него ($20\pm2,0$) дм³ воды и (55 ± 1) дм³ автомобильного бензина. Оператор с испытательным прибором типа огнетущителя должен быть на расстоянии не ближе 1,5 м от очага Горючее в противне поджигают факелом с ручкой длиной не менее 2 м и дают свободно гореть в течение 60 с. По истечении указанного времени начинают тушение. В процессе тушения оператор может перемещаться вокруг очага. Проводят три опыта Очаг считается потушенным, если отсутствует пламя

2.44 Обработка результатов

Показатель огнетушащей способности порошка ($E_{\rm I}$) в килограммах на квадратный метр при тушении модельного очага класса В вычисляют по формуле

$$E_{\rm B} = \frac{m_1 - m_2}{1.76} ,$$

где m_1 — масса испытательного прибора с порошком до тушения, кг;

 m_2 — масса испытательного прибора после тушения, кг; 1,76 — площадь поверхности горения модельного очага, м²

За результат испытаний принимают среднее арифметическое результатов трех параллельных определений

2.5. Определение текучести при массовой доле остатка порощка не более 15 %

25.1 Сущность метода

Метод основан на измерении массового расхода огнетущащего порошка при истечении его из испытательного прибора типа огнетущителя под давлением рабочего газа, а также измерении массовой доли остатка порошка в нем

2.52 Аппаратура

Весы с ценой наименьшего деления не более 0,01 кг Секундомер СОСпр-26-2—221 по ГОСТ 5072—79

Испытательный прибор типа огнетушителя по п 232

Вибростенд, обеспечивающий частоту колебаний 20 Гц и амплитуду 0,3—0,5 мм.

(Продолжение см с 141)

253 Проведение испытаний

В испытательный прибор типа огнетушителя загружают (5·10⁻³ $\rho_3 \pm 0,01$) кг порошьа, где ρ_9 — кажущаяся плотность уплотненного порошка, 5·10⁻³ — объем огнетушителя. м³

Заполненный снаряженный испытательный прибор жестко закрепляют на вибростенде и подвергают воздействию вибрации при частоте 20 Гц и ампли-

туде (0.3-0.5) мм в течение (900 ± 5) с

Снимают испытательный прибор с вибростенда и определяют его массу с порошком Производят выброс порошка из испытательного прибора типа огнетушителя в течение 10 с, фиксируя время выброса по секундомеру Измеряют массу испытательного прибора с остатком порошка

Для определения массовой доли остатка в испытательный прибор загружают (5·10 $^{-3}$ - $\rho_V \pm 0.01$) кг порошка, где $\rho_V \leftarrow$ кажущаяся плотность уплотненного по-

рошка, $5 \cdot 10^{-3}$ — объем огнетушителя, м³

Заполненный снаряженный испытательный прибор жестко закрепляют на вибростенде и подвергают воздействию вибрации при частоте 20 Гц и амплитуде 0,3—0,5 мм в течение (900±5) с Снимают испытательный прибор с вибростенда и определяют его массу с порошком Производят выброс порошка из испытательного прибора при полностью открытом запорном устройстве пистолетараспылителя до полного прекращения выброса порошка Измеряют массу испытательного прибора с остатком порошка, высыпают остаток порошка и определяют массу испытательного прибора без порошка.

Допускается в случае отсутствия вибростенда производить уплотнение порошка в испытательном приборе на имитаторе встряхивания или вручную Имитатор встряхивания обеспечивает периодические удары испытательного прибора с высоты 15 мм о твердую поверхность с ускорением, близким к скорости свободного падения, с частотой (0,8±0,1) Гц в течение 10 мин (500 ударов)

254 Обработка результатов

2541 Текучесть порошка (Q) в килограммах в секунду вычисляют по формуле

$$Q=rac{m_1-m_2}{ au}$$
 ,

где m_1 — масса испытательного прибора с порошком, кг,

 m_2 — масса испытательного прибора с остатком порошка после выброса в течение фиксированного времени, кг,

т — время выброса порошка, равное 10 с

За результат испытаний принимают среднее арифметическое результатов трех параллельных определений

 $2\,5\,4\,2$ Массовую долю остатка порошка (X_0) в процентах вычисляют по формуле

$$X_0 = \frac{m_4 - m_5}{m_3 - m_5} \quad 100,$$

где m_3 — масса испытательного прибора с порошком, кг;

 m_4 — масса испытательного прибора с остатком порошка при полном времени выброса порошка, кг,

 m_5 — масса испытательного прибора без порошка, кг

(Продолжение см с 142)

За результат испытаний принимают среднее арифметическое результатов трех параллельных определений

Массовая доля остатка порошка не должна превышать 15 %

26 Определение устойчивости к термическому воздействию (термостойкость)

261 Сущность метода

Метод основан на определении изменения текучести и массовой доли остатка после термических воздействий на огнетушащий порошок, помещенный в испытательный прибор типа огнетушителя

262 Аппаратура

Весы с ценой наименьшего деления не более 0,01 кг Секундомер СОСпр-26-2—221 по ГОСТ 5072—79

Испытательный прибор типа огнетушителя по п 232

Вибростенд, обеспечивающий частоту колебаний 20 Гц и амплитуду 0,3—0.5 мм

Испытательная камера тепла или термостат, испытательная камера холода, обеспечивающие поддержание температуры с отклонением не более ± 2 °C от заданного значения Испытательные камеры тепла и холода должны обеспечивать регулирование и поддержание температур минус 50 и плюс 50 °C соответственно

263 Проведение испытаний

Предварительно определяют текучесть испытуемого порошка по п 25 Испытательный прибор снаряжают, подвергают воздействию вибрации (п 253), затем помещают в камеру холода с температурой минус 50°С и выдерживают в течение 2 ч при этой температуре Отсчет времени ведется с момента достижения температуры минус 50°С по всему объему испытательного прибора Извлекают испытательный прибор с порошком из камеры холода, помещают в камеру тепла с температурой плюс 50°С и выдерживают в течение 2 ч при этой температуре, отсчет времени ведется с момента достижения температуры плюс 50°С по всему объему испытательного прибора Момент достижения температуры минус 50°С или плюс 50°С в испытательном приборе устанавливают по стабильному достижению этой температуры по всему объему камеры холода или тепла Затем испытательный прибор выдерживают не менее 30 мин при температуре окружающей среды и определяют текучесть порошка и массовую долю остатка порошка без повторного воздействия вибрации (см. п 25)

264 Обработка результатов

Устойчивость к термическому воздействию (T) в процентах вычисляют по формуле

 $T=\frac{Q_2}{Q_1}\cdot 100\,$

где Q_1 — текучесть порошка до термического воздействия, кг \cdot с $^{-1}$,

 Q_2 — текучесть порошка после термического воздействия, кг-с $^{-1}$

За результат испытаний принимают среднее арифметическое результатов трех параллельных определений

Массовая доля остатка порошка не должна превышать 15 %

27 Определение устойчивости к вибрации (вибростойкость)

271 Сущность метода

Метод основан на определении изменения показателя текучести при воздействии вибрации на огнетушащий порошок, заряженный в испытательный прибор типа огнетушителя

272 Annaparypa

Весы с пеной наименьшего деления не более 0,01 кг

Испытательный прибор типа огнетушителя по п 232

Вибростенд, обеспечивающий частоту колебаний 50 Гц и амплитуду (0,15—0,25) мм

(Продолжение ст с. 143)

273 Проведение испытаний

Предварительно определяют текучесть испытуемого порошка по п 2 5 Испытательный прибор заряжают порошком массой ($5\cdot10^{-3}\cdot\rho_y\pm0.01$) кг, гдс ρ_y — кажущаяся плотность уплотненного порошка, $5\cdot10^{-3}$ — объем огнетушителя, м³/, жестко закрепляют на вибростенде и подвергают в течение 2 ч вибровоздействию при частоте колебаний 50 Γ ц и амилитуде 0.15—0.25 мм

Допускается вместо испытаний на вибростенде проводить испытания на стенде имитаций транспортной тряски в резыме, имитирующем перевозку снаряженного порошком испытательного прибора типа огнетущителя по грунтовым и щебеночным дорогам на расстояние не менее 1000 км

После воздействия вибрации испытательный прибор снимают с вибростенда

и определяют текучесть и массовую долю остатка порошка по п 25.

274 Обработка результатов

Устоичивость к вибрации (В) в процентах вычисляют по формуле

$$B = \frac{\overline{Q_2}}{\overline{Q_1}} \cdot 100,$$

где Q_1 — текучесть порошка до испытаний на вибростойкость, кг с $^{-1}$;

 Q_2 — текучесть порошка после воздействия вибрации, кг/с $^{-1}$.

За результат испытаний принимают среднее арифметическое результатов рех нарал ельных определений

(Продолжение см с 144)

Массовая доля остатка порошка не должна превышать 15 %

28 Определение срока сохраняемости

281 Сущность метода

Метод основан на определении продолжительности пребывания огнетушащего порошка в заводской упаковке в режимах хранения, установленных нормативно-технической документацией на конкретную продукцию, при которой огнетушащая способность и текучесть огнетушащего порошка соответствует значениям, установленным в табл 1

282 Аппаратура

Аппаратура — в соответствии с пп 232, 242 и 25,2

283 Проведение испытаний

Огнетушащий порошок, прошедший испытания по пп. 24, 25, в упаковке предприятия изготовителя, устанавливают на хранение в режиме, указанном в нормативно-технической документации на конкретный его вид.

В течение срока хранения проводят испытания по пп 24, 25 на соответст-

вие показателям качества, приведенным в табл 1

284 Обработка результатов

Срок сохраняемости в годах принимается равным числу лет, в течение которых значения огнетущащей способности и текучести соответствуют требованиям, приведенным в табл 1»

(ИУС № 3 1991 г)