Изменение № 2 ГОСТ 1293.1—83 Сплавы свинцово-сурьмянистые. Метод определения сурьмы

Принято Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 13 от 28.05.98)

Зарегистрировано Техническим секретариатом МГС № 2921

За принятие изменения проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Азербайджанская Республика	Азгосстандарт	
Республика Армения	Армгосстандарт	
Республика Беларусь	Госстандарт Республики Беларусь	
Республика Казахстан	Госстандарт Республики Казахстан	
Кыргызская Республика	Кыргызстандарт	
Российская Федерация	Госстандарт России	
Республика Таджикистан	Таджикгосстандарт	
Туркменистан	Главгосинспекция «Туркменстан- дартлары»	
Республика Узбекистан	Узгосстандарт	
Украина	Госстандарт Украины	

На обложке и первой странице под обозначением стандарта исключить обозначение: (СТ СЭВ 3280—81).

Наименование стандарта. Заменить слово: «Метод» на «Методы», «Method» на «Methods».

Вводную часть изложить в новой редакции:

«Настоящий стандарт устанавливает два метода определения сурьмы в свинцово-сурьмянистых сплавах: титриметрический метод при массовой доле сурьмы от 0,05 до 20~% и атомно-абсорбционный метод при массовой доле сурьмы от 0,05 до 10~%».

Раздел 1. Заменить слова: «к методу» на «к методам».

Стандарт дополнить разделом — 1a (после разд. 1):

«1а. ТИТРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СУРЬМЫ 1а.1. Сущность метода

Метод основан на растворении свинцово-сурьмянистого сплава в серной кислоте, удалении мышьяка кипячением с соляной кислотой и титровании сурьмы бромноватокислым калием потенциометрически или визуально в присутствии индикатора метилового оранжевого».

Раздел 2. Восьмой абзац изложить в новой редакции:

«Медь сернокислая 5-водная по ГОСТ 4165—78»;

(Продолжение см. с. 26)

девятый абзац исключить;

дополнить абзацем:

«Сурьма по ГОСТ 1089-82 не ниже марки Су 00».

Пункт 3.1. Первый абзац изложить в новой редакции:

«Приготовление растворов бромноватокислого калия c ($^{1}/_{6}$ KBrO₃) = = 0,1; 0,05 и 0,01 моль/дм³».

Раздел 3 дополнить пунктом — 3.2:

«3.2. Установка массовой концентрации растворов бромноватокислого калия

Навеску сурьмы массой 0,1000; 0,0500 или 0,0100 г (для установки массовой концентрации растворов бромноватокислого калия c (1 / $_6$ KBrO $_3$) = 0,1; 0,05 и 0,01 моль/дм³ соответственно) помещают в коническую колбу вместимостью 250 см³, прибавляют 20 см³ серной кислоты и нагревают до растворения. Охлаждают, разбавляют водой и переводят в колбу вместимостью 500 см³, приливают 20 см³ соляной кислоты, разбавляют водой до 200 см³ и кипятят 10—15 мин. Охлаждают до 60 °С, прибавляют 2—3 капли метилового оранжевого и титруют раствором бромноватокислого калия c (1 / $_6$ KBrO $_3$) = 0,1; 0,05 и 0,01 моль/дм³ до исчезновения красного окрашивания.

Массовую концентрацию раствора бромноватокислого калия (*T*) по сурьме в граммах на кубический сантиметр вычисляют по формуле

$$T = \frac{C}{V}$$
,

где C — масса навески сурьмы, г;

V — объем раствора бромноватокислого калия, израсходованный на титрование, см 3 ».

Пункт 4.1. Таблица 1. Графа «Масса навески сплава, г». Заменить значения: 5,0 на 5,0000; 2,0 на 2,0000, 0,5 на 0,5000;

головка. Заменить слово: «Титр» на «Массовая концентрация»; второй, третий абзацы изложить в новой редакции:

«Навеску сплава помещают в коническую колбу вместимостью $500~{\rm cm}^3$, прибавляют $30~{\rm cm}^3$ серной кислоты, закрывают колбу стеклянным шариком и нагревают до растворения навески. Для восстановления сурьмы и мышьяка в колбу после охлаждения опускают 1/4 часть беззольного фильтра диаметром $9~{\rm cm}$ и нагревают до обесцвечивания раствора. К раствору контрольного опыта прибавляют наряду с беззольным фильтром 1-2 кристаллика сернокислой меди. Колбу охлаждают, обмывают стенки колбы водой и еще раз нагревают до обесцвечивания раствора. Затем продолжают нагревать еще $20-30~{\rm muh}$.

(Продолжение см. с. 27)

Раствор охлаждают, приливают 100 см³ воды, 100 см³ соляной кислоты и умеренно кипятят для удаления мышьяка и оксида серы (IV), пока объем раствора не уменьшится до 100 см³. Затем добавляют 20 см³ соляной кислоты»;

четвертый абзац. Исключить слова: «добавление сернистокислого натрия и»; заменить значение и слова: 30 см³ на 20 см³, «сернистого ангидрида» на «оксида серы (IV)»:

последний абзац. Заменить значение: 200 см³ на 100 см³.

Пункт 5.1. Формула. Экспликация. Заменить слово: «титр» на «массовая концентрация».

Пункт 5.2 изложить в новой редакции:

» 0,20

» 2,00

» 5,00 » 10.00 » 0,50

» 5,00

» 10.00

20.00

» 0.50 » 1.00

* 1.00 * 2.00

«5.2. Расхождение результатов параллельных определений d (разность наибольшего и наименьшего результатов параллельных определений) и расхождение результатов анализа D (разность большего и меньшего результатов анализа) при доверительной вероятности P=0.95 не должны превышать значений абсолютных допускаемых расхождений, приведенных в табл. 2.

Расхождение Предельное Расхожление результатов значение результатов Массовая доля сурьмы, % параллельных погрешности анализа D. определений d. результатов % анализа ∆, % От 0,050 до 0,10 включ. 0.010 0.015 0.015 Св. 0,10 » 0,20 0.02 0.02 0.02

0.03

0.05

0.08

0,10

0,20

0.30

0,02

0,04

0.06

0.08

0.16

0.24

Таблица 2

0.03

0.05

0.08

0,10

0,20

0.30

Контроль точности анализа осуществляется с помощью стандартных образцов или другими методами, предусмотренными ГОСТ 1293.0—83.

Погрешность результатов анализа (при доверительной вероятности P=0.95) не превышает предельных значений Δ , приведенных в табл. 2, при выполнении следующих условий: расхождение результатов параллельных определений не превышает допускаемых, результаты контроля точности положительные».

(Продолжение см. с. 28)

Раздел 5 дополнить пунктом — 5.3:

«5.3. Метод применяют при разногласии в оценке качества сплава».

Стандарт дополнить разделом — 6:

«6. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ СУРЬМЫ

6.1. Сущность метода

Метод основан на растворении пробы в смеси азотной и винной кислот, распылении растворов в воздушно-ацетиленовое пламя и измерении поглощения линии сурьмы 217,6 нм.

6.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрофотометр любой марки.

Воздух, сжатый под давлением $2\cdot10^5-6\cdot10^3$ Па (2—6 атм.) в зависимости от используемой аппаратуры.

Ацетилен в баллонах по ГОСТ 5457-75.

Кислота винная по ГОСТ 5817—77, раствор 400 г/дм3.

Кислота азотная по ГОСТ 4461-77, разбавленная 1:2.

Сурьма по ГОСТ 1089-82 не ниже марки Су00.

- 6.3. Подготовка к анализу
- 6.3.1. Приготовление стандартных растворов сурьмы

Раствор A: 0,1000 г измельченной в агатовой ступке сурьмы растворяют в 15 см³ азотной кислоты с добавлением 15 г винной кислоты при нагревании. После охлаждения раствор переносят в мерную колбу вместимостью 100 см³, разбавляют до метки водой и перемешивают.

1 см³ раствора А содержит 1 мг сурьмы.

Раствор Б: 10 см^3 раствора А переносят в мерную колбу вместимостью 100 см^3 , добавляют 6 см^3 азотной кислоты, доводят до метки водой и перемешивают.

1 см³ раствора Б содержит 100 мкг сурьмы.

Раствор В: 10 см³ раствора Б переносят в мерную колбу вместимостью 100 см³, добавляют 6 см³ азотной кислоты, доводят водой до метки и перемешивают.

1 см³ раствора В содержит 10 мкг сурьмы.

6.3.2. Построение градуировочного графика

В восемь из девяти мерных колб вместимостью 100 см^3 каждая помещают $10; 30 \text{ см}^3$ раствора B, 5; 8; $10; 20 \text{ см}^3$ раствора Б; 4; 6 см 3 раствора A, что соответствует 1; 3; 5; 8; 10; 20; 40 и 60 мкг/см^3 сурьмы.

Во все колбы добавляют по 5 см³ азотной и винной кислот, доводят до метки водой и перемешивают.

- 6.4. Проведение анализа
- 6.4.1. Массу навески сплава выбирают в зависимости от ожидаемой массовой доли сурьмы в соответствии с табл. 3.

(Продолжение см. с. 29)

Таблина 3

Массовая доля сурьмы, %	Масса навески сплава, г	Объем мерной колбы, см ³	
От 0,05 до 0,5 включ.	1,0000	100	
CB. 0,5 » 5 »	0,2000	200	
» 5 » 10 »	0,1000	200	

Навеску сплава помещают в коническую колбу вместимостью 250 см³. приливают 5 см³ раствора винной кислоты и 15 см³ раствора азотной кислоты 1:2 (при последующем разбавлении раствора в мерной колбе вместимостью 100 см3) или 10 см3 раствора винной кислоты и 30 см3 раствора азотной кислоты 1:2 (при последующем разбавлении раствора в мерной колбе вместимостью 200 см3) и растворяют при нагревании. Раствор охлаждают, переводят в мерную колбу в соответствии с табл. 3, доводят до метки водой и перемещивают.

Анализируемые и стандартные растворы распыляют в воздушноацетиленовое пламя и измеряют значение поглощения линии сурьмы 217.6 нм.

Условия измерения выбирают в соответствии с применяемым прибором.

На спектрофотометрах, имеющих режим работы «концентрация», работают в режиме «концентрация» и результат получают мкг/см³ или в режиме «поглошение» метолом «ограничивающих растворов», или по градуировочному графику.

На остальных спектрофотометрах работают в режиме «поглощение» методом «ограничивающих растворов» или по градуировочному графику.

- 6.5. Обработка результатов
- 6.5.1. Массовую долю сурьмы (Х) в процентах вычисляют по формуле

$$X = \frac{(C_1 - C_2) V}{m \cdot 10000},$$

где C_1 — концентрация сурьмы в анализируемом растворе, мкг/см³; C_2 — концентрация сурьмы в растворе контрольного опыта, мкг/см³;

V — объем раствора сплава, см³:

m — масса навески сплава, г.

6.5.2. Абсолютные допускаемые расхождения результатов параллельных определений d (разность наибольшего и наименьшего результатов параллельных определений) и расхождение результатов анализа D (раз-

(Продолжение см. с. 30)

ность большего и меньшего результатов анализа) при доверительной вероятности P=0,95 не должны превышать значений допускаемых расхождений, приведенных в табл. 4.

Таблица 4

Массовая доля сурьмы, %	Предельное значение погрешности результатов анализа Δ , %	Расхождение результатов параллельных определений d ,	Расхождение результатов анализа <i>D</i> ,
От 0,050 до 0,10 включ.	0,010	0,015	0,015
Св. 0,10 » 0,20 »	0,02	0,02	0,02
» 0,20 » 0,50 »	0,02	0,03	0,03
» 0,50 » 1,00 »	0,04	0,05	0,05
» 1,00 » 2,00 »	0,06	0,10	0,10
» 2,00 » 4,00 »	0,12	0,15	0,15
» 4,00 » 6,00 »	0,16	0,20	0,20
» 6,00 » 8,00 »	0,20	0,25	0,25
» 8,00 » 10,00 »	0,24	0,30	0,30

Контроль точности анализа осуществляют с помощью стандартных образцов или другими методами, предусмотренными ГОСТ 1293.0—83.

Погрешность результатов анализа (при доверительной вероятности P = 0.95) не превышает предельных значений Δ , приведенных в табл. 4, при выполнении следующих условий: расхождение результатов параллельных определений не превышает допускаемых, результаты контроля точности положительные».

(ИУС № 7 2001 г.)