Изменение № 2 ГОСТ 2604.14—82 Чугун легированный. Методы определения кобальта

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 27.04.88 № 1188

Дата введения 01.01.89

Вводная часть. После слов «массовой доле» исключить слово: «кобальта» (2 раза).

Раздел 1 дополнить пунктом — 1.2: «1.2. Погрешность результата анализа (Δ) при доверительной вероятности 0,95 не превышает предела, приведенного в табл. 2, 3, 5 при выполнении условий:

расхождение результатов двух (трех) параллельных измерений не должно превышать (при доверительной вероятности 0,95) значения d_2 (d_3), приведенных в табл. 2, 3, 5;

воспроизведенное в стандартном образце значение массовой доли элементане должно отличаться от аттестованного более, чем на допускаемое (при доверительной вероятности 0,95) значение δ , приведенное в табл. 2, 3, 5.

Расхождение двух средних результатов анализа, выполненных в различных условиях (например, при внутрилабораторном контроле воспроизводимости), не

(Продолжение см. с. 52).

(Продолжение изменения к ГОСТ 2604.14—82)

должно превышать (при доверительной вероятности 0,95) значения $d_{\rm K}$, приведенного в табл. 2, 3, 5%. Пункт 2.4.1 изложить в новой редакции: «2.4.1. Нормы точности и нормативы контроля точности массовой доли кобальта приведены в табл. 2.

Таблица 2

42-possesses and the second of	Нормы точности и нормативы контроля точности, %					
Массовая доля кобальта, %	Δ	$d_{_{ m K}}$	d_{a}	<i>d</i> ,	6	
От 0,02 до 0,05 вкляля, Св. 0,05 » 0,10 » » 0,10 » 0,2 » » 0,2 » 0,5 »	0,004 0,006 0,018 0,026	0,005 0,007 0,022 0,033	0,004 0,006 0,018 0,028	0,005 0,007 0,022 0,034	0,003 0,004 0,012 0,017	

(Продолжение см. с. 53)

(Продолжение изменения к ГОСТ 2604.14—82)

Пункт 3.4.1 изложить в новой редакции: «3.4.1. Нормы точности и нормативы контроля точности массовой доли кобальта приведены в табл. 3.

Таблица 3

	Нормы точности и нормативы контроля точности, %					
М ассов ая доля коба льта, %	Δ	d _K	d z	d ₂	δ	
От 0,5 до 1,0 включ. Св. 1,0 > 2,0 > > 2,0 > 3,0 >	0,04 0,05 0,09	0,05 0,07 0,11	0,04 0,06 0,09	0,05 0,07 0,11	0,02 0,03 0,06	

Пункт 4.2 дополнить абзацем (после девятого): «Кислота аскорбиновая,

раствор 0,1 г/см3».

Пункт 4.3.2. Второй абзац изложить в новой редакции: «Раствор с осадком переносят в мерную колбу вместимостью 50 см³, доливают до метки водой и перемешивают. Раствор фильтруют через сухой фильтр в сухую коническую кол-

бу вместимостью 50 см³, отбрасывая первые порции фильтрата».

Пункт 4.3.3. Третий абзац изложить в новой редакции: «Раствор отфильтроамвают в мерную колбу вместимостью 100 см³, стакан и фильтр промывают вочой, фильтр отбрасывают. К фильтрату приливают 5 см³ раствора аскорбиновой жислоты (при навеске чугуна массой 0,2 г) или 2,5 см³ (при навеске чугуна массой 0,1 г), доливают водой до метки и перемещивают».

Пункты 4.3.3.1, 4.4.2 изложить в новой редакции: «4.3.3.1. Построение граду-

мровочного графика

При массовой доле кобальта от 0,1 до 0,5 % в семь стаканов вместимостью 250 см⁹ помещают по 0,2 г карбонильного железа и в шесть из них отмеряют 1,0; 2,0 4,0; 6,0; 8,0 и 10,0 см³ стандартного раствора В, что соответствует 0,0001 г 0,0002; 0,0004; 0,0006; 0,0008 и 0,001 г кобальта в 100 см³ анализируемого раствора.

Седьмой стакан служит для проведения контрольного опыта.

(Продолжение см. с. 54)

(Продолжение изменения к ГОСТ 2604.14-82)

При массовой доле кобальта от 0,5 до 1,0 % в семь стаканов вместимостью 250 см³ помещают по 0,2 г карбонильного железа и в шесть из них отмеряют 5,0; 6,0; 7,0; 8,0; 9,0 и 10,0 см³ стандартного раствора B, что соответствует 0,001; 0,0012; 0,0014; 0,0016; 0,0018 и 0,002 г кобальта в 100 см³ анализируемого раствора.

Седьмой стакан служит для проведения контрольного опыта.

При массовой доле кобальта от 1,0 до 5,0 % в шесть стаканов вместимостью 250 см³ помещают по 0,1 г карбонильного железа и в пять из них отмеряют 1,01 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора A, что соответствует 0,001; 0,002; 0,003; 0,004 и 0,005 г кобальта в 100 см³ анализируемого раствора.

Шестой стакан служит для проведения контрольного опыта.

В каждый стакан приливают по 10 см³ соляной и по 3 см³ азотной кислот. Далее анализ ведут в соответствии с п. 4.3.3.

4.4.2. Нормы точности и нормативы контроля точности массовой доли кобальта приведены в табл. 5.

T	а	б	Л	H	Ц	а	5

Массовая доля кобальта, %	Нормы точности и нормативы контроля точности, %					
	Δ	d _K	d 2	d ₃	δ	
От 0,005 до 0,01 включ. Св. 0,01 до 0,02 » » 0,02 » 0,05 » » 0,05 » 0,10 » » 0,10 » 0,2 » » 0,2 » 0,5 » » 0,5 » 1,0 » » 1,0 » 2,0 » » 2,0 » 5,0 »	0,0018 0,0024 0,004 0,006 0,018 0,026 0,04 0,05 0,09	0,0022 0,0030 0,005 0,007 0,022 0,033 0,05 0,07 0,11	0,0018 0,0025 0,004 0,006 0,018 0,028 0,04 0,06 0,09	0,0022 0,0030 0,005 0,007 0,022 0,034 0,05 0,07 0,11	0,0012 0,0016 0,003 0,004 0,012 0,017 0,02 0,03 0,06	

(ИУС № 7 1988 г.)