МЕТОДИЧЕСКИЕ УКАЗАНИЯ

НОРМИРУЕМЫЕ ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЙ В МЕТОДИКАХ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ, РЕГЛАМЕНТИРОВАННЫХ В ДОКУМЕНТАЦИИ НА ХИМИЧЕСКУЮ ПРОДУКЦИЮ

MY 6/113-30-19-83

MUHUCTEPCTBO XUMUYECKOЙ ПРОМЫШЛЕННОСТИ ГИПХ

ВНИИМС

ОКБА НПО "Химавтоматика" Отделение НИИТЭХИМа (г. Черкассы)

УТВЕРЖДЕНО
первым заместителем Министра
химической промышленности
Л. И. Осипенко
15 августа 1983 г.

УТВЕРИДЕНО
первым заместителем Министра
по производству минеральных
удобрений А. А. Кочетковым
9 августа 1983 г.

МЕТОЛИЧЕСКИЕ УКАЗАНИЯ

Нормируемые показатели точности измерений в методиках выполнения измерений, регламентированных в документации на химическую продукцию МУ 6/II3-30-I9-83

Издание официальное

РАЗРАБОТАНЫ ГИПХ

Заместитель директора д.х.н. Г. Ф. Терещенко Ответственные исполнители: П. А. Бабкин, к.т.н. П. А. Гильманова

ВНИИМС

Заместитель директора к.т.н. Э. Э. Зульфугарзаде Ответственный исполнитель В. В. Пебалк ОКБА НПО "ХИМАВТОМАТИКА" Генеральный директор Ю. М. Лужков Ответственный исполнитель В. А. Самойлов

СОГЛАСОВАНЫ Заместитель начальника Управления автоматизации минхимпрома Л. Ф. Алалуев

Начальник Управления автоматизации Министерства по производству минеральных удобрений Г. М. Притика Министерство Обороны (письмо от 20.06.83 % 1490)

УТВЕРЖДЕНЫ Министерство химической промышленности
Первый заместитель министра Л. И. Осипенко
Министерство по производству минеральных удобрений
Первый заместитель министра А. А. Кочетков

Срок введения с 15 октября 1985 г.

Настоящие методические указания распространяются на методики выполнения измерений состава (методики анализа) и свойств химических продуктов (в дальнейшем по тексту МВИ), регламентируемые в:

государственных и отраслевых стандартах, стандартах предприятий;

технических условиях на химическую продукцию;

соответствующих разделах другой технической документации.

Методические указания устанавливают номенклатуру нормируемых показателей точности измерений в МВИ, представление их в технической документации, а также способы оценки показателей точности измерений в МВИ.

RNHEWOLOR ENGLO. I

- І.І. Числовне значения нормируемих показателей точности измерений должны быть заданы в техническом задании (ТЗ) на разработку МВИ в диапазоне измеряемой величины с учетом условий, в которых будут выполняться измерения по методике, влияния внешних физических факторов и мешающих компонентов, а также внутренних величин (неинформативных параметров).
- I.2. Номенклатура нормируемых показателей точности должна выбираться с учетом требований раздела 2 и быть представлена по форме раздела 3 настоящих методических указаний (МУ).
- I.3. Числовие значения показателей точности измерений, обеспечиваемих методикой, определяются разработчиком в процессе разработки методики и ее метрологической аттестации.
- I.4. Показатели точности измерений, определенные разработчиком, должни бить сопоставлены с нормируемыми показателями точности измерений, заданными в ТЗ, с целью установления пригодности МВИ к применению.
- I.5. Значения показателей точности измерений устанавливаются в диалазоне определяемых концентраций (массовой, молярной) или другой измеряемой величины при нормальных условиях и фиксируемых значениях мещающих компонентов.
- I.6. Нормальные условия определяются диапазоном значений внешних влияющих величин, совокупное воздействие которых на ре-

зультат измерений (анализа), как установлено теоретическими или экспериментальными исследованиями, может вызвать изменение показателей точности измерений в методиках не более, чем на 35~% от их значения.

I.7. Нормальными условиями выполнения измерений следует считать условия, характеризуемые пределами допускаемых изменений наиболее распространенных внешних влияющих физических величин, указанных в табл. I.

Таблипа І

Влияющая величина	Номинальное еначение	Пределы допускаемых изменений (\pm)
Температура воздуха в помещении лабора- тории, ^С С Атмосферное давле-	20	2, 5, 10, 15
ние: кПа мм рт.ст.	101,3 760	6,0; 8,0; I0,0 25, 30, 40
Относительная влаж- ность воздуха в по- мещении лаборато-	, ~~	,,
рии, %	6 0	IO, I5, 20

- 1.8. Допускается не приводить в МВИ диапазонов значений тех внешних влижищих физических величин, которые, как установлено в результате теоретических или экспериментальних исследований, незначительно воздействуют на показатели точности измерений, определяемые в соответствии с п. 1.6.
- I.9. Если не выполняются требования пп.І.6 и І.7 настоящих методических указаний, рекомендуется с помощью специальных технических средств или приемов уменьшить влияние внешних физических величин на результат измерения (анализа), например,использовать системы кондиционирования воздуха, термостатированные помещения, ввести поправочные коэффициенты или индивидуальную градупровку при проведении анализа и т.д.
- I.10. Проби, отбираемие для виполнения измерения (анализа), должны быть однородными, представительными и стабильными.

Тоебования однородности и представительности проб быть изложены в нормативно-технической покументации (НТП) на IDONVKIMO M MOTORN OG KOHTDOMA.

Стабильность проб должна быть обеспечена в течение всей процедуры выполнения измерений (анализа).

2. НОМЕНКЛАТУРА НОРМИРУЕМЫХ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЙ В МЕТОЛИКАХ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

2.1. Качество измерения характеризуется: точностью, сходимостью и правильностью результатов измерений.

Точность измерений - качество измерений, отражающее близость результатов измерений к истинному значению.

Сходимость измерений - качество измерений отражающее близость друг к другу результатов измерений, выполняемых в одинаковых условиях.

Правильность измерений - качество измерений, отражающее олизость к нулю систематических погрешностей.

Основные термины и определения даны в приложении І.

- 2.2. Точность измерений, выполняемых по методике, характеризуется суммарной погрещностью результата измерения. является наиболее полной характеристикой точности из предусмотренных разделом 2 настоящих МУ.
- 2.3. Сходимость результатов измерений, выполняемых по метолике в олинаковых условиях. Характеризуется случайной составляющей погрешности.
- Примечание. Под одинаковыми условиями следует по-нимать выполнение измерений по одной и той же методике, в одной намать выполнение измерений по одной и той же методике, в одной каборатории, одним или несколькими даборантами, на одном комп-лекте средств измерений, в возможно короткое время, завислщее от трудоемкости процедуры измерений, при неизменных значениях внешних влияющих величин и мещающих компонентов.
- 2.4. Правильность измерений, выполняемых по методике, характеризуется систематической составляющей погрешности.
- 2.5. Устанавливается следующая номенклатура нормируемых показателей точности измерений:
- для суммарной погрешности пределы допускаемого значения суммарной погрешности результата измерения. Эти пределы устанавливают симметричный интервал, накрывающий истинное значение суммарной погрешности результата измерения: 7

- для систематической составляющей погрешности результата измерения пределы допускаемого значения систематической составляющей погрешности результата измерения;
- для случайной составляющей погрешности результата измерения значение среднего квапратического отклонения случайной составляющей погрешности результата измерения;
- для оперативного контроля сходимости результата измерений допускаемое расхождение между результатами наблюдений (параллельных определений), выполненных водинаковых условиях.
- Примечание допускаемое расхождение является регламентированной границей размаха наблюдений (определений).
- 2.6. В НТД на химическую продукцию (ГОСТ, ОСТ, ТУ, СТП и т.д.), регламентирующей МВИ, в зависимости от числа наблюде ний (определений), по которым рассчитывают результат измерения (анализа), должны нормироваться:

при однократных измерениях - пределы допускаемого значения суммарной погрешности результата измерения;

при измерениях с многократными наблюдениями (определениями) - пределы допускаемого значения суммарной погрешности результата измерения и допускаемое расхождение между результатами наблюдений (параллельных определений).

- 2.7. Допускается по усмотрению разработчика МВИ и по согласованию с базовой организацией метрологической службы дополнительно вводить другие показатели точности измерений, кроме указанных в п. 2.5 раздела 2 настоящих МУ. Например, мотут быть
 регламентировани требования к расхождениям результатов измерений характеристик одного и того же продукта, выполненных по данной методике в различное время, в разних лабораториях, т.е. может
 нормироваться показатель воспроизводимости методики. Методы оценки дополнительных показателей дслжны регламентироваться отраслевой НТД. При этом указание пределов допускаемого значения суммарной погрешности результата измерения является обязательным,
 так как расхождение между результатами измерений, выполняемых в
 разных лабораториях, характеризует лишь часть суммарной погрешности результата измерений и не включает методическую составляюшую систематической погрешности.
- 2.8. Нормируемые показатели точности должны устанавливаться при доверительной вероятности 0,95.

3. ФОРМЫ ПРЕДСТАВЛЕНИЯ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЙ В МЕТОЛИКАХ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

- 3. I. Устанавливаются следувщие основные формы представления (изложения) показателей точности измерений:
- при числе параллельных определений, равном двум: "За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает значения допускаемого расхождения, равного ...

Пределы допускаемого значения суммарной погрешности результата анализа $\pm \dots$ при доверительной вероятности 0,95";

- при числе параллельных определений больше двух: "За результат анализа принимают среднее арифметическое результатов па параллельных определений, расхождение между наиболее отличающимися значениями которых не превышает значения допускаемого расхождения, равного ...

Предели допускаемого значения суммарной погрешности результата анализа + ... при доверительной вероятности 0,95".

З.І.І. При представлении результатов измерения слово "анализ" заменяют на "измерение" и "определение" — на "наблюдение", например: "За результат измерения принимают среднее арифметическое результатов трех наблюдений, расхождение между наиболее отличающимися значениями которых не превышает значения допускаемого расхождения, равного ...

Пределы допускаемого значения суммарной погрешности результата измерения $\pm \dots$ при доверительной вероятности 0,95".

- 3.1.2. Для измеряемой физической величини, выраженной в процентах, при представлении показателей точности измерений:
- в относительной форме "За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное значение расхождения между которыми не превышает значения допускаемого расхождения, равного ... %.

Пределы допускаемого значения относительной суммарной погрешности результата анализа $\pm \dots$ при доверительной вероятности P = 0.95";

в абсолютной форме - "За результат анализа принимают среднее арифметическое результатов двух нараллельных определений, абсолютное значение расхождения между которыми не превышает значения допускаемого расхождения, равного ... %.

Предели допускаемого значения абсолютной суммарной погрешности результата анализа $\pm \dots \%$ при доверительной вероятности 0.95".

- 3.І.З. При указании границ систематической погрешности к приведенным формулировкам (пп. 3.І-3.І.2) перед указанием пределов допускаемого значения суммарной погрешности добавляется следующая формулировка: "Пределы допускаемого значения систематической составляющей погрешности измерения \pm ...".
- 3.2. При наличии существенной зависимости между показателями точности измерений в методике и измеряемой величиной, например, при широком диапазоне измерений и т.п., допускается задание числовых значений показателей точности в табличной форме или в виде формул, выражающих функциональную зависимость между показателями точности измерений и измеряемой величиной (определяемой концентрацией).

 Φ орма представления показателей точности измерений в виде таблицы может быть следующей:

"За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает значений допускаемого расхождения, указанных в таблице".

Пределы допускаемого значения суммарной погрешности результата анализа при доверительной вероятности P = 0,95 представляют в таблице (табл. 2).

Таблица 2

wheels with the second		
кемеряемея вничицев	Допускаемое расхождение	Пределы допускаемого значения сум- марной погрешности

Примечание. Призадании нормируемых показателей точности измерений в виде таблицы изменение показателей точности для границ смежных поддиапазонов не должно превышать I/3 значения показателя точности. При невыполнении этого условия показатели точности измерений должни задаваться в виде функциональной зависимости (формул, графиков).

^{3.3.} Значения допускаемого расхождения, среднего квадрати-

ческого отклонения (СКО), пределов систематической и суммарной погрешности должны указываться в одних и тех же единицах физических величин.

4. МЕТОДЫ ОЦЕНКИ ПОКАЗАТЕЛЕЙ ТОЧНОСТИ ИЗМЕРЕНИЙ В МЕТОДИКАХ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

4.І. Для выявления и оценки случайной составляющей погрешности измерения необходимо получить исходные статистические данные путем проведения многократных наблюдений (определений) по одной и той же методике: в одной лаборатории, одним или несколькими лаборантами, на одном или нескольких комплектах средств измерений, в возможно короткое время, зависящее от трудоемкости процедури измерения во всем диапазоне определяемых величин, при фиксируемых значениях внешних влияющих величин и мешающих компонентов.

Необходимо провести не менее 30 определений (наблюдений), результаты которых предпочтительнее группировать с учетом количества параллельных определений, указанных в методике выполнения измерений, по которым рассчитывается результат анализа. При этом могут быть реализованы следующие варианты набора статистических данных при узком диапазоне измерения:

Вариант I. При наличии одной партии продукта от представительной пробы отбирается то пробы для анализа. Из каждой пробы делают от двух до пяти параллельных определений.

Вариант 2. При наличии достаточного количества партий продукта от каждой партии отбирается проба, из которой делаются два или три определения.

При отношении нижней и верхней границ измеряемой величини меньше 4 партии продукта должны быть подобраны таким образом, чтобы оценка случайной составляющей была проведена по статистическим данным, полученным на различных значениях измеряемой величины в диапазоне измерения. При этом в оценке случайной составляющей будет учтена возможная ее зависимость от измеряемой величины.

Приведенные варианты не исчерпывают всех возможных схем получения исходных данных и могут видоизменяться в зависимости от конкретных условий. По результатам определений из каждой пробы составляется таблица в соответствии с придожением 3.

При теоретических предпосылках о наличии зависимости погрешности измерений от времени алгоритмы оценки по разделу 4 следует неоднократно повторить.

Когда отношение нижней и верхней границ измеряемой величини больше 4, необходимо разделить диапазон измерений на интервали и набрать и обработать статистические данные согласно пп. 3.2, 4.1 (вариант 1), 4.2, 4.3 МУ на граничных значениях смежных интервалов (поддиапазонов). Например, имеют диапазон измеряемых массовых концентраций от I до 80 мг/л. Получают 4 интервала (мг/л): от I до 4, от 4 до 16, от 16 до 32 и от 32 до 80. Измерения проволят на концентрациях I. 4. 16. 32 и 80 мг/л.

4.2. Для оценки случайной составляющей погрешности результата измерения с учетом указанных вариантов проводят статистическую обработку результатов наблюдений (определений) по схеме, приведенной на рисунке.

При статистической обработке исходных данных предполагают, что результаты наблюдений (определений) не противоречат гипотезе о нормальном распределении и взаимно независимы.

- 4.3. Определение доверительных границ случайной составляющей погрешности.
 - 4.3.1. По каждой пробе:
- 4.3.1.1. Рассчитывают среднее арифметическое результатов параллельных определений $\overline{\mathbf{X}}_{\mathbf{i}}$ и производят оценку среднего квадратического отклонения результата наблюдения (определения) $\mathbf{s}_{\mathbf{i}}$:

$$\overline{X}_{i} = \frac{\sum_{j=1}^{n} X_{i,j}}{n}; S_{i} = \sqrt{\frac{\sum_{j=1}^{n} (X_{i,j} - \overline{X}_{i})^{2}}{n-1}}.$$

4.3.I.2. Исключают анормальные результаты наблюдений (определений) по β -критерию в соответствии с ГОСТ II.002-73. Находят максимальный (минимальный) результат определения и вычисляют стношение

$$\frac{\left|X_{ij \max(\min)} - \overline{X}_{i}\right|}{S_{i}},$$

ИСХОДНЫЕ ДАННЫЕ

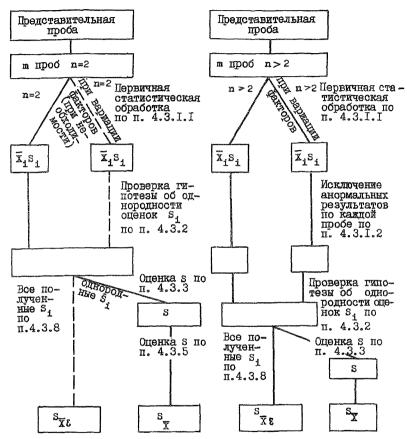


Схема статистической обработки экспериментальных данных

2. Основные условные обозначения приведены в приложении 2.

Примечания: І. Под вариацией факторов следует понимать различные партии продукта, комплекты средств измерений, значения внешних влияющих физических величин и т.п.

сравнивают его с табулированными значениями β -критерия при соответствующем уровне значимости по приложению 4 настоящих МУ. В случае, если расчетное отношение превышает табулированное: при n=3 результаты определений данной пробы исключают из таблицы экспериментальных данных, при n>3 исключают максимальный (минимальный) результат определения и проводят проверку по оставшимся результатам в соответствии с вышеизложенным.

4.3.І.3. В случае исключения анормальных результатов необкодимо вновь рассчитать значения \overline{x} , и S, по формулам

$$\overline{\mathbf{x}}_{\mathbf{i}} = \frac{\sum_{\mathbf{j}=1}^{n_{\mathbf{i}}} \mathbf{x}_{\mathbf{i},\mathbf{j}}}{n_{\mathbf{i}}}; \quad \mathbf{s}_{\mathbf{i}} = \sqrt{\frac{\sum_{\mathbf{j}=1}^{n} (\mathbf{x}_{\mathbf{i},\mathbf{j}} - \overline{\mathbf{x}}_{\mathbf{i}})^{2}}{n_{\mathbf{i}} - 1}},$$

где n_i — число наблюдений (определений) после исключения анормальных результатов по п. 4.3.1.2.

- 4.3.2. Проводят проверку однородности оценок \mathbf{s}_{1}^{2} по всему массиву экспериментальных данных, оставшихся после исключения анормальных результатов наблюдений (определений).
- 4.3.2.1. В случае равного числа наблюдений (определений) по каждой пробе гипотезу об однородности дисперсий проверяют по критерию Кохрена.

Вичисляют отношение

$$\varepsilon_{\text{max}} = \frac{s_{i \text{ max}}^{2}}{\sum_{i=1}^{m} s_{i}^{2}},$$

где m=VW; V — число партий; W — число проб в каждой партии. Рассчитанное g_{max} сравнивают с табулированным значением $g_{Taбл}$ (приложение 5).

Если $g_{\text{max}} < g_{\text{табл}}$ для уровня значимости $\alpha = 0,05$, то гипотеза принимается.

Если $g_{\max} < g_{\text{табл}}$ при $\alpha = 0,0$ I и $g_{\max} > g_{\text{табл}}$ при $\alpha = 0,0$ 5, то гипотеза сомнительна. В этом случае либо идут на риск и принимают гипотезу, либо дополнительно набирают экспериментальные данные. При $g_{\max} > g_{\text{табл}}$ с $\alpha = 0,0$ I гипотеза отвергается и соответствующие значения результатов наблюдений (определений), по 14

которым определено $S_{1\ max}^2$, исключают, а оставшиеся данные вновь проверяют на однородность.

4.3.2.2. При разном числе наблюдений (определений) по каждой пробе однородность дисперсий проверяется по критериям Филера или Бартлета по приложению 6.

После проверки однородности дисперсий по п. 4.3.2.1 и исключения анормальных результатов по п. 4.3.1.2 гипотеза о принациожности. экспериментальных данных нормальному распредедению может быть проверена по ГОСТ 8.207-76.

4.3.3. По числу оставшихся после проверок s_1^2 рассчитывают средневзвешенную оценку среднего квадратического отклонения 5:

при равном числе наблюшений (определений) во всех пробах по

формуле

$$S = \sqrt{\frac{\sum_{i=1}^{m} S_i^2}{\sum_{i=1}^{m} s_i}},$$

где $\mathbf{m}' = \mathbf{W}'\mathbf{V}; \; \mathbf{W}' - \mathbf{v}$ нсло проб в каждой партив, оставшихся после исключения $\mathbf{S}_{1\ \mathrm{max}}^2$ по п. 4.3.2.I;

при разном числе наблюдений (определений) в пробах по фор-MYJIG

$$S = \sqrt{\frac{\sum_{i=1}^{m'} f_{i} S_{i}^{2}}{\sum_{i=1}^{m'} f_{i}}} = \sqrt{\frac{\sum_{i=1}^{m'} (n_{i}-1) S_{i}^{2}}{N'-m'}},$$

ГДӨ f; = (n;-1);

 s_i^2 — дисперсия і той пробы; n' — суммарное количество определений, оставшихся HOCKS исключения по п. 4.3.2.1.

4.3.4. При широком диапазоне измерения в результате обработки статистических данных, полученных на границах каждого из поддиапазонов, по п. 4.3.3 рассчитывают s_{c1}^2 , s_{c2}^2 , s_{c3}^2 ,..., s_{cB}^2 . Проверив их однородность по критериям Кохрена, Фишера или

Бартлета по пп. 4.3.2.1, 4.3.2.2, в случае однородности диспер-

сий $s_{e\,q}^2$ рассчитывают s_e по формулам п. 4.3.3 с учетом того, что в данном случае **m** и **m** - общее число значений измеряемой величины.

В случае неоднородности дисперсий случайную погрешность измерения следует вичислять по поддиапазонам или как функцио-нальную зависимость с соблюдением требований п. 3.2.

4.3.5. Оценку среднего квадратического отклонения результата измерения с учетом числа наблюдений (определений), из которых рассчитывается результат измерения (анализа) по методике, находят по формуле

$$S_{\overline{X}} = \frac{S}{\sqrt{n_a}},$$

где n_a - число наблюдений (параллельных определений), из которых рассчитывается результат анализа.

4.3.6. При статистической обработке экспериментальных данных, полученных на разных пробах, убедившись в однородности дисперсий и незначительном различии средних значений, находят средневзвешенное значение результата измерения (анализа) или общее среднее арифметическое по всем пробам:

при равном числе парадлельных наблюдений (определений)

$$\overline{X} = \frac{\sum_{i=1}^{m'} \overline{X}_i}{\sum_{i=1}^{m} \overline{X}_i},$$

при разном числе парадлельных наблюдений (определений)

$$= \frac{1}{X} = \frac{1}{m} \cdot \sum_{i=1}^{m'} (\frac{1}{n_i} \cdot \sum_{j=1}^{n_i} X_{ij}).$$

Для сравнения двух средних значений применяется t-критерий (п. 4.4.3 настоящих МУ).

Для сравнения нескольких средних значений применяется критерий Фишера $\mathbf{F}(\mathbf{f_1},\ \mathbf{f_2})$ при соответствующем уровне значимости α

(в данном случае принимается, что $f_1 = m'-1$, $f_2 = \sum_{i=1}^{m'} f_i$).

Находят средние значения \overline{x}_1 , \overline{x}_2 , \overline{x}_3 , ..., \overline{x}_m , с соответствующими дисперсиями s_1^2 , s_2^2 , s_3^2 , ..., s_m^2 , и числами степеней свободы по пробам f_1 , f_2 , f_3 , ..., f_m . Затем рассчитывают отношение $\frac{\overline{s}^2}{\overline{s}^2}$ и сравнивают его с табличным (приложение 6).

$$S_{0}^{2} = \frac{\sum_{i=1}^{m'} f_{i}S_{i}}{\sum_{\substack{i=1\\i=1}}^{m'} f_{i}} = \frac{\sum_{i=1}^{m'} (n_{i} - 1) S_{i}^{2}}{N' - m'},$$

$$\overline{S}^2 = \frac{1}{m'-1} \left[\sum_{i=1}^{m'} n_i (\overline{X}_i - \overline{\overline{X}})^2 \right].$$

При выполнении неравенства $F_H \leqslant \frac{\overline{S}^2}{S_0^2} \leqslant F_B$ средние арифметические значения каждой партии относятся к одной генеральной совскупности, при этом $F_B = F_{\text{TAGN}}$ (табл. I к приложению 6), $F_H = \frac{1}{F_{\text{model}}}$

Найденное средневзвещенное значение результата измерения (анализа) используют при вычислении S, $S_{\overline{\chi}}$, d, ϵ , 0 и Δ в относительной форме.

В случае невыполнения неравенства $\mathbf{F}_{\mathrm{H}} \leqslant \frac{\overline{\mathbf{S}}^2}{\mathbf{S}_{\mathrm{S}}^2} \leqslant \mathbf{F}_{\mathrm{B}}$ из массива экспериментальных данных выбирают наименьшее среднее арифметическое данного значения измеряемой величини $\overline{\mathbf{X}}_{\mathbf{1}}$ для вычисления $\mathbf{S}, \mathbf{S}_{\overline{\mathbf{Y}}}, \mathbf{d}, \mathbf{E}, \mathbf{e}, \Delta$ в относительной форме.

⁴4.3.7. Значение допускаемого расхождения между результата ми параллельных определений d рассчитывают по формуле

$$d = kS$$
.

где k — значение стьюдентизированного размаха при доверительной вероятности P=0,95, числе степеней свободы $\mathbf{f}=\sum_{\mathbf{i}=1}^{\mathbf{m'}}\mathbf{f_i}=\sum_{\mathbf{i}=1}^{\mathbf{m'}}(\mathbf{n_i}-1)=\mathbf{N'}-\mathbf{m'}$ и числе парадлельных определений $\mathbf{n_a}$ (приложение 8).

4.3.8. Доверительные границы случайной составляющей грешности результата измерения є рассчитывают по формуле

ПО-

$$\xi = tS_{\overline{\chi}\epsilon}$$

где t - параметр распределения Стыодента при доверительной вероятности P = 0.95 и соответствующем числе степеней свободы

$$f = \sum_{i=1}^{m} f_i = \sum_{i=1}^{m} (n_i - 1)$$

NUM f = N' - m (upu n > 2); f = N - m (upu n = 2) (определяется по приложению 7).

При этом в случае равного числа наблюдений (определений) в пробах

$$S_{\overline{X}} = \sqrt{\frac{\sum_{i=1}^{m} S_i^2}{mn_a}},$$

в случае разного числа наслюдений (определений) в пробах

$$S_{\overline{X}} = \sqrt{\frac{\sum_{i=1}^{m} (n_i - 1)S_1^2}{\sum_{i=1}^{m} f_i n_a}},$$

для n = 2

$$S_{\overline{X}\varepsilon} = \sqrt{\frac{\sum_{i=1}^{m} (n_i - 1)S_i^2}{(N - m)n_a}},$$

для n > 2, если исключались анормальные результаты по n.4.3.I.2,

$$S_{\overline{X}\hat{\xi}} = \sqrt{\frac{\sum\limits_{\underline{i}=1}^{m} (n_{\underline{i}} - 1)S_{\underline{i}}^{2}}{(N' - m)n_{\underline{a}}}}.$$

Если по п. 4.3.2 S_1^2 max не исключались, то $S_{\overline{X}} \epsilon = S_{\overline{X}}$.

- 4.4. Определение доверительных границ систематической составляющей погрешности.
- 4.4.І. Неисключенная систематическая погрешность результата измерения образуется из составляющих, в качестве которых мо-

гут быть неисключенные систематические погрешности: метода, средств измерений, экспериментатора и возникшие из других источников (неисключенные систематические погрешности, обусловленные влиянием внешних воздействующих физических величин и мешающих компонентов).

4.4.2. Разработчик в процессе составления или усовершенствования методики уменьшает систематические погрешности, природа которых известна, путем введения соответствующих поправок к по-казаниям средств измерений, применяемых при анализе, или соответствующих коэффициентов (например, градуировочных).

Наиболее существенные методические погрещности, природа которых известна, должны быть оценены в процессе разработки методики путем изучения и уточнения условий проведения реакций (выбора более приемлемого реактива и его оптимальной концентрации, уточнения влияния температуры, рН, времени и т.п.).

При разработке методики систематические погрешности неизвестной природы сводят к минимуму с помощью приема релятивиза— ции, который предполагает проведение анализа относительно другого объекта. При этом результат анализа определяют по разности так, что систематические погрешности анализа взаимно вычитаются. Релятивизация достигается для:

инструментальной погрешности - установлением индивидуальной градуировочной зависимости (концентрация - выходной сигнал) для каждого экземпляра средства измерения применяемого типа;

погрешности мер вместимости - применением одних и тех же экземпляров мерной посуды при подготовке к анализу (приготов - лении растворов, установке титра и т.д.) и проведении самого анализа:

"реактивной" погрешности — введением в процедуру анализа сравнения результатов измерений на анализируемой и "холостой" пробах.

4.4.3. Наличие субъективной систематической погрешности может быть оценено статистически при разработке методики после применения приема рандомизации, когда эти систематические погрешности представляются в виде случайных величин и учитываются при обработке данных по пункту 4.3 настоящих МУ.

Чтобы достигнуть этого, измерения выполняются несколькими

лаборантами по одной методике в одинаковых условиях (при этом одновременно проверяется полнота изложения процедуры анализа).

При проведении рандомизации и нахождении доверительных границ систематической составляющей погрешности субъективная систематическая погрешность не учитывается.

4.4.4. Систематическая погрешность может быть выявлена и оценена одним из следующих методов:

применением станцартных образцов состава (СО), аттестованных в установленном порядке;

использованием приема удвоения в сочетании с методом добавок:

сравнением результатов измерений состава анализируемой пробы, полученных по двум методикам, если выполняется условие п. 4.4.4.3.

Неисключенная систематическая погрешность может быть выявлена и оценена расчетным методом, путем постадийного выявления ее составляющих.

4.4.4. Стандартный образец, используемый для оценки систематической погрешности, должен соответствовать требованиям ГОСТ 8.315-78 и ГОСТ 8.316-78. Погрешность определения аттестованной характеристики стандартного образца не должна превышать 1/3 указанного в ТЗ предела допускаемого значения суммарной погрешности аттестуемой методики анализа.

Анализируют стандартный образец по аттестуемой методике не менее и раз. Результатом анализа является среднее арифметическое и определений $(\overline{\mathbf{x}})$.

Затем находят среднее квадратическое отклонение результата

анализа
$$S(\overline{x}) = \sqrt{\frac{\sum\limits_{i=1}^{N} (x_i - \overline{x})^2}{N(N-1)}}$$
 при $N \ge 5$. Определяют отноще-

ние $\frac{\theta}{S(\overline{X})}$. Если $\frac{\theta}{S(\overline{X})} > 8$, число определений (N=5) достаточно. При $\frac{\theta}{S(\overline{X})} < 8$ число определений следует увеличивать до тех пор, пока это соотношение не будет больше или равно 8. Максимальное число определений (не более 30) может быть ограничено

трудоемкостью выполнения анализа. Если число определений превисит N_{\max} , следует оценить предели неисключенной систематичес – кой составляющей погрешности постадийно по п. 4.4.4.3 настоящих му.

Разность между результатом анализа и аттестованной характеристикой стандартного образда (\mathbb{X}_{g}) является систематической погрешностью методики анализа (θ_{τ}).

4.4.4.2. При отсутствии СО и при линейной зависимости между результатом анализа и действительным значением определяемой концентрации оценка систематической погрешности $\Theta_{\mathbf{X}}$ может бить проведена приемом удвоения в сочетании с методом добавок, позволяющим определить аддитивную $\Theta_{\mathbf{A}} = \mathbf{a}$ и мультипликативную $\Theta_{\mathbf{B}} = (b-1)\mathbf{X}_{\mathbf{S}}$ погрешность при данной концентрации определяемого компонента.

Аццитирная систематическая погрешность - погрешность, не зависящая от концентрации определяемого компонента.

Мультипликативная систематическая погрешность — погрешность, зависящая от концентрации определяемого компонента. При этом зависимость между результатом анализа и определяемой концентрацией выражается формулой $\overline{x}_n = a + b x_g$, где x_g — действительное значение концентрации компонента.

Для определения аддитивной систематической погрешности применяют прием удвоения: сначала проводят многократное (не менее N) N₁ определение концентрации $(\overline{\mathbf{x}}_1)$ в пробе, а затем многократное (не менее N) N₂ определение в пробе удвоенной концентрации $(\overline{\mathbf{x}}_2)$. Число определений N должно быть ограничено соответственно условиями п. 4.4.4.I.

Условия определения в обоих случаях должны быть идентичны. Таким образом:

$$\overline{X}_1 = a + bX_g$$
,
 $\overline{X}_2 = a + 2bX_g$,
TOFAA $a = \overline{X}_2 - 2\overline{X}_1$.

В случае уменьшения концентрации в 2 раза

$$a = 2\overline{X}_2 - \overline{X}_1.$$

Затем проверяют, значимо ли отличается а от нуля по t-кри-

терию при соответствующем уровне значимости и f = N₁ + N₂ - 2. Для этого частное от деления $\frac{a}{S_a}$ сравнивают с табулированным значением t и при выполнении неравенства $\frac{a}{S_a} \leqslant t_{\text{табл}}$ аддитивная систематическая погрешность незначима. S_a внчисляется через дисперсии величин X₁ и X₂ по формуле

$$s_{a} = \sqrt{\frac{s_{1}^{2}(2X_{1})}{N_{1}} + \frac{s_{2}^{2}(X_{2})}{N_{2}}} = \sqrt{\frac{4s_{1}^{2}(X_{1})}{N_{1}} + \frac{s_{2}^{2}(X_{2})}{N_{2}}}$$

или
$$S_{a} = \sqrt{\frac{4S_{1}^{2}(X_{1}) + S_{2}^{2}(X_{2})}{N}}$$
 (при $N_{1} = N_{2} = N$).

Для оценки мультипликативной систематической погрешности в анализируемую пробу с концентрацией компонента $\overline{\mathbf{x}}_1$ ($\overline{\mathbf{x}}_2$), определенной по методике, вводят с помощью средств дозирования с нормированным пределом допускаемых значений погрешности добавку с этого же компонента и по многократным определениям (не менее N), число которых ограничивается соответственно условием п.4.4.4.1, вновь находят результат анализа $\overline{\mathbf{x}}_3$. Затем сравнивают $\overline{\mathbf{x}}_3$ с $\overline{\mathbf{x}}_1$ ($\overline{\mathbf{x}}_2$) и находят угловой коэффициент ь по формулам:

$$\overline{X}_1 = a + bX_g,$$

$$\overline{X}_3 = a + b(X_g + c),$$

$$b = \overline{X}_3 - \overline{X}_1.$$

При этом погрешность приготовления добавки, в том числе и удвоения, должна быть в три раза меньше предполагаемой систематической погрешности, выявляемой данным методом.

Затем проверяют, значительно ли в отличается от единици: при выполнении неравенства $\frac{b-1}{S_b} \leq t$ табл мультипликативная погрещность незначима. t табл определяется при соответствующем уровне значимости и $f = N_1 + N_3 - 2$, а S_b вычисляется по формуле

значимости и
$$f = N_1 + N_3 - 2$$
,
 $S_b = \frac{1}{c} \sqrt{\frac{S_1^2(X_1)}{N_1} + \frac{S_2^2(X_3)}{N_3}}$.

Абсолютное значение мультипликативной составляющей погрешности определяют по формуле

$$e_b = (b - 1)X_g = (\frac{\overline{X}_3 - \overline{X}_1}{c} - 1)X_g.$$

Мультипликативную погрешность необходимо оценить во всем диапазоне измеряемой величины (не менее трех значений).

Абсолютное значение систематической составляющей погрешности (при данной концентрации определяемого компонента) θ_{χ} определяют по формуле

$$\theta_{x} = \theta_{a} + \theta_{b}$$
.

При значительном отличии а от нуля и в от единицы θ_{X} должна онть исключена путем введения поправки к результату анализа.

Примечание. Следует иметь в виду, что поправка определяется по СО или методом добавок перед проведением анализа.

При невозможности применения приема удвоения (узкий диапазон определяемых концентраций, нелинейность градуировочной зависимости и т.п.) допускается определение только мультипликативной систематической погрешности методом добавок.

4.4.4.3. Оценка систематической погрешности методики путем сравнения результатов анализа двух методик.

При сравнении результатов анализа, полученных по двум методикам, контрольная методика должна быть метрологически аттестована.

Обрабативают экспериментальные данные, полученные по двум методикам, находят соответствующие дисперсии $\frac{S_{1}^{2}}{Z_{1}}$, S_{2}^{2} и средние арифметические результаты анализов \overline{X}_{1} и \overline{X}_{2} . При этом количество определений N = n_{a} и должно быть не менее 30. Проверяют однородность дисперсий по п. 4.3.2 настоящих МУ и только в случае однородности дисперсий сравнивают значения \overline{X}_{1} и \overline{X}_{2} по t-критерию:

$$t_{\text{pacy}} = \frac{|\overline{\overline{x}}_1 - \overline{\overline{x}}_2|}{\overline{\overline{s}}_{\overline{X}}} \sqrt{\frac{\overline{N_1'} \ \overline{N_2'}}{\overline{N_1'} + \overline{N_2'}}} \leq t_{\text{TaOM}}(P, f),$$

где $f = N_1' + N_2' - 2', N_1'$ и N_2' – общее количество определений со-

ответственно по I-й и 2-й методикам ($N_1' = \sum_{i=1}^{m_1} n_{1i}; N_2' = \sum_{i=1}^{m_2} n_{2i}$);

 $\frac{\mathbf{t}}{\mathbf{s}}$ — параметр распределения Стъюдента (приложение 7); $\overline{\mathbf{s}}_{\overline{\mathbf{y}}}$ — средневзвещенное СКО, определяемое по формуле

$$\frac{1}{S_{X}} = \begin{cases}
\sum_{P=1}^{L=2} f_{P1} S_{PX}^{2} \\
\sum_{P=1}^{L=2} f_{P1} S_{PX}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} f_{1i} S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} f_{2i} S_{2X}^{2} \\
\sum_{i=1}^{m_{1}^{\prime}} f_{1i} + \sum_{i=1}^{m_{2}^{\prime}} f_{2i}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{1}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases}
\sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}^{2}
\end{cases} = \begin{cases} \sum_{i=1}^{m_{1}^{\prime}} (n_{1i} - 1) S_{1X}^{2} + \sum_{i=1}^{m_{2}^{\prime}} (n_{2i} - 1) S_{2X}$$

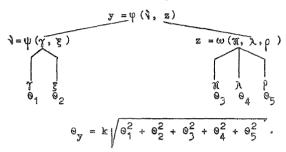
Если $t_{\text{расч}} \leqslant t_{\text{табл}}$, то результати анализов являются равноточными и за систематическую погрешность аттестуемой методики анализа может бить принята погрешность контрольной методики.

Если $t_{\rm pacq} > t_{\rm Tada}$, то для оценки систематической погрешности необходимо, чтобы систематическая погрешность контрольной методики не превышала I/3 указанного в T3 предела допускаемого значения суммарной погрешности аттестуемой методики. В этом случае систематическую погрешность внчисляют по формуле

$$\Theta = |\overline{x} - \overline{x}_{K}|,$$

где $\bar{\bar{x}}$ и $\bar{\bar{x}}_{\rm K}$ — результат измерения соответственно по аттестуемой и контрольной методике.

Результаты статистической обработки данных при сопоставлении двух методик представляют в таблице (табл. 3).


Таблина 3

Определяемый компонент (измеряемая характери- стика)	Аттестуемая методика	Контрольная методика

4.4.4.4. Для оценки систематической погрешности расчетным путем проводят поэтапное исследование возможных источников систематических погрешностей после выявления погрешности по по 1.4.4.4.1 и 4.4.4.2.

Погрешность результата измерений (анализа) обусловливается целым рядом причин (например, при определении концентрации
она может быть вызвана погрешностью определения масси, погрешностью объема, дополнительными погрешностями, вызванными воздействием внешних физических величин и другими источниками).

На схэме в общем виде представлен пример зависимости результата измерения у от воздействия внутренних и внешних факторов, вызывающих систематические погрешности.

Граници неисключенной систематической погрешности результата измерения (анализа) определяют по формуле

$$\Theta = k \sqrt{\frac{m_c}{\sum_{r=1}^{\infty} \Theta_r^2}},$$

где k - коэффициент, определяемий принятой доверительной вероятностью (значение коэффициента k определяют по гост 8.207-76);

 ${\mathfrak d}_{_{
m T}}$ — составляющая неисключенной систематической погрешности; ${\mathfrak m}_{_{
m C}}$ — количество источников, вызывающих систематические погрешности.

Пример расчета дан в приложениях 9 и IO.

4.5. Определение доверительных границ суммарной погрешности результата анализа.

Для расчета суммарной погрешности определяют отношение неисключенной систематической и случайной составляющих согласно ГОСТ 8.207-76. Если $\frac{9}{s_{\overline{\chi}\epsilon}}$ <0,8, то чеисключенными систематическими погрешностями пренебрегают. Тогда Δ = ϵ .

Если $\frac{\Theta}{S_{\overline{\chi}\epsilon}} > 8$, то пренебрегают случайными погрешностями. Тогла $\Delta = \Theta$.

Если $8 > \frac{0}{S_{\overline{X}}} > 0,8$, то границу суммарной погрешности результата анализа находят путем построения композиций распределения случайных и неисключенных систематических погрешностей, рассматриваемых как случайные величины, по формуле

$$\Delta = K S_{\tau}$$

- где K коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей:
 - S_{Σ} оценка суммарного среднего квадратического отклонения результата анализа, вичисляемая по формуле

$$S_{\Sigma} = \sqrt{\frac{\sum_{r=1}^{m} e^{2}_{r}}{\frac{r=1}{3} + S_{\Xi}^{2}}}.$$

Коэффициент к вычисляют по формуле

$$K = \frac{\varepsilon + \Theta}{\frac{\sum_{x \in \mathcal{X}} \frac{m_{c}}{\sum_{x \in \mathcal{X}} \frac{\Theta^{2}}{x}}}{\sum_{x \in \mathcal{X}} \frac{e^{-2}}{3}}}$$

- где є доверительние граници случайной погрешности;
 - доверительные границы неисключенной систематической пограшности результата анализа.
- 4.6. В результате выполнения требований пп. 4.1-4.5 получают:

для узкого диапазона измерений по одному значению Δ и d, для широкого диапазона измерений — ряд значений Δ и d, которне необходимо проанализировать с целью выбора формы представления показателей точности измерений в MBИ:

при отсутствии функциональной зависимости между показателями точности и измеряемой величиной - по п. 3.1,

при наличии функциональной зависимости – по п. 3.2 настоя— ших MV.

4.7. Числовые значения показателей точности измерений должны быть округлены в соответствии с приложением II.

Приложение I Основние термини и определения

Термин	Определение					
Измерение	Нахождение значения физической величини опыт- ным путем с помощью специальных техничес- ких средств					
Результат измере- ния	Значение величины, найденное путем ее из-					
Метод измерения	Совокупность приемов использования принци- пов и средств измерений					
Наблюдение	Экспериментальная операция, выполняемая в процессе измерений, в результате которой получают одно из группы значений величини,подлежащих совместной обработке для получения результата измерения. Примечания и мерения. Примечания и мерения и получают измерения с однократными и многократными наблюдениями, при однократном измерении термин "наслюдение" не используется					
Результат наблю- дения Анализ вещества	Значение величины, полученной при отдельном наблюдении Получение опитным путем данных о химическом составе вещества					
Результат анализа	Результат экспериментального измерения кон- центраций химических элементов или их форм в анализируемом веществе с указанием погреш- ности, выраженной в виде границ доверитель— ного интервала					

	Thorameura in the state of the
Термин	омнецедело
Метод анализа	Краткое определение приемов и принципов, поло- женных в основу анализа вещества (титриметри- ческий, экстракционно-титриметрический и др.)
Методика выпол-	Подробное описание всех условий и операций из-
йинодемси кинон	мерений (анализа), устанавливающее требования
(анализа)	к последовательности проведения операций, сред-
	ствам измерения (реактивам), обработке резуль-
	татов наблодений (определений) для получения
	результатов измерения с нормируемыми показа-
	телями точности
Определение	Однократное проведение всей последовательности
	операций, предусмотренных методикой анализа.
	Примечание. Термин "наблюдение" (ГОСТ 16263-70) по смыслу совпадает с термином "определение"
Параллельные оп-	Проведение нескольких определений для одной
ределения	пробы в одинаковых условиях (одним исполните-
	лем, практически в одно время, на одном комп-
	лекте средств измерений и реактивов, в одной
	лаборатории)
Погрешность изме- рения (анализа)	Отклонение результата измерения (анализа) от истинного значения измеряемой величины
Доверительные границы суммар- ной погрешности результата изме- рения (анализа)	Верхняя и нижняя границы интервала, накрываю- щего с заданной вероятностью результат изме- рения (анализа)
Сходимость изме- рений	Качество измерений (анализа, определений), от- ражающее олизость друг к другу результатов из- мерений (анализа, определений), выполняемых в одинаковых условиях
Воспроизводи- мость измерений	Качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, разными методами и средствами)
Воспроизводимость	Качество измерений, отражающее близость друг
методики	к другу результатов измерений, полученных

Термин	емнеледедпО
	одним методом в различных условиях (в раз-
	ное время, в различних лабораториях, разни-
	ми средствами и реактивами)
Действительное	Значение физической величины, найденное экс-
значение физичес-	периментальным путем и настолько прибликаю-
кой воличины	щееся к истинному значению, что может быть
	использовано вместо него
Систематическая	Составляющая погрешности измерения, остаю-
погрешность изме-	щаяся постоянной или закономерно изменяющая-
рения	ся при повторных измерениях одной и той же
	величины
Случайная погреш-	Составляющая погрешности измерения, изменяю-
ность измерения	щаяся случайным образом при повторных изме-
	рениях одной и той же величины
представительная	часть анализируемого материала, полностью со-
проба	ответствующая химическому составу анализи-
_	руемого продукта
Допускаемое рас-	Количественная характеристика сходимости,
хождение между па-	определяемая как максимально допускаемая
раллельными опре-	разность между наибольшим и наименьшим зна-
NMRNH9L9L	чениями результатов парадлельных определе
	ний. Устанавливается как регламентирования
	верхняя доверительная граница размаха ре-
Honmes Hongramo	зультатов цараллельных определений Паспортизованное и регламентированное ТУ
Партия продукта, предназначенная	количество продукта
для формирования	wornaciae upodywia
средней пробы	
Среднее квадрати-	Выборочное значение среднего квадратическо-
ческое отклонение	го отклонения, полученное по эксперименталь-
наблюдения (опре-	ным данным
деления)	
Мещающие компо-	Составляющая часть анализируемого продукта,
ненты	влияющая на результат анализа
	20

Основные условные обозначения

- n число определений в каждой пробе;
- п. число определений в 1-той пробе, оставшихся после исключения анормальных результатов наблюдений (определений);
- число проб в одной партии;
- У число партий;
- m общее число проб, m = WV;
- и суммарное количество наблюдений;
- n_a число определений, из которых рассчитывается результат анализа;
- х, результат отдельного наблюдения (определения);
- хі среднее арифметическое результатов наблюдений (определений) в каждой пробе;
- 🖫 среднее арифметическое всех определений (наблюдений);
- S₁ оценка среднего квапратического отклонения результата определения (наслюдения) для 1-той пробы;
- средневзвешенная оценка среднего квадратического отклонения, найденная по всем пробам;
- s_c средневзвещенная оценка среднего квадратического отклонения при данном значении измеряемой величини (например, концентрации и т.п.);
- $\frac{S}{X}$ среднее квадратическое отклонение результата измерения при панном числе наблюдений (парадлельных определений):
- допускаемое расхождение между параллельными определениями (наолюдениями);
- Р доверительная вероятность;
- доверительная граница случайной составляющей погрешности результата измерения;
- доверительная граница неисключенной систематической погрешности результата измерения;
- Δ доверительная граница суммарной погрешности результата измерения;
- f число степеней свободы для m проб;
- L число методик:

- f_i число степеней свободы для i-той пробы, где f_i = n_i 1;
- параметр распределения Стыщента при соответствующем уровне значимости;
- k значение стьюдентизированного размаха для доверительной вероятности P = 0.95;
- ф. уровень значимости;
- ј индекс числа параллельних определений в каждой пробе (от I до n₄);
- i индекс пробы (от I до W);
- 1 индекс партии (от I до V);
- р индекс методики (от I до L);
- ь число значений измеряемой величины в диапазоне измерений;
- $\mathbf{m}_{\mathbf{C}}$ количество источников, вызывающих систематические погрешности;
- r индекс источника неисключенной систематической погрешности;
- q индекс числового значения измеряемой величины (от I до b);
- т' общее число проб после проверки дисперсий на однородность;
- " число проб в одной партии после проверки дисперсий на однородность;
- м' суммарное количество наблюдений (определений) после исключения анормальных результатов наблюдений (определений) и проверки дисперсий на однородность

Ko- JW- VB- CTBO HAD- TWN V=2	KO- JM- THO- CTBO UPOO W=8	Коли- чест- во оп- реде- лений по пробе n=3	Ре- зуль- тат опре- деле- ния	Cpen- Hee Apmp- Mern- Vec- Roe 3HA- Vehwe	него	Квадрат отклоне- ния ре- зультата опреде- ления	ноний	Дисперсия по пробе
ин- декс пар- тии 1	ин- декс про- бн i	ин- декс onpe- деле- ния j	X _{ij}	mpode	npode Δ _{X_{ij}}	Δx ² ij	$\sum_{j=1}^{5} \Delta x_{ij}^{2}$	$\mathbf{s}_{i}^{2} = \frac{\sum_{j=1}^{5} \Delta \mathbf{x}_{i,j}^{2}}{3-1}$
I	2	3	4	5	6	7	8	9
I	I	I 2 3	0,009 0,0II 0,007	0,009		- 0,000004 0,000004	0,000008	0,000004
I	2	I 2 3	0,0I0 0,008 0,009	0,009		0,00000I 0,00000I -	0,000002	0,000001
I	3	I 2 3	0,006 0,009 0,007	0,007			0,000005	0,0000025
I	4	I 2 3	0,007 0,008 0,007	0,007	0,000,0 I00,0- 000,0	0,000001	0,000001	0,0000005
I	5	I 2 3	0,006 0,007 0,006	0,006	0,000 -0,001 0,000	0,000001	0,000001	0,0000005
I	6	I 2 3	0,0I0 0,008 0,008	0,009	+0,001	100000,0 100000,0 100000,0	0,000003	0,0000015

Среднее ариф- метическое значение по всем пробам и партиям ———————————————————————————————————	Отклоне- ние от среднего арибме- тическо- го зна- чения ΔX = [\ \bar{X}_1 - \bar{X}_1 \]			Допускае мое рас- кожцение между парад- лельными опреде- лениями d ≈ kS
IO	II !	Ι2	13	I4

+0,00I	
+0,00I	
-0,00I	
-0,00I	
-0,002	
+O,00I	

Продолжение приложения 3

I	2	3	4 5	[6]7	8	9	•	IO :	l II	! I2	I3		I4
I	7	I 2 3	0,009 0,006 0,008 0,008	-0,00I 0,00000I +0,002 0,000004 0,000 -		0,0000025		0,008	0,000		ε= 0.0015·100 = 0,008 = 18,07 %	:	
I	8	I 2 3	0,0II 0,0IO 0,0IO 0,008	-0,00I 0,00000I 0,000 - +0,002 0,000004		0,0000025	•		+0,002			ergy gymnowinit area ergy egystytytytyty	
2	I	I 2 3	0,0I0 0,0II 0,0I0 0,009	0,000 -0,00I 0,00000I +0,00I 0,00000I	0,000002	0,000001			+0,002			A STATE OF THE STA	
2	2	I 2 3	0,006 0,007 0,007 0,008	+0,00I 0,00000I 0,000 - -0,00I 0,00000I		0,000001			-0,001				
2	3	I 2 3	0,008 0,010 0,008 0,007	0,000 - -0,002 0,000004 +0,00I 0,00000I	0,000005	0,0000025			0,000			Ower Personal Strategies and Strategies Stra	
2	4	3 3	0,0I0 0,007 0,008 0,008	-0,002 0,000004 +0,00I 0,00000I 0,000 -		0,0000025		acts at the second seco	0,000		kutik sudikahi kisusak sudusudusudusudusudusudusudus ilikus kanada kanada kanada kisusak ilikus kisusak kisusa K	Oliveridi STANETIONET INCOMENTATION (CONTRACTION CONTRACTION CONTR	
2	5	I 2 3	0,007 0,006 0,007 0,008	0,000 - +0,00I 0,00000I -0,00I 0,00000I	0,00000	0,000001		***	-0,00I			College (SECC) come directions call and all come directions are all come directions and all come directions are all come directions and all come directions and all come directions and all come directions and all come directions are all come directions are all come directions and all come directions are all come direc	CHACLES AND COMMON COMM
2	6	I 2 3	0,006 0,008 0,007 0,008	+0,00I 0,00000I -0,00I 0,00000I -0,00I 0,00000I		0,0000015			-0,00I	<u>aucaianegy a portuguido de describaci</u>		достояння в применя	SHALL
34			na ang ang ang ang ang ang ang ang ang a	<u></u>			•		econstitution and the contract of the contract			okanaga arawa	

Окончание приложения 3

IO	II	12	13	I4
	+0,002			
	-0, 00I			
Ton The Administration of the Control of the Contro			£= <u>1.96·0.0013</u>	

+0,002			
O, OOI			
ecution on an about 10 PP 00000 PC degrapment according to the second of	$S = \sqrt{\frac{0.000028}{16}} = 0.0013$	$\xi = \frac{1.96 \cdot 0.0013}{3}$ = 0.0015	d = 3,48 x x 0,0013 = = 0,0044

Ţ	2	1 з	14	5	! 6	. 7	8	9
2	7	1 2 3	0,0II 0,0I0 0,008		0,000	0,00000I 0,000004	0,000005	0,0000025
2	8	I 2 3	0,006 0,008 0,007		•		0,000002	0,000001

$$N = VWn = 2 \cdot 8 \cdot 3 = \Sigma = 0,129$$
 $\Sigma = 0,000028$

If римечания: І. При проверке по $\overline{\mathbf{n}}.$ 4.3.2 СКО $\mathbf{S}_{\mathbf{i}}$ оказались однородными. Анормальных результат OHSHEM результатов п. 4.3.1.2 нет. Предварительными исследованиями установлена незначимость воздействия вариации факторов. Поэтому $S_{\overline{\chi}} = S_{\overline{\chi}} \varepsilon^{\circ}$ 2. t-параметр распределения Стьюдента, равен I, 66 при

$$f = \sum_{i=1}^{m} f_i = m(n-1) = 2.8 \cdot (3-1) = 32.$$

3. к - значение стъюдентизированного размаха, равно 3,48 при $f = \sum_{i=1}^{m} f_i = m(n-1) = 2 \cdot 8 \cdot (3-1) = 32 и n_a = 3.$

Значения β для числа наблюдений (парадлельных определений) α и уровня значимости $\alpha=0.05$ ($\alpha=1-P$)

n	β may $\alpha = 0.05$
3	I,I5
4	I,46
5	I,67
6	I,82
7	I,94
8	2,03
9	2,II
IO	2,18
II	2,23
I2	2,29
13	2, 33
14	2,37
I 5	2,41
16	2,44
I7	2,48
18	2,50
19	2,53
20	2,56

Значения \mathbf{g}_{max} для числа проб \mathbf{m} в зависимости от числа параллельных определений в каждой пробе при $\alpha=0,0$

	11							
m	2	3	4	5	6	7		
2	0,9999	0,9950	0,9794	0,9586	0,9373	0,9172		
3	0,9933	0,9423	0,883I	0,8335	0,7933	0,7606		
4	0,9676	0,8643	0,78I4	0,7212	0,676I	0,64I0		
5	0,9279	0,7885	0,6957	0,6329	0,5875	0,553I		
6	0,8828	0,7218	0,6258	0,5635	0,5195	0,4866		
7	0,8376	0,6644	0,5685	0,5080	0,4659	0,4347		
8	0,7945	0,6152	0,5209	0,4627	0,4226	0,3932		
9	0,7544	0,5727	0,4810	0,425I	0,3870	0,3592		
IO	0,7175	0,5358	0,4469	0,3934	0,3572	0,3308		
I2	0,6528	0,475I	0,39I9	0,3428	0,3099	0,286I		
I 5	0,5747	0,4069	0,3317	0,2882	0,2593	0,2386		
20	0,4799	0,3297	0,2654	0,2288	0,2048	0,1877		
24	0,4247	0,2871	0,2295	0,1970	0,1759	0,1608		
30	0,3632	0,2412	0,1913	0,1635	0,1454	0,1327		
40	0,2940	0,1915	0,1508	0,1281	0,II 35	0,1033		
60	0,2151	0,1371	0,1069	0,0902	0,0796	0,0722		
I20	O,I225	0,0759	0,0585	0,0489	0,0429	0,0387		
∞	0	0	0	0	0	0		

Значения е для числа проб в в зависимости от числа

10 2 3 5 7 4 6 2 0.9985 0,9750 0,9392 0,9057 0,8772 0,8534 3 9669 8709 7977 7457 707I 677I 9065 7679 684I 6287 4 5895 5598 5 0.8412 0,6838 0,598I 0,5440 0,5063 0,4783 7808 6I6I 532I 4803 6 4447 4184 7 727I 56I2 4800 4307 3974 3726 0,6798 8 0,5157 0,4377 0,3910 0,3595 0,3362 6385 9 4775 4027 3584 3286 3067 IO 6020 4450 3733 33II 3029 2823 **I**2 0,3924 0,5410 0,3264 0,2880 0,2624 0,2439 **I**5 4709 3346 2758 2419 2195 2034 20 3894 2705 2205 I92I I735 I602 24 0,3434 0,1656 0,2354 0,1907 0,1493 0,1374 30 2929 I980 I593 I377 I237 II37 40 2370 **I576** I259 I082 0968 0887 0,1131 60 0,1737 0,0895 0,0765 0,0682 0,0623

0495

0000

04I9

0000

037I

0000

0337

0000

параллельных определений в каждой пробе при $\alpha = 0.05$

n						
9	IO	II	IS	I3	I4	I 5
0,8I59	0,80I0	0,7880	0,734I	0,6602	0,58I3	0,5000
6333	6167	6025	5466	4748	403I	3333
5175	5017	4884	4366	3720	3 093	2500
0,4387	0.424I	0,4118	0,3645	0,3066	0,25I3	0,2000
3817	3682	3568	3135	2612	2119	I667
3384	3259	3154	2756	2278	I833	I 4 29
0,3043	0,2926	0,2829	0,2462	0,2022	0,1616	0,1250
2768	2659	2568	2226	I820	I446	IIII
254I	2439	2353	2032	I 65 5	1308	1000
0,2187	0,2098	0,2020	0,1737	0,1403	0,II00	0,0833
1815	I736	I67I	I429	II44	0889	0667
1422	I357	1303	80II	0879	0675	0500
0,1216	0,1160	0,1113	0,0942	0,0743	0,0567	0,0417
1002	0958	0921	0771	0604	0457	0333
0780	0745	0713	0595	0462	0347	0250
0,0552	0,0520	0,0497	0,04II	0,03I6	0,0234	0,0167
0292	0279	0266	0218	0165	0120	0083
0000	0000	0000	0000	0000	0000	0000
	9 0,8159 6333 5175 0,4387 3817 3384 0,3043 2768 2541 0,2187 1815 1422 0,1216 1002 0780 0,0552 0292	9 I0 0,8159 0,8010 6333 6167 5175 5017 0,4387 0,4241 3817 3682 3384 3259 0,3043 0,2926 2768 2659 2541 2439 0,2187 0,2098 1815 1736 1422 1357 0,1216 0,1160 1002 0958 0780 0745 0,0552 0,0520 0292 0279	9 IO II 0,8159 0,8010 0,7880 6333 6167 6025 5175 5017 4884 0,4387 0,424I 0,4118 3817 3682 3568 3384 3259 3154 0,3043 0,2926 0,2829 2768 2659 2568 254I 2439 2353 0,2187 0,2098 0,2020 1815 1736 167I 1422 1357 1303 0,1216 0,1160 0,1113 1002 0958 092I 0780 0745 0713 0,0552 0,0520 0,0497 0292 0279 0266	9 10 II I2 0,8159 0,8010 0,7880 0,7341 6333 6167 6025 5466 5175 5017 4884 4366 0,4387 0,424I 0,4118 0,3645 3817 3682 3568 3135 3384 3259 3154 2756 0,3043 0,2926 0,2829 0,2462 2768 2659 2568 2226 2541 2439 2353 2032 0,2187 0,2098 0,2020 0,1737 1815 1736 1671 1429 1422 1357 1303 1108 0,1216 0,1160 0,1113 0,0942 1002 0958 0921 0771 0780 0745 0713 0595 0,0552 0,0497 0,0411 0292 0266 0218	9 10 11 12 13 0,8159 0,8010 0,7880 0,7341 0,6602 6333 6167 6025 5466 4748 5175 5017 4884 4366 3720 0,4387 0,4241 0,4118 0,3645 0,3066 3817 3682 3568 3135 2612 3384 3259 3154 2756 2278 0,3043 0,2926 0,2829 0,2462 0,2022 2768 2659 2568 2226 1820 2541 2439 2353 2032 1655 0,2187 0,2098 0,2020 0,1737 0,1403 1815 1736 1671 1429 1144 1422 1357 1303 1108 0879 0,1216 0,1160 0,1113 0,0942 0,0743 1002 0958 0921 0771 0604 0,0552 0,0497 0	9 IO II I2 I3 I4 0,8159 0,8010 0,7880 0,7341 0,6602 0,5813 6333 6167 6025 5466 4748 4031 5175 5017 4884 4366 3720 3093 0,4387 0,4241 0,4118 0,3645 0,3066 0,2513 3817 3682 3568 3135 2612 2119 3384 3259 3154 2756 2278 1833 0,3043 0,2926 0,2829 0,2462 0,2022 0,1616 2768 2659 2568 2226 1820 1446 2541 2439 2353 2032 1655 1308 0,2187 0,2098 0,2020 0,1737 0,1403 0,1100 1815 1736 1671 1429 1144 0889 0,1216 0,1160 0,1113 0,0942 0,0743 0,0567 0780

I20

ර

0998

0000

0632

0000

Проверка однородности дисперсий при разном числе определений в каждой пробе

I. Для каждой пробы находим среднее арийметическое результатов из $\mathbf{n_i}$ определений $\mathbf{x_i} = \frac{\sum\limits_{j=1}^{n_i} \mathbf{x_{ij}}}{\mathbf{n}}$ и оценку среднего квадра-

$$S_{i} = \sqrt{\frac{\sum_{j=1}^{n_{i}} (X_{ij} - \overline{X}_{i})^{2}}{n_{i} - 1}}$$

тического отклонения

и составляем таблицу, аналогичную приведенной в приложении 3.

2. Проверяем дисперсии s₁² на однородность:

в случае только двух групп определений - по критерию фи-

в случае любого количества групп - по критерию Бартлета или Кохрена.

2.І. <u>Критерий Фишера</u>. Два ряда наблюдений, имеющих соответственно f_1 и f_2 степеней свободы и дисперсии s_1^2 и s_2^2 , проверяются по критерию Фишера:

$$\mathbf{F}_{\mathfrak{D}\mathrm{KCH}} = \frac{\mathbf{s}_1^2}{\mathbf{s}_2^2},$$

причем в числителе всегда записывается большая из дисперсий, а в знаменателе — меньшая.

 ${f F}_{
m 2KCII},$ найденное из экспериментальных данных, сравнивается с ${f F}_{
m TAGM}$ (табл. I) при выбранном уровне значимости.

Если $F_{\text{эксп}} \le F_{\text{табл}}$ для уровня значимости $\alpha = 0.05$, то гипотеза принимается.

число степеней свободы f_1 , соответствующее большей оценке s_1^2 , определяет столбец таблицы, а число f_2 , соответствующее меньшей оценке s_2^2 , определяет строку таблицы.

Если F эксп < F табл при α = 0,01 и F эксп > F табл при α = 0,05, то гипотеза об однородности сомнительна. В этом случае 42

либо принимают гипотезу, либо дополнительно набирают экспериментальные панные.

Если $F_{aucu} > F_{redu}$ при $\alpha = 0.01$, гипотеза отвергается.

2.2. <u>Критерий Бартлета</u> применяется для оценки однородности нескольких дисперсий s_1^2 , s_2^2 , s_3^2 , ..., s_m^2 с разным числом степеней свободи $f_1 \neq f_2 \neq f_3 \neq \ldots \neq f_m$, но $f_1 \geq 2$.

Вычисляется отношение $\frac{B}{c}$, где

и сравнивается с табулированным значением x^2 (табл. 2) при выбранном уровне значимости.

Если $\frac{B}{C} < x_{\text{TaGM}}^2$, то гипотеза об однородности принимается.

Значения \mathbf{F} (f₁, f₂) при разных значениях α

*		r,								
f ₂	I	2	3	4	5	6				
		\alpha = 0,00I								
I	4052,2	4999,5	5403,3	5624,6	5763,7	5859,0				
2	98,503	99,000	99,166	99,249	99,299	99,332				
3	34,II6	30,817	29,457	28,710	28,237	27,9II				
4	21,198	I8,000	I6,694	I5,977	I5,522	I5,207				
5	I6,258	I3,274	I2,060	II,392	I0,967	IO,672				
6	I3,745	IO,925	9,780	9,I48	8,746	8,466				
7	I2,246	9,547	8,45I	7,847	7,460	7,I9I				
8	II,259	8,649	7,59I	7,006	6,632	6,37I				
9	IO,56I	8,022	6,992	6,422	6,057	5,802				
IO	IO,044	7,559	6,552	5,994	5,636	5,386				
II	9,646	7,206	6,217	5,668	5,316	5,069				
12	9,330	6,927	5,953	5,412	5,064	4,82I				
13	9,074	6,70I	5,739	5,205	4,862	4,620				
14	8,862	6,515	5,564	5,035	4,695	4,456				
I 5	8,683	6,359	5,417	4,893	4,556	4,3I8				
16	8,53I	6,226	5,292	4,773	4,437	4,202				
I 7	8,400	6,II2	5,185	4,669	4,336	4,102				
18	8,285	6,0I3	5,092	4,579	4,248	4,0I5				
I 9	8,185	5,926	5,0IO	4,500	4,I7I	3,939				
20 212 234 256 228 290 400 120	8,096 8,017 7,945 7,881 7,770 7,677 7,636 7,598 7,314 7,077 6,851	5,7849 7,7164 614 614 618 655 555 555 555 555 555 555 555 555 55	4,938 4,874 4,765 4,718 4,676 4,637 4,668 4,5313 4,126 3,949	4,43I 4,369 4,313 4,264 4,177 4,1740 4,174 4,074 4,045 4,045 4,045 4,045 4,045 3,649 3,480	4,103 4,042 3,939 3,895 8,818 3,754 3,725 3,6514 3,5139 3,174	3,871 8,872 8,758 7,7667 7,6627 3,5528 3,5528 3,474 2,219 2,956				
~	6,635	4,605	3,782	3,319	3,017	2,802				
44	-	•	-	-	-	•				

	Iponomenne racit. i k iipiniomenne c								
[‡] 2	7	8	9	IO	IS	I 5			
			$\alpha = 0.00$			A STATE OF THE PARTY OF THE PAR			
I	5928,3	598I,I	6022,5	6055,8	6I06,3	6157,3			
2	99,356	99,374	99,388	99,399	99,4I6	99,432			
3	27,672	27,489	27,345	27,229	27,052	26,872			
4	I4,976	I4,799	14,659	I4,546	I4,374	I4,I98			
5	10,456	IO,289	IO,I58	IO,05I	9,888	9,722			
6	8,260	8,102	7,976	7,874	7,7I8	7,559			
7	6,993	6,840	6,719	6,620	6,469	6,314			
8	6,178	6,029	5,9II	5,8I4	5,667	5,515			
9	5,6I3	5,467	5,35I	5,257	5,III	4,962			
IO	5,200	5,057	4,942	4,849	4,706	4,558			
II	4,886	4,745	4,632	4,539	4,397	4,25I			
IS	4,640	4,499	4,388	4,296	4,155	4,0IO			
13	4,44I	4,302	4,I9I	4, IOO	3,960	3 , 8I5			
14	4,278	4,I4O	4,030	3,939	3,800	3,656			
I5	4,142	4,005	3,895	3,805	3,666	3,522			
16	4,026	3,890	3,780	3,69I	3,553	3,409			
17	3,927	3,79I	3,682	3,593	3,455	3,312			
8I	3,84I	3,705	3,597	3,508	3,37I	3,227			
19	3,765	3,63I	3,523	3,434	3,297	3,153			
20	3,699	3,564	3,457	3,368	3,23I	3,088			
2I	3,640	3,506	3,398	3,3IO	3,173	3,030			
22	3,587	3,453	3,346	3,258	3,I2I	2,978			
23	3,539	3,406	3,299	3,2II	3,074	2,931			
24	3,496	3,363	3,256	3,168	3,032	2,889			
25	3,457	3,324	3,217	3,I29	2,993	2,850			
26	3,42I	3,288	3,182	3,094	2,958	2,815			
27	3,388	3,256	3 , I49	3,062	2,926	2,783			
28	3,358	3,226	3,I2O	3,032	2,896	2,753			
29 30	3,330 3,305	3,I98 3 I73	3,092 3,067	3,005 2,979	2,869 2,843	2,726 2,700			
40	3,I24	2,993	2,888	2,979 2,80I 2,632	2,665 2,496	2,700 2,522 2,352			
60 120	3,305 3,124 2,953 2,792	3,173 2,993 2,823 2,663	3,067 2,888 2,719 2,559	2,632 2,472	2,496 2,336	2,332 2,192			
200	2,639	2,5II	2,407	2,32I	2,185	2,039			
	~, 500	,	,	7		4E			

4				f ₁			
f ₂	20	24	30	40	50	I20	00
			α = 0	,00I			
I	6208,7	6234,6	6260,7	6286,8	63I3,0	6339,4	6366,0
2	99,449	99,458	99,466	99,474	99,483	99,49I	99,499
3	26,690	26,598	26,505	26,4II	26,3I6	26,22I	26,125
4	I4,020	I3,929	I3,838	I3,745	I3,652	I3,558	I3,463
5	9,553	9,467	9,379	9,29I	9,202	9,II2	9,020
6	7,396	7,313	7,229	7,143	7,057	6,969	6,880
7	6,155	6,074	5,992	5,908	5,824	5,737	5,650
8	5,359	5,279	5,198	5,II6	5,032	4,946	4,859
9	4,808	4,729	4,649	4,567	4,483	4,398	4,3II
IO	4,405	4,327	4,247	4,165	4,082	3,997	3,909
II	4,099	4,02I	3,94I	3,860	3,776	3,690	3,603
IS	3,858	3,78I	3,70I	3,619	3,536	3,449	3,36I
13	3,665	3,587	3,507	3,425	3,34I	3,255	3,165
I 4	3,505	3,427	3,348	3,266	3,I8I	3,094	3,004
I 5	3,372	3,294	3,214	3,I32	3,047	2,960	2,868
16	3,259	3,181	3,IOI	3,018	2,933	2,845	2,753
17	3,162	3,084	3,003	2,92I	2,835	2,746	2,653
18	3,077	2,999	2,919	2,835	2,749	2,660	2,566
19	3,003	2,925	2,844	2,76I	2,674	2,584	2,489
20	2,938	2,859	2,779	2,695	2,608	2,517	2,42I
21	2,880	2,80I	2,720	2,636	2,548	2,457	2,360
22	2,827	2,749	2,668	2,583	2,495	2,403	2,306
23	2,78I	2,702	2,620	2,536	2,447	2,354	2,256
24	2,738	2,659	2,577	2,492	2,404	2,3IO	2,2II
25	2,699	2,620	2,538	2,453	2,364	2,270	2,169
26	2,664	2,585	2,503	2,417	2,327	2,233	2,132
27	2,632	2,552	2,470	2,384	2,294	2,198	2,097
28	2,602	2,522	2,440	2,354	2,263	2,167	2,064
29 20	2,574	2,495	2,412	2,325 2, <u>2</u> 99	2,234 2,208	2,I38 2,III 2,EII	2,034 2,006
30 40	2,549 2,369	2,469 2,288	2,386 2,203	2,114	2,019	Ĩ,9Ĩ?	Ĩ,80 <u>5</u>
60	2,198	2,II5 I,950	2,028 I,860	2,II4 I,936 I,763	2,019 1,836 1,656	Ĭ,9Ĭ7 Ī,726 Ī,533	I,805 I,60I I,38I
I20 ⊶	2,035 I,878	I,79I	I,696	I,592	I,473	I,325	I,000
- ~	2,010	4914	1 9 COC	2 g 0 0 N	J-9 A 1 W	_, _, _,	p

			ALV CAN	amonno t	acor, I A I	DENOMBRING O
Î ₂	I	2	3	4	5	6
			$\alpha = 0.0$	5		
I	I6I,45	I99,50	215,71	224,58	230,16	233,99
2	18,513	I9,000	19,164	19,247	I9,296	19,33 0
3	IO,I28	9,552	9,277	9,117	9,014	8,94I
4	7,709	6,944	6,59I	6,388	6,256	6,163
5	6,608	5,786	5,4I0	5,192	5,050	4,950
6	5,987	5,143	4,757	4,534	4,387	4,284
7	5,59I	4,737	4,347	4,I20	3,972	3,866
8	5,3I8	4,459	4,066	3,838	3,688	3,58I
9	5,117	4,257	3,863	3,633	3,482	3,374
IO	4,965	4,103	3,708	3,478	3,326	3,217
II	4,844	3,982	3,587	3,357	3,204	3,095
12	4,747	3,885	3,490	3,259	3,106	2,996
I3	4,667	3,806	3,411	3,179	3,025	2,915
I4	4,600	3,739	3,344	3,II2	2,958	2,848
I 5	4,543	3,682	3,287	3,056	2,90I	2,791
16	4,494	3,634	3,239	3,007	2,852	2,74I
17	4,45I	3,592	3,197	2,965	2,8I0	2,699
18	4,414	3,555	3,160	2,928	2,773	2,66I
I 9	4,38I	3,522	3,127	2,895	2,740	2,628
20	4,35I	3,493	3,098	2,866	2,711	2,599
2I	4,325	3,467	3,073	2,840	2 ,6 85	2,573
22	4,30I	3,443	3,049	2,817	2,66I	2,549
23	4,279	3,422	3,028	2,796	2,640	2,528
24	4,260	3,403	3,009	2,776	2,62I	2,508
25	4,242	3,385	2,991	2,759	2,603	2,490
26	4,225	3,369	2,975	2,743	2,587	2,474
27	4,210	3,354	2,960	2,728	2,572	2,459
28	4,196	3,340	2,947	2,714	2,558	2,445
29 30 40 60 I20	4,183 4,171 4,085 4,001 3,920	3,328 3,316 3,232 3,150 3,072	2,934 2,922 2,839 2,758 2,680	2,70I 2,690 2,606 2,525 2,447	2,545 2,534 2,450 2,368 2,290	2,432 2,421 2,336 2,254 2,175
	3,842	2,996	2,605	2,372	2,214	2,099

			T.Ž. V.Ā.	f	rawi. I A D	O MNHEWOTCHU
[‡] 2	7	8	9	IO	I2	[I5
			$\alpha = 0,0$	05		
I	236,77	238,88	240,54	241,88	243,91	245,95
2	19,353	19,371	I9,385	I9,396	19,413	I9,429
3	8,887	8,845	8,8I2	8,786	8,745	8,703
4	6,094	6,04I	5,999	5,964	5,912	5 ,85 8
5	4,876	4,818	4,773	4,735	4,678	4,619
6	4,207	4,147	4,099	4,060	4,000	3,938
7	3,787	3,726	3,677	3,637	3,575	3,5II
8	3,50I	3,438	3,388	3,347	3,284	3,2I8
9	3,293	3,230	3,I79	3,137	3,073	3,006
IO	3,I36	3,072	3,020	2,978	2,913	2,845
II	3,012	2,948	2,896	2,854	2,788	2,719
IS	2,9I3	2,849	2,796	2,753	2,687	2,6I7
IЗ	2,832	2,767	2,714	2,67I	2,604	2,533
14	2,764	2,699	2,646	2,602	2,534	2,463
I 5	2,707	2,64I	2,588	2,544	2,475	2,404
16	2,657	2,59I	2,538	2,494	2,425	2,352
17	2,614	2,548	2,494	2,450	2,38I	2,308
18	2,577	2,510	2,456	2,412	2,342	2,269
19	2,544	2,477	2,423	2,378	2,308	2,234
20	2,514	2,447	2,393	2,348	2,278	2,203
21	2,488	2,42I	2,366	2,32I	2,250	2,176
22	2,464	2,397	2,342	2,297	2,226	2,151
23	2,442	2,375	2,320	2,275	2,204	2,128
24	2,423	2,355	2,300	2,255	2,I83	2,108
25	2,405	2,337	2,282	2,237	2,165	2,089
26	2,388	2,32I	2,266	2,220	2,I48	2,072
27	2,373	2,305	2,250	2,204	2,132	2,056
28	2,359	2,29I	2,236	2,190	2,II8	2,04I
29 30	2,346	2,278	2,223	2,I77	2,I05	2,028 2,075
40	2,334 2,249	2,266 2,180	2,2II 2,124	2,165 2,077	2,092 2,004	2,0I5 I,925
40 60 120	2,167	2,180 2,097 2,016	2,040 I,959	2,077 1,993 1,911	2,004 1,917 1,834	I,836 I,75I
5~0 ₹%()	2,087 2,0IO	z,016 I,938	I,880	I,83I	1,054 1,752	I,751 I,666
40	v ∮ ∩TU	T 9 000	1,000	TOO 2	1,106	π,000

				f ₁		-	
r ₂	20	24	30	40	60	I20	000
			α =	0,05			
I	248,0I	249,05	250,09	25I,I4	252,20	253,25	254,32
2	I9,446	I9,454	I9,462	I9,47I	I9,479	I9,487	I9,496
3	8,660	8,639	8,617	8,594	8,572	8,549	8,527
4	5,803	5,774	5,746	5,717	5,688	5,658	5,628
5	4,558	4,527	4,496	4,464	4,43I	4,398	4,365
6	3,874	3,842	3,808	3,774	3,740	3,705	3,669
7	3,445	3,4II	3,376	3,340	3,304	3,267	3,230
8	3,150	3,II5	3,079	3,043	3,005	2,967	2,928
9	2,937	2,90I	2,864	2,826	2,787	2,748	2,707
IO	2,774	2,737	2,700	2,66I	2,62I	2,580	2,538
II	2,646	2,609	2,57I	2,53I	2,490	2,448	2,405
I2	2,544	2,506	2,466	2,426	2,384	2,34I	2,296
13	2,459	2,420	2,380	2,339	2,297	2,252	2,206
14	2,388	2,349	2,308	2,266	2,223	2,178	2,I3I
I5	2,328	2,288	2,247	2,204	2,160	2,114	2,066
I 6	2,276	2,235	2,194	2,I5I	2,106	2,059	2,0I0
17	2,230	2,190	2,148	2,104	2,058	2,0II	I,960
18	2,191	2,150	2,107	2,063	2,017	I,968	1,917
19	2,156	2,II4	2,07I	2,026	I,980	I,930	I,878
20	2,124	2,083	2,039	I,994	I,946	I,896	I,843
21	2,096	2,054	2,010	I,965	I,9I7	I,866	1,812
22	2,07I	2,028	I,984	I,938	I,890	I,838	I,783
23	2,048	2,005	I,96I	I,9I4	I,865	1,813	1,757
24	2,027	I,984	I,9 3 9	I,892	I,842	I,790	I,733
25	2,008	I,964	I,9I9	I,872	I,822	I,768	I,7II
26	I,990	I,946	I,90I	I,853	I,803	I,749	1,691
27	I,974	I,930	I,884	I,836	I,785	I,73I	I,672
28	I,959	I,9I5	I,869	I,820	I,769	I,7I4	I,654
29 30 40 60 120	I,945 I,932 I,839 I,748 I,659	I,90I I,887 I,793 I,700 I,608	I,854 I,84I I,744 I,649 I,554	I,806 I,792 I,693 I,594 I,495	I,754 I,740 I,637 I,534 I,429	I,698 I,684 I,577 I,467 I,352	I,638 I,622 I,509 I,389 I,254
0-0	I , 57I	1,517	I,459	1,394	1,318	1,221	I,000 49

Таблица 2 к приложению 6 Значения \mathbb{X}_{α}^2 в зависимости от числа степеней свободы при $\alpha=0,05$

X ²	Ĩ.	Is	Ĩ	X _S	f
3,84	I	32,7	2I	56,9	4I
5,99	2	33,9	22	58,I	42
7,82	3	35,2	23	59,3	43
9,49	4	36,4	24	60,5	44
II,I	5	37,7	25	6I,7	45
I2,6	6	38,9	26	62,8	46
I4,I	7	40,I	27	64,0	47
I5,5	8	41,3	28	65,2	48
I6,9	9	42,6	29	66,3	49
I8,3	IO	43,8	3 0	67,5	50
I9,7	II	45,0	3I	68,7	5I
2I,0	IS	46,2	32	69,8	52
22,4	13	47,4	33	7I,O	53
23,7	I4	48,6	34	72,2	54
25,0	I 5	49,8	35	73,3	55
26,3	16	5I,O	36	74,5	56
27,6	17	52,2	37	75,6	57
28,9	18	53,4	38	76,8	5 8
30,I	19	54,6	39	77,9	59
3I,4	20	55,8	40	79,I	6 0
50 4 4	en-s		Zasion	85, 0	70
para .	53%)	pro-	COM	I06,6	80
400	400			II3,I	90
20 0	953	, 6C3	200	I24,3	I00

Приложение 7

t-параметр распределения Стьюдента (для двухсторонней доверительной вероятности)

$f = \sum_{i=1}^{m} f_i$	t npm p = 0,95
I	I2,706
2	4,303
3	3,182
4	2,776
5	2,57I
6	2,447
7	2,365
8	2,306
9 .	2,262
IO	2,228
ΙΪ	2,20I
12	2,179
13	2,160
1.4	2,145
I 5	2,131
16	2,120
17	2,IIO
18	2,IOI
I9	2,093
20	2,086
21	2,080
22	2,074
23	2,069
24	2,064
25	2,060
&- @	I,965

Значения к в зависимости от числа степеней

f		na										
J.	2	3	4	5	6	7	8	9	IO			
I	17,969	26,98	32,82	37,08	40,4I	43,I2	45,40	47,36	49,07			
2	6,085	8,33	9,80	88,0I	II,74	I2,44	13,03	I3,54	I3,99			
3	4,50I	5,9I	6,82	7,50	8,04	8,48	8,85	9,18	9,46			
4	3,926	5,04	5,76	6,29	6,7I	7,05	7,35	7,60	7,83			
5	3,635	4,60	5,22	5,67	6,03	6,33	6,58	6,80	6,99			
6	3,460	4,34	4,90	5,30	5,63	5,90	6,12	6,32	6,49			
7	3,344	4,16	4,68	5,06	5,36	5,6I	5,82	6,00	6,16			
8	3,261	4,04	4,53	4,89	5,17	5,40	5,60	5,77	5,92			
9	3,199	3,95	4,4I	4,76	5,02	5,24	5,43	5,59	5,74			
IO	3,151	3,88	4,33	4,65	4,9I	5,12	5,30	5,46	5,60			
II	3,IO	3,82	4,26	4,57	4,82) person	Petro	Secre	8 72			
I2	3,08	3,77	4,20	4,5I	4,75)17900	inco	æ:	\$±=C			
I3	3,06	3,73	4,I5	4,45	4,69	#403	0- 2	== >	Day			
I4	3,03	3,70	4,II	4,4I	4,64		-	teres	evel .			
I 5	3,0I	3,67	4,08	4,37	4,60	_	Storak,	B C3	<i>57</i> %			
16	3,00	3,65	4,05	4,33	4,56	-	ma	p20	20 10			
I7	2,98	3,63	4,02	4,30	4,52		24-	gran	jaming .			
18	2,97	3,6I	4,00	4,28	4,49	erab.	rama.		and o			
19	2,96	3,59	3,98	4,25	4,47		•	-				
20	2,95	3,58	3,96	4,23	4,45	ϥ	454	-	64			
24	2,92	3,53	3,90	4,I7	4,37		_	and the	4-0			
30	2,89	3,49	3,84	4, IO	4,30		-	***	-			
40	2,86	3,44	3,79	4,04	4,23	***		-	***			
60	2,83	3,40	3,74	3,98	4,16	_	***		and .			
I2 0	2,80	3,36	3,69	3,92	4,IO		-	dan	e-a			
6∞≈ 0	2,77	3,3I	3,63	3,86	4,03	alles	30	~	U Secondo			

Приложение 8 свободы и числа параллельных определений

na 17 12 13 18 **I9** 20 **I**4 **I**5 16 II 50,59 51,96 53,20 54,33 55,36 56,32 57,22 58,04 58,83 59,56 14.39 14.75 15.08 15.38 15.65 15.91 16.14 16.37 16.57 16.77 9,95 IO, I5 IO, 35 IO, 52 IO, 69 IO, 84 IO, 98 II, II II, 24 9.72 8,79 8,52 8,66 8,9I 9,03 9,13 9,23 8,2I 8.37 8,03 7,72 7,83 7,93 8,12 8,2Į 7,60 7,32 7,47 8,03 7,17 7,14 7,24 7,34 7,43 7,59 6.92 7,5I 6,79 7,03 6.65 7,17 6,76 6,30 6.43 6.55 6,66 6,85 6,94 7,02 7,IO 6,29 6,48 6.57 6,65 6,73 6,80 6,87 6,39 6,05 6,I8 6,5I 6,09 6,I9 6,28 6,36 6,44 6,58 6.64 5,98 5,87 6,19 6,27 6,34 6,40 6,47 5,72 5,83 5,93 6,03 6.II

Расчет суммарной погрешности результата анализа при определении концентрации продукта гравиметрическим методом.

Условия выполнения измерений нормальные, мещающие компоненти отсутствуют.

Процедуру определения массовой доли продукта можно разде-лить на ряд стадий:

- І. Отбор пробы продукта определенного объема.
- 2. Выпаривание пробы продукта, высушивание остатка до постоянной массы.
- 3. Определение массы сухого продукта по разности масс чаш-ки с продуктом и пустой.

На этих стадиях анализа следует учесть следующие систематические погрешности:

І. Погрешность измерения объема при отборе пробы пипеткой-

$$\Theta_{V} = \frac{\Theta_{V} \cdot 100}{V}$$

где θ_{v} - погрешность измерения объема, %;

 $e_{v'}$ - погрешность пипетки по ГОСТ 20292-74, мл;

v - объем пробы, мл.

- 2. Погрешность измерения массы продукта θ_{m} , которая складивается из следующих составляющих:
- а) погрешности определения масси (взвешивания), которая составляет две цены деления;
- б) погрешности накладных гирь, применяемых при измерении массы пробы (по ГОСТ 7328-79).

При этом учитывают неисключенные систематические погрешности только сменных гирь, так как неисключенные систематические погрешности накладных гирь, остающихся на весах при первом и втором взвешивании, релятивизуются. Также релятивизуется погрешность от неравноплечести весов, если масса навески на порядок и более меньше массы бюксы. В этом случае при определении массы пустой бюксы и массы бюксы с продуктом размер погрешности неравноплечести не изменится.

I. Погрешность объема при отборе пробы пипеткой (исполнение 2, ГОСТ 20292-74) вместимостью 10 мл:

$$\theta_{00} = \frac{0.04 \cdot 100}{10} = 0.4 \%.$$

2. Масса остатка $1,22\cdot 10^{-4}$ г (масса измерена на весах с ценой деления $1\cdot 10^{-5}$ г).

$$\theta = \frac{\sqrt{2} \cdot 2 \cdot 1 \cdot 10^{-5} \cdot 100}{1.22 \cdot 10^{-4}} = 23 \%.$$

Примечания: І. Погрешность сменних гирь релятивизуется. 2. Коэффициент √2 учитывает взвешивание тары и тары с навеской.

Неисключенная систематическая составляющая погрешности рассчитывается по формуле

$$\Theta = K \sqrt{\sum_{r=1}^{m_c} \Theta_r^2},$$

где K = I, I при P = 0,95;

 ${f m}_{
m C}$ - число составляющих неисключенной систематической по-

$$\theta = 1, 1 \sqrt{0,4^2 + 23^2} = 25 \%.$$

Случайная составляющая погрешности результата анализа рассчитывается в соответствии с разделом 4 настоящих МУ. В результате

$$s_{\overline{Y}} = 1,75 \%.$$

Расчет суммарной погрешности результата анализа проводится в соответствии с ГОСТ 8.207-76. Отовла

$$\frac{\Theta}{S_{v}} = \frac{25}{1,75} = 13,1 > 8 \text{ n } \Delta = \Theta = 25 \%.$$

 C^{Λ} учетом округления результатов по приложению II МУ доверительные границы относительной погрешности результата анализа составляют ± 25 % при доверительной вероятности 0,95.

TO

Расчет систематической составляющей погрешности методики, в которой используется индивидуальная градуировка

В качестве примера рассматривается фотоколориметрический метод. Условия проведения анализа нормальные. Мещающие компоненты отсутствуют.

При проведении анализа возможны следующие неисключенные систематические погрешности:

погрешность при приготовлении градуировочных растворов (погрешность определения масси, объема с помощью мерной колбы или пипетки, "реактивная" погрешность);

погрешность аппроксимации (построения) градуировочного графика;

погрешность при проведении анализа (погрешность при определении массы, объема проб).

Тогда граница неисключенной составляющей погрешности результата анализа рассчитывается по формуле

$$\theta = \text{I,I} \sqrt{\Sigma \theta_{\mu}^2 + \theta_{\text{rp}}^2},$$

где $\Sigma \theta_{\mu}^{2}$ - сумма неисключенных погрешностей при приготовлении растворов для построения градуировочного графика и проведении анализа (погрешность определения массы пробы, объемов мерных колб, пипеток);

 $\theta_{\text{гр}}^2 = 3s_{\text{Y}1}^2$ — погрешность построения градуировочного графика или погрешность аппроксимации, рассчитываемая статистически по метолу наименьших квалратов.

Для расчета погрешности анпроксимации необходимые экспериментальные данные группируют в табл. I.

Таблица к приложению IO Данные для расчета погрешности аппроксимации

№ П.П.	Xi	Y _{ij}	Ĩ,	X ²	X _i Ÿ _i	$(\mathbf{Y_{ij}} - \overline{\mathbf{Y}_{i}})^2$	S ² i	Yi	(Ÿ _i - 'Y _i)²	Y:	$(\bar{Y}_i - \gamma_i^*)^2$
I	0,005	0,055 0,058 0,043	0,052	0,25.10 ⁻⁴	26·10 ⁻⁵	9·10 ⁻⁶ 8I·10 ⁻⁶	63·10 ⁻⁶	0,049	9·10 ^{~6}	0,060	64·I0 ⁻⁶
2	0,01	0,116 0,092 0,120	0,109	I·IO ⁻⁴	109•10 ⁻⁵	49·10 ⁻⁶ 289·10 ⁻⁶ 121·10 ⁻⁶	229,5·10 ⁻⁶	0,110	I·I0 ⁻⁶	0,II9	100-10-6
3	0,03	0,362 0,350 0,336		9.10-4	1047·10 ⁻⁵	169·10 ⁻⁶	169,5·10 ⁻⁶	0,354	25·10 ⁻⁶	0,357	64·10 ⁻⁶
4	0,05	0,600 0,600 0,600	0,600	25·IO ⁻⁴	3000-10 ⁻⁵	0 0 0	0	0,598	4·IO-6	0,595	25.10-6
Σ	0,095		I,IIO	32,25·IO ⁻⁴	4182·10 ⁻⁵		462-10-6	e-militeriorum/Werner-eragai	39·10 ⁻⁶	nere på engir de styring getter get	253·10 ⁻⁶

По данным таблицы проводят вычисления:

I. Рассчитывают параметры а и b:

$$a = \frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} \overline{y}_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} (x_{i} \overline{y}_{i})}{\sum_{i=1}^{m} x_{i}^{2} - (\sum_{i=1}^{m} x_{i})^{2}} =$$

$$= \frac{35.25 \cdot 10^{-4} \cdot 1.110 - 4182 \cdot 10^{-5} \cdot 0.095}{4 \cdot 35.25 \cdot 10^{-4} - (0.095)^{2}} = -0.012;$$

$$b = \frac{\sum_{i=1}^{m} x_{i} \overline{y}_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} \overline{y}_{i}}{\sum_{i=1}^{m} x_{i}^{2} - (\sum_{i=1}^{m} x_{i})^{2}} =$$

$$= \frac{4 \cdot 4182 \cdot 10^{-5} - 0.095 \cdot 1.110}{4 \cdot 35.25 \cdot 10^{-4} - (0.095)^{2}} = 12.2.$$

После подстановки вычисленных значений а и в получают искомое уравнение прямой: $\gamma_1 = a + bX_1$ (см. табл.).

2. Haxogar дисперсию s_0^2 :

$$s_0^2 = \frac{\sum_{i=1}^{m} (\overline{Y}_i - Y_i)^2}{m-2} = \frac{39 \cdot 10^{-6}}{4-2} = 19,5 \cdot 10^{-6}.$$

3. Находят дисперсии s_a^2 , s_b^2 :

$$S_{a}^{2} = \frac{S_{o}^{2} \sum_{i=1}^{m} X_{i}^{2}}{\sum_{i=1}^{m} X_{i}^{2} - (\sum_{i=1}^{m} X_{i})^{2}} = \frac{19,5 \cdot 10^{-6} \cdot 35,25 \cdot 10^{-4}}{4 \cdot 35,25 \cdot 10^{-4} - (0,095)^{2}} = 13,54 \cdot 10^{-6};$$

$$S_{a} = 3,68 \cdot 10^{-3};$$

$$S_{b}^{2} = \frac{mS_{o}^{2}}{m\sum_{i=1}^{m}X_{i}^{2} - (\sum_{i=1}^{m}X_{i})^{2}} = \frac{4 \cdot 19,5 \cdot 10^{-6}}{4 \cdot 35,25 \cdot 10^{-4} - (0,095)^{2}} = 1,53 \cdot 10^{-2};$$

 $S_b = 0,124.$

4. Проверяют значимость коэффициента а:

$$t_a = \frac{a}{s_a} = \frac{0.012}{3.68 \cdot 10^{-3}} = 3,26; t_{raox} = 4,303 (f = 2).$$

Коэффициент а незначим и уравнение градуировочной прямой принимает вид: Y_i = b X_i .

Рассчитивают параметр ь:

$$\mathbf{b'} = \frac{\sum_{i=1}^{m} X_i \overline{Y}_i}{\sum_{i=1}^{m} X_i^2} = \frac{4182 \cdot 10^{-5}}{35,25 \cdot 10^{-4}} = 11,9.$$

- 5. Проверяют гипотезу линейности:
- а) рассчитывают s_{cp}^2 дисперсию "разброса средних значений":

$$s_{cp}^{2} = \frac{\sum_{i=1}^{m} n_{i} (\overline{Y}_{i} - Y_{i}^{'})^{2}}{\sum_{i=1}^{m-1} m-1} = \frac{3 \cdot 253 \cdot 10^{-6}}{3} = 253 \cdot 10^{-6};$$

б) рассчитывают $s_{\text{вн. пар}}^2$ — дисперсию "разброса внутри параллельних определений".

Предварительно проверяют однородность дисперсий s_1^2 по критерию Кохрена (по п. 4.3.2.1 МУ):

$$g_{\text{max}} = \frac{229.5 \cdot 10^{-6}}{462 \cdot 10^{-6}} = 0,05; g_{\text{TaOM}} = 0,77.$$

Дисперсии однородны.

$$S_{BH.\Pi ap}^2 = \frac{\sum_{i=1}^{m} S_i^2}{m} = \frac{462 \cdot 10^{-6}}{4} = 115,5 \cdot 10^{-6};$$

$$F_{\text{9KOH}} = \frac{S_{\text{Cp}}^2}{S_{\text{BH.Nap}}^2} = \frac{253 \cdot 10^{-6}}{115, 5 \cdot 10^{-6}} = 2,2;$$

$$\mathbf{F}_{\text{TAOJ}} = 4,07 \ (\mathbf{f}_1 = 3, \ \mathbf{f}_2 = 8).$$

Гипотеза линейности принимается.

6. Рассчитивают среднее квадратическое отклонение погремности аппроксимации:

$$S_{Y_{1}} = \sqrt{S_{0}^{2} \left[\frac{1}{m} + \frac{m(X_{1} - \overline{X})^{2}}{m \sum_{i=1}^{m} X_{i}^{2} - (\sum_{i=1}^{m} X_{i})^{2}} \right]}; \ \overline{X} = \frac{\sum_{i=1}^{m} X_{i}}{m};$$

$$S_{0,052} = \sqrt{19.5 \cdot 10^{-6} \left[\frac{1}{4} + \frac{4.0.005 - 0.0238)^{2}}{4 \cdot 35.25 \cdot 10^{-4} - (0.095)^{2}} \right]} = 3.2 \cdot 10^{-3};$$

$$S_{0,109} = 2.79 \cdot 10^{-3};$$

$$S_{0,349} = 2.34 \cdot 10^{-3};$$

$$S_{0,600} = 3.93 \cdot 10^{-3}.$$

7. Рассчитывают неисключенную систематическую погрешность результата анализа:

$$\theta_{0,052} = I,I \sqrt{5,I^2 + 3 \left[\frac{(3,2\cdot 10^{-3}\cdot 100)}{0,052} \right]^2} = I3,0\%,$$

где 5,1 % - неисключенная систематическая погрешность на стадиях подготовки и проведения анализа;

$$\theta_{0,349} = 5.8 \%;$$

$$\theta_{0.600} = 5.7 \%$$
.

8. Рассчитывают отношение $\frac{e}{S_{\overline{\lambda}}}$ и Δ для каждой концентрации до п. 4.5 МУ.

Правила округления погрешностей и результатов измерения

Погрешность результата измерения следует выражать не более чем двумя значащими цифрами. Две значащих цифры следует удерживать, если погрешность выражена числом с цифрой старшего разряда, равной или меньшей 3.

Промежуточные внчисления при обработке наблюдений следует выполнять с таким числом цифр, чтоби потрешности внчислений не могли исказить последнюю значащую цифру результата более чем на половину единицы последнего разряда. Для этого число цифр в результатах расчетов обычно должно быть на единицу или две больше, чем в окончательном результате.

Погрешности при промежуточних вычислениях выражают не об-

Разряды последней цифры результата измерения и последней значащей цифры погрешности должны соответствовать друг другу.

Например:	Правильно	Неправильно		
Погрешность термометра	(20 <u>+</u> I) ^O C или	(20,0 <u>+</u> I) ^о С или		
не более <u>+</u> I ^O C	20 OC ± I OC	20,0 ^o C <u>+</u> I ^o C		
-оп эначение по-	(99,00 <u>+</u> 0,35) %	(99,0 <u>+</u> 0,35) %		
грешности результата	NIN	NILN		
анализа не более ±0,35 %	99,00 % \pm 0,35 %	99,0 % ± 0,35 %		

Правила, которыми рекоменцуется пользоваться при округле - нии результатов:

- І. Округлять результат измерения следует так, чтоби он оканчивался цифрой того же разряда, что и последняя значащая цифра погрешности, например: число 25,3624I при погрешности ±0,002 следует округлять до 25,362.
- 2. Если первая (слева направо) из заменяемих нулями или отбрасиваемых цифр меньше 5, то оставшиеся цифри не изменяют. Лишние цифри в целых числах заменяют нулями, а в десятичних дробях отбрасивают. Округление предпочтительнее провести с применением степенного множителя или соответствующей кратной единицы физической величины согласно требованиям ГОСТ 8.417-81 (СТ СЭВ 1052-78).

- Например: I) при сохранении четырех значащих имфр число 472435 должно быть округлено до 472400 или $4724 \cdot 10^2$.
 - 2) 472435 Ha до 4724 гHa,
 - 3) число 384,435 до 384,4.
- 3. Если первая из заменяемых нулями или отбрасываемых цифр больше или равна 5, то последнюю оставияемую цифру увеличивают на единицу.

Например: при сохранении трех значащих цифр число 17,58 округляют до 17,6; число 31,251 округляют до 31,3.

Округление числовых значений величин от первого, второго, третьего и т.д. десятичного знака для различных марок продукции одного названия, как правило, должно бить одинаковим:

 Правильно
 Неправильно

 1,50; 1,75; 2,00
 1,5; 1,75; 2

ЛИТЕРАТУРА

- I. ГОСТ 8.010-72. "ГСИ. Общие требования к стандартизации и аттестации метолик выполнения измерений".
- 2. ГОСТ 8.0II-72. "ГСИ. Показатели точности измерений и формы представления результатов измерений".
- 3. ГОСТ 8.207-76. "ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения".
- 4. ГОСТ I2.I.OI6-79. "ССЕТ. Воздух рабочей зоны.Требования к методикам измерения концентрации вредных веществ".
- 5. ГОСТ I.5-68. "ГСС. Построение, содержание и изложение стандартов".
 - 6. ГОСТ 16263-70. "ГСИ. Метрология. Термины и определения".
 - 7. Термины и определения. ЖАХ, 1975, т. ХХХ.
- 8. Чарыков А. К. Математическая обработка результатов хи-мического анализа. Л.: ЛГХ, 1977.
 - 9. Рабинович С. Г. Погрешности измерений. Л.:Энергия, 1978.
- 10. ГОСТ II.002-73. "Прикладная статистика. Правила оценки анормальности результатов наблюдений".
- II. Методы обработки результатов наблюдений при измерениях/ ВНИИМ им. Д. И. Менделеева: Тр. метрологических ин-тов СССР, вып. 134 (194). М.: Изд-во стандартов.
- I2. Налимов В. В. Применение математической статистики при анализе вещества. М.: Физматгиз, 1960.
- Доерфель К. Статистика в аналитической химии. М.: Мир, 1969.
- 14. Пустыльник Е. М. Статистические методы анализа и обработки наблюдений. М.: Наука, 1968.
- 15. Закс Л. М. Статистическое оценивание. М.: Статистика, 1976.
 - 16. СТ СЭВ 543-77. "Числа. Правила записи и округления".
- I7. Чарыков А. К., Столяров К. П. Представление результатов химического анализа и аттестация аналитических методик: Вестн. ЛГУ, 1981, № 10, с. II5—I21.

Содервание

I.	Общие положения	5
2.	Номенклатура нормируемых показателей точности измере-	
	в методиках выполнения измерений	7
3.	в иннеремств представления показателей точности измерений в	
	метопиках выполнения измерений	9
4.	Методы оценки показателей гочности измерений в мето-	
	диках выполнения измерений	II
При	LIONEHUH:	
I.	Основные термины и определения	27
2.	Основные условные обозначения	30
3.	Пример представления экспериментальных данных	32
4.	Значения р для числа наблюдений (параллельных опре-	
	делений) и и уровня значимости $\alpha = 0.05$ ($\alpha = I-P$)	38
5,	Значения для числа проб м в зависимости от числа	
	нараллельных определений в каждой пробе при q=0,01 и 0,05	39
6.	Проверка однородности дисперсий при разном числе оп-	
	ределений в каждой пробе	42
	Таблица I	44
	Таблица 2	·50
7.	🕹 - параметр распределения Стырдента (для двухсторонней	
	доверительной вероятности)	51
8.	Значения к в зависимости от числа степеней свободы и	
	числа параллельных определений	52
9.	Расчет суммарной погрешности результата анализа при	
	определении концентрации продукта гравиметрическим ме-	
	тодом	54
IO.	Расчет систематической составляющей погрешности мето-	
	дики, в которой используется индивидуальная градуиров-	
	ка,	56
	Таблица	57
II.	-правила округления погрешностей и результатов измере-	
	HMA	6I
Ju:	reparypa	63

Ответственный за выпуск В. А. Самойлов Редактор И. Н. Белокур Технический редактор Н. Н. Васикова Корректор Э. Н. Васильева

EЫ 06804. Подписано к печати 21.08.85. Формат 60x84 1/16. Усл.печ.л. 3,72. Уч.—изд.л. 3,05. Заказ № 327. Тираж 1500 экз. Бесплатно.

Отдел подготовки и издания информационных материалов Отделения НИИТЭХИМа, г.Черкасси, ул. Шевченко, 205.