МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

РУКОВОДЯЩИЙ ДОКУМЕНТ

РД 52.24.420-2019

БИОХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА В ВОДАХ Методика измерений титриметрическим и амперометрическим методами

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением «Гидрохимический институт» (ФГБУ «ГХИ»)
- 2 РАЗРАБОТЧИКИ Ю.А. Андреев, канд. хим. наук (руководитель разработки), Е.С. Килейнова (ответственный исполнитель), Т.С. Евдокимова, А.А. Назарова, канд. хим. наук

3 СОГЛАСОВАН:

- с Федеральным государственным бюджетным учреждением «Научно-производственное объединение «Тайфун» (ФГБУ «НПО «Тайфун») 25.12.2019:
- с Управлением мониторинга состояния и загрязнения окружающей среды (УМСЗ) Росгидромета 27.12.2019
 - 4 УТВЕРЖДЁН Руководителем Росгидромета 30.12.2019. ВВЕДЁН В ДЕЙСТВИЕ приказом Росгидромета от 05.02.2020 № 48
 - 5 АТТЕСТОВАНА ФГБУ «ГХИ».

Свидетельство об аттестации методики измерений № 420.RA.RU.311345-2019 от 30.12.2019

- 6 ЗАРЕГИСТРИРОВАН головной организацией по стандартизации ФГБУ «НПО «Тайфун» 20.01.2020. ОБОЗНАЧЕНИЕ РУКОВОДЯЩЕГО ДОКУМЕНТА РД 52.24.420-2019
- 7 ВЗАМЕН РД 52.24.420-2006 «Биохимическое потребление кислорода в водах. Методика выполнения измерений скляночным методом»
 - 8 СРОК ПЕРВОЙ ПРОВЕРКИ 2030 год. ПЕРИОДИЧНОСТЬ ПРОВЕРКИ 10 лет

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Требования к показателям точности измерений	3
4 Требования к средствам измерений, вспомогательным	
устройствам, реактивам, материалам	4
4.1 Средства измерений, вспомогательные устройства	
4.2 Реактивы и материалы	
5 Метод измерений	7
6 Требования безопасности, охраны окружающей среды	8
7 Требования к квалификации операторов	8
8 Требования к условиям измерений	
9 Подготовка к выполнению измерений	
9.1 Отбор и хранение проб	8
9.2 Установление точной вместимости кислородных склянок	9
9.3 Подготовка анализатора растворённого кислорода	
9.4 Приготовление растворов	10
9.5 Проверка чистоты, очистка растворов и реактивов	14
9.6 Установление точной молярной концентрации раствора	
тиосульфата натрия	15
10 Порядок выполнения измерений	
11 Обработка результатов измерений	20
12 Оформление результатов измерений	21
13 Контроль качества результатов измерений при реализации	
методики в лаборатории	21
13.1 Общие положения	21
13.2 Алгоритм оперативного контроля повторяемости	22
13.3 Алгоритм контроля процедуры выполнения измерений с	
использованием метода добавок	22
14 Проверка приемлемости результатов, полученных в условиях	
воспроизводимости	24
Приложение А (обязательное) Равновесная концентрация	
растворённого кислорода в дистиллированной воде в	
зависимости от температуры воды	25
Библиография	26

Введение

Находящиеся В воде микроорганизмы В процессе своей жизнедеятельности используют растворённый в воде кислород для биохимического окисления органических соединений, в том числе загрязняющих веществ. В соответствии с ГОСТ 27065 количество растворённого кислорода, потребляемого за установленное время и в определённых условиях при биохимическом окислении содержащихся в воде органических веществ, называется биохимическим потреблением кислорода (далее – БПК). Этот показатель является некоторой условной мерой загрязнения вод органическими соединениями, в особенности достаточно легко подвергающимися биохимической деградации.

Скорость биодеградации органических загрязняющих веществ зависит от множества факторов. В среднем можно полагать, что при 20 °C за 5 сут окисляется около 70 % соединений, за 10 и 20 сут — соответственно 90 % и 99 %. Однако рядом исследований показано, что данные соотношения сильно условны. Для практических целей полное окисление слишком длительно и его, как правило, не используют. При неполном окислении органических веществ для сопоставимости значений БПК его определение должно проводиться в стандартных условиях. В качестве таковых приняты следующие: продолжительность инкубации 5 сут, температура (20±1) °C, отсутствие доступа света и воздуха. Потребление кислорода, определённое при этих условиях, называется пятисуточным биохимическим потреблением кислорода (далее — БПК₅). Его находят как разность между содержанием кислорода в анализируемой пробе воды до и после инкубации.

При определении БПК₅ необходимо также соблюдать условия, при которых количество кислорода в пробе в течение соответствовало бы его потреблению. Это зависит от таких факторов, как степень разбавления проб с большим биохимическим потреблением кислорода, применение одной и той же разбавляющей воды и способ обработки пробы воды. Содержание кислорода в анализируемой исходной или разбавленной пробе должно оставаться в течение всего времени инкубации таким, чтобы были обеспечены хорошие условия протекания аэробных биохимических процессов. чтобы анализируемая проба или смесь необходимо. разбавляющей водой перед определением содержали равновесную с воздухом массовую концентрацию растворённого кислорода (9.09 мг/дм3 при 20 °C), при этом минимальное потребление кислорода было не менее 2 мг/дм³, а оставшаяся спустя 5 сут концентрация кислорода — не менее 3 мг/дм³.

Значение показателя БПК₅ согласно гигиеническим требованиям к охране поверхностных вод не должно превышать 2 мг/дм³.

РУКОВОДЯЩИЙ ДОКУМЕНТ

БИОХИМИЧЕСКОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА В ВОДАХ Методика измерений титриметрическим и амперометрическим методами

Дата введения - 2020-11-01

1 Область применения

Настоящий руководящий документ устанавливает методику измерений (далее — методика) БПК $_5$ в пробах природных и очищенных сточных вод титриметрическим (вариант 1) и амперометрическим (вариант 2) методами при содержании органических веществ, эквивалентном потреблению кислорода в диапазоне от 1,00 до 120 мг/дм 3 . При значении БПК $_5$ более 6,0 мг/дм 3 определение следует проводить при соответствующем разбавлении пробы.

Настоящий руководящий документ предназначен для использования в лабораториях, осуществляющих анализ природных и очищенных сточных вод.

2 Нормативные ссылки

В настоящем руководящем документе использованы нормативные ссылки на следующие нормативные документы:

ГОСТ 8.234—2013 Государственная система обеспечения единства измерений. Меры вместимости стеклянные. Методика поверки

ГОСТ 12.1.005–88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007—76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 17.1.5.04—81 Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия

ГОСТ 17.1.5.05—85 Охрана природы. Гидросфера. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков

ГОСТ 83–79 Реактивы. Натрий углекислый. Технические условия ГОСТ 435–77 Реактивы. Марганец (II) сернокислый 5-водный. Технические условия

ГОСТ 612–75 Реактивы. Марганец (II) хлористый 4-водный. Технические условия

ГОСТ 1770–74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки, Общие технические условия

ГОСТ 2493-75 Реактивы. Калий фосфорнокислый двузамещенный 3-водный. Технические условия

ГОСТ 3118–77 Реактивы. Кислота соляная. Технические условия ГОСТ 4204–77 Реактивы. Кислота серная. Технические условия

ГОСТ 4220-75 Реактивы. Калий двухромовокислый. Технические условия

ГОСТ 4232–74 Реактивы. Калий йодистый. Технические условия

ГОСТ 4328–77 Реактивы. Натрия гидроокись. Технические условия ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 8422–76 Реактивы. Натрий йодистый 2-водный. Технические условия

ГОСТ 9147–80 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 10163–76 Реактивы. Крахмал растворимый. Технические условия

ГОСТ 14919—83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 20015-88 Хлороформ. Технические условия

ГОСТ 24363-80 Реактивы. Калия гидроокись. Технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27065-86 Качество вод. Термины и определения

ГОСТ 27068–86 Реактивы. Натрий серноватистокислый (натрия тиосульфат) 5-водный. Технические условия

ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 29169—91 Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227—91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29251–91 Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

ГОСТ 31861-2012 Вода. Общие требования к отбору проб

ГОСТ 3773-72 Реактивы. Аммоний хлористый. Технические условия

ГОСТ 4147-74 Реактивы. Железо (III) хлорид 6-водный. Технические условия

ГОСТ 4172-76 Реактивы. Натрий фосфорнокислый двузамещенный 12-водный. Технические условия

ГОСТ 4198-75 Реактивы. Калий фосфорнокислый однозамещенный. Технические условия

ГОСТ 4523-77 Реактивы. Магний сернокислый 7-водный. Технические условия

ГОСТ 11773-76 Реактивы. Натрий фосфорно-кислый двузамещенный. Технические условия

ГОСТ OIML R 76-1—2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ Р 53228–2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ Р 55878–2013 Спирт этиловый технический гидролизный ректификованный. Технические условия

ГОСТ Р ИСО 5725-6–2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

МИ 2881–2004 Государственная система обеспечения единства измерений. Методики количественного химического анализа. Процедуры проверки приемлемости результатов анализа

Примечание — При пользовании настоящим руководящим документом целесообразно проверять действие ссылочных нормативных документов:

- стандартов в информационной системе общего пользования на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячно издаваемого информационного указателя «Национальные стандарты» за текущий год;
- нормативных документов по метрологии по ежегодно издаваемому «Перечню нормативных документов в области метрологии», опубликованному по состоянию на 1 января текущего года.

Если ссылочный нормативный документ заменён (изменён), то при пользовании настоящим руководящим документом следует руководствоваться заменённым (изменённым) нормативным документом. Если ссылочный нормативный документ отменён без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Требования к показателям точности измерений

3.1 При соблюдении всех регламентируемых методикой условий проведения измерений характеристики погрешности результата измерения с вероятностью 0,95 не должны превышать значений, приведённых в таблицах 1 и 2.

Таблица 1 — Диапазон измерений по варианту 1, показатели повторяемости, воспроизводимости, правильности и точности при принятой вероятности P=0,95

Диапазон	Показатель	Показатель	Показатель	Показатель
измерений	повторяемости	воспроизводимости	правильности	точности
БПК₅	(среднеквадра-	(среднеквадрати-	(границы	(границы
ļ	тическое	ческое отклонение	систематической	абсолютной
]	отклонение	воспроизводи-	погрешности)	погрешности)
Ì '	повторяемости)	мости)		
X, мг/дм ³	σ _г , мг/дм ³	о _R , мг/дм ³	$\pm \Delta_c$, мг/дм 3	±Δ, мг/дм ³
От 1,00 до 120 включ.	0,046·X	0,09·X	0,16·X	0,28·X

Таблица 2 — Диапазон измерений по варианту 2, показатели повторяемости, воспроизводимости, правильности и точности при принятой вероятности P=0.95

Диапазон	Показатель	Показатель	Показатель	Показатель
измерений	повторяемости	воспроизводимости	правильности	точности
БПК₅	(среднеквадра-	(среднеквадрати-	(границы	(границы
	тическое	ческое отклонение	систематической	абсолютной
	отклонение	воспроизводи-	погрешности)	погрешности)
	повторяемости)	мости)		_
X, мг/дм ³	<i>ог</i> , мг/дм ³	σ _R , мг/дм ³	±∆ _с , мг/дм ³	±∆, мг/дм ³
От 1,00 до 120 включ.	0,045·X	0,12· <i>X</i>	0,08-X	0,25·X

Предел обнаружения БПК₅ титриметрическим методом 0,5 мг/дм³.

- 3.2 Значения показателя точности методики используют при:
- оформлении результатов измерений, выдаваемых лабораторией;
- оценке деятельности лабораторий на качество проведения измерений;
- оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

4 Требования к средствам измерений, вспомогательным устройствам, реактивам, материалам

4.1 Средства измерений, вспомогательные устройства

- 4.1.1 Весы неавтоматического действия (лабораторные) специального (I) класса точности по ГОСТ Р 53228–2008 или ГОСТ OIML R 76-1–2011, действительная цена деления (шкалы) 0,0001 г.
- 4.1.2 Весы неавтоматического действия (лабораторные) высокого (II) класса точности по ГОСТ Р 53228–2008 или ГОСТ OIML R 76-1–2011, действительная цена деления (шкалы) 0,001 г или 0,01 г.
- 4.1.3 Анализатор растворённого кислорода, БПК-тестер, кислородомер или оксиметр любого типа (Марк-302Э, Марк-302Т,

- Марк-409A, Марк-3010, Марк-303T, Марк-303Э, Экотест-2000, серии Анион 7040, Эксперт 009 и др.) с абсолютной погрешностью измерения массовой концентрации растворённого кислорода не более 0,5 мг/дм³.
- 4.1.4 Государственный стандартный образец состава раствора БПК₅ ГСО 8048-94 или аналогичный с относительной погрешностью аттестованного значения не более 5 %.
- 4.1.5 Термометр жидкостный стеклянный по ГОСТ 28498-90 с погрешностью измерений $\pm 0,2$ °C.
- 4.1.6 Барометр-анероид метеорологический БАММ-1 по ТУ 25-11.1513 [1] (для измерений по варианту 2).
- 4.1.7 Колбы мерные 2-го класса точности, исполнения 2 или 2а по ГОСТ 1770–74, вместимостью: $100~{\rm cm}^3-1~{\rm шт.},~500~{\rm cm}^3-2~{\rm шт.},~1000~{\rm cm}^3-1~{\rm шт.}$
- 4.1.8 Бюретки 2-го класса точности, исполнения 1 или 3 по ГОСТ 29251–91, вместимостью: 10 см 3 1 шт., 25 см 3 1 шт. (для измерений по варианту 1).
- 4.1.9 Пипетки градуированные 2-го класса точности, типа 1 и 3, исполнения 1 и 2 по ГОСТ 29227–91, вместимостью: 1 см 3 5 шт., 2 см 3 2 шт., 5 см 3 4 шт., 10 см 3 2 шт.
- 4.1.10 Пипетки с одной отметкой 2-го класса точности, исполнения 2 по ГОСТ 29169—91, вместимостью: 5 см 3 1 шт., 10 см 3 2 шт., 50 см 3 2 шт., 100 см 3 1 шт.
- 4.1.11 Цилиндры мерные 2-го класса точности, исполнения 1 или 3 по ГОСТ 1770—74, вместимостью: 10 см 3 1 шт., 50 см 3 1 шт., 100 см 3 1 шт., 250 см 3 1 шт., 500 см 3 1 шт., 1000 см 3 1 шт.
- 4.1.12 Колбы конические Кн исполнения 2 по ГОСТ 25336—82, вместимостью: $100~{\rm cm}^3-6~{\rm шт.}$ (для измерений по варианту 1), $2000~{\rm cm}^3-2~{\rm шт.}$
- 4.1.13 Стаканы В-1, ТХС по ГОСТ 25336–82, вместимостью: $50 \text{ cm}^3 1 \text{ шт.}$, $100 \text{ cm}^3 1 \text{ шт.}$, $150 \text{ cm}^3 1 \text{ шт.}$, $250 \text{ cm}^3 1 \text{ шт.}$, $600 \text{ cm}^3 1 \text{ шт.}$, $1000 \text{ cm}^3 1 \text{ шт.}$
- 4.1.14 Трубка хлоркальциевая типа ТХ-П исполнения 1 по ГОСТ 25336—82 диаметром 13 или 17 мм (для измерений по варианту 1).
- 4.1.15 Стаканчики для взвешивания CB-19/9 и CB-24/10 по ГОСТ 25336—82 2 шт.
- 4.1.16 Склянки с притёртыми пробками (кислородные) для проб воды вместимостью от 100 до 300 см³ (или склянки БПК).
- 4.1.17 Воронка лабораторная типа В по ГОСТ 25336-82 диаметром 75 мм.
- 4.1.18 Воронка Бюхнера № 2 или № 3 по ГОСТ 9147–80 (для измерений по варианту 1).
- 4.1.19 Колба с тубусом исполнения 1, 2 по ГОСТ 25336–82, вместимостью 250 или 500 см^3 (для измерений по варианту 1).
 - 4.1.20 Термостат для проб, поддерживающий температуру (20±1) °C.

- 4.1.21 Насос вакуумный любого типа (для измерений по варианту 1).
- 4.1.22 Палочка стеклянная.
- 4.1.23 Отрезок гибкой пластиковой трубки длиной от 60 см (сифон).
- 4.1.24 Посуда стеклянная (в том числе из тёмного стекла) и пластиковая для хранения проб и растворов реактивов, вместимостью 0,1; 0,5; 1,0 дм³.
 - 4.1.25. Шпатель.
 - 4.1.26 Кристаллизатор.
- 4.1.27 Эксикатор исполнения 2 с диаметром корпуса 190 мм по ГОСТ 25336-82.
- 4.1.28 Мешалка магнитная по ТУ 25-11-834 [2] (для измерений по варианту 2).
- 4.1.29 Перемешивающие элементы (магнитные стержни) 6 шт. (для измерений по варианту 2).
 - 4.1.30 Шкаф сушильный общелабораторного назначения.
 - 4.1.31 Электроплитка с закрытой спиралью по ГОСТ 14919-83.
 - 4.1.32 Скальпель.
 - 4.1.33 Стекло часовое диаметром 45 мм.

Примечание — Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведённых в 4.1.

4.2 Реактивы и материалы

- 4.2.1 Марганец (II) хлористый 4-водный (хлорид марганца) по ГОСТ 612–75, ч.д.а., или марганец (II) сернокислый 5-водный (сульфат марганца) по ГОСТ 435–77, ч.д.а. (допустимо ч.) (для измерений по варианту 1).
- 4.2.2 Калий йодистый (йодид калия) по ГОСТ 4232–74, ч.д.а., или натрий йодистый 2-водный (йодид натрия) по ГОСТ 8422–76, ч.д.а. (для измерений по варианту 1).
- 4.2.3 Калий двухромовокислый (дихромат калия) по ГОСТ 4220–75, х.ч., или стандарт-титр калий двухромовокислый с молярной концентрацией $c(1/6K_2Cr_2O_7)=0,1$ моль/дм³ по ТУ 2642-001-33813273 [3] (для измерений по варианту 1).
- 4.2.4 Натрий серноватистокислый (тиосульфат натрия) 5-водный по ГОСТ 27068–86, ч.д.а., или стандарт-титр натрий серноватистокислый 5-водный с молярной концентрацией $c(Na_2S_2O_3\cdot 5H_2O)=0,1$ моль/дм³ по ТУ 2642-001-33813273 [3] (для измерений по варианту 1).
- 4.2.5 Натрия гидроокись (гидроксид натрия) по ГОСТ 4328–77, ч.д.а. или калия гидроокись (гидроксид калия) по ГОСТ 24363–80, ч.д.а. (для измерений по варианту 1).

- 4.2.6 Натрий углекислый (карбонат натрия) по ГОСТ 83-79, ч.д.а. (для измерений по варианту 1).
- 4.2.7 Кислота соляная по ГОСТ 3118–77, ч.д.а., или кислота серная по ГОСТ 4204–77, ч.д.а. (для измерений по варианту 1)
 - 4.2.8 Аммоний хлористый (хлорид аммония) по ГОСТ 3773-72, ч.д.а.
- 4.2.9 Железо (III) хлорид 6-водный (хлорид железа) по ГОСТ 4147-74, ч.д.а.
- 4.2.10 Калий фосфорнокислый однозамещённый (дигидрофосфат калия) по ГОСТ 4198-75, ч.д.а., или калий фосфорнокислый двузамещённый (гидрофосфат калия) 3-водный по ГОСТ 2493-75, ч.д.а., или натрий фосфорно-кислый двузамещённый (гидрофосфат натрия) по ГОСТ 11773-76, ч.д.а., или натрий фосфорнокислый двузамещённый 12-водный по ГОСТ 4172-76, ч.д.а.
- 4.2.11 Кальций хлористый (хлорид кальция) обезвоженный по ТУ 6-09-4711 [4] (для эксикатора), ч.
- 4.2.12 Магний сернокислый 7-водный (сульфат магния) по ГОСТ 4523-77, ч.д.а.
- 4.2.13 Хлороформ по ГОСТ 20015—88, очищенный (для измерений по варианту 1).
- 4.2.14 Салициловая кислота фармакопейная (для измерений по варианту 1).
- 4.2.15 Крахмал растворимый по ГОСТ 10163—76, ч.д.а. (для измерений по варианту 1).
- 4.2.16 Спирт этиловый технический гидролизный ректификованный по ГОСТ Р 55878–2013 любого сорта (для измерений по варианту 1).
 - 4.2.17 Вода дистиллированная по ГОСТ 6709-72.
- 4.2.18 Фильтры бумажные обеззоленные «белая лента» и «синяя лента» по ТУ 6-09-1678 [5] (для измерений по варианту 1).
- 4.2.19 Универсальная индикаторная бумага (pH от 0 до 12) по ТУ 2642-054-23050963 [6] (для измерений по варианту 1).

Примечание — Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

5 Метод измерений

Определение БПК $_5$ основано на измерении массовой концентрации растворённого кислорода, потребляемого пробой воды в течение 5 сут инкубации при стандартных условиях: 20 °C, без доступа воздуха и света.

Измерение массовой концентрации растворённого кислорода в пробах воды до инкубации и после неё по варианту 1 проводят методом йодометрического титрования, по варианту 2 — с помощью анализатора растворённого кислорода амперометрическим методом.

6 Требования безопасности, охраны окружающей среды

- 6.1 При выполнении измерений массовой концентрации кислорода в пробах природных и очищенных сточных вод соблюдают требования безопасности, установленные в национальных стандартах и соответствующих нормативных документах.
- 6.2 По степени воздействия на организм вредные вещества, используемые при выполнении измерений, относятся ко 2-му и 3-му классам опасности по ГОСТ 12.1.007.
- 6.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.
- 6.4 Особых требований по экологической безопасности не предъявляется.

7 Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц с высшим или средним профессиональным образованием, имеющих стаж работы в лаборатории не менее 6 мес и освоивших методику.

8 Требования к условиям измерений

9 Подготовка к выполнению измерений

9.1 Отбор и хранение проб

- 9.1.1 Отбор проб для определения БПК₅ производят в соответствии с ГОСТ 17.1.5.05 и ГОСТ 31861. Оборудование для отбора проб должно соответствовать ГОСТ 17.1.5.04 и ГОСТ 31861.
- 9.1.2 Значение БПК $_5$ зависит от особенностей химических и биохимических процессов, протекающих в пробе в промежутке времени между её отбором и началом анализа. Пробы для определения БПК $_5$ консервировать не допускается, поэтому сразу же после отбора пробы воды выполняют измерения в соответствии с 10. Если это невозможно, то отбирают пробу воды в склянку тёмного стекла, заполняя её до

краёв, и закрывают пробкой, плотно прилегающей к горлышку склянки. Объём отбираемой пробы должен быть не менее 1,0 дм³. Срок хранения проб при температуре не выше 4 °C не более 4 ч.

9.2 Установление точной вместимости кислородных склянок

Сухие чистые кислородные склянки вместимостью от 100 до 300 cm^3 и склянку с дистиллированной водой для их заполнения выдерживают в помещении с лабораторными весами не менее 1 ч. Измеряют температуру воды для определения коэффициента k по таблице 3 для расчёта вместимости склянки по формуле (1).

Для установления точной вместимости кислородной склянки (объёма) проводят её взвешивание вместе с пробкой на лабораторных весах с ценой деления 0,01 г. Затем склянку наполняют дистиллированной водой до краёв и закрывают стеклянной пробкой так, чтобы под пробкой не оставалось пузырьков воздуха (без газовой фазы внутри склянки). Обтирают склянку досуха и снова взвешивают.

Далее рассчитывают вместимость кислородной склянки (объём) V_x , см 3 , по формуле

$$V_{r} = (m_{1} - m_{2}) \cdot k \,, \tag{1}$$

где m_1 – масса склянки, заполненной дистиллированной водой, г;

 m_2 — масса пустой склянки, г;

k – коэффициент при температуре взвешивания по таблице 3.

Таблица 3 – Значение коэффициента k при температуре взвешивания (при атмосферном давлении 760 мм рт.ст.)

Температура, °С	Коэффициент <i>к</i>	Температура, °С	Коэффициент <i>k</i>
17	1,00235	23	1,00348
18	1,00251	24	1,00370
19	1,00268	25	1,00393
20	1,00286	26	1,00418
21	1,00306	27	1,00444
22	1,00326	-	-

Точную вместимость кислородных склянок округляют до целых единиц кубических сантиметров (без десятых долей).

Примечание — Значения коэффициента для измерений, проведённых при других условиях, указаны в ГОСТ 8.234.

9.3 Подготовка анализатора растворённого кислорода

Анализатор растворённого кислорода готовят к работе в соответствии с техническим описанием или руководством по эксплуатации. Для проверки технического состояния анализатора

выполняют его градуировку по атмосферному воздуху, и сравнивают полученные показания с рассчитанным значением растворимости кислорода $C_{\mathbf{v}}^{'}$ по формуле

$$C_{\kappa}' = C_{\kappa} \cdot \frac{P_{\text{atm}}}{760} \quad , \tag{2}$$

где $C_{\rm K}$ — равновесная концентрация растворённого кислорода в дистиллированной воде при измеренной температуре, при нормальном атмосферном давлении 760 мм рт. ст. в соответствии с таблицей А.1 в приложении А;

 $P_{\text{атм}}$ – атмосферное давление на момент градуировки, мм рт. ст.;

760 - нормальное атмосферное давление, мм рт. ст.

Полученные показания анализатора концентрации растворённого кислорода с учётом абсолютной погрешности измерений должны соответствовать рассчитанному значению $C_{\mathbf{v}}^{\mathbf{t}}$.

9.4 Приготовление растворов

9.4.1 Раствор хлорида марганца (или сульфата марганца)

В стакане вместимостью 600 см³ растворяют 210 г хлорида марганца 4-водного или 260 г сульфата марганца 5-водного в 350 см³ дистиллированной воды, фильтруют в мерную колбу вместимостью 500 см³ через фильтр бумажный «белая лента» и доводят объём раствора до метки на колбе дистиллированной водой. Срок хранения раствора в плотно закрытой склянке при комнатной температуре не ограничен.

Проверку чистоты раствора соли марганца и его очистку осуществляют по 9.5.3.

9.4.2 Щелочной раствор йодида

В стакане вместимостью 50 см³ растворяют 15 г йодида калия или 18 г йодида натрия в 20 см³ дистиллированной воды. В термостойком стакане вместимостью 150 см³ растворяют 50 г гидроксида натрия в 50 см³ дистиллированной воды и охлаждают. Полученные растворы смешивают в мерной колбе вместимостью 100 см³ и доводят объём раствора до метки на колбе дистиллированной водой. При наличии мутности раствора его фильтруют через фильтр бумажный «белая лента». Срок хранения раствора в плотно закрытой пробкой склянке из тёмного стекла не ограничен.

Проверку чистоты йодида калия (или йодида натрия) и его очистку осуществляют по 9.5.2.

9.4.3 Раствор соляной кислоты, 2:1

В стакане вместимостью 600 см³ смешивают 340 см³ концентрированной соляной кислоты с 170 см³ дистиллированной воды.

Вместо раствора соляной кислоты можно использовать раствор серной кислоты (1:4) для всех этапов реализации методики измерений, установленных настоящим руководящим документом. Для его приготовления смещивают 100 см³ концентрированной серной кислоты с 400 см³ дистиллированной воды.

Примечание — Серную кислоту отмеривают сухим цилиндром и осторожно при перемешивании приливают к 400 см³ дистиллированной воды, помещенной в термостойкий стакан.

Срок хранения раствора в плотно закрытой склянке не ограничен. Проверку чистоты раствора соляной (или серной) кислоты осуществляют по 9.5.1.

9.4.4 Раствор крахмала, 0,5 %-ный

В стакане вместимостью 50 см³ смешивают 0,5 г крахмала с 20 см³ дистиллированной воды. Суспензию постепенно приливают к 80 см³ кипящей дистиллированной воды и кипятят ещё около 2 мин. После охлаждения консервируют добавлением двух капель хлороформа или 5 мг салициловой кислоты (на кончике скальпеля). Раствор крахмала хранят при комнатной температуре, используют до помутнения.

9.4.5 Раствор дихромата калия с молярной концентрацией $c(1/6K_2Cr_2O_7)$, равной 0,0200 моль/дм³

9.4.5.1 Для приготовления раствора из стандарт-титра его содержимое растворяют в дистиллированной воде в мерной колбе вместимостью 500 см^3 , доводят объём раствора дистиллированной водой до метки на колбе и перемешивают. Полученный раствор дихромата калия с молярной концентрацией $c(1/6K_2Cr_2O_7)$, равной 0,2000 моль/дм³, хранят в склянке, плотно закрытой пробкой, в тёмном месте не более 6 мес.

Пипеткой с одной отметкой отбирают 50,0 см³ раствора дихромата калия с молярной концентрацией $c(1/6K_2Cr_2O_7)$, равной 0,2000 моль/дм³, переносят в мерную колбу вместимостью 500 см³, доводят объём раствора дистиллированной водой до метки на колбе и перемешивают.

9.4.5.2 Для приготовления раствора дихромата калия с молярной концентрацией $c(1/6K_2Cr_2O_7)$, равной 0.0200 моль/дм³, из реактива на

весах специального класса точности взвешивают с точностью до четвертого знака после запятой 0,490 г дихромата калия, предварительно высушенного в сушильном шкафу при температуре (105±2) °С не менее 2 ч и охлаждённого в эксикаторе над хлоридом кальция. Количественно переносят навеску в мерную колбу вместимостью 500 см³, растворяют в дистиллированной воде, доводят объём раствора дистиллированной водой до метки на колбе и перемешивают.

9.4.5.3 Раствор дихромата калия с молярной концентрацией $c(1/6K_2Cr_2O_7)$, равной 0,0200 моль/дм³, хранят в склянке, плотно закрытой пробкой, в тёмном месте не более 1 мес.

9.4.6 Раствор тиосульфата натрия с молярной концентрацией $c(Na_2S_2O_3)$, равной 0,02 моль/дм³

9.4.6.1 Для приготовления раствора из стандарт-титра его содержимое растворяют в дистиллированной воде в мерной колбе вместимостью $500~{\rm cm}^3$, доводят объём раствора дистиллированной водой до метки на колбе и перемешивают. Полученный раствор тиосульфата натрия с молярной концентрацией $c({\rm Na_2S_2O_3})$, равной 0,20 моль/дм³, консервируют 3 cм³ хлороформа. Хранят приготовленный раствор в склянке из тёмного стекла, плотно закрытой пробкой, при комнатной температуре. Срок хранения раствора не ограничен.

Пипеткой с одной отметкой отбирают 100,0 см 3 раствора тиосульфата натрия с молярной концентрацией с(Na $_2$ S $_2$ O $_3$), равной 0,20 моль/дм 3 , переносят в мерную колбу вместимостью 1000 см 3 , доводят объём раствора дистиллированной водой до метки на колбе и перемешивают.

- 9.4.6.2 Для приготовления раствора тиосульфата натрия с молярной концентрацией $c(Na_2S_2O_3)$, равной 0,02 моль/дм³, из реактива взвешивают 5 г тиосульфата натрия 5-водного, переносят в мерную колбу вместимостью 1000 см³, растворяют в дистиллированной воде, доводят объём раствора до метки на колбе дистиллированной водой и перемешивают.
- 9.4.6.3 Для консервации раствора тиосульфата натрия с молярной концентрацией с($Na_2S_2O_3$), равной 0.20 моль/дм³, добавляют 3 см³ хлороформа. Раствор используют не ранее чем через 5 сут после приготовления. Раствор хранят в склянке из тёмного стекла, плотно закрытой пробкой, при комнатной температуре до уменьшения его концентрации менее 0.015 моль/дм³.

Для большей стабильности концентрации приготовленного раствора рекомендуется хранить раствор, закрытый пробкой с вставленными в неё сифоном с бюреткой и хлоркальциевой трубкой, заполненной гранулированным гидроксидом калия или гидроксидом натрия.

Точную молярную концентрацию раствора тиосульфата натрия устанавливают в соответствии с 9.6 не реже 1 раза в неделю.

Примечание — Раствор тиосульфата натрия, используемый для устранения мешающего влияния активного хлора в пробах воды, не консервируют.

9.4.7 Фосфатный буферный раствор с рН 7,2

В мерной колбе вместимостью 500 см³ растворяют в дистиллированной воде 4,25 г дигидрофосфата калия или 14,25 г гидрофосфата калия 3-водного или 8,85 г гидрофосфата натрия или 22,3 г гидрофосфата натрия 12-водного и 0,85 г хлорида аммония, доводят объём раствора до метки на колбе дистиллированной водой и перемешивают. Раствор хранят до появления осадка или до повышения значения БПК₅ разбавляющей воды в соответствии с 10.4.6.

9.4.8 Раствор сульфата магния, 1,1 %-ный

В стакане вместимостью 600 см 3 растворяют 11,25 г сульфата магния 7-водного в 500 см 3 дистиллированной воды. Раствор хранят до появления осадка или до повышения значения БПК $_5$ разбавляющей воды в соответствии с 10.4.6.

9.4.9 Раствор хлорида кальция, 2,7 %-ный

В стакане вместимостью 600 см³ растворяют 28,2 г хлорида кальция 6-водного или 13,8 г хлорида кальция в 500 см³ дистиллированной воды. Раствор хранят до появления осадка или до повышения значения БПК₅ разбавляющей воды в соответствии с 10.4.6.

9.4.10 Раствор хлорида железа, 0,015 %-ный

В стакане вместимостью 600 см 3 растворяют 0,13 г хлорида железа 6-водного в 500 см 3 дистиллированной воды. Раствор хранят до появления осадка или до повышения значения БПК $_5$ разбавляющей воды в соответствии с 10.4.6.

9.4.11 Вода для разбавления проб

Воду для разбавления готовят в день применения из дистиллированной воды с температурой 20 °С, добавляя фосфатный буферный раствор, растворы сульфата магния, хлорида кальция и хлорида железа из расчёта по 1 см³ каждого раствора на 1 дм³ дистиллированной воды.

Затем насыщают воду кислородом воздуха интенсивным встряхиванием в течение 10 мин, после чего оставляют на 5 мин (до исчезновения мелких пузырьков воздуха в воде) для установления равновесия.

9.4.12 Раствор соляной кислоты, 1 моль/дм³

В стакане вместимостью 150 см³ смешивают 92 см³ дистиллированной воды с 8,5 см³ концентрированной соляной кислоты. Срок хранения раствора в плотно закрытой склянке не ограничен.

9.4.13 Раствор гидроксида натрия, 1 моль/дм³

В термостойком стакане вместимостью 150 см³ растворяют 4 г гидроксида натрия в 100 см³ дистиллированной воды. Срок хранения раствора в плотно закрытой пластиковой посуде не более 6 мес.

9.5 Проверка чистоты, очистка растворов и реактивов

Проверку чистоты растворов и реактивов проводят последовательно, начиная с раствора соляной кислоты (или серной кислоты).

9.5.1 Раствор соляной кислоты

В стакане вместимостью 100 см³ к 50 см³ дистиллированной воды добавляют 1 см³ раствора крахмала, 1 г сухого чистого йодида калия и 10 см³ раствора соляной кислоты (2:1). Если в течение 5 мин не появится синяя окраска, раствор кислоты может быть использован в анализе, в противном случае следует заменить партию реактива.

Примечание — Если после замены партии реактива синяя окраска появляется вновь, переходят к проверке чистоты йодида калия. Аналогичным образом проверяют чистоту раствора серной кислоты (1:4).

9.5.2 Йодид калия (или йодид натрия)

В стакане вместимостью 150 см³ кипятят 100 см³ дистиллированной воды в течение 10 мин. Затем в охлажденной до комнатной температуры дистиллированной воде растворяют 1 г йодида калия, добавляют 10 см³ раствора соляной кислоты (2:1), проверенного на чистоту, и 1 см³ раствора крахмала.

Если в течение 5 мин голубая окраска не появляется, реактив пригоден для использования. В противном случае йодид калия необходимо очистить от свободного йода. Для этого собирают установку из колбы с тубусом, вакуумного насоса и воронки Бюхнера. Около 40 г

йодида калия помещают в воронку Бюхнера на фильтр «белая лента» и промывают при перемешивании небольшими порциями этилового спирта, предварительно выдержанного в холодильнике не менее 30 мин, до появления бесцветной порции последнего. Промытый йодид калия высушивают в тёмном месте между листами фильтровальной бумаги не менее 24 ч. Хранят в плотно закрытой склянке из тёмного стекла до появления голубой окраски при проверке его чистоты.

Проверку чистоты и очистку йодида натрия проводят аналогичным образом.

9.5.3 Раствор хлорида марганца (или сульфата марганца)

В стакане вместимостью 150 см³ кипятят 100 см³ дистиллированной воды в течение 10 мин. Далее дистиллированную воду охлаждают до комнатной температуры и добавляют 1 см³ раствора хлорида марганца или сульфата марганца по 9.4.1, 0,2 г сухого йодида калия и 5 см³ раствора соляной кислоты (2:1), проверенных на чистоту, и 1 см³ раствора крахмала. Отсутствие через 10 мин синей окраски указывает на чистоту реактива. В противном случае для очистки раствора на каждые 100 см³ его добавляют около 1 г безводного карбоната натрия, хорошо перемешивают, отстаивают в течение 1 сут, а затем фильтруют через бумажный фильтр «синяя лента».

9.6 Установление точной молярной концентрации раствора тиосульфата натрия

Для установления точной молярной концентрации раствора тиосульфата натрия $c(Na_2S_2O_3)$, равной 0,02 моль/дм³, в коническую колбу вместимостью 250 см³ приливают мерным цилиндром 80 см³ дистиллированной воды, с помощью пипетки с одной отметкой вносят 10,0 см³ раствора дихромата калия с молярной концентрацией $c(1/6K_2Cr_2O_7)$, равной 0,0200 моль/дм³, добавляют 1 г сухого йодида калия и приливают градуированной пипеткой 10 см³ раствора соляной кислоты (2:1). Закрывают колбу стеклянной пробкой или накрывают часовым стеклом, перемешивают v выдерживают в течение 5 мин в тёмном месте. Затем проводят титрование из бюретки вместимостью 25 см³ раствором тиосульфата натрия с молярной концентрацией раствора, равной 0,02 моль/дм³, до появления слабо-жёлтой окраски, добавляют градуированной пипеткой 1 см³ раствора крахмала и продолжают титрование до исчезновения синей окраски.

Титрование повторяют и, при отсутствии расхождения в объёмах раствора тиосульфата натрия более 0.1 см³, за результат принимают среднее арифметическое значение. В противном случае повторяют

титрование до получения результатов, отличающихся не более чем на $0.1~{\rm cm}^3$.

Примечание — При окончании титрования раствор не будет становиться полностью бесцветным, так как в нем присутствуют ионы хрома (III).

Рассчитывают молярную концентрацию раствора тиосульфата натрия $c(Na_2S_2O_3)$, моль/дм³, по формуле

$$c(Na_2S_2O_3) = c(1/6K_2Cr_2O_7) \cdot \frac{V_A}{V_-},$$
 (3)

где $c(1/6K_2Cr_2O_7)$ – молярная концентрация раствора дихромата калия, моль/дм³:

 $V_{_{
m J}}$ — объём раствора дихромата калия, отобранный для титрования, см 3 ;

 $\overline{V_{_{\rm T}}}$ — среднее арифметическое значение объёма раствора тиосульфата натрия, израсходованного на титрование, см³.

Рассчитанное значение молярной концентрации раствора тиосульфата натрия округляют до четырёх значащих цифр.

10 Порядок выполнения измерений

10.1 Заполнение и инкубация склянок

- 10.1.1 Если проба не содержит визуально заметного количества взвешенных веществ, то отбирают от 1,0 до 1.4 дм³ её и помещают в коническую колбу вместимостью 2 дм³, устанавливают значение pH в пределах от 6 до 8 единиц по универсальной индикаторной бумаге добавлением раствора соляной кислоты по 9.4.12 или гидроксида натрия по 9.4.13. Доводят температуру пробы до (20±1) °C, нагревая водяной бани) или охлаждая её (под струёй NGN) помощи водопроводной воды). Затем пробу периодически взбалтывают не менее 10 раз в течение 10 мин, чтобы насытить кислородом. После завершения процедуры насыщения кислородом пробу оставляют на 5 мин для удаления избытка воздуха (до отсутствия поднимающихся к поверхности мелких пузырьков).
- 10.1.2 Если проба содержит грубую взвесь, её наливают в склянку (лучше, цилиндр) вместимостью не менее 1 дм³ и отстаивают в течение 1 ч. После отстаивания отбирают с помощью сифона осветлившийся средний слой воды в колбу для насыщения кислородом. Если пробу отстаиванием в течение 1 ч осветлить не удаётся, её фильтруют через бумажный фильтр «белая лента». Принятый способ предварительной обработки воды всегда указывают в результатах анализа.

- 10.1.3 Подготовленную пробу наливают в 3 сухие кислородные склянки, заполняя их до краёв так, чтобы внутри склянки не образовывалось пузырьков воздуха. В одной из 3-х склянок сразу же фиксируют и определяют концентрацию растворённого кислорода по 10.2 или измеряют концентрацию растворённого кислорода по 10.3. Время между аэрацией пробы и фиксированием кислорода или измерением его массовой концентрации не должно быть более 15 мин.
- 10.1.4 Две другие склянки закрывают пробками так, чтобы внутри не оставалось пузырьков воздуха. При использовании склянок БПК, снабжённых притёртыми стеклянными колпачками, последние заполняют той же пробой воды или дистиллированной водой, и они служат водяным затвором. Далее склянки помещают в термостат и выдерживают в течение 5 сут при температуре (20±1) °C. По истечении этого срока в инкубированных склянках определяют концентрацию неизрасходованного растворённого кислорода по 10.2 или по 10.3 в каждой из двух склянок.

10.2 Определение растворённого кислорода по варианту 1

- 10.2.1 Сразу же после заполнения кислородных склянок (или после инкубации) фиксируют растворённый кислород. Для этого в каждую склянку с пробой воды вводят отдельными пипетками по 1 см³ раствора хлорида марганца (или сульфата марганца) и щелочного раствора йодида калия (или йодида натрия) при вместимости склянки до 150 см³ или по 2 см³ тех же растворов реактивов при вместимости склянки более 150 см³. Пипетку погружают каждый раз до половины высоты склянки и по мере вытекания раствора поднимают вверх, распределяя реактив по всему объёму пробы воды. Затем быстро закрывают склянку стеклянной пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха, и содержимое тщательно перемешивают 20-кратным переворачиванием склянки вверх дном до равномерного распределения осадка в воде. Склянки с зафиксированным в них кислородом помещают в тёмное место для отстаивания не менее 10 мин (для осаждения гидроксида марганца) и хранят не более 24 ч.
- 10.2.2. После осаждения гидроксида марганца к пробе приливают 5 см³ при вместимости склянки до 150 см³ или 10 см³ при вместимости склянки более 150 см³ раствора соляной кислоты (2:1), погружая при этом пипетку практически до осадка, но не взмучивая его, и медленно поднимая её вверх по мере вытекания раствора кислоты. Вытеснение из склянки части прозрачной жидкости после фиксации кислорода для анализа значения не имеет. Склянку закрывают пробкой таким образом, чтобы в ней не оставалось пузырьков воздуха, и содержимое тщательно перемешивают периодическим многократным переворачиванием вверх

дном до полного растворения полученного при фиксации кислорода осадка.

10.2.3 Далее пипеткой с одной отметкой отбирают 50,0 см 3 раствора (предварительно ополаскивают пипетку этим раствором), переносят в колбу для титрования и титруют раствором тиосульфата натрия с молярной концентрацией с($Na_2S_2O_3$), равной 0,02 моль/дм 3 , из бюретки вместимостью 10 см 3 до появления светло-жёлтой окраски раствора. Затем прибавляют 1 см 3 раствора крахмала и продолжают титрование до исчезновения синей окраски.

10.3 Определение растворённого кислорода по варианту 2

Сразу же после заполнения склянок (или после инкубации) измеряют массовую концентрацию растворённого кислорода с помощью анализатора растворённого кислорода. Для этого в склянку с пробой воды помещают перемешивающий элемент и кислородный датчик, уплотнив его в горле склянки с помощью резинового кольца, установленного на измерительную часть датчика. Далее устанавливают склянку с кислородным датчиком на магнитную мешалку и включают её, при этом скорость вращения перемешивающего элемента должна быть не менее 5 см/сек, так как в неподвижной анализируемой среде показания датчика будут медленно падать. Включают анализатор и измеряют массовую концентрацию кислорода в соответствии с руководством по эксплуатации.

10.4 Разбавление проб

- 10.4.1 Если предполагается, что значение БПК₅ будет больше 5 мг/дм³, то растворённого кислорода может не хватить для окисления органического вещества пробы. В этом случае разбавляют исходную пробу водой для разбавления, приготовленную по 9.4.11.
- 10.4.2 Рекомендуемые объёмы аликвот анализируемой пробы воды $V_{\rm an}$ в зависимости от предполагаемого значения БПК₅ при разбавлении в мерной колбе вместимостью 1000 см³ приведены в таблице 4.

Степень разбавления анализируемой пробы подбирают таким образом, чтобы минимальное потребление кислорода было не менее 2 мг/дм³, а оставшаяся после 5 сут инкубации концентрация кислорода составила не менее 3 мг/дм³.

Таблица 4 – Рекоменду при определении БПК₅	емое разбавление пр	об анализируемой вод	Ы
Предполагаемое значение	Объём аликвоты проб	Степень разбавления	

Предполагаемое значение БПК₅, мг/дм³	Объём аликвоты проб воды, V _{ал} , см ³	Степень разбавления
5-12	500	2
10-30	200	5
20-60	100	10
40-120	50	20

- 10.4.3 Для ориентировочной оценки степени разбавления пробы можно использовать значение перманганатной окисляемости, бихроматной окисляемости (ХПК), органолептические (характер и интенсивность запаха пробы) или визуальные показатели (наличие, а также возможный состав взвешенного вещества). Если значение БПК $_{\rm S}$ совершенно неизвестно, следует делать несколько последовательных разбавлений, например, в 2, 5, 10 и 20 раз.
- 10.4.4 Разбавление пробы следует проводить в мерной колбе вместимостью 1000 см³. Для этого отбирают необходимый объём анализируемой пробы пипеткой (при объёме аликвоты до 50 см³) или цилиндром (при объёме аликвоты более 50 см³) и доводят объём пробы в колбе до метки на колбе разбавляющей водой. Затем выполняют измерения в соответствии с 10.1, 10.2 или 10.3.

Примечание - Подготовленные при разбавлении пробы должны иметь температуру (20 ± 1) °C и значение pH от 6 до 8 ед.

 10.4.5 Если при определении БПК₅ проводили разбавление проб. следует одновременно заполнить 4 кислородные склянки водой для разбавления проб. В двух из них сразу же определяют концентрацию растворённого кислорода, а две другие помещают в термостат вместе с серией анализируемых проб и определяют в них концентрацию растворённого кислорода после инкубации. Разность между средними арифметическими значениями массовой концентрации кислорода в исходных и инкубированных пробах воды для разбавления не должна превышать 0.5 мг/дм³. Полученную поправку учитывают при расчете БПК5 по значения 11.2. При более высоком значении разбавляющей воды результаты определения будут недостоверны и следует заменить воду для разбавления более чистой, повторить отбор проб и определение БПК₅.

10.5 Подготовка проб при наличии в воде активного хлора

К пробам, подвергавшимся обработке хлором или хлорной известью и содержащим активный хлор, перед началом определения БПК₅ добавляют необходимый для его полного восстановления объём

раствора тиосульфата натрия с молярной концентрацией $c(\text{Na}_2\text{S}_2\text{O}_3)$, равной 0,02 моль/дм³, который определяют следующим образом. В колбу для титрования вносят 100 см³ анализируемой воды, 1 г сухого йодида калия, 10 см³ раствора соляной кислоты 2:1, тщательно перемешивают и титруют раствором тиосульфата натрия с молярной концентрацией $c(\text{Na}_2\text{S}_2\text{O}_3)$, равной 0,02 моль/дм³ до светло-жёлтого цвета, а затем после добавления 1 см³ раствора крахмала - до полного обесцвечивания. Далее к аликвоте анализируемой воды добавляют пропорциональный объём раствора тиосульфата натрия, который не был законсервирован хлороформом.

11 Обработка результатов измерений

11.1 Массовую концентрацию растворённого в воде кислорода X, мг/дм³, для измерений по варианту 1 рассчитывают по формуле

$$X = \frac{8 \cdot c (Na_2 S_2 O_3) \cdot V_7 \cdot V_K \cdot 1000}{50 \cdot (V_7 - V_1)},$$
 (4)

где 8 – 1/2 атомной массы кислорода, мг/ммоль;

 $V_{\rm T}$ — объём раствора тиосульфата натрия, израсходованный на титрование, см³;

 $V_{\rm K}$ – вместимость кислородной склянки, см³;

1000 – коэффициент пересчёта;

50 – объём аликвоты пробы воды, взятый для титрования, см³;

 V_1 — суммарный объём растворов хлорида марганца и йодида калия, добавленных в склянку при фиксации растворённого кислорода, см³.

- 11.2 Массовую концентрацию растворённого в воде кислорода X, мг/дм 3 , для измерений по варианту 2, записывают в соответствии с показаниями применяемого средства измерений.
- 11.3 БПҚ $_5$, мг/дм 3 , неразбавленной пробы воды (или БПҚ $_5^P$, мг/дм 3 , воды для разбавления) рассчитывают по формуле

БПК₅ =
$$X_H - X_K$$
 или БПК₅ = $X_H - X_K$, (5)

где $X_{\rm H}$ — массовая концентрация растворённого кислорода в пробе анализируемой воды (или разбавляющей воды) до инкубации, мг/дм³;

- X_{κ} массовая концентрация растворённого кислорода в пробе анализируемой воды (или разбавляющей воды) после 5 сут инкубации, мг/дм³.
- 11.4 Если для анализа проводили разбавление пробы воды по 10.4, то $Б\Pi K_{S}$, мг/дм³, рассчитывают по формуле

$$\mathsf{B}\mathsf{\Pi}\mathsf{K}_{\mathsf{S}} = (X_{\mathsf{H}} - X_{\mathsf{K}}) \cdot \frac{1000}{V_{\mathsf{B}\mathsf{\Pi}}} - \mathsf{B}\mathsf{\Pi}\mathsf{K}_{\mathsf{S}}^{\mathsf{P}} \cdot \left(\frac{1000}{V_{\mathsf{B}\mathsf{\Pi}}} - 1\right). \tag{6}$$

12 Оформление результатов измерений

12.1 Результат измерения в документах, предусматривающих его использование, представляют в виде

$$\overline{X} \pm \Delta$$
, MΓ/ДM³ ($P = 0.95$), (7)

- где \overline{X} среднее арифметическое значение двух результатов измерений БПК₅ в двух склянках после инкубации, разность между которыми не превышает предела повторяемости r (2,77- σ ,), мг/дм³; при превышении предела повторяемости поступают согласно 13.2;
- $\pm \Delta$ границы абсолютной погрешности результатов измерений для данного значения БПК₅, мг/дм³, в соответствии с таблицей 1 или 2.

Абсолютные погрешности результатов измерений представляют числом, содержащим не более двух значащих цифр. Наименьшие разряды числовых значений результатов измерений принимают такими же, как и наименьшие разряды числовых значений абсолютных погрешностей результатов измерений.

12.2 Допустимо представлять результат в виде

$$\overline{X} \pm \Delta_n \ (P=0.95)$$
 при условии $\Delta_n < \Delta_n$ (8)

где $\pm \Delta_n$ — границы абсолютной погрешности результатов измерений, установленные при реализации методики в лаборатории и обеспечиваемые контролем стабильности результатов измерений, мг/дм³.

Примечание – Допустимо абсолютную погрешность результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения Δ_n = 0,84· Δ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

12.3 Результаты измерения оформляют протоколом или записью в журнале по формам, приведенным в Руководстве по качеству лаборатории.

13 Контроль качества результатов измерений при реализации методики в лаборатории

13.1 Общие положения

- 13.1.1 Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:
- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости и внутрилабораторной прецизионности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения

повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности).

13.1.2 Периодичность оперативного контроля исполнителем процедуры выполнения измерений, а также реализуемые процедуры контроля стабильности результатов выполняемых измерений регламентируются в Руководстве по качеству лаборатории.

13.2 Алгоритм оперативного контроля повторяемости

- 13.2.1 Оперативный контроль повторяемости осуществляют для каждого из результатов измерений, полученных в соответствии с методикой.
- 13.2.2 Результат контрольной процедуры r_{κ} , мг/дм³, рассчитывают по формуле

$$r_{\mathbf{k}} = |X_1 - X_2|, \tag{9}$$

где X_1, X_2 – результаты измерений БП K_5 , мг/дм³.

13.2.3 Предел повторяемости r_0 , мг/дм³, рассчитывают по формуле

$$r_{n}=2.77\cdot\sigma_{r},\qquad (10)$$

где σ , – показатель повторяемости для БПК₅, равного $(X_1 + X_2)/2$, мг/дм³, в соответствии с таблицей 1 или 2.

13.2.4 Результат контрольной процедуры должен удовлетворять условию

$$r_{\mathbf{k}} \le r_{\mathbf{0}}.\tag{11}$$

13.2.5 При несоблюдении условия (11) выполняют ещё два измерения и сравнивают разницу между максимальным и минимальным результатами с нормативом контроля. В случае превышения предела повторяемости, поступают в соответствии с ГОСТ Р ИСО 5725-6 (раздел 5).

13.3 Алгоритм контроля процедуры выполнения измерений с использованием метода добавок

- 13.3.1 Для оперативного контроля отбирают пробу природной воды объёмом не менее 2 дм 3 и делят её на две части. В одной части определяют значение БПК $_5$ (\overline{X}) в соответствии с разделом 10. Значение БПК $_5$ самой пробы природной воды не должно превышать 3 мг/дм 3 . В противном случае пробу природной воды разбавляют до объёма не менее 2 дм 3 так, чтобы полученное при разбавлении значение БПК $_5$ не превышало 3 мг/дм 3 . Затем уже разбавленную пробу воды делят на две части и анализируют.
- 13.3.2 Мерную колбу вместимостью 1 дм³ заполняют на две трети анализируемой водой и вносят добавку раствора, приготовленного из ГСО в соответствии с паспортом по 4.1.4. В зависимости от

предполагаемой степени загрязнённости воды, вносят соответствующий объём раствора, приготовленного из ГСО, и доводят до метки на колбе той же анализируемой водой. Далее поступают в соответствии с разделом 10.

- 13.3.3 Контроль исполнителем процедуры выполнения измерений проводят путем сравнения результатов отдельно взятой контрольной процедуры К_к с нормативом контроля К.
- 13.3.4 Результат контрольной процедуры K_{κ} , мг/дм³, рассчитывают по формуле

$$K_{x} = |\overline{X}' - \overline{X} - C|, \tag{12}$$

где \overline{X}' – результат контрольного измерения БПК₅ в пробе с известной добавкой, мг/дм³:

 \overline{X} — результат контрольного измерения БПК₅ в рабочей пробе, мг/дм³; C — концентрация добавки, мг/дм³.

13.3.5 Норматив контроля погрешности K, мг/дм 3 , рассчитывают по формуле

$$K = \sqrt{(\Delta_{nx'})^2 + (\Delta_{nx})^2}, \qquad (13)$$

где $\Delta_{\rm nx'}$ ($\Delta_{\rm nx}$) — значения абсолютной погрешности результатов измерений, установленные при реализации методики в лаборатории, соответствующие значению БПК₅ в пробе с добавкой (рабочей пробе), мг/дм³.

Примечание — Допустимо для расчёта норматива контроля использовать значения абсолютной погрешности, полученные расчётным путём по формулам $\Delta_{nx'}$ =0,84· $\Delta_{nx'}$ и Δ_{nx} =0,84· Δ_{x} , где $\Delta_{x'}$, Δ_{x} — приписанные методике значения абсолютной погрешности, соответствующие БПК $_{5}$ в пробе с добавкой и рабочей пробе, мг/дм $_{3}^{3}$, соответственно.

13.3.6 Если результат контрольной процедуры удовлетворяет условию

$$\mid \mathsf{K}_{\kappa} \mid \, \leq \mathsf{K} \,, \tag{14}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (14) контрольную процедуру повторяют.

При повторном невыполнении условия (14) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

14 Проверка приемлемости результатов, полученных в условиях воспроизводимости

14.1 Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости R. При выполнении этого условия приемлемы оба результата измерений и в качестве окончательного может быть использовано их общее среднее значение. Значение предела воспроизводимости R, мг/дм 3 , рассчитывают по формуле

$$R=2,77\cdot\sigma_R$$
, (15)

где σ_R — показатель воспроизводимости, мг/дм³, в соответствии с таблицами 1 и 2.

- 14.2 При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов измерений согласно ГОСТ Р ИСО 5725-6 (раздел 5) или МИ 2881.
- 14.3 Проверка приемлемости проводится при необходимости сравнения результатов измерений, полученных двумя лабораториями.

Приложение А (обязательное)

Равновесная концентрация растворённого кислорода в дистиллированной воде в зависимости от температуры воды

Таблица А.1 — Равновесная массовая концентрация растворённого кислорода в дистиллированной воде в зависимости от температуры (при атмосферном давлении 760 мм рт.ст. и парциальном давлении кислорода 0,209 атм)

Температура,		Десятые доли, °С								
℃	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
			P	авновес	ная кон	центрац	ия, мг/ді	W3		
0	14,62	14,58	14,54	14,50	14,46	14,42	14,38	14,34	14,30	14,26
11	14,22	14,18	14,14	14,10	14,06	14,02	13,98	13,94	13,91	13,87
2	13,83	13,79	13,76	13,72	13,68	13,64	13,61	13,57	13,53	13,50
3	13,46	13,43	13,39	13,35	13,32	13,28	13,25	13,21	13,18	13,14
4	13,11	13,07	13,04	13,01	12,97	12,94	12,90	12,87	12,84	12,80
5	12,77	12,74	12,71	12,67	12,64	12,61	12,58	12,54	12,51	12,48
6	12,45	12,42	12,39	12,35	12,32	12,29	12,26	12,23	12,20	12,17
7	12,14	12,11	12,08	12,05	12,02	11,99	11,96	11,93	11,90	11,87
8	11,84	11,81	11,79	11,76	11,73	11,70	11,67	11,64	11,62	11,59
9	11,56	11,53	11,50	11,48	11,45	11,42	11,40	11,37	11,34	11,31
10	11,29	11,26	11,23	11,21	11,18	11,16	11,13	11,10	11,08	11,05
11	11,03	11,00	10,98	10,95	10,93	10,90	10,88	10,85	10,83	10,80
12	10,78	10,75	10,73	10,70	10,68	10,66	10,63	10,61	10,58	10,56
13	10,54	10,51	10,49	10,47	10,44	10,42	10,40	10,37	10,35	10,33
14	10,31	10,28	10,26	10,24	10,22	10,19	10,17	10,15	10,13	10,11
15	10,08	10,06	10,04	10,02	10.00	9,98	9,95	9,93	9,91	9,89
16	9,87	9,85	9,83	9,81	9,79	9,77	9,75	9,73	9,71	9,69
17	9,66	9,64	9,62	9,60	9,58	9,57	9,55	9,53	9,51	9,49
18	9,47	9,45	9,43	9,41	9,39	9,37	9,35	9,33	9,31	9,30
19	9,28	9,26	9,24	9,22	9,20	9,18	9,17	9,15	9,13	9,11
20	9,09	9,07	9,06	9,04	9,02	9,00	8,99	8,97	8,95	8,93
21	8,92	8,90	8,88	8,86	8,85	8,83	8,81	8,79	8,78	8,76
22	8,74	8,73	8,71	8,69	8,68	8,66	8,64	8,63	8,61	8,59
23	8,58	8,56	8,55	8,53	8,51	8,50	8,48	8,47	8,45	8,43
24	8,42	8,40	8,39	8,37	8,36	8,34	8,32	8,31	8,29	8,28
25	8,26	8,25	8,23	8,22	8,20	8,19	8,17	8,16	8,14	8,13
26	8,11	8,10	8,08	8,07	8,06	8,04	8,03	8,01	8,00	7,98
27	7,97	7,95	7,94	7,93	7,91	7,90	7,88	7,87	7,86	7,84
28	7,83	7,81	7,80	7,79	7,77	7,76	7,75	7,73	7,72	7,70
29	7,69	7,68	7,66	7,65	7,64	7,62	7,61	7,60	7,58	7,57
30	7,56	7,55	7,53	7,52	7,51	7,49	7,48	7,47	7,46	7,44

PII 52.24.420-2019

Библиография

- [1] Технические условия ТУ 25-11.1513-79
- [2] Технические условия ТУ 25-11-834—80
- [3] Технические условия ТУ 2642-001-33813273-97
- [4] Технические условия ТУ 6-09-4711-81
- [5] Технические условия ТУ 6-09-1678—95
- [6] Технические условия ТУ 2642-054-23050963-2008

Барометр-анероид метеорологический БАММ-1 Мешалка магнитная

Стандарт-титры (Фиксаналы; Нормадозы) Кальций хлористый (кальция хлорид) обезвоженный Фильтры обеззоленные (белая, красная, синяя ленты)

Бумага индикаторная

Ключевые слова: биохимическое потребление кислорода, методика измерений, растворённый кислород, природная вода, титриметрический метод, амперометрический метод

Лист регистрации изменений

Поряд-		Номер с	траниць		Номер ре-	Подпись	Да	та
ковый	изме-	заме-		аннупи-	гистрации	••		введения
номер	нённой	нённой		рован-	изменения		изм.	изм.
изме-				ной	в ГОС,			
нения					дата	-		
]
					ļ			
								i
		'						
				:	,			
		!						
					l			
					1			
			,					
	L			L				

МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ЭКОЛОГИИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ»

344090, г. Ростов-на-Дону Факс: (863) 222-44-70 пр. Стачки, 198 Телефон (863) 297-51-63 Е-mail: info@gidrohim.com

СВИДЕТЕЛЬСТВО

об аттестации методики (метода) измерений № 420.RA.RU.311345-2019

Методика измерений биохимического потребления кислорода в водах титриметрическим и амперометрическим методами в диапазоне от 1,00 до 120 мг/дм³.

разработанная Федеральным государственным бюджетным учреждением «Гидрохимический институт» (ФГБУ «ГХИ»), пр-т Стачки, д. 198, г. Ростов-на-Дону, 344090,

содержащаяся в РД 52.24.420-2019 Биохимическое потребление кислорода в водах. Методика измерений титриметрическим и амперометрическим методами (г. Ростов-на-Дону, 32 с.),

аттестована в соответствии с порядком, утверждённым Приказом Минпромторга от 15.12.2015 № 4091 «Об утверждении порядка аттестации первичных референтных методик (методов) измерений, референтных методик (методов) измерений и их применения» и ГОСТ Р 8.563-2009 «Государственная система обеспечения единства измерений. Методики (методы) измерений».

Аттестация осуществлена по результатам экспериментальных исследований, проведённых при разработке методики, а также теоретических исследований.

Метрологический харангеризтики приведены в приложении на 2 л., являющемся неографијемой частыю на странцего свидетельства.

Директор

М.М. Трофимчук

Главный мезовло

А.А. Назарова

Дата выдачи свижежельства 30.12.2019.

Приложение

к свидетельству № 420.RA.RU.311345-2019

об аттестации методики измерений биохимического потребления кислорода в водах титриметрическим и амперометрическим методами

Таблица 1 — Диапазон измерений по варианту 1, показатели повторяемости, воспроизводимости, правильности и точности при принятой вероятности *P*=0,95

Диапазон	Показатель	Показатель	Показатель	Показатель
измерений	повторяемости	воспроизводи-	правильности	точности
БПК₅	(среднеквадра-	мости	(границы	(границы
Ì	тическое	(среднеквадрати-	систематической	абсолютной
	отклонение	ческое отклонение	погрешности)	погрешности)
	повторяемости)	воспроизводи-		
		мости)		
<i>X</i> , мг/дм³	σ _г , мг/дм ³	σ _R , мг/дм ³	±∆ _с , мг/дм ³	±∆, мг/дм³
От 1,00 до 120 включ.	0,046-X	0,09-X	0,16·X	0,28·X

Таблица 2 – Диапазон измерений по варианту 2, показатели повторяемости, воспроизводимости, правильности и точности при принятой вероятности *P*=0,95

		•	•	•
Диапазон	Показатель	Показатель	Показатель	Показатель
измерений	повторяемости	воспроизводи-	правильности	точности
БПК₅	(среднеквадра-	мости	(границы	(границы
	тическое	(среднеквадрати-	систематической	абсолютной
	отклонение	ческое отклонение	погрешности)	погрешности)
	повторяемости)	воспроизводи-		
		мости)		
X, мг/дм ³	σ _г , мг/дм ³	σ _R , мг/дм ³	±Δ _c , мг/дм ³	±∆, мг/дм³
От 1,00 до 120 включ.	0,045·X	0,12- <i>X</i>	0,08⋅X	0,25·X

Таблица 3 — Диапазон измерений, значения пределов повторяемости и воспроизводимости при доверительной вероятности P=0,95

Диапазон измерений	Предел	Предел воспроизводимости				
БПК₅	повторяемости	(значение допускаемого расхождения				
	(для двух результатов	между двумя результатами				
	параллельных	измерений, полученными в разных				
_	определений)	лабораториях)				
X, мг/дм³	<i>r</i> , мг/дм ³	R, мг/дм³				
	Титриметрический м	етод				
От 1,00 до 120 включ.	0,13·X	0,25·X				
	Амперометрический метод					
От 1,00 до 120 включ.	0,12·X	0,33·X				

При реализации методики в лаборатории обеспечивают:

- оперативный контроль исполнителем процедуры выполнения измерений (на основе оценки повторяемости при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности повторяемости, внутрилабораторной прецизионности).

Алгоритм оперативного контроля исполнителем процедуры выполнения измерений приведён в РД 52.24.420-2019.

Периодичность оперативного контроля и процедуры контроля стабильности результатов выполнения измерений регламентируют в Руководстве по качеству лаборатории.

Заведующий лабораторией методов и технических средств анализа вод, канд. хим. наук

Ю.А. Андреев