
ВСЕСОЮЗНЫЙ ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОХРАНЫ ТРУДА В ЦСПС

У Сказания

ПО РАСЧЕТУ АЭРАЦИИ ЦЕХОВ С ТЕПЛО-ГАЗОВЫДЕЛЕНИЯМИ В ТЕПЛЫЙ, ПЕРЕХОДНЫЙ И ХОЛОДНЫЙ ПЕРИОДЫ ГОДА

вцспс

ВСЕСОЮЗНЫЙ ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОХРАНЫ ТРУДА

указания

ПО РАСЧЕТУ АЭРАЦИИ ЦЕХОВ С ТЕПЛО-, ГАЗОВЫДЕЛЕНИЯМИ В ТЕПЛЫЙ, ПЕРЕХОДНЫЙ И ХОЛОДНЫЙ ПЕРИОДЫ ГОДА Настоящие "Указания" составлены Всесоюзным центральным научно-исследовательским институтом охраны труда В Ц С П С (г. Москва) на основе результатов теоретических и экспериментельных исследований естественной вентиляции промышленных зданий с тепло- и газовыделениями.

"Указания" предназначены для инженерно-технических работников проектных организаций и заводов, технической инспекции ЦК профсоюзов и санитарного надзора, занимающихся вопросами улучшения условий труда в горячих цехах.

"Указания" согласовани с ЦК профсоюзов рабочих машиностроения, нефтяной и химической промышленности и утверждени зам.министрами министерств:

автомобильной промышленности;

тяжелого, энергетического и транспортного машиностроения; химического и нефтяного машиностроения;

станкостроительной и инструментальной промышленности; химической промышленности.

Автор канд. техн. наук Н.В. Акинчев

ОБЩИЕ ПОЛОЖЕНИЯ

- I. Настоящие указания распространяются на проектирование аэрации вновь строящихся, реконструируемых и действующих цехов с тепло- и газовыделениями.
- 2. Аэрация организованная управляемая естественная вентиляция, осуществияемая под действием теплового или совместного действия теплового и ветрового давлений.
 - 3. Эффективность аэрации зависит от:

архитектурно-строительного оформления здания (высота, ширина и количество пролетов, форма и профиль кровли, тип фонаря, размещение в стенках и фонарях открывающихся створок, количества межэтажных перекрытий и размещение в них аэрационных проемов и решеток);

компоновки и размеров технологического оборудования, являющегося источником нагревания и загрязнения воздуха;

направления и скорости ветра;

- эксплуатации аэрируемого здания (возможность регумирования площади открытых аэрационных проемов в зависимости от наружной температуры и внутренних температурных условий).
- 4. Аэрацию надлежит предусматривать, если при ее помощи могут быть обеспечены нормируемые условия воздушной среды в помещениих и если она допустима по технологическим условиям.
- 5. Естественный приток наружного воздуха должен осуществляться:
- а) в теплый период года непосредственно в рабочую зону (на уровне 0.3 + 1.8 м до низа проема), в холодный период года на уровне 1 = (0.5 + 0.6) Н, но не ниже 4-х м от пола до низа проема.

где: h' — высота от пола до центра приточного отверстия;

н — высота здания от пола до центра вытяжного отверстия:

- б) как правило, через проемы, расположенные в обеих продольных стенах цеха, а также через проемы транспортных ворот.
- 6. В сблокированных зданиях участки с повышенными тепловыделениями для душего их проветривания следует размещать в крайних пролетах, оборудованных аэрационными фонарями. Застройка продольных стен вновь строящихся и реконструируемых горячих цехов не допускается.
- 7. Все горячие цехи должны иметь аэрационные или аэрационно--световые фонари незадуваемого типа. Площадь открывающихся створок в фонаре должна быть достаточной для пропуска расчетного объема воздуха.
- 8. Аэрационные фонари и приточные проемы должны быть оборудованы механизмами для открывания створок с автоматическим дистанционным управлением.
- 9. В цехах, имеющих три пролета и более, из которых один пролет горячий, а другой холодный, в теплый период года допускается поступление воздуха через фонарь холодного пролета. При этом вдоль линии раздела пролетов устраиваются свешивающиеся легкие перегородки, не доходящие до пола на 2-3 м.
 - <u>примечание.</u> Приток через фонарь холодного пролета допускается, если расстояние между створками фонарей не менее IO м.
 - 10. В цехах теплоотдающее оборудование должно располагаться с учетом возможности проветривания средних продольных проходов между источниками тепла. Рабочие места при этом следует располо-

гать со стороны приточных проемов.

- II. Расчет вэрации цехов с тепло- и газовиделениями проводится, как правило, с учетом теплового дзвления в теплий, переходный и холодный периоды года с проверкой достаточности естественного воздухообмена для разбавления концентраций газов до ПДК.
- 12. Расчет аэрации горячих цехов проводится на максимальные тепловыделения и базируется на закономерностях распространения своюодных тепловых турбулентных струй.
- 13. Горячие цехи, теплоотдающее оборудование по длине которых расположено неравномерно, разбиваются на участки и расчет аэрации проводится для каждого участка в отдельности.
 - ПРИМЕЧАНИЕ. Расчет аэрации по методу, изложенному в настоящих указаниях, допускается проводить для помещений с механическим удалением воздуха, объем которого не превышает 40% общего естественного воздухообмена.
- 14. С целью определения общего воздухообмена и условий работы приточных отверстий с заветренной стороны проводится поверочный расчет аэрации при совместном действии теплового и ветрового давлений.
 - ПРИМЕЧАНИЕ. Если при работе окажется, что отверстия с заветренной стороны работают на вытяжку, то расчет надо вести с учетом закрытия части отверстий с наветренной стороны.
 - 15. Исходными данными для расчета аэрации являются:
- строительные размеры здания и характеристика всех проемов для подачи и удаления воздуха (окна, фонари, ворота и т.д.);

- коэффициенты расхода или местного сопротивления приточных проемов и фонарей;
 - расположение теплоотдающего оборудования и его размеры;
- количество конвективного и лучистого тепла, выделяющееся от единици стационариого оборудования, Скенв. ккал/сек; С дуч. ккал/сек.
 - примечание. Количество конвективного и дучистого тепла, отдающее стационариим оборудованием, задается технологами. При температуре поверхности источников тепла до 250°С можно принять конв. = 0.5 пост.
- тепло, поступающее за счет солнечной радмации, от нагретых материалов, трубопроводов, искусственного освещения, электродвигателей, от людей и т.п., учитывается при определении количества избыточного тепла;
 - теплопотери цеха, С пот. ккал/сек;
- валовые газовыделения в цехе, G газа мг/сек (по данным технологов ими натурных испытаний);
- температура воздуха в рабочей зоне, $t_{p.s.}$; наружного приточного воздуха, $t_{H.}$ и концентрация вредных газов в рабочей зоне, $t_{p.s.}$ мг/м³ (согласно СН 245-63 и СН и П П-Г.7-62).
 - <u>примечания:</u> I. Если приточный воздух поступает из соседнего помещения, то за $t_{\rm H_{\odot}}$ принимается темпе-

ратура воздуха соседнего помещения.

- 2. Если часть приточного воздуха поступает снаружи, а другая часть из соседних помещений, то за расчетную температуру принимается температура наружного воздуха the;
- скорость и господствующее направление ветра (по СНиП П-А. 6-62):
- аэродинамические коэффициенты аэрируемого здания (на основании результатов продувок моделей зданий в аэродинамической трубе).
- 16. Расчет аэрации при решении прямой задачи сводится к определению расчетного воздухообмена и площади аэрационных проемов.

Для этого определяют:

- количество конвективного тепла, отдаваемого каждой единицей оборудования;
- объем и температуру воздуха в свободной конвективной струе на уровне вытяжных отверстий (аэрационый фонарь, шахта и др.);
 - температуру уходящего воздуха;
 - количество избыточного тепла

$$Q_{\text{N36.}} = Q_{\text{nor.}} - Q_{\text{nor.}}$$
 ккал/сек;

- объемные и весовые расходы аэрационного воздуха;
- располагаемые давления и скорости воздуха в аэрационных проемах;
 - площади аэрационных проемов.
- 17. Расчет аэрации при решении обратной задачи сводится к определению температуры воздуха в рабочей зоне по заданным теплоизбыткам и площадям аэрационных проемов.

Для этого определяется:

- количество конвективного тепла, отдоваемого каждой единицей оборудования;
- объем и температура воздуха в свободной конвективной струе на уровне вытяжных отверстий;
 - количество избыточного тепла:
 - температура уходящего воздуха:
 - температура воздуха в рабочей зоне.
- 18. К проекту аэрации должна прилагаться инструкция для эксплуатационников по регулированию открытой площада аэрационных проемов в зависимости от наружной температуры, направления и скорости ветра.

П. РАСЧЕТ АЭРАЦИИ В ТЕПЛЫЙ ПЕРИОД ГОДА С УЧЕТОМ ТЕПЛОВОГО ДАВЛЕНИЯ

Прямая задача

19. Определяется расстояние от точки пересечения границ основного участка тепловой струи (полюса струи) до середины вытяжных отверстий (см. условные обозначения. Приложение I):

$$\mathcal{Z} = \mathcal{Z}_{R} + \mathcal{Z}_{\Pi} \qquad \mathbf{M},$$

где: \mathcal{Z}_{B} — расстоявие от верхней грани теплоисточника до середины вытяжных отверстви, и;

 \mathcal{Z}_{π} - расстояние от полоса струк до верхней грани теплонсточника. м.

$$\mathcal{Z}_{\pi} = I,7 A$$
 x,

где А - определяющий размер источника тепла.

Для источника круглой формы A=d; для прямоугольного с соотношением сторон не более I : 3

$$A = \frac{2a \times B}{a + B} \qquad M,$$

где: d - диаметр источника тепла, и;

а,в - линейные размеры верхней грани источника тепла, м.

20. находится объемный раскод воздуха:

а) в основном участке свободной конвективной струи по формуле

$$L_{\text{cp}} = 0.0862 \cdot Q_{\text{KOHB}}^{1/3} \mathcal{Z}^{5/3}$$
 M^3/cex (2)

или по номограмме (приложение II);

б) если вытяжные отверстия расположены на высоте разгонного участка тепловой струи или ниже его, то расход воздуха определяется по формуле разгонного участка свободной конвективной струи:

$$L_{\text{CTP}} = 0.65 \, Q_{\text{KONB}}^{1/3} \cdot \int_{-1}^{2/3} \mathcal{Z}_{1}^{1/3} \, \text{m}^{2}/\text{cer} \,, \tag{3}$$

где: f — площадь верхней грани теплоисточника, u^2 ; f — расстояние от верхней грани источника до рассматриваемого уровия, u,

или по номограмме (приложение Ш).

примечание. Высота разгонного участка круглой тепловой струм равма, примерно I,5A.

в) в плоской свободной конвективной струе (с соотношением стором верхней грани источника более 1:3) по формуле

$$L_{\text{CTD}} = 0.154 \, Q_{\text{ROHB}}^{1/3} \, \mathcal{Z}_{\text{B}}^{2/3} \, \mathcal{Z}_{\text{B}} = M^3/\text{cek},$$
 (3a)

где Ω — больший размер верхней грани теплоисточника (длика), м. или по номограмме (приложение Ша).

ПРИМЕЧАНИЕ. Формула За) справедлива для теплоисточника с соотношением меньшего размора (ширины) верхней грапи к высоте вертикальной грани не более I:4.

 Определяется средняя температура воздуха в каждой свободной конвективной струе на уровне центра вытяжных отверстви

$$t_{\text{crp}} = \frac{Q_{\text{korp}}}{0.24 \text{ } Y_{\text{crp}}} + t_{\text{m}} \text{ rpag.} \tag{4}$$

где: У - удельный вес воздуха в тепловой струе, кг/и

 $t_{\rm u}$ - расчетная температура наружного воздуха, град.

ПРИМЕЧАНИЕ. Для положительных наружных температур принимается $\gamma_{\text{стр.}} = 1.17 \text{ кг/м}^3$, для отрацательных $\gamma_{\text{стр.}} = 1.35 \text{ кг/м}^3$ и вычисляется по формуле $\gamma = \frac{353}{273 + 1} \text{ кг/м}^3$.

22. Определяется средняя температура воздуха в тепловых струях на уровне центра вытяжных отверстий (\mathcal{Z} или \mathcal{Z}_i)

23. Вычисляется температура уходящего воздуха $t_{yx.} = 1.2 (t_{p.s.} + t_{cxp.} - t_{H.}),$ град; (6)

где I,2 - опытный коэффициент. $t_{p.a.} = t_{H.} + \Delta t_{pacy.}$ $\Delta t_{pacy.} = n \Delta t_{p.s.}$

- где $\Delta^{\frac{1}{4}}$ расч. расчетный перепад температур в рабочей зоне, град; $\Delta^{\frac{1}{4}}$ р.з. допустимая разность (перепад) температур воздуха в рабочей зоне и наружного принимается в соответствии с нормами CH 245-63, град.
 - п коэффициент, показывающий повышение температуры в рабочей зоне в зависимости от относительного разрыва между оборудованием, определяется по графику (приложение IJ).

ПРИмЕчалыя: 1. Расчет аэрации в теплый период года проводится по заданному нормами перепаду температур в рабочей зоне $\Delta t_{p.3}$. Для наиболее неблагоприятно расположенных расочих мест. При $\frac{a'}{8}$ = 4,5 следует принимать Δt_{pacq} . $\Delta t_{p.3}$. 2. При заданном расположении теплоотдающего оборудования размеры "a" и "a'" (приложение 1) принимаются в зависимости от направления распространения приточных струй, т.е. в зависимости от расположения приточных проемов.

24. Определяется расчетный естественный воздухообмен

$$G_{8} = \frac{Q_{\text{MSO}}}{0.24 (t_{\text{yx}} - t_{\text{H}})} \quad \text{kr/cek}, \qquad (7)$$

где G_a - весовой расход аэрационного воздуха, кг/сек; $Q_{\text{изб.}}$ - теплоизбытки в помещении, ккал/сек.

25. Определяется располагаемое тепловое давление

$$\Delta P_{\text{T.}} = h \left(\gamma_{\text{H.}} - \gamma_{\text{BH.}} \right) \quad \kappa \Gamma / M^2, \quad (\epsilon)$$

где h - расстояние между центрами приточных и вытяжных отверстий. м:

 $V_{\rm H_{*}}$ - удельный вес наружного воздуха, кг/и³;

увн. - удельный вес внутреннего воздуха, кг/м³, определяеми: по среднеарифметической температуре в рабочей зоне и уходящего воздуха:

$$t_{BH.} = 0.5 \ (t_{p.s.} + t_{yx.}), \text{ rpag.}$$
 (9)

<u>ПРимечания:</u> І. Так как максимальный естественный воздухообмен и минимальная температура воздуха в рабочей зоне и уходящего, наолюдаются при равенстве $M_{\rm np}$ $F_{\rm np} = M_{\rm BMT}$ $F_{\rm BMT}$, то расчет аэрации следует проводить при $\Delta P_{\rm np} = \Delta P_{\rm BMT} = 0.5 \Delta P_{\rm T}$.

2. В отдельных случаях допускается принимать

$$\Delta P_{RMT} \ge 0.3 \Delta P_{T}$$

где: И пр: И выт - коэффициенты расхода приточных и вытяжных проемов

 $F_{\rm np}; F_{\rm BMT}$ — площади приточных и вытяжных отверстий, м; $\Delta P_{\rm np}; \Delta P_{\rm BMT}$ — потеря давления на проход воздуха через приточные и вытяжные отверстия, кГ/м².

После расчета допускается уменьшение площади вытяжных отверстий (фонаря) не более чем на 25% при соответственном увеличении площади приточных проемов. Не допускается уменьшение площади приточных проемов.

26. Вычисляется скорость воздуха:

а) в приточных отверстиях

$$V_{\rm np} = M_{\rm np} \sqrt{\frac{2q}{y_{\rm np}^2}} \Delta P_{\rm np} \qquad \text{m/cer,} \qquad (10)$$

б) в вытяжных отверстиях

$$V_{BHT} = N_{BHT} \sqrt{\frac{29}{y_X}} \Delta P_{BHT} \qquad \text{w/cex,} \qquad (II)$$

где V_{yx} — удельный вес уходящего воздуха, кг/м³ Q — ускорение силы тяжести, м/сек.

27. Определяется площадь:

а) приточных отверстий $F_{\text{пр}} = \frac{G_{\text{ос}}}{M_{\text{пр}} \sqrt{2} g \cdot y_{\text{н}} \Delta P_{\text{occ}}}, \quad \mathbf{x}^{2} \qquad (12)$

$$F_{\text{Bht.}} = \frac{G_{\alpha}}{M_{\text{Bht.}} \sqrt{2g_{y}^{2}/y_{x}^{2}} \Delta P_{\text{Bht}}} \qquad u^{2}.$$
 (13)

28. Определяется концентрация газа в уходящем воздухе:

$$\Delta K_{yx} = \frac{G_{rasa} \gamma_{yx}}{G_{a}} \qquad Mr/M^{3} , \qquad (14)$$

где Gраза - газовыделения, мг/сек.

29. Определяется относительная концентрация газа в рабочей зоне $\frac{K}{K_{p.3}}$. В зависимости от $\frac{K_{p.3}}{K_{p.3}}$ (приложение УІ), где $\frac{K_{p.3}}{K_{p.3}}$ — относительная концентрация газа в воздухе рабочей зоны;

 $\Delta K_{yx} = K_{yx} - K_{H}$ - прирост концентрации газа в уходящем воз-

 $\Delta K_{p.3.} = K_{p.3.} - K_{H}$ — прирост концентрации газа в воздухе рабочей зоны, мг/м³;

 $\frac{K_{H}}{G}$ — концентрация газа в наружном воздухе, мг/м³ — теплосодержание аэрационного воздуха, $\frac{KKB}{K\Gamma}$.

Примечание. Если концентрация газа в рабочей зоне окажется выше нормы, то воздухообмен следует увеличить для разбавления газовых вредностей до ПДК.

30. В теплий период года расчет аэрации помецений с механической вытяжной вентиляцией ($G_{\mathbf{n}} \leq 0.4 \, G_{\mathbf{a}}$), удаляющей воздух из рабочей зоны (общеобменная, местная от теплоотдающего оборудования и холодного), проводится по методике, изложенной в разделе II настоящих указаний. При этом вычисленная илощадь аэрационных проемов остается без изменения.

Обратная задача.

- 31. Обратная задача режается при проектировании аэрации реконструируемых и действующих цехов при изменении их мощности или технологии. Сравнивается полученный при расчете перепад $-\Delta t_{\rm p.3.}$ с требуемым санитарными нормами.
- 32. Определяется температура воздуха в свободных конвективных струях на уровне вытяжных отверстий (формулы I; 2; 3; 4 и 5).
 - 33. Определяется температура уходящего воздуха $t_{yx.} = \frac{8.5 \cdot Q_{M30}^{2/3}}{(NF)^{2/3} \cdot h^{1/3}} + t_{H.}, \quad \text{град.}$ (15)
 - 34. Вычисляется температура воздуха в рабочей зоне

$$t_{p.s.} = \frac{t_{yx.} -1.2 (t_{crp.} -t_{H.})}{1.2}$$
 rpag. (16)

поверочный расчит дэрации при совместном действии теплового и ветрового давлений.

- 35. Поверочный расчет сводится к определению естественного воздухообмена и условий работы приточных отверстий с заветренной стороны здания и пр водится при известных уже площадях вентиляционных проемов, кол. честве избыточного тепла, скорости ветра и аэ-родинамических коэффициентах.
- 36. Предлагаемый в указаниях метод расчета базируется на уравнении воздушного баланса.

$$G_{a_1} + G_{a_2} + \dots + G_{a_n} = 0,$$
 (17)

где G_{a_1} , G_{a_n} — весовые расходы аэрационного воздуха, кг/сек.

Величина G_{a} принимается со знаком "пярс" — для притока и "минус" — для вытяжки.

37. Уравнение (17) в развернутой форме записывается

$$N_{1}F_{1} \sqrt{2g[H'_{1}(Y_{H}-Y_{BH})-P_{B'_{1}}Y+...} + ... + N_{B}F_{B}\sqrt{2g[H'_{B}(Y_{H}-Y_{BH})-P_{B'_{1}}Y}=0, \quad (18)$$

- где $H_1^{'}$ расстояние от нейтральной зоны (уровень отсчетов) до середины отверстия I, M;
 - H_{Π}^{1} расстояние от нейтральной зоны (уровень отсчетов) до центра п-го отверстия, и;
 - $P_{B_1}, P_{B_{11}}$ ветровое давление на данное отверстие, кГ/м²; у — удельный вес воздуха принимается равным у или у вн. в зависимости от того, на приток или; на вытяжку работает отверстие.
 - примечания: 1. В подкореньых величинах уравнения (18) знаки разностей давлений указывают лишь на их направление и при подстановке числовых значений всегда следует вычитать из больших значений меньшее.
 - 2. Уравнение (I8) решается подстановкой различных значений H^1 , пока будет достигнуто равенство $G_{\rm пр.} = G_{\rm выт.}$.
 - 38. Определяется разность давлений в аэрационных отверстиях

$$P = H \left(\frac{1}{2} - \frac{1}{2} \right) - P_B = \kappa \Gamma / M^2,$$
 (19)

где H^{i} — расстояние от центре рассматриваемого отверстия до уровня отсчета (со знаком "плюс", когда центр отверстия расположен выше уровня отсчетов, и "минус" — когда

ниже уровня отсчетов, м (рис. I).

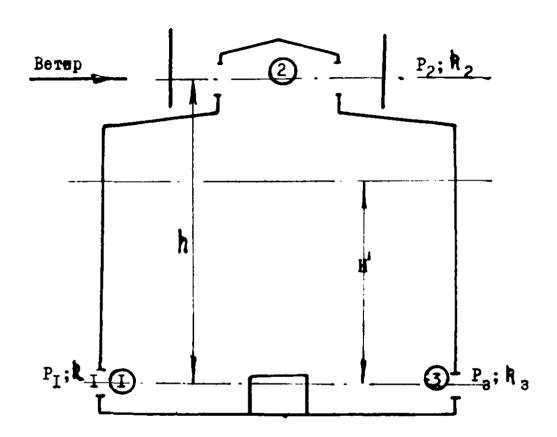
НРИМЕЧАНИЕ. Уровень отсчетов выбирается относительно какого-либо одного отверстия, например, относительно приточного отверстия с наветренной стороны здания.

39. Определяется ветровое давление на данное отверстие,

$$P_{B} = \frac{N^{2}}{2g} \times N^{2}, \qquad (20)$$

К - вэродинамический коэффициент принимается на основании где результатов продувки глухих моделей зданий в аэродинамической трубе или по таблице (приложение УІІ);

> V_{e} - средняя скорость ветра, м/сек; принимается по СНиП П-А.6-62.


ІУ. РАСЧЕТ АЭРАЦИИ В ХОЛОЛНЫЙ ПЕРИОЛ ГОЛА

Прямая задача.

- 40. Определяется температура в свободной конвективной струе на уровне вытяжных отверстви по формулам (I), (2), (3), (4), (5), а температура уходящего воздуха по формуле (6).
- 41. Расстояние от пола до середины приточного отверстия

(высота подачи наружного воздуха)
$$h$$
 принимается равным: $h = (0.5 + 0.6) \text{ H}, \quad \text{м}, \quad (21)$ предел $h > 4.0 \text{ м}.$

42. Определяется избыточное тепловое давление в приточном отверстии по формуле (8), а скорости воздужа - по формуле (IO).

Puc.I.

<u>ПРИМЕЧАНИЕ.</u> Расчет аврации в холодный период года проводится при равенстве:

$$M_{\rm np}$$
. $F_{\rm np} = M_{\rm BMT}$. $F_{\rm BMT}$, T.e. ${\rm npu} \Delta P_{\rm np} = \Delta P_{\rm BMT} = 0.5 \Delta P_{\rm T}$.

- 43. Вычисляется естественный воздухообмен и площади аэрационных проемов соответственно по формулам (7), (12), (13).
- 44. Определяется критерий Архимеда, задаваясь характерным линейным размером приточного отверстия ℓ (4):

гдс

1:

 $\mathbf{t}_{\mathtt{BH}}$. — температура внутреннего воздуха, град; ℓ — характерный размер, м (для плоской струи ℓ = ℓ ополуширина струи; для осесимметричной струи ℓ = ℓ — радиус струи).

ПРИМЕЧАНИЯ: ІСтрицательное значение критерия Архимеда указывает , что струя направлена вниз. При возведении в дробную степень число берется со знаком "плюс".

- Приточную струю считают плоской, если она поступлет в помещение через проемы с соотномением сторон более 1:5.
- 45. Определяется относительная высота распространения приточной струи от центра приточного отверстия до верхней границы ребочей зоны.

$$\bar{y} = \frac{h' - 2}{\ell}, \qquad (23)$$

где 2 - расстояние от пола до верхней границы рабочей зоны, м.

- 46. Находится относительное расстояние от наружной стены помещения до места пересечения оси приточной струи с верхней границей рабочей зоны $-\overline{X}$:
 - а) для плоской струи по уравнению

$$\bar{x} = \frac{\bar{y}^{2/5}}{0.914 \cdot \hbar r_8^{2/5} \left(\frac{T_{H.}}{T_{BH.}}\right)^{1/5}}$$
 (24)

или по номограмме (приложение УIII);

б) для круглой струи по уравнению

$$\bar{x} = \frac{\bar{y}^{1/3}}{0.463 \cdot \Re z_a^{1/3} \left(\frac{T_{H.}}{T_{BH.}}\right)^{1/6}}$$
(25)

или по номограмме (приложение IX),

где $T_{H} = 273 + t_{H}$ — абсолютная температура наружного воздуха, град. абс.;

 $T_{\rm BH}^{-273} + t_{\rm BH}^{-273} -$ восолютная температура внутреннего воздуха, град. абс.

47. Определяется расстояние от наружнои стены до места пересечения оси струи с верхней границей рабочей зоны

$$x = \tilde{x} \cdot \ell \qquad \qquad \text{M.} \tag{26}$$

48. Определяется минимальная температура воздуха в приточной струе на уровне рабочей зоны (приложение X)

$$\frac{t_{\min} - t_{BH}}{t_{H}} - t_{BH} = f \left(\frac{h}{H} \right),$$

где tmln - минимальная температура в приточной струе на уровне рабочей зоны, град.

<u>примечание</u>. Допускается разность температур $t_{p.s.} - t_{min} \le 8^{\circ}C.$

- в другом случае делается заново расчет вэрации в холодный период года.
- 49. Определяется концентрация газа в уходящем воздухе (14), а концентрация газа в рабочей зоне из условия, что относительные величины равны $\vec{k}_{p.3.7} \neq \vec{t}_{p.3.7}$. По значению относительной температуры $-\vec{t}_{p.3.} = \frac{\Delta t}{\hbar t} \frac{1}{3} x$. и концентрации газа в уходящем воздухе определяется концентрация газа в рабочей зоне

$$\Delta K_{p.3.} = \Delta K_{yx.} \cdot \overline{t}_{p.3.}$$

ПРИМЕЧАНИЕ: Если при расчетах концентрация газа превышает ПДК, то воздухообмен должен быть увеличен. При этом температура воздуха в рабочей зоне может резко понизиться.

Обратная задача.

- 50. Обратная задача решается при проектировании аэрации реконструируемых и действующих цехов при изменении их мощности и технологии. Сравниваются полученные температуры $t_{\rm p.a.}$ и $t_{\rm min}$ с нормируемыми.
- 51. Определяется температура в свободной конвективной струе на уровне вытяжных отверстий (1), (2), (3), (4), (5).
- 52. Определяется температура уходящего воздуха (15) и температура воздуха в рабочей зоне (16).
- 53. Определяется траектория приточной струи (21), (22), (23) (24) и (25) и минимальная температура на уровне рабочей зоны (приложение IX).

У. ПРИБЛИЖЕННЫМ РАСЧЕТ АЭРАЦИИ ПОМЕЩЕНИИ С ГОДА (без механического притока)

Расчет проводится по методике, изложенной в разделе ІУ настоя щих указаний.

54. Определяем площадь приточных отверстий из условия, что через них поступит в помещение только часть аэрационного воздуха:

$$G_{np.} = G_a - G_{M.B}$$
 kr/cek, (27)

где $G_{_{\mathbf{M},\mathbf{B}}}$ - объем воздуха, удаляемого механической вентиляцией из рабочей зоны,

- 55. Беличина располагаемого теплового давления определяется по формуле (8).

56. Площадь проточного проема по формуле (12)
$$F_{\text{пр.}}' = \frac{G_{\text{пр.}}}{\sqrt{29 \text{ y}_{\text{H.}} \cdot \Delta P_{\text{пр.}}}} \qquad \text{м}^2. \quad (28)$$

57. Среднюю скорость в приточном проеме при действии теплового давления и разрежения, создаваемого механической вытяжной.

$$V_{cp.} = \frac{C_{\pi p.} + C_{M.B.}}{F_{\pi p.} \cdot \gamma_{H}}$$
 M/cek. (29)

58. Давление в приточном отверстии

$$\Delta P_{\rm np.} = \frac{V_{\rm op.}^2 \cdot V_{\rm B}}{M^2 \cdot 2 \cdot 9} \qquad \text{kP/m}^2 . \tag{30}$$

- 59. Дальнейший расчет проводится согласно разделу Ш.
 - ПРИМЕЧАНИЯ: І. Указанный метод расчета дает возможность определить при механической вытяжке заданную температуру в струе при жходе ез в рабочую вону.
 - 2. Часть объема наружного воздуха будет

удаляться из помещения через аэрационный фонарь.

УІ. <u>ПОБЕРОЧНЫЙ РАСЧЕТ АЭРАЦИИ ПРИ СОВМЕСТНОМ ДЕИСТВИИ ТЕПЛОВОГО И ВЕТРОВОГО ДАВЛЕНИЙ</u> ДЛЯ ХОЛОДНОГО ПЕРИОДА **ГОЛА**

- 60. Расчет сводится к определению величины естественного воздухообмена и условии расоты приточного отверстия на заветренной стороне здания при совместном действии теплового и ветрового давлении. Расчет проводится по известным уже площадям приточных и вытяжных проемов, количеству избыточного тепла, скорости ветра и аэродинамическим коэффициентам.
- 6I. Определяется ветровое давление в отверстиях (20) и разность давлений в аэрацыонных проемах (I9).
- 62. Составляется уравнение воздужного баланса (I8) и ремается при различных значениях \mathbf{n} , пока будет достигнуто равенство \mathbf{g} \mathbf{g}

ПРИМЕРЫ РАСЧЕТА АЭРАЦИИ.

HPMMEP I.

Рассчитать аэрацию однопролетного эдания (Рис.2) для теплого периода года с учетом теплового давления.

В цеже размером 250 х 27м при высоте от пола до центра вытяжных проемов Н= 18м теплотдающее оборудование (12 нагревательных печей и 6 прессов) расположено в один ряд.

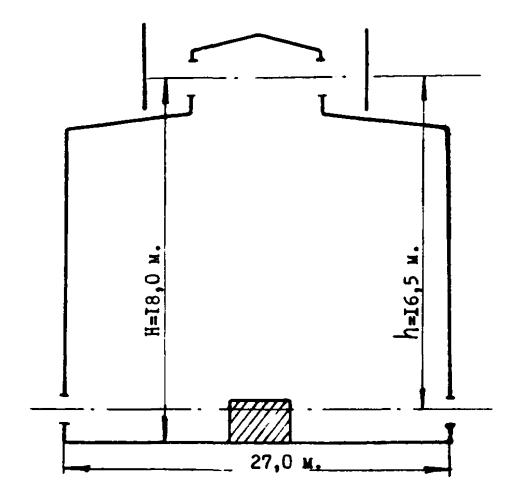
<u>I группа</u> — камерные печи размером в плане а x в = 2,5 x 2,5 и высотой 2,5м — 4 шт.

<u>П группа</u> – термические печи размером 2,0 х 3,5 м и высотой 3м – 4 mt.

<u>пруппа</u> - методические печи размером 2,5 x 5,0 x 3,0 м -4 шт.
<u>ПУтруппа</u> - прессы размером I,5 x 2,0 x 4,5 м - 6 шт.

Количество тепла, выделяющееся от каждой еденицы оборудования, составляет:

от камерной печи $-Q_{\text{пост.}} = 70$ ккал/сек,


от термической печи $-Q_{\text{пост.}} = 50$ квал/сек,

от методической печи $-Q_{\text{пост.}}$ =100 ккел/сек,

от пресса $-Q_{\text{пост.}} = 30$ ккал/сек.

Теплопоступления за счет солнечной радиации $-Q_{\text{пост.}} = 15$ ккал/сек; от нагретого металла $-Q_{\text{пост.}} = 10$ ккал/сек и других $-Q_{\text{пост.}} = 5$ ккал/сек.

Теплоизбытки в цехе составляют $q_{\text{изб.}} = 1090$ ккал/сек. Расчетная температура наружного воздуха $t_{\text{н.}} = 22^{\circ}\text{C}$ ($f_{\text{п.}} = 1,196$ кг/м³). допустимая разница температур воздуха рабочей зоны и наружного $-\Delta t_{\text{р. 3.}} = 5^{\circ}\text{C}$. Рабочие места расположены со стороны приточных проемов. Поэтому при определении $\Delta t_{\text{расч.}}$ влияние

Puc. 2.

разрыва между печами не учитывается. Расстояние от наружных стен до источников жепла B=IIM, а между центрами приточных и вытяжных отверстий h = 165 м. Створки приточных проемов — верхнеподвесные (h/g = I), $\ll = 60^{\circ}$; $\frac{1}{3} = 3$, I; $M_{\rm HD} = 0.56$.

Фонарь конструкции КТИС. Коэффициент местного сопротивления = 4,3; $M_{\tilde{\Phi}} = 0,5$. (См. таблицы I и 2, приложение у).

Требуется определить величину воздухообмена и необходимые площали аэрационных проемов.

РЕШЕНИЕ.

I. Определяющий размер источников жепла для I группы печей

$$A = \frac{2 \text{ aB}}{8 + B} = \frac{2 \cdot 2.5}{2.5 + 2.5} = 2.5 \text{ m};$$

Для П группы печей

$$A = \frac{2 \text{ aB}}{8 + B} = \frac{2 \cdot 2.0 \cdot 3.5}{2.0 + 3.5} = 2.55 \text{ m};$$

для **ш** группы - A = 3,34 м;

для ІУ группы - A = I,72 м.

Так как высота разгонного участка тепловых струй ($\mathcal{Z}_{j} = 1,5 \cdot A = 1,5 \cdot 3,34 = 5,0 м)$ значительно меньме 15 м. то определяются параметры основного участка тепловой струм.

2. Расстояние от полоса струи до верхней грани теплоисточников

Am rpymm I

$$\mathcal{Z}_{\pi} = I,7^{*}A = I,7 \times 2,5 = 4,25 \text{ m};$$

для П группы

$$\mathcal{Z}_{\pi}$$
 = 4,33 m;

для 🛚 группы

$$\mathcal{Z}_{\pi}$$
 = 5,67 m;

для IV группы

3. Расстояние от полюса струм до дентра вытяжных отверстий $\mathcal{Z} = \mathcal{Z}_n + \mathcal{Z}_n \qquad \qquad \text{м.}$

Для ї группы печей Z = (18 - 2,5) + 4,25 = 19,75 м,

для П группы нечей Z = 19,33 м.

для \mathbb{I} группы печей $\mathcal{Z} = 20,67$ м.

для IУ группы печей Z = 16,42 м.

4. Объемный расход воздуха в основном участке конвективной струм (2) или по номограмме (приложение П) для I группы печей

$$L = 0.0862 \quad Q_{KOH}^{1/3} \quad \mathcal{Z}^{5/3} = 0.0862 \cdot 35^{1/3} \times 19.75^{5/3} = 41 \quad \text{m}^{3}/\text{cek},$$

для П группы печей

$$L = 0.0862 \cdot 25^{1/3} \cdot 19.33^{5/3} = 36 \text{ m}^3/\text{cek}_{\infty}$$

для ш группы печей

$$L = 0.0862 \cdot 50^{1/3} \cdot 20.67^{5/3} = 50 \text{ m}^3/\text{cer},$$

для ІУ группы печем

$$L = 0.0862 \cdot 15^{1/3} \cdot 16.42^{5/3} = 25 \text{ m}^3/\text{cex}.$$

 Средняя температура в тепловых струях на высоте центра вытяжных отверстий – Н = 18м

$$t_{\text{crp.}} = \frac{4 (35 + 25 + 50) + 15 \cdot 6}{0.24 \cdot 1.17 \cdot 4 (41 + 36 + 50) + 25 \cdot 6} + 22 = 240^{\circ}\text{C}.$$

6. Температура уходящего воздуха (6). Так как рабочие места расположены в кращних проходах помещения, то

$$\Delta t_{\text{расч.}} = \Delta t_{\text{р.з.}}$$
. Следовательно, $t_{\text{р.з.}} = 27^{\circ}\text{C.}$

$$t_{yx.} = 1.2 (t_{p.3.} + t_{crp.} - t_{H.}) =$$

= 1.2 (27 + 24.0 - 22) = 35.0°C.

7. Весовой расход вэреционного воздуха (7)

$$G_8 = \frac{Q_{\text{MSG}}}{0.24 (t_{\text{VX}} - t_{\text{H}})} = \frac{1090}{0.24 (35.0-22)}$$
 Kr/cek.

8. Избыточное тепловое давление (8)

$$\Delta P_{T} = h (y_{H} - y_{BH}) = 16,5 (1,196 - 1,158) = 0,628 \text{ kG/m}^2.$$

Принимаем удельный вес внутреннего воздуха по средней температуре внутри помещения

$$t_{\rm BH.} = 0.5 \ (t_{\rm yx.} + t_{\rm p.s.}) = 0.5 \ (35.0+27) = 31.00 \ / _{\rm BH.} = 1.158 \ {\rm kF/m^3}.$$

Принимаем $\Delta P_{\text{пр}} = \Delta P_{\text{выт}} = 0.5 \Delta P_{\text{т}} = 0.5 \cdot 0.628 = 0.314 кг/м².$

9. Площадь вытяжных проемов (13)

$$F_{BHT.} = \frac{G_{a}}{M_{BHT.} \sqrt{2 g^{x} y_{yx} \cdot \Delta P_{BHT.}}} = \frac{350}{0.5 \sqrt{2 \cdot 9.81 \cdot 1.145 \cdot 0.314}} = 263 \text{ m}^{2}.$$

10. Площадь приточных проемов (12)

$$F_{\rm np.} = \frac{G_{\rm a}}{M_{\rm np.} \sqrt{2g \cdot y_{\rm H.} \cdot \Delta P_{\rm np.}}} = \frac{350}{0.56 \sqrt{2 \cdot 9.81 \cdot 1.196 \cdot 0.314}} = 230 \text{ m}^2.$$

ПРИМЕР 2.

Поверочный расчет аэрации при совместном действии теплового и ветрового давлений.

(Для условий примера I).

Определить величину воздухообмена и условия работы отверстия с заветренной стороны здания (на приток или на вытяжку).

ия с заветренной стороны здания (на приток или на вытяжку). ано: $Q_{\text{изб.}} = 1090$ ккал/сек; $\gamma_{\text{вн.}} = 1,158$ кГ/м³; $\gamma_{\text{н.}} = 1,196$ кГ/м³; скорость ветра $V_{\text{в.}} = 5$ м/сек; аэродинами-ческие коэффициенты для приточного отверстия с наветренной стороны $N_{\text{q}} = 0,5$; для приточного отверстия с заветренной стороны $N_{\text{q}} = 0,5$; для приточного отверстия $N_{\text{q}} = 0,5$; площадь отверстий: $N_{\text{q}} = 108$ м²; $N_{\text{q}} = 108$ м².

I. Ветровое давление в отверстии I

$$P_{B_1} = R_1 \frac{V_{B_2}^2 Y_{H_2}}{2g} = 0.5 \frac{5 \cdot 1.196}{2 \cdot 9.81} = 0.76 \kappa \Gamma/m^2$$

в отверстии 2

$$P_{B_2} = R_2 \frac{V_{B.}^2 Y_{H.}}{2q} = -0.5 \frac{5 \cdot 1.196}{19.62} = -0.76 \text{ kg/m}^2$$

в отверстии 3

$$P_{B_3} = \frac{1}{3} \frac{V_B^2 \cdot Y_H}{2q} = -0.3 \frac{5 \cdot I_1 196}{19.62} = -0.456 \text{ kG/m}^2$$

- 2. Разность удельных весов наружного и внутреннего воздуха $y_{\text{H.}} y_{\text{BH.}} = 1,196 1,158 = 0,038 \ \text{кг/м}^3$.
- 3. Задаемся предварительно высотой уровня отсчетов н =
 10 м. Так как приточное отверстие I расположено ниже уровня

отсчета (рис. 3), то ставится знак "минус". Запимем уравнение воздужного баланса (индексы, означают № отверстий). Примем, что отверстие 3 работает на приток;

$$\mathcal{E}G_{B} = M_{1} F_{1} \sqrt{2} g f_{H} \left[P_{B_{1}} - H^{1} \left(f_{H} - f_{BH} \right) - P_{B_{2}} \right] + M_{8} F_{8} \sqrt{2} g f_{H} \left[(h - H^{1}) \left(f_{H} - f_{BH} \right) - P_{B_{3}} \right] + M_{8} F_{8} \sqrt{2} g f_{H} \left[H^{1} \left(f_{H} - f_{BH} \right) - P_{B_{3}} \right] = 0.56 \times 108 \sqrt{19.62 \times 1.196} \left[0.76 - (-10 \times 0.038) \right] - 0.5 \times 247 \sqrt{19.62 \times 1.158} \left[(16.5 - 10) \times 0.038 + 0.76 \right] + 0.56 \times 108 \sqrt{19.62 \times 1.196} \left[(-10 \times 0.038) + 0.456 \right];$$

$$\mathcal{E}G_{8} = 312 - 592 + 80.5 = -200 \text{ kg/cek}.$$
Принимаем $H = -25 \text{ M}$

$$\mathcal{E}G_{8} = 0.56 \times 108 \sqrt{19.62 \times 1.196} \left[(-8.5 \times 0.038) + 0.76 \right] + 0.56 \times 108 \sqrt{19.62 \times 1.158} \left[(-8.5 \times 0.038) + 0.76 \right] + 0.56 \times 108 \sqrt{19.62 \times 1.196} \left[-0.456 - (-25 \times 0.038) \right];$$

$$\mathcal{E}G_{8} = 383 - 387 + 206 = +202 \text{ kg/cek}.$$
Принимаем $H = -18 \text{ M}.$

$$\mathcal{E}G_{8} = 0.56 \times 108 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.56 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.76 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.76 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.76 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.76 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \right] + 0.76 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \times 247 \sqrt{19.62 \times 1.196} \left[(-1.5 \times 0.038) + 0.76 \right] + 0.76 \times 247 \sqrt{19.62 \times 1.196$$

 \mathcal{EG}_8 = 350 - 490 + I40 = 0, т.е. при наличии ветра V_B =5м/сек воздухообмен в помещении увеличится с 329кг/сек до 490кг/сек. Отверстие 3 с заметренной стороны будет работать на приток. Пложадь аэрационных проемов уменьшать не следует.

+ 0.56 × 108 \(\) 19.62 × 1.158 \(\) -0.456 - (-18 × 0.038) \(\) ;

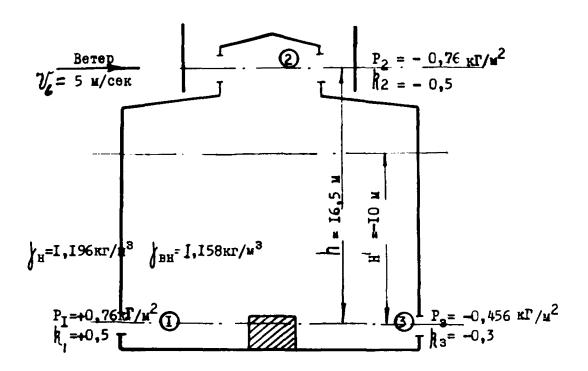


Рис. 3.

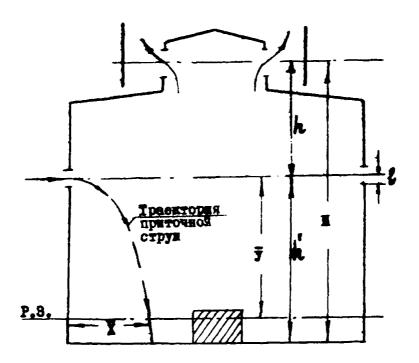
ПРИМЕР 3.

Рассчитать аэрацию однопролетного цеха в холодыми период года (рис. 4), исходные данные см. пример I.

Дано: $Q_{\text{изб.}} = 800$ ккал/сек; $t_{\text{н.}} = -15^{\circ}\text{C}$; $t_{\text{р.з.}} = +18^{\circ}\text{C}$; высота подачи наружного воздуха h = 10 м; $\frac{h}{H} = 0.555$. Створки приточных проемов одинарные, среднеподвесные (h = 1.0) с углом открытия $\Delta = 45^{\circ}$; коэффициент расхода

 $M_{\rm np.}=0,44$. Фонарь конструкции КТИС. $M_{\rm BMT.}=0,50$. Требуется определить на кеком расстоянии от наружной стены струя пересечет верхнюю границу рабочей зоны и какая минимальная температура воздуха при этом будет.

PEWEHNE:


 Расстояние от полюса струи до центра вытяжных отверстий (пример I):

для I группы печей $-\mathcal{Z}=19,75$ м; для II группы печей $-\mathcal{Z}=19,33$ м; для II группы печей $-\mathcal{Z}=20,67$ м; для IV группы печей $-\mathcal{Z}=16,42$ м.

2. Объемный расход воздуха в основном участке конвективной струи по формуле (2) или по номограмме (приложение П), принимая $Q_{\text{конв.}} = 0.5 \ Q_{\text{пост.}}$:

для I группы печей — Стр. = 4I м³/сек; для II группы печей — Стр. = 36 м³/сек; для ш группы печей — Стр. = 50 м³/сек; для IV группы печей — Стр. = 25 м³/сек.

3. Температура в свободной тепловой струе на высоте (d=18n) по формуле (4), примем $\chi_{\rm crp.} = 1.35 \ {\rm kr/m}^3$:

PEC. 4.

$$t_{\text{CEP.}} = \frac{Q_{\text{KOHB.}}}{0.24 \text{ Yerp.}} + t_{\text{H.}}$$
 rpag.

для I группы печей

$$\dot{U}_{\text{crp.}} = \frac{35}{0,24 \cdot 1,36 \cdot 41} - 15 = -12,37^{\circ}\text{C}$$

для $t_{\text{стр.}} = -12,37^{\circ}\text{C}$ $t_{\text{стр.}} = 1,35$ кг/м³. Для П группы печей $-t_{\text{стр.}} = -12,86^{\circ}\text{C}$;

для Ш группы печей $-\frac{t}{t_{CTD}} = -II.9°C;$

для ІУ группы печей - $t_{\rm GTD}$ = - 13° C.

4. Средняя температура в тепловых струях на высоте Е формуле (5)

$$\dot{t}_{\text{crp.}} = \frac{(35 + 25 + 50 + 15) \cdot 4}{0.24 (I,35.4I + I,358.36 + I,352.50 + I,358.25).4} = \frac{(35 + 25 + 50 + 15) \cdot 4}{0.24 (I,35.4I + I,358.36 + I,352.50 + I,358.25).4}$$

5. Температура уходящего воздуха при воздухообмене по формуле (6)

$$t_{yx}$$
 = 1,2 ($t_{p.s.}$ + $t_{crp.}$ - $t_{H.}$) = 1,2(18-12,43+15)=24,6°C.

6. Температура внутреннего воздуха по формуле (9)

$$t_{\text{BH.}} = 0.5(t_{\text{VX.}} + t_{\text{p.3.}}) = 0.5 (24.6 + 18) = 21.9^{\circ}\text{C}.$$

7. Избыточное давление в приточном отверстии

$$P_{\text{HP}} = \frac{H - h'}{2} (\gamma_{\text{H}} - \gamma_{\text{BH}}) = \frac{18 - 10}{2} (1,369 - 1,199) = 0.68 \text{ kT/w}^2.$$

8. Воздухообмен (7)

$$G_{a} = \frac{G_{u36}}{0.24 (t_{vx} - t_{H})} = \frac{800}{0.24(24.6 + 15)} = 84.3 \text{ kr/cek}.$$

- 9. Определяем плошади:
 - а) приточных отверстий

$$F_{\rm np.} = \frac{G_{\rm a}}{\mu_{\rm np.} \sqrt{2g \cdot y_{\rm H} \cdot \Delta P_{\rm np.}}} = \frac{84.3}{0.44 \sqrt{19.62^{11.369 \cdot 0.68}}} = \frac{44.8 \text{ m}^{2}}{19.62 \cdot 1.369 \cdot 0.68}$$

б) вытяжных проемов

$$F_{BHT} = \frac{84.3}{0.50 \sqrt{19.62 \cdot 1.188 \cdot 0.68}} = 42.1 \text{ m}^2.$$

Принимая высоту приточного проема 0,25 м, определим длину приточных отверстий. Наружный воздух будет поступать с двух продольных сторон цеха через проемы длиной 90 м. Приток будет осуществляться плоскими струями через проемы 6,0 х 0,25 м. Характерный размер для плоской струи $\ell = 0,125$ м.

10. Значение критерия Архимеда (22)

II. Относительная высота приточной струи

$$\bar{y} = \frac{h' - 2}{\ell} = \frac{10 - 2}{0,125} = 64.$$

12. Относительное расстояние от наружной стены до точки пересечения плоской струи с верхней границей рабочей зоны по формуле (24) или по номограмме (приложение УП):

$$\bar{x} = \frac{\bar{y}^{2/5}}{0.914 \text{ lt}_a^{45} (\frac{T_{BH}}{T_{BH}})^{1/5}} = \frac{64}{0.914 \cdot 0.08^{2/5} (\frac{275 - 15}{275 + 21.3})^{4/5}} = 16.2$$

Расстояние от наружной стены до точки пересечения плоской струи с верхней границей рабочей зоны равно

$$x = x \cdot \ell = 16.2 \cdot 0.125 = 2.0 \text{ m}.$$

13. Минимальная температура в струе на уровне рабочей зоны по приложению IX. При $\frac{h'}{H} = 0.555$

$$\frac{t_{min} - t_{BH}}{t_{H}} = 0,27$$

 t_{min} = 0,27 ($t_{\text{H.}}$ - $t_{\text{BH.}}$) + $t_{\text{BH.}}$ =0,27(-I5 -2I,3)+2I,3= +II,5°C. Разность температур $t_{\text{p.s.}}$ - t_{min} = I8 - II,5 = 6,5°C, меньше требуемой - 8°C.

IIPHMEP 4.

Рассчитать аэрацию однопролетного цеха в холодный период года (рис. 4) с механической вытяжкой из рабочей воны в объеме 40% от общего естественного воздухообмена. Исходные данные изложены в условиях примера 3.

Дено:
$$\mathbf{G}_{8} = 84,3$$
 кг/сек; $\mathbf{G}_{M.B} = 0,4 \cdot 84,3 = 33,7$ кг/сек; $\Delta P_{\Pi D} = 0,68$ кГ/м².

PEWEHNE:

 Находим площадь приточных отверстий для пропуска через них части аэрационного воздуха

$$F_{\rm np.}' = \frac{G_{\rm a} - G_{\rm M.B}}{M_{\rm np.} \sqrt{2g' \chi_{\rm H.}^{*} \Delta^{\rm p}_{\rm np.}}} = \frac{84.3 - 33.7}{0.44 \sqrt{19.62 \cdot 1.369 \cdot 0.68}} = 27 \text{ M}^{2}.$$

2. Средняя скорость в приточном проеме при действии теплового давления и разрежения, создаваемого механической вытяжкой.

$$V_{\text{cp.}} = \frac{G_{\text{np.}} + G_{\text{M.B}}}{F_{\text{np.}} \times f_{\text{H.}}} = \frac{84.3}{27 \cdot 1,369} = 2.3 \text{ m/cek.}$$

3. Давление в приточном отверстии

$$\Delta P_{\text{np.}} = \frac{V_{\text{cp.}}^2 V_{\text{H}}}{\sqrt{M^2 2 q}} = \frac{2.3 \cdot 1.369}{0.44^2 \cdot 19.62} = 1.86 \text{ kF/m}^2.$$

4. Суммарная длина приточных отверстий IO8 м, высота $b_{_{\Theta}}$ = 0.25м.

Приток осуществляется плоскими струями через отверстия 6,0 х 0,25 м с двух продольных сторон цеха.

Характерный размер для плоской струи $\ell = \frac{b_0}{c} = 0.125$ м.

5. Значение критерия Архимеда

$$Az_{8} = \frac{0.5 \times 1.369 \times 0.125 \ (-15 - 21.3)}{0.44^{2} \times 1.86 \ (273 + 21.3)} = -0.029.$$

6. Относительная высота приточной струи

$$\bar{y} = \frac{\dot{h} - 2}{l} = \frac{10 - 2}{0.125} = 64.$$

- 7. Относительное расстояние \bar{x} по номограмме (приложение УП) $\bar{x} = 23$.
- 8. Расстояние от наружной стены до точки пересечении плоской струи с верхней границей рабочей зоны

$$x = \bar{x} \cdot \ell = 23 \cdot 0.125 = 2.88 \text{ M}.$$

9. Шинимальная температура воздуха в струе на уровне рабочей зоны составит (пример 3)

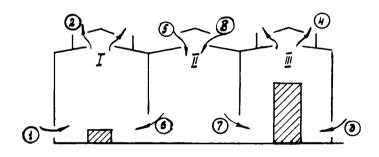
$$t_{min} = + 11.5$$
°C.

HPMMEP 5.

Рассчитать аэрацию 3 прометного цеха в теплый период года. В цехе крайние пролеты горячие, средний - холодный (рис.5).

Длина пролетов - 150 м, ширина - 27 м, высота H = 20 м. Расстояние между серединами вэрационных проемов - h = 17 м.

В первом пролете расположено теплоотдающее оборудование (10 печей размером 4,0 х 2,5 м при высоте – 3,0 м). Разрыв мехду печами $\frac{8}{8}$ = 2,0; $Q_{\text{пост.}}$ = 10^3 ккал/сек; $Q_{\text{изб.}}$ =1,2 х х х 10^3 ккал/сек; $Q_{\text{конв.}}$ = 0,5 $Q_{\text{пост.}}$ th. = + 20°C. Согласно Санитарным нормам рабочая разность температур $\Delta t_{\text{р.з.}}$ = 5°C. В пролете E в один ряд расположены 3 источника тепла размером 12,0 х 5,0 и высотой 13 м. Разрыв между печами $\frac{8}{8}$ = 2,0. Теплопоступления от 3 печей $Q_{\text{пост.}}$ =1,5 × 10^3 ккал/сек; $Q_{\text{конв.}}$ = 0,5 $Q_{\text{пост.}}$ Створки приточных проемов (I и 3) одинарные, среднеподвесные (h/g = I) с углом открытия A = 60° ; A = 0,56. Коэффициент расхода для отверстий 6 и 7 — A = A = 0,6.


Над I и ш пролетами фонарм П-образные с ветрозащитными панелями с углом открытия створок $\mathcal{L}=70^{\circ}$, $\mathcal{M}_{1-\frac{11}{12}}=0,46$. Над пролетом \mathbb{R} фонарь П-образный без ветрозащитных панелей с углом открытия створок $\mathcal{L}=70^{\circ}$, $\mathcal{M}_{\overline{u}}=0,44$.

Требуется определить воздухообмен и площади аэрационных проемов для каждого пролета.

PEMEHNE:.

Пролет І.

І. Находим определяющим размер источника тепла

Puc. 5

$$A = \frac{28B}{8+B} = \frac{2.0 \times 4.0 \times 2.5}{4.0 + 2.5} = 2.08 \text{ m}.$$

2. Расстояние от полюса струи до верхней грани теплоисточника

$$\mathcal{Z}_{\pi} = 1,7^4 \text{A} = 1,7 \times 3,08 = 5,23 \text{ m}.$$

3. Расстояние от полюса струи до середины вытяжных отверстий

$$Z = Z_n + Z_B = 5,23 + (20 - 3) = 22,23 \text{ m}.$$

4. Количество конвективного тепла от одного теплоисточника

$$Q_{\text{KOHB.}} = \frac{1000}{10.0} \cdot 0.5 = 50 \text{ Kman/cem.}$$

5. Объемный расход воздужа в конвективной струе на уровне ${\mathcal Z}$ (приложение II)

$$L_{\text{CTD}_{\bullet}} = 55 \text{ m}^3/\text{cek}.$$

6. Средняя температура в тепловой струе на уровне 2 (4)

$$t_{\text{crp.}} = \frac{Q_{\text{KOHB.}}}{0.24 \int_{\text{Crp.}} L_{\text{Crp.}}} + t_{\text{H.}} = \frac{50}{0.24 \text{ I,I7 } 55} + 20 = 23.24^{\circ}\text{C}.$$

В I пролете оборудование расположено в один ряд, чистый воздух поступает с двух сторон - снаружи и из П пролета, Поэтому расчетная температура воздуха в рабочей зоне принимаетия равной

$$t_{p.s.} = t_{H.} + \Delta t_{p.s.} = 20 + 5 = 25$$
°C.

7. Температура уходящего воздуха (6)

$$t_{yx.} = 1,2(t_{p:a.} + t_{crp.} - t_{H.}) = 1,2(25+23,24-20) = 34^{\circ}C.$$

8. Температура внутреннего воздуха (9)

$$t_{BH_{\bullet}} = 0.5 (t_{yx_{\bullet}} + t_{0.3.}) = 0.5 (34 + 25) = 29.5^{\circ}C.$$

9. Располагаемое тепловое давление в отверстии І

$$\Delta P_1 = 0.5 h \left(\gamma_{H} - \gamma_{BH} \right) = 0.5 \times 17 (1.205 - 1.166) = 0.33 \text{ kg/m}^2$$

Расчетный воздухообмен

$$G_a = \frac{Q_{\text{N36.}}}{0.24(t_{\text{VX}} - t_{\text{H}_2})} = \frac{1200}{0.24(34 - 20)} = 357 \text{ kg/cek.}$$

II. Площадь вытяжных отверстий 2

$$F_2 = \frac{357}{0,46\sqrt{2 \times 9,81 \times 1,166 \times 0,33}} = 282 \text{ m}^2.$$

12. Площадь приточного проема I определяется из предположения, что через него будет поступать 2/3 объема аэрационного воздуха, а остальная часть через отверстие 5 и 6:

$$F_{1} = \frac{0.667 \times 357}{0.56 \sqrt{2 \times 9.81 \times 1.205 \times 0.33}} = 153 \text{ m}^{2}.$$

13. Потери давления на проход воздуха через отверстие 6, принимая: $F_6 = F_1$ и $f_6 = 2,78$, составят

$$\Delta P_6 = \frac{F_6}{2q \cdot V_B} \cdot \left(\frac{G_6}{F_6}\right)^2 = \frac{2.78}{19.62 \cdot I.205} \cdot \left(\frac{0.333 \times 357}{153}\right)^2 = 0.072$$

I4. Давление в отверстии 5

$$\Delta P_S = \Delta P_1 - \Delta P_6 = 0.33 - 0.072 = 0.258 \text{ kG/m}^2$$

$$F_5 = \frac{0.333 \times 357}{0.44 \sqrt{2 \times 9.81 \times 1.205 \times 0.258}} = 108 \text{ m}^2.$$

Пролет ы.

 Среднян темперетура в тепловых струях на уровне вытяхных отверстий

$$A = \frac{2 \text{ aB}}{\text{a} + \text{B}} = \frac{2 \text{ N} 12 \text{ N} 5}{12 + 5} = 7.08 \text{ M}.$$

Расстояние от верхней грани печей до середины вытяжных от-

верстий - 7,0 м, а длина разгонного участка тепловой струм равна $\mathcal{Z}_1 = 1,5^*A = 1,5^*A = 10,6$ м.

Объем воздуха в разгонном участке тепловой струи по номограмме (приложение \mathbb{H}). Илощадь верхней грани теплоисточника $\mathbf{f} = 12 \times 5 = 60 \text{ M}^2$.

Количество конвективного тепла, выделяющееся от одного источника:

$$Q_{\text{конв.}} = \frac{0.5 \times 1500}{3} = 250 \text{ ккал/сек.}$$

Уровень, на котором определяется объемный расход воздуха в струе, \mathcal{Z}_i = 7.0 м. Тогда $L_{\text{стр.}}$ = 123 м³/сек.

Температура в тепловой струе на высоте 2 определяется по формуле (4)

$$t_{\text{crp.}} = \frac{250}{0,24 * 1,17 * 123} + 20 = 27,2^{\circ}\text{C.}$$

Температура уходящего воздуха (рабочие места расположены со стороны приточных проемов) – $t_{\text{D.3.}} = 25^{\circ}\text{C}$

$$t_{yx_*} = 1,2 (25 + 27,2 - 20) = 38,6$$
°C.

3. Температура внутреннего воздуха

$$t_{BH} = 0.5 (38.6 + 25) = 31.8^{\circ}C.$$

4. Избыточное давление в приточных отверстиях 3; 5 и 7 вычисляем по формуле (8)

$$\Delta P_{\text{np.}} = 0.5 \times 17 \text{ (I,205 - I,I6)} = 0.382 \text{ mP/u}^2$$

5. Объем аэрационного воздуха

$$G_a = \frac{Q_{M30}}{0.24 (t_{VX} - t_{H.})} = \frac{1600}{0.24 (38.6 - 20)} = 358 \text{ kg/cex.}$$

6. Площеди просмов:

а) вытяжных 4

$$F_4 = \frac{358}{0.46 \sqrt{19.62 \times 1.135 \times 0.382}} = 268 \text{ m}^2.$$

б) приточных для П пролета, считая, что объем варационного воздуха поступает поровну снаружи и из П пролета;

$$F_{3} = \frac{0.5 \times 358}{0.56 \sqrt{19.62 \times 1.205 \times 0.382}} = 106 \text{ м}^{2}.$$
7. Принимая $F_{7} = 1.5 F_{3}$ и $\S = 2.4$, определяем ΔP_{7}

$$\Delta P_{7} = \frac{\Im}{29} \times \Im \left(\frac{G_{7}}{F_{7}}\right)^{2} = \frac{2.4}{19.62 \times 1.205} \left(\frac{0.5 \times 358}{1.5 \times 106}\right)^{2} = 0.129 \text{ кf/w}^{2}.$$

8. Потери давления в отверстии 8

$$\Delta P_e = \Delta P_g - \Delta P_g = 0.382 - 0.129 = 0.253 \text{ kf/m}^2$$

$$F = \frac{0.5 \times 358}{0.44 \sqrt{19.62 \times 1.205 \times 0.253}} = 166 \text{ m}^2.$$

ILPHMEP 6.

В пролете Ш (рис.5) выделяется окись углерода в количестве $G_{\text{прав}} = 10000$ мг/сек; $K_{\text{H}} = 2.5$ мг/м⁸

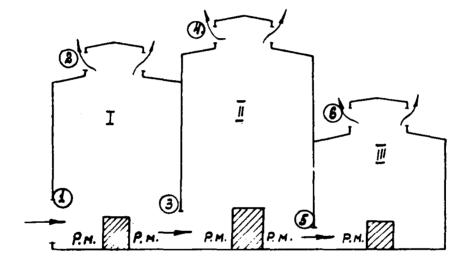
ПДК для СО составляет 20мг/м^3 . Требуется определить концент рацию окиси углерода в рабочей зоне при имеющемся воздухообмене. РЕШЕНИЕ:

I. Определяем концентрацию СО в уходящем воздухе (I4)
$$\Delta K_{yx} = \frac{G_{raba}}{G_{o}} \frac{y_{yx}}{G_{o}} = \frac{10000 \times 1.135}{358} = 31.7 \text{ мг/м}^3$$

2. Определяем концентрацию газа в рабочей зоне при $\frac{1600}{6a} = \frac{1600}{358} = 4,47$ ккел/кг;

$$\bar{K}_{p_*3_*} = \frac{\Delta^{K}_{p_*3_*}}{\Delta K_{yx}} = 0,127$$

(Приложение УI)


$$\Delta K_{p.3.} = 0,127 \times 31,7 = 4 \text{ мг/м}^3$$

Тогда $K_{p.3.} = \Delta K_{p.3.} + K_{H.} = 4 + 2,5 = 6,5 \text{ мг/м}^3$. ПРИМЕР 7.

Рассчитать аэрацию 3 — пролетного цеха в теплый период года (все пролеты горячие, рис.6).

Длина пролетов 250 м, ширина - 27 м, высота первого пролета H_1 = 25 м, второго - H_2 = 30 м и третьего - H_3 = 18 м.

В первом пролете расположено в один ряд теплоотдающее оборудование (9 печей размером 3 х 5 м и высотой – 5 м; $Q_{\text{пост.}} = 1000$ ккад/сек; 5 источников тепла размером d = 4 м и высотой 8,0 м; $Q_{\text{пост.}} = 750$ ккал/сек). Теплопоступления за счет солнечной радмации – $Q_{\text{пост.}} = 20$ ккал/сек; от нагретого металла и других источников – $Q_{\text{пост.}} = 25$ ккал/сек. Теплопотери – $Q_{\text{пот.}} = 15$ ккал/сек. Теплоизбытки – $Q_{\text{изб.}} = 1780$ ккал/сек. Относительный разрыв между печами – $\frac{a^4}{8} = 2,5$. Рабочие места расположены до и за печами.

В пролете П расположены в один ряд I2 печей размером 5 х 5м и высотой — I0 м; $Q_{\text{пост.}} = 1000$ ккал/сек; и 2 печи размером 4 х 9м; высотой — I5 м; $Q_{\text{пост.}} = 400$ ккал/сек. Теплопоступления за счет солнечной радмации — $Q_{\text{пост.}} = 10$ ккал/сек, от других источников — $Q_{\text{пост.}} = 15$ ккал/сек. Теплопотери — $Q_{\text{пот.}} = 10$ ккал/сек Теплопотери — $Q_{\text{пот.}} = 10$ ккал/сек разрыв — $\frac{3}{8} = 3,0$. Рабочие места расположены до и за печами. В пролете Ш расположены 5 печей, диаметром d = 3м, высота печей — 5 м; $Q_{\text{пост.}} = 500$ ккал/сек;

Puc. 6.

 $Q_{\text{изб.}} = 485$ ккал/сек; $\frac{\alpha'}{\alpha} > 5$. Рабочие места расположены со стороны приточных проемов (до источников тепла).

Фонари вытяжные II-образные с ветрозащитными панелями ($\hbar/h=3,3$); $\ell/h=2$; $\ll=55$; $\ell/h=5,1$; ℓ

Требуется определить воздухооомены и площади аэрационных проемов для каждого пролета.

PEWEHNE:

Пролет І.

 Определяющий размер А для первой группы печей (печи одинаковые)

$$A = \frac{2 \times 3 \times 5}{3 + 5} = 3,75 \text{ M}.$$

2. Находим \mathcal{Z}_{Π} $\mathcal{Z}_{\Pi} = \mathbf{I}, 7 \times \mathbf{A} = \mathbf{I}, 7 \times 3, 75 = 6,37 \text{ м.}$

Расстояние от полюса струи до середины вытяжных отверстий

$$Z = 6,37 + (25 - 5) = 26,37 \text{ M}.$$

4. Количество конвективного тепла от одного источника, принимая: $Q_{\text{конв.}} = 0.5 \ Q_{\text{пост.}}$ $Q_{\text{конв.}} = \frac{1000}{9} - 0.5 = 55.7$ ккал/сек.

5. Объемный расход воздуха в свободной конвективной струе на уровне **Ж** (приложение П)

$$L_{CTD_*} = 76.5 \text{ m}^3/\text{cek}.$$

- 6. Определяющий размер для второй группы печей $A = 4 \omega$; $\mathcal{Z}_{\pi} = 1.7 \times 4 = 6.8$.
 - 7. Находим 🏖

$$\mathcal{Z} = 6.8 + (25 - 8) = 23.6 \text{ m}.$$

8. Количество конвективного тепла, отдаваемого одной печью:

$$Q_{\text{конв.}} = \frac{750}{5} \cdot 0.5 = 75 \text{ ккал/сек.}$$

9. Расход в струе (приложение П)

$$L_{CTD.} = 69,3 \text{ M}^3/\text{cek.}$$

Средняя температура в тепловых струях на уровне

 первого пролета

$$t_{\text{cTp.}} = \frac{55.7 \times 9 + 75 \times 5}{0.24 \times I.I7(76.5 \times 9 + 69.3 \times 5)} + 20 = 23^{\circ}\text{C}.$$

II. Расчетная температура воздуха в рабочей зоне I пролета определяется в зависимости от принятой температуры в рабочей зоне Ш пролета и от относительного разрыва между печами каждого ряда источников тепла.

Расчетная температура в рабочей зоне Ш пролета – $t_{\rm p.3.}$ = = 20 + 5 = 25°C. Для П пролета при $\frac{{\rm a}^!}{{\rm a}}$ = 30 и п=0,76 (приложение IV)

$$t_{\text{p.з.}} = t_{\text{н.}} + \pi \cdot \Delta t_{\text{p.s.}} = 20 + 0.76 \times 5 = 23.8 ^{\circ}\text{C}.$$

Для I пролета при $\frac{a'}{a} = 2.5$ и п=0.72

$$t_{0.3} = 20 + 0.76 \times 0.72 \times 5 = 22.74^{\circ}C.$$

 Температура уходящего воздуха через створки фонаря I пролета

$$t_{vx}$$
 = 1,2 (22,74 + 23 - 20) = 30,8°C.

13. Внутрения температура воздуха

$$t_{BH} = 0.5 (30.8 + 22.74) = 26.8^{\circ}C.$$

14. Располагаемое тепловое давление в отверстиях I и 2 при h = 23 м

$$\Delta P_{\rm np} = 0.5 h \ (\gamma_{\rm H} - \gamma_{\rm BH}) = 0.5 \times 23 (1.205 - 1.178) = 0.31 \ {\rm kF/M}^2$$

Расчетный воздухообмен

$$G_a = \frac{1780}{0.24 (30.8 - 20)} = 629 \text{ kg/cek}.$$

16. Площадь вытяжных отверстий

$$F_2 = \frac{692}{0.44 \sqrt{19.62 \cdot 1.164 \cdot 0.31}} = 592 \text{ m}^2.$$

Пролет П.

17. Определяющий размер для первой группы печей

$$A = 5 \text{ m}; \quad \mathcal{Z}_{\Pi} = 1,7 \cdot 5 = 8,5 \text{ m}.$$

18. Вычисляем Z

$$\mathcal{Z} = 8.5 + (30 - 10) = 28.5 \text{ m}.$$

 Количество конвективного тепла от одной печи равно (печи одинаковые)

$$Q_{\text{конв.}} = \frac{1000}{12}$$
 . 0,5 = 41,7 ккал/сек.

20. Расход в свободной тепловой струе на уровне ${\mathcal Z}$ (приложение П)

$$L_{\rm crp.} = 78.2 \, {\rm m}^3/{\rm cek.}$$

21. Определяющий размер для второй группы печей

$$A = \frac{2 \times 4 \times 9}{4 + 9} = 5,55 \text{ w.}$$

Так как высота печей - 15 м, то определим высоту начального

участка струи

$$Z_1 = 1.5 \text{ A} = 1.5 \text{ x} 5.55 = 8.3 \text{ m}.$$

Расстояние от верхней грани печеи до центра вытяжных отверствий равно 15 м. Следовательно, расчет проводим для основного участка струи.

22. Определяем \mathcal{Z}

$$Z = Z_n + Z_n = 1.7 \times 5.55 + (30 - 15) = 24.4 \text{ m}.$$

- 23. Количество конвективного тепла от одного источника $Q_{\text{конв.}} = \frac{400}{2}$. 0,5 = 100 ккал/сек.
- 24. Расход воздуха в струе на уровне Z составит (номограмма I) $L = 81 \text{ m}^3/\text{сек}$.
- 25. Средияя температура в тепловых струях на уровне ${\cal Z}$ вто-

$$t_{\text{crp.}} = \frac{41.7 \times 12 + 100 \times 2}{0.24 \times 1.17(78.2 \times 12 + 81 \times 2)} + 20 = 22.8^{\circ}\text{C}.$$

- 26. Температура уходящего воздуха во П продете $t_{p.3}$.=23,8°C t_{yx} . = 1,2(23,8 + 22,8 20) = 32°C.
- 27. Температура внутреннего воздуха

$$t_{\rm BH} = 0.5 (32 + 20) = 26^{\circ} \text{C}$$

28. Располагаемое тепловое давление в отверстии 4

$$\Delta P_{BHT} = 0.5 h \left(\gamma_{H} - \gamma_{BH} \right) = 0.5 \quad 28(1.205 - 1.18) = 0.35 \text{ kP/m}^2$$

29. Расчетный воздухообмен

$$G_a = \frac{1415}{0.24 (32 - 20)} = 492 \text{ kg/cek}.$$

30. Площадь вытяжных проемов

$$F_4 = \frac{492}{0.44 \sqrt{19.6 \cdot 1.157 \cdot 0.35}} = 397 \text{ m}^2.$$

Пролет Ы.

31. Определяем 2

$$Z = I,7 \times 3 + (18 - 5) = I8,I M.$$

32. Конвективное тепло от источника

$$Q_{\text{конв.}} = \frac{500}{5} \cdot 0.5 = 50 \text{ ккал/сек.}$$

33. Расход в струе (номограмма П)

$$L = 39,2 \text{ kr/cek}$$

34. Температура в струе на уровне

$$t_{\text{cTp.}} = \frac{50}{0.24 \times 1.17 \times 39.2} + 20 = 24,52^{\circ}\text{C}.$$

35. Температура уходящего воздуха для $t_{\text{p.s.}}$ = 25°C $t_{\text{yx.}}$ = 1,2(25 + 24,52 - 20) = 35,4°C.

36. Температура внутреннего воздуха

$$t_{BH_a} = 0,5(35,4 + 25) = 30,2^{\circ}C$$

37. Располагаемое тепловое давление для отверстия 5, прини-маемым равным ОЗ Δ P_{τ}

 $\Delta P_6 = 0.3 h (\gamma_{H.} - \gamma_{BH.}) = 0.3 \times 16(1.205-1.165)=0.193 kP/m².$

38. Расчетный воздухообмен в Ш пролете

$$G_a = \frac{485}{0.24 (35.4 - 20)} = 131 \text{ kr/cem.}$$

39. Площадь фонаря

$$F_6 = \frac{131}{0.44 \sqrt{19.6 \cdot 1.144 \cdot 0.193}} = 143 \text{ m}^2.$$

40. Находим площади приточных проемов I, 3, 5. весовой расход воздуха через отверстие I.

$$G_{i} = G_{2} + G_{4} + G_{6} = 692 + 492 + 131 = 1215 \text{ kr/cek}$$

$$F_{i} = \frac{G_{i}}{M_{i} \sqrt{2g \cdot y_{H}^{*} \Delta P_{i}}} = \frac{1215}{0.56 \times 19.62 \times 1.205 \times 0.31} = 795 \text{ m}^{2}.$$

Потери давлений на проход воздуха через проемы 3 и 5

$$\Delta P_3 = \Delta P_{i;3;4} - \Delta P_i - \Delta P_4 = 0,7-0,3I-0,35 = 0,04 \text{ kg/m}^2$$
.

$$\Delta P_5 = \Delta P_{1;3;5;6} - \Delta P_1 - \Delta P_3 - \Delta P_6 = 0.64-0.31-0.04-0.193 = 0.097 \text{ kT/}u^2$$
.

$$F_{3} = \frac{G_{4} + G_{6}}{M_{3} \sqrt{29} \cdot \sqrt{p_{3}}, \Delta P_{3}} = \frac{492 + 131}{0.64 \sqrt{19.62 \cdot 1.193 \cdot 0.04}} = 1050 \text{ m}^{2}.$$

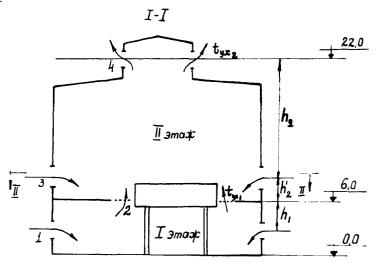
$$F_{5} = \frac{G_{6}}{N_{5} \sqrt{29 \times \gamma_{p.3} \times \Delta P_{5}}} = \frac{131}{0.64 \sqrt{19.62 \times 1.188 \times 0.097}} = 136 \text{ m}^{2}.$$

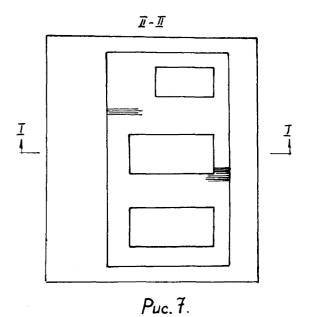
<u>пример 8. Рассчитать ээрацию двукатажного здания (отделение</u> газовой компрессии) в теплый период года (рис.?).

Длина здания 48 м, ширина - 24 м, высота первого этажа 6 м, второго - 16 м.

теплоотдающее оборудование:

- I) компрессор авотноводородной смеси размером в плане 5 х II м и висотом 2 м (над отметкой 6 м). Тепловыделения $Q_{\widetilde{\text{пост}}}$ = 466 кмал/сек, из моторых образнется в I этаже (от оборудовочия и трубопроводов);
- 2) подпрессор воздушный размером в плане 5 х II м и высоток 2 м (над этметком 6 м). Тепловыделения $Q_{\text{пост}} = 225$ ккал/сек, из них 60 выделяется в пределах I этажа (от оборудования и трубопроводов); 3) компрессор природного газа размером в плане 3 х 7,5 м и высотой I,5 м (над отметкой 6 м). Тепловыделения $Q_{\text{пост}} = 100$ ккал/сек, на них 55% выделяется в пределах I этажа. Теплопоступления от солнечном радмации $Q_{\text{рад.}} = 42$ ккал/сек. Теплопотери $Q_{\text{пот}} = 0$. температура наружного воздуха $t_{\text{н}} = +22.8$ °C.


температура воздуха в рабочей зоне:


2-го этажа $t_{p.3.} = +28^{\circ}C;$ 1-го этажа $t_{p.3.} = +30^{\circ}C.$

Пресывание рассчих в I этаже периодическое, во 2- ош этоже - постоянное. Фиксированных рассчих мест нет.

Створии приточных проемов:

а) двоиные — наружная верхнеподвесная, внутренняя — нишнеподвесная h/B = 0.5, $\Delta = 30^{\circ}$, J = II, M = 0.3. Центры приточных проенов на отметках 2,I м и 8,I м; б)одинарние — верхнеподвесные h/B = 0.5, $\Delta = 30^{\circ}$, J = 6.9, M = 0.38. центры отверстий на отметках 9,9 м и II,7 м.

Этажи между собой сообщаются проемами снабженными решетками $\mathcal{T} = 4.0$, $\mathcal{M} = 0.5$. Фонарь конструкции КТИС. Коэффициент местного сопротивления $\mathcal{T} = 4.3$, $\mathcal{M} = 0.48$. Приток наружного воздуха во второй этаж осуществляется с двух продольных сторов. (При определении $\Delta U_{\mathbf{p.3.}}$ разрыв между источниками тепла не учитывается). Требуется определить величину воздухообмена и необходимые площана аэрационных проемов.

Решеные

I. Определяющий размер источников тепла: компрессор азотно-водородной смеся

$$A = \frac{2aB}{a+B} = \frac{2 \times II \times 5}{II+5} = 6,87 \text{ w};$$

компрессор воздушный

компрессор природного газа

$$A = \frac{2 \times 3 \times 7.5}{3 + 7.5} = 4,28 \times .$$

Так как высота разгонного участка тепловой струн (Z_i = 1,5 х A = 1,5 х 6,87 = I0,3 м) меньме расстояния от верхней грани печи до центра отверстия в фонаре (I6 - 2 = I4 м), то определяются параметры основного участка свободной тепловой струм круглого сечения ($\frac{-8}{A} < I/3$).

- 2. Находим Z_n для каждой струв $Z_n = I,7A = I,7 \times 6,87 = II,7 м <math>Z_n = II,7 M$ $Z_n = 7,27 M$.
- э. Расстояние от полюса струи до середины вытяжных отверстий в фонаре

$$\vec{Z} = \vec{Z}_n + \vec{Z}_{\ell} = \text{II}, 7 + (\text{I6} - .2) = 25, 7 \text{ M}$$

 $\vec{Z} = 25, 7 \text{ M}$
 $\vec{Z} = 7.27 + (\text{I6} - \text{I.5}) = 21.77 \text{ M}.$

4. Конвективное тепло от компрессоров

$$Q_{K} = 0.5 \times 0.4 Q_{HOCT} = 0.5 \times 0.4 \times 466 = 93 \text{ Kran/cek}$$
 $Q_{K} = 0.5 \times 0.4 \times 225 = 45 \text{ Kran/cek}$
 $Q_{K} = 0.5 \times 0.45 \times 100 = 22.4 \text{ Kran/cek}$

5. Объемный расход воздуха в свободных тепловых струях на уровне \mathcal{Z} (приложение П)

$$L_{crp} = 88,0 \text{ m}^3/\text{cek}$$
 $L_{crp} = 69,0 \text{ m}^3/\text{cek}$
 $L_{crp} = 50,0 \text{ m}^3/\text{cek}$.

6. Средняя температура в тепловых струях на высоте 2.

$$t_{\text{crp}} = \frac{-93 + 45 + 22,4}{0,24 \times 1,17(88,0+69,0+50,0)} + 22,8 = 25,6^{\circ}\text{C}.$$

7. Температура уходящего воздуха:

I star
$$t_{yx_i} = 1.2(t_{p.s.} + t_{crp} - t_{H}) = 1.2(30 + 25.6 - 22.8) = 39.3°C;$$

II STAX

$$t_{yx_2} = 1.2(t_{p.s.} + t_{crp} - t_{m}) = 1.2(28+25.6-22.8) = 36.9°C.$$

8. Тепловзбитка:в І этаже

$$Q_1 = 0.6 \times 466 + 0.6 \times 225 + 0.55 \times 100 = 470 \text{ KRan/cek};$$

Bo II STAXE
$$Q_2 = 0.4 \times 466 + 0.4 \times 225 + 0.45 \times 100 + 42 = 363 \text{ KRan/cek}.$$

9. Весовой расход воздуха, протеквищего через проемы I, 2 и 3;

$$G_{\alpha_1} = G_{\alpha_2} = \frac{470}{0.24(39.3 - 22.8)} = 118.6 \text{ kg/cek}$$

$$C_{03} = \frac{C_{2} + 0.24 \times C_{2} (t_{yx_{1}} - t_{yx_{2}})}{0.24 (t_{yx_{2}} - t_{H})} = \frac{363 + 0.24 \times 118.6 (39.3 - 36.9)}{0.24(36.9 - 22.8)}$$

= I28.5 kr/cek.

10. Температура и удельный вес внутреннего воздуха:

$$t_{BH_1} = \frac{t_{P.3} + t_{VS_1}}{2} = \frac{30 \pm 39 \cdot 3}{2} = 34.7^{\circ}C,$$

$$y_{3H,7} = I,I5 \text{ kr/m}^{3};$$

$$t_{BH_2} = \frac{28 + 36.9}{2} = \frac{28 \pm 36.9}{2} = 32.45^{\circ}C,$$

$$y_{3P,15} = I,I56 \text{ kr/m}^{3}.$$

II. Располагаемые тепловые давления:

в отверстиях 1,2 и 4

$$\Delta P_{1,2,4} = h_1 (y_H - y_{BH}) + (h_2' + h_2)(y_H - y_{BH}) =$$
= 3,9(1,197 - 1,15) + (2,1 + 13,9)(1,197 - 1,156) = 0,839 kg/m²,

в отверстиях 3 и 4

$$\Delta P_{3,h} = h_3(y_h - y_{\delta h_2}) = 13.9(1.197 - 1.156) = 0.57 \text{ kg/m}^2.$$

Принимаем:

$$\Delta P_3 = \Delta P_4 = 0.5 \times 0.57 = 0.285 \text{ kg/m}^2$$

$$\Delta P_1 = \Delta P_2 = \frac{\Delta P_{1.2.4} - \Delta P_4}{2} = \frac{0.839 - 0.285}{2} = 0.277 \text{ kg/m}^2$$

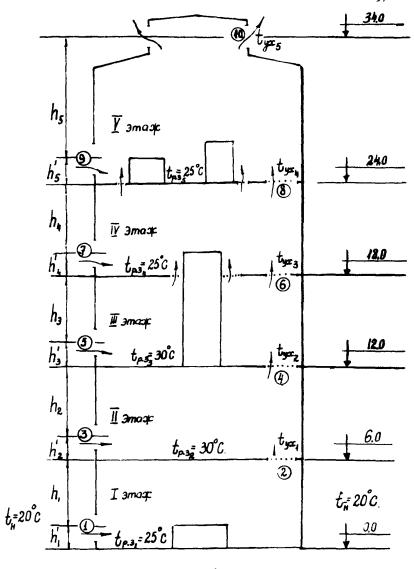
12. Площади проемов:

$$F = \frac{118.6}{0.3 \sqrt{19.62 \times 1.197 \times 0.277}} = 156 \text{ m}^2$$

$$F_{2} = \frac{118.6}{0.5 \sqrt{19.62 \times 1.15 \times 0.277}} = 95.2 \text{ m}^{2};$$

$$F_{3} = \frac{128.5}{0.3 \sqrt{19.62 \times 1.197 \times 0.285}} = 166 \text{ m}^{2};$$

$$F_{4} = \frac{G_{2} + G_{3}}{M\sqrt{2q} \cdot \gamma_{\text{BHo}} \Delta P_{4}} = \frac{118.6 + 128.5}{0.48 \sqrt{19.62 \times 1.156 \times 0.285}} = 203 \text{ m}^{2}$$


13. Тепловой баланс 2-х этажного здания

$$(Q_1 + Q_2) = 0.24 (t_{yx_2} - t_{x})(G_{\alpha_1} + G_{\alpha_2})$$
 KKBI/CCK;
 $470+363 = 0.24(36.9-22.8)(II8.6+I28.5)$
 $833 = 833$

пример 9.

Рассчитать аэрацию 5-этажного здания в теплый период года /рис.8/. Здание размером в плане 24 х 54 м и высотой 34 м.

- I. На I этаже расположене одна нагревательная печь размером 5 х I2,0 м и высотой 2 м. Теплопоступления от печи $Q_{pos} = 100$ ккал/сек, от солнечной радиации $Q_{pos} = 15$ ккал/сек. Теплопотери $Q_{pos} = 15$ ккал/сек.
- 2. На П этаже источников тепла нет. Теплопоступления от солнечной радиации 0,3 5 ккал/сек.
- 3. На Ш этаже находятся 4 источника тепла, выходящие через проемы в перекрытии на ІУ этаж, размером в плане C=1,5 м и высотой 8 м; $\frac{\Omega}{\Omega}=7$. Тепловыделения от нагревателей составляют Q=150 ккал/сек, из них 80 куал/сек на Ш этаже. Теплопоступления от солнечной радиации: в Ш этаж $Q_{p\bar{a}\bar{b}}$ 5 ккал/сек; в ІУ этаж $Q_{p\bar{a}\bar{b}}$ 7 ккал/сек. Теплопотери: Ш этаж $Q_{p\bar{a}\bar{b}}$ 8 ккал/сек; ІУ этаж $Q_{n}=12$ ккал/сек.

Puc. 8

4. На 5 этаже расположены 2 источника тепла: первый диаметром d=1,5 м и высотой 2,5 м; второй соответственно d=2,0 м и высотой 3 м. Тепловыделения от первой печи Q=40 ккал/сек, от второй Q=60 ккал/сек. Теплопоступления от солнечной радиации Q_{pos} 10 ккал/сек. Теплопотери $Q_{n}=20$ ккал/сек.

Расчетная температура наружного воздуха $t_{\rm H} = +20^{\circ}{\rm C}$, в рабочей зоне: I этаж $-t_{\rm p.s.} = 25^{\circ}{\rm C}$; П этаж $-t_{\rm p.s.} = 30^{\circ}{\rm C}$ (периодическое пресывание людей); В этаж $-t_{\rm p.s.} = 30^{\circ}{\rm C}$ (периодическое пресывание людей); IV этаж $-t_{\rm p.s.} = 25^{\circ}{\rm C}$ и у этаж $-t_{\rm p.s.} = 25^{\circ}{\rm C}$.

наружным воздух поступает через приточные проемы I, 5, 5, 7 и 9. Створки приточных проемов двойные — наружная верхнеподвесная, внутренняя — нижнеподвесная; $\frac{1}{3}$ = II; M = 0,3. Центры приточных проемов находятся на высоте $\frac{1}{3}$ = 2,I м.

Этажи в здании сообщаются монтажными проемами 2,4, 6, 8 размером 4 х 4 м. (коэффициент местного сопротивления проема $\frac{7}{3} = 2,38$; M = 0,65) и другими проемами (около печей), снабженными решетками, $\frac{7}{3} = 4,0$; M = 0,5. Фонарь конструкции КТИС, $\frac{7}{3} = 4,3$; M = 0,48.

Требуется определить воздухообмен и площади аэрационных проемов. РЕШЕНИЕ . I этаж.

I. Определяем расход воздуха в плоской свободной конвективной струе(на отметке 6,0 м по формуле 3a) или по номограмме (приложение Ша).

$$Q_{\text{ROMB}} = 0.5 \times 100 = 50 \text{ kmam/cek}; \quad \mathcal{Z}_{\text{B}} = 6 - 2 = 4 \text{ m}; \quad \Omega = 12 \text{ m}.$$

$$L_{\text{crp}} = 0.154 \sqrt[3]{50} \times 12^{2/3} \times 4 = 11.9 \text{m}^3/\text{cek}$$

2. Температура в струе, на высоте
$$\mathcal{Z}_8$$

$$\frac{1}{C_{\text{crp}}} = \frac{50}{0.24 \times 1.17 \times 11.9} + 20 = 35^{\circ}\text{C}.$$

3. Температура уходящего воздуха

$$t_{yx_i} = 1.2 (25 + 35 - 20) = 48^{\circ}C.$$

4. Расход воздуха, протекающего через отверстие І и 2:

$$G_{a_1} = G_{a_2} = \frac{Q_1}{0.24 (t_{yx_1} - t_{x_1})} = \frac{100 \pm 5 - 15}{0.24 (48 - 20)} = 13,4 \text{ kg/cek}.$$

II arex.

 Расход воздуха в плоской свободной конвективной струе на отметке 12,0 м (по формуле 3a) или по номограмме (приложение ша)

$$Q_{\text{KOHB.}} = 0.5 \text{ x IUO} = 50 \text{ KKan/cek; } Z_{\text{B}} = 12 - 2.0 = 10 \text{ m;}$$

$$Q = 12 \text{ m;} \qquad \Box_{\text{CTD}} = 29.6 \text{ m}^3/\text{cek.}$$

6. Температура в струе на уровне $\mathcal{Z}_{\mathbf{B}}$

$$t_{crp} = \frac{50}{0,24 \times I, I7 \times 29,6} + 20 = 26,0^{\circ}C.$$

7. Температура уходящего воздуха

$$t_{yx_2} = 1.2 (30 + 26 - 20) = 43.2$$
°C

8. Расход воздуха, протеквющего через проем 3 (во п этаже источников тепла нет), при $t_{yx} > t_{yx_2}$

$$G_{a_{3}} = \frac{Q_{11} + 0.24G_{a_{1}}(t_{yx_{1}} - t_{yx_{2}})}{0.24(t_{yx_{2}} - t_{11})} =$$

$$= 5 + 0.24 \times 13.4 (48 - 43.2) = 3.6 \text{ kr/cek}.$$
 $0.24 (43.2 - 20)$

Расход воздуха, протекардего через проем 4:

$$G_{a_{ij}} = G_{a_{2}} + G_{a_{3}} = 13,4 + 3,6 = 17,0 \text{ kg/cek.}$$

Brar.

9. Определяющий размер источника тепла A = d = 1,5 м.

Высета разгонного участка свободной комвективной струм

($Z_1 = 1,5$ d = 1,5 x 1,5 = 2,25 м) значительно меньше расстояния от верхней грани печи до вытяжного отверстия $Z_B = 4$ м.

Полюс струм $Z_A = 1,7$ d = 1,7 x 1,5 = 2,55 м. $Z_1 = Z_A + Z_2 = 2,55 + 4 = 6,55$ м.

Конвективное тепло от одного источника, принимая $Q_{\pi y \overline{q}} Q_{\text{конв}^3}$ составляет

$$Q_{\text{KOHB.}} = \frac{0.5}{4} \frac{Q_{\text{BOY}} = 0.5 \times 150}{4} = 18,75 \text{ KKen/cem.}$$

10. Объемный расход воздуха в струе

$$L_{cro} = 5,62 \text{ m}^3/\text{cem}.$$

II. Температура в струях

$$t_{crp} = \frac{18.75 \times 4}{0.24 \times 1.17 \times 5.62 \times 4} + 20 = 31.9^{\circ}C.$$

12. Температура уходящего воздуха

$$t_{yx_3} = 1.2 (t_{p.3.3} + t_{crp} - t_H) =$$

= 1.2 (30 + 31.9 - 20) = 50.4°C.

13. Расход воздуха (проем 5) при
$$t_{yx_3} > t_{yx_2}$$

$$C_{a_5} = \frac{G_{\overline{x}} - 0.24 C_{a_1} (t_{yx_3} - t_{yx_2})}{0.24 (t_{yx_3} - t_{x_1})} =$$

$$= \frac{(0.8 \times 150 + 5 - 8) - 0.24 \times 17.0(50.4 - 43.2)}{0.24 (50.4 - 20)} = 12.0 \text{kg/cek}$$

Расход воздуха, протекающего через проем 6

$$G_{a_6} = G_{a_4} + G_{a_5} = 17.0 + 12.0 = 29.0 \text{ kg/cem.}$$

IY arex.

I4. Температура уходящего воздуха

$$t_{yx_{ij}} = 1.2(t_{p.a._{ij}} + t_{crp.} - t_{ii}) =$$

$$1.2(25 + 31.9 - 20) = -4.200.$$

15. Расход воздуха, протекающего через отверстие 7, при $t_{yx_{ij}} < t_{yx_{3}}$ $G_{a_{7}} = \frac{Q_{i\bar{y}} + 0.24 G_{a_{5}} (t_{yx_{3}} - t_{yx_{3}})}{0.24 (t_{yx_{1}} - t_{x})} =$

$$= \frac{(0.2 \times 150 + 7 - 12) + 0.24 \times 29.0(50.4 - 44.2)}{0.24 (44.3 - 20)} = II.7Kr/cox$$

Расход воздуха, протеквищего через проем 8.

$$G_{a_g} = G_{a_g} + G_{a_g} = 29,0 + 11,7 = 40,7 \text{ kg/cek.}$$

y arax.

16. Определяющий размер первого источника A = 1,5 м;

$$\vec{z}_n = 1,7 \times 1,5 = 2,55 \text{ m}; \ \vec{z}_B = 10 - 2,5 = 7,5 \text{ m};$$

$$Z = Z_n + Z_B = 2,55 + 7,5 = 10,05 \text{ M};$$
 $Q_{\text{ROHB}} = 20 \text{ KKAJ/Cem.}$

17. Объемный расход воздуха в тепловой струе

$$L_{\text{crp}} = \text{II,3 } \text{w}^{8}/\text{cex.}$$

18. Высота 2 для второй печи

$$Z_{\Pi} = 1.7 \times 2.0 = 3.4 \text{ m};$$
 $Z_{B} = 10 - 3 = 7 \text{ m};$ $Z = 10.4 \text{ m}.$ $Q_{\text{конв.}} = 0.5 \times 60 = 30 \text{ ккал/сек.}$

19. Объемный расход воздуха в тепловой струе $L_{\text{стр.}} = 13.8 \text{ m}^3/\text{сек.}$

20. Средняя температура воздуха вструях на уровне 🏖

$$t_{\text{CTD}} = \frac{20 \pm 30}{0.24 \times 1.17(\text{II}.3 + \text{I3}.8)} + 20 = 27.1^{\circ}\text{C}$$

21. Температура уходящего воздуха

$$t_{yx_5} = 1.2 (t_{p.3.5} + t_{crp.} - t_{H}) =$$

= 1.2 (25 + 27.1 - 20) = 38.6°C.

22. Расход воздуха, протекающего через проем 9, при $t_{yx_{i_1}} > t_{yx_{i_2}}$ $C_{a_g} = \frac{Q_{\overline{y}} + 0.24}{0.24} \frac{f_{yx_{i_2}} - f_{yx_{i_2}}}{f_{yx_{i_2}} - f_{i_1}}$

$$= (.40 + 60 + I0 - 20) + 0.24 \times 40.7(44.3 - 38.6) = 32.7 \text{ kr/cex}$$

 $= (.40 + 60 + I0 - 20) + 0.24 \times 40.7(44.3 - 38.6) = 32.7 \text{ kr/cex}$

23. Раскод воздуха, протекающего через отверстие IU;

$$\hat{G}_{a} = \hat{G}_{a} + \hat{G}_{a} = 40,7 + 32,7 = 73,4 \text{ kr/cek.}$$

24. Тепловой баланс здания

$$(Q_{\underline{1}} + Q_{\underline{n}} + Q_{\underline{n}} + Q_{\underline{v}} + Q_{\underline{v}}) = (G_{\underline{a}} + G_{\underline{a}} + G_{\underline{a}} + G_{\underline{a}} + G_{\underline{a}} + G_{\underline{a}}) \times 0.24 (t_{yx_5} - t_{y})$$
 KKel/cek,

$$(90 + 5 + II7 + 25 + 90) = (I3,4 + 3,6 + I2 + II,7 + 32,7)x$$

 $x \ 0,24(38,6 - 20)$

327 ≈ 327,5 ккал/сек.

25. Температура и удельный вес внутреннего воздуха:

I STAR -
$$t_{BH_1} = \frac{48 + 25}{2} = 36.5^{\circ}C;$$
 $y_{BH_1} = I,I38 \text{ kr/m}^3;$
II STAR - $t_{BH_2} = \frac{43.2 + 30}{2} = 36.6^{\circ}C;$ $y_{BH_2} = I,I37 \text{ kr/m}^3;$
II STAR - $t_{BH_3} = \frac{50.4 + 30}{2} = 40.2^{\circ}C;$ $y_{BH_3} = I,I27 \text{ kr/m}^3;$
IV STAR - $t_{BH_4} = \frac{44.2 + 25}{2} = 34.6^{\circ}C;$ $y_{BH_4} = I,I47 \text{ kr/m}^3;$
V STAR - $t_{BH_5} = \frac{38.6 + 25}{2} = 3I,8^{\circ}C;$ $y_{BH_5} = I,I62 \text{ kr/m}^3.$

26. Располагаемое тепловое давление:

$$\Delta P_{1,2,4,6,8,10} = h_{1}(y_{H} - y_{BH}) + (h_{2} + h_{2})(y_{H} - y_{BH}) + (h_{3} + h_{3})(y_{H} - y_{BH}) + (h_{4} + h_{4})(y_{H} - y_{BH}) + (h_{5} + h_{5})(y_{H} - y_{$$

$$\Delta P_{3,4,6,8,10} = h_{2}(y_{H} - y_{BH_{2}}) + (h_{3}' + h_{3})(y_{H} - y_{BH_{3}}) + \\ + (h_{4}' + h_{4})(y_{H} - y_{BH_{4}}) + (h_{5}' + h_{5})(y_{H} - y_{BH_{5}}) = \\ = 3.9(1,205 - 1,137) + 6(1,205 - 1,127) + 6(1,205 - 1,147) + \\ + 10(1,205 - 1,162) = 1,511 \text{ kT/m}^{2};$$

$$\Delta P_{5,6,8,10} = h_{3}(y_{H} - y_{BH_{3}}) + (h_{4}' + h_{4})(y_{H} - y_{BH_{4}}) + (h_{5}' + h_{5})(y_{H} - y_{BH_{3}}) + (h_{5}' + h_{5})(y_{H} - y_{BH_{4}}) + (h_{5}' + h_{5}) + \\ + 10(1,205 - 1,162) = 1,082 \text{ kT/m}^{2};$$

$$\Delta P_{7,8,10} = h_{4}(y_{H} - y_{BH_{4}}) + (h_{5}' + h_{5})(y_{H} - y_{BH_{5}}) = \\ = 3.9(1,205 - 1,147) + 10(1,205 - 1,162) = 0,656 \text{ kT/m}^{2};$$

$$\Delta P_{9,10} = h_{5}(y_{H} - y_{BH_{5}}) = 7.9(1,205 - 1,162) = 0,34 \text{ kT/m}^{2}$$

27. Потери давления на проход воздуха через проемы 9 и 10

$$\Delta P_9 = \Delta P_{IO} = 0.5 \Delta P_{9.IO} = -0.5 \times 0.34 = 0.17 \text{ kT/m}^2$$

Через проемы 8, принимая ΔP_{γ} равным положине располагаемого павления на 4 этаже:

$$\Delta P_7 = 0.5 \text{ h}_4 (V_H - V_{BH}) = 0.5 \times 3.9 (1.205 - 1.147) = 0.12 \text{ kG/m}^2;$$

$$\Delta P_8 = \Delta P_{7,8,10} - \Delta P_7 - \Delta P_{10} = 0.656 - 0.12 - 0.17 = 0.366 \, \text{kT/m}^2$$
.

При
$$F_8 = 16 \text{ m}^2$$
 и $G_{a_8} = 40.7 \text{ кг/сек}$

$$\Delta P_8^1 = \frac{1}{M^2 29 \text{ уух}_H} \left(\frac{G_{a_8}}{F_8}\right)^2 = \frac{1}{0.65^2 \text{x 19.6 x 1.113}} \text{ x}$$

$$x(-\frac{40.7}{16})^2 = 0.705 \text{ кГ/m}^2.$$

Так как $\Delta P_8^1 > \Delta P_8$, то в межэтажном перекрытик на отм. 24,0 м должны быть устроены дополнительные проемы.

Через проем 6, принимая ΔP_5 равным половине располагаемого давления на 3 этаже:

$$\Delta P_5 = 0.5 \times 3.9(I.205 - I.I27) = 0.152 \text{ kG/m}^2;$$

$$\Delta P_6 = \Delta P_{5.6.8.10} - \Delta P_5 - \Delta P_8 - \Delta P_{10} = 0.082 - 0.152 - 0.366 - 0.17 = 0.394 \text{ kG/m}^2.$$

$$\Pi pu F_6 = I6 \text{ m}^2 \text{ u} G_{8.6} = 29.0 \text{ kg/cek}$$

$$\Delta P_6 = \frac{I}{0.65^2 \times 19.6 \times 1.09} \left(\frac{29}{16}\right)^2 = 0.363 \text{ kg/m}^2.$$

Через проем 3 при заданной $f_{\psi} = 16 \text{ m}^2$, площадь которого уменьшить нельзя, определяем действительные потери давления

$$P'_{4} = \frac{I}{0.65^{2} \times 19.6 \times I.II7} (\frac{I7}{16})^{2} = 0.127 \text{ kF/m}^{2};$$

$$\Delta P_3 = \Delta P_{3,4,6,8,10} - \Delta P_4 - \Delta P_6 - \Delta P_8 - \Delta P_{10} =$$

$$= 1,511 - 0,127 - 0,394 - 0,366 - 0,17 = 0,454 \text{ kT/m}^2$$

Через отверстие I при заданной площади монтажного проема $F_{g} = 16 \text{ m}^2$

$$\Delta P_{2}^{1} = \frac{I}{0,65^{2} \times 19,6 \times I,I} (\frac{13.4}{16})^{2} = 0,077 \text{ kF/m}^{2};$$

$$\Delta P_{I} = \Delta P_{I,2,4,6,8,I0} - \Delta P_{2} - \Delta P_{4} - \Delta P_{6} - \Delta P_{8} - \Delta P_{I0} =$$

$$= 1,915 - 0,077 - 0,127 - 0,394 - 0,366 - 0,17 =$$

$$= 0,771 \text{ kF/m}^{2}.$$

Потери давления на проход воздуха через проем I должны составиять половину располагаемого давления на I этаже. Тогда коэффициент местного сопротивления монтажного проема 2 должен быть увеличен.

28. Площадь просмов:

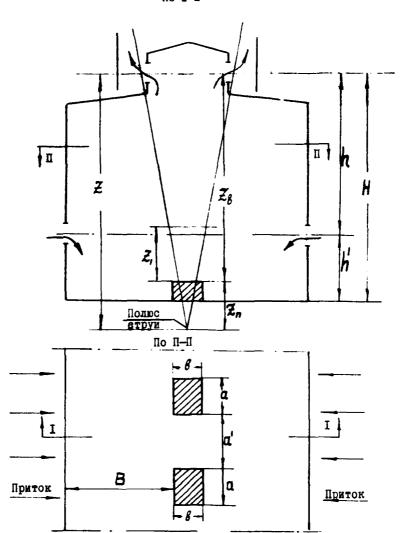
$$F_{1} = \frac{G_{0.1}}{M\sqrt{2}g \cdot y_{H} \cdot \Delta P_{1}} = \frac{13,4}{0,3\sqrt{19,6 \times 1,205 \times 0,771}} = 10,5 \text{ m}^{2};$$

$$F_{3} = \frac{G_{0.3}}{M\sqrt{2}g \cdot y_{H} \cdot \Delta P_{3}} = \frac{3,6}{0,3\sqrt{19,6 \times 1,205 \times 0,454}} = 3,66 \text{ m}^{2};$$

$$F_{5} = \frac{G_{0.5}}{M\sqrt{2}g \cdot y_{H} \cdot \Delta P_{5}} = \frac{12,0}{0,3\sqrt{19,6 \times 1,205 \times 0,152}} = 21,0 \text{ m}^{2};$$

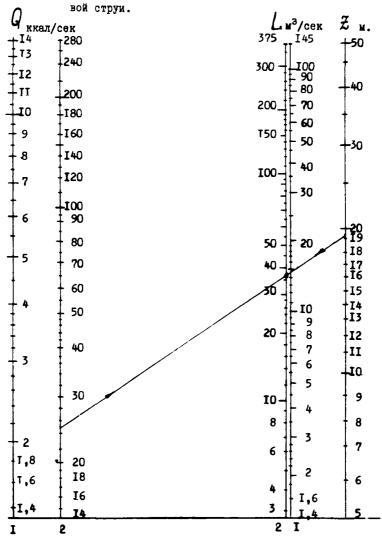
$$F_{7} = \frac{G_{0.7}}{M\sqrt{2}g \cdot y_{H} \cdot \Delta P_{7}} = \frac{11,7}{0,3\sqrt{19,6 \times 1,205 \times 0,12}} = 23,2 \text{ m}^{2};$$

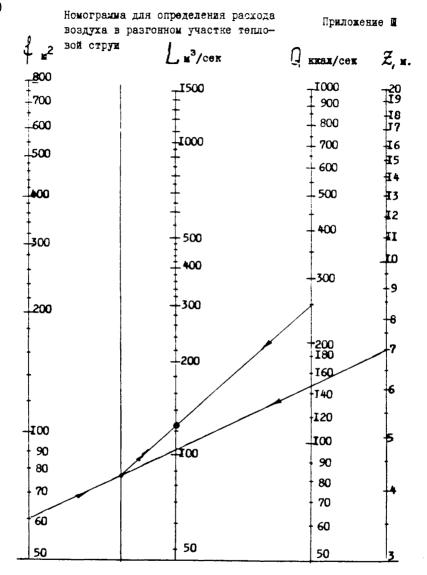
$$F_{9} = \frac{G_{0.9}}{M\sqrt{2}g \cdot y_{H} \cdot \Delta P_{9}} = \frac{32,7}{0,3\sqrt{19,6 \times 1,205 \times 0,17}} = 54,5 \text{ m}^{2};$$


$$F_{10} = \frac{G_{0.9}}{M\sqrt{2}g \cdot y_{H} \cdot \Delta P_{9}} = \frac{73,4}{0,48\sqrt{19,6 \times 1,135 \times 0,17}} = 78,9 \text{ m}^{2}$$

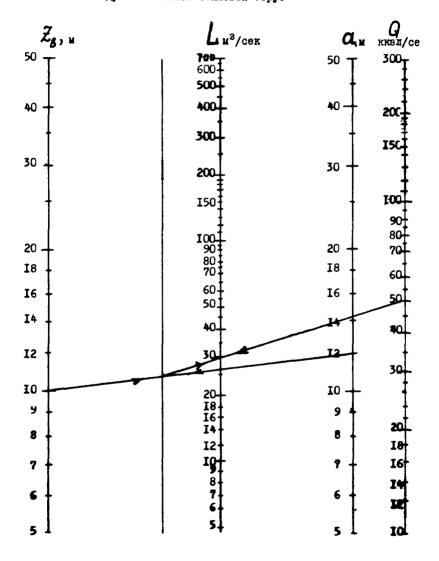
Суммарная площадь проемов в межатажном перекрытии на отм. 24.0 м

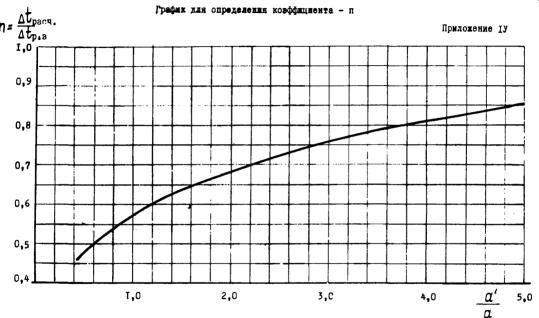
Дополнительная площадь проемов около источников тепла (M = 0.5)


$$F_g = \frac{M_n}{M_g} (£F - F_g) = \frac{0.65}{0.5} (22.I - I6.0) = 7.94 \text{ m}^2$$


No I-I

Номограмма для определения расхода воздуха в основном участке телло-


Приложение П



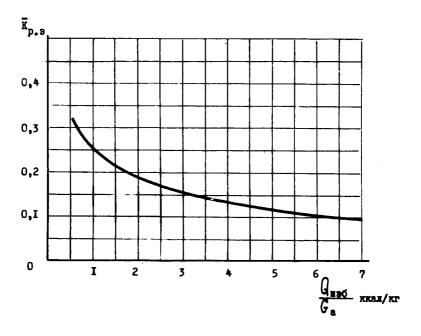
Номограмма для определения расхода воздуха в плоской тепловой струе

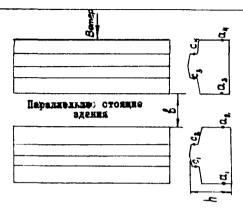
Приложение Ша

Значения коэффициентов местного сопротивдения **ў** приточных проемов, отмесенные к скорости в отверстии.

таблица I.

Конструкция створки	$h/_{\mathcal{B}}$	Значение ў при угле открытил с., отсчитываемом от плоскости стены, град.				
	, ,	15	30	45	60	90
Одинарная верхне- подвесная	0	3 0,8	9,2	5,2	3,5	2,6
118	0,5	20,6	6,9	4,0	3,2	2,6
	I	16	5,7	3,7	3 , I	2,6
Одинарная средне-подресная	0	59	13,6	6,6	3,2	2,7
	0,5	-	-	-	-	-
	I	45,3	II,I	5,2	3,2	2,4
Двойная (обе створ- ки на верхней под- веске)	0	-	-	-	-	-
	0,5	30,8	9,8	5,2	3,5	2,4
	I	14,8	4,9	3,8	3,0	2,4
Аэреплонные ворота		-	_	-	-	2,4


Характеристика аэрационных фонарей и значения козфонциентов местного сопротивления у , отнесенные к скорости в боковых проемах фонаря.

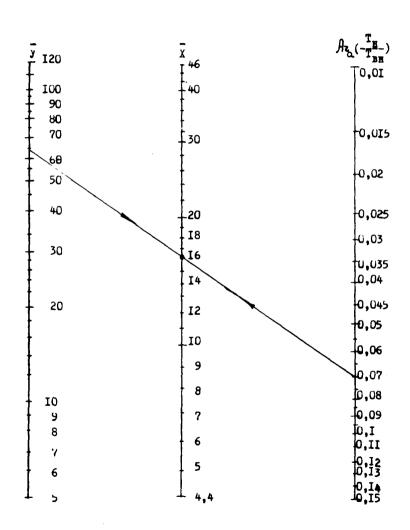

Таблица 2.

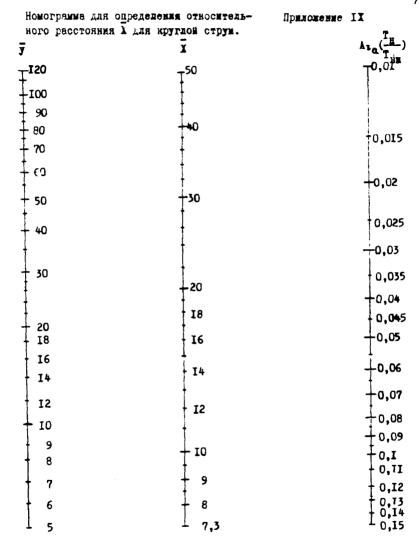
9) 63 + (\$/40	Тип фонаря	A/h	e/h	d°	\$
a) +63 -1 (:/:10	Приточими II — ос разный (без вет-	3,3	- /	35	12,2
30 31	розащитиму пане- лей)			. 70	6
L=1110 4-100 C=28	Вытяжной П-образ ный (с ветрозацит			35	11,5
Аэрационный фонарь незаду	ными панелями)	3,3	1,5	45	9,2
Bacmoro THE				55	7,I
TI 6) (=1:10				70	5,8
Незадуваемый аэрациодия-	To me	3,3	2	35 45	9,4 6.8
			_	55	5,1
	Вытяжной П-образ ный (без ветро- защитных панелей	L		35	8,9
световой П-образный фо-		3,3	-	45	5,9
naho				55	3,8
	Вытяжной КТИС	4	I,I	40	4.3

Трафик для определения относительной концентрации газа в рабочей воне

Приложение УІ

			npanomenae v n					
	Приточные проемы				Фонарь			
8/h	α,	a_{2}	a_{s}	α,	c,	$c_{\mathbf{z}}$	C_3	C ₄
2	-0,37	-0,67	7 -0.6	7 +0,6	7=0,43	-0,65	-0,7	-0,67
3	-0,36				-0,4I		-0,7	-0,6
4	-0,3	-0,4	-0,5I	+0,75	-0,36	-0,41	-0,5	-0,5
5	-0,27	-0,27		1	-0,34	1	-0,4	5 -0,4


Примечание. На зданиях фонари незадуваемого типа.


HDWHOWAUMA VII

Номограмма для определения относительного расстояния X для плоской струк

Приложение Уп

содержание

I.	Общие положения	3
п.	Расчет вэрации в теплый период года с учетом теплового давления	8
ш.	Поверочный расчет аэрации при совместном действии теплового и ветрового давлений I	4
IY.	Расчет вэрации в холодный период года с уче- том теплового давления	6
У.	Приближенный расчет вэрвции помещений с меха- нической вытяжкой в холодный период года (без механического притока)	I
YI.	Поверочный расчет аэрации при совместном действии теплового и ветрового давлений для колодного периода вода	22
у П.	Примеры расчета вэрации	3
	Приложения	8

Редактор В.И.Павов Технический редактор А.В.Ункова

I-4689I води. к печати I.IO.70 твр. 5000

П

Ротавринт

виниют висис Зак. 69