ТИПОВОЙ ПРОЕКТ 904—I—95.92

Компрессорная станция для пневматической очистки стрелок производительностью

10 куб.м воздуха в минуту

Альбом I
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ТИПОВОЙ ПРОЕКТ 904-T-95,92

Компрессорная станция для пневматической очистки стрелок производительностью IO куб.м воздуха в минуту

Альбом І

Пояснительная записка

Разработан проектным институтом "Гипропромтрансстрой" Утвержден и введен в действие "Гипропромтрансстроем" Приказ от 07.10.92г. № 74

Главный инженер института *Н. Ми* Главный инженер проекта *Т*

Н.А.Пискунов Л.И.Блувштейн

2

СОДЕРЖАНИЕ АЛЬБОМА

		cTp.
I.	Общая часть	3
2.	Технологические решения	4
3.	Архитектурно-строительные решения	6
4.	Отопление и вентилящия	10
5.	Электротехническая часть	11
6.	Автоматизация	15
7.	Связь и сигнализация	18
8.	Противопожарные мероприятия	20
9.	Охрана труда и производственная санитария	21
IO	Основные положения по организации строительства	2,3
ΙΙ	.Технико-экономические данные и показатели	2830

I. ОБШАЯ ЧАСТЬ

Рабочий проект "Компрессорной станции для пневматической очистки стрелок производительностью IO куб,м воздуха в минуту" разработан по плану типового проектирования на 1991 г. (тема ТФ 7.4.IO) в соответствии с заданием утвержденным Министерством путей сообщения I8 июня 1991 года.

Компрессорная станция с компрессорами воздушного охлаждения 4ВУІ-5/9М2 предназначена для снабжения сжатым воздухом устройств пневматической очистки стрелок на станциях и других объектов железнодорожного транспорта.

Типовой проект разработан для следующих условий строительства:

- расчетная земняя температура наружного воздуха минус 30° С (основное решение), минус 20° С и минус 40° С:
 - вес снегового покрова для III района 0,98 кПа. (IOO кг/м2);
 - скоростной напор ветра для I географического района (тип местности Б).

Степень огнестойкости здания - П.

Класс ответственности здания - П.

Строительство здания в районах с сейсмичностью более 6 баллов, на территориях с подработкой горными разработками и в районах вечной мерзлоты не предусматривается...

Здание оборудуется центральным (основное решение) или электрическим отоплением, вентиляцией, электроснабжением, телефоном, радио и пожарной сигнализацией.

2. ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ

Компрессорная станция запроектирована в соответствии с "Правилами устройства и безопасной эксплуатации компрессорных установок, воздуховодов и газопроводов", утвержденными Госгортехнадзором СССР 7.12.1991г. и согласованными с ВЦСПС 22.11.1971г.

2.1. Устройство компрессорной станции.

Для компрессорной станции производительностью IO куб.м. воздуха в минуту к установке приняты 2 компрессорных агрегата марки 4ВУІ-5/9М2, производительностью 0,0845 м3/с (5 м3/мин.), давлением 0,9 мПа (9 кгс/см2) с воздушным охлаждением, изготавливаемые Мелитопольским компрессорным заводом.

Компрессорная установка 4ВУІ-5/9М2 состоит из У-образного, четирехцилиндрового, двухступенчатого компрессора простого действия, газопроводов и электродвигателя, смонтированных на раме. На компрессоре установлен промежуточный холодильник радиаторного типа, с вертикально установленными стальными гладкими трубами. Холодильник охлаждается воздухом, подаваемым вентилятором.

Забор воздуха осуществляется снаружи здания компрессорной. Для очистки всасываемого компрессорами воздуха от механических примесей у каждого компрессора установлены фильтры, имеющие I ячейку типа ФЯР, с фильтрующей поверхностью 0,22 м2.

Для аккумуляции воздуха, обеспечения постоянного давления в сети, а также для улавливания води и масла из сжатого воздуха, нагнетаемого компрессорами и в целях выравнивания пульсации давления сжатого воздуха устанавливаются воздухосборники емкостью 3,2 м2, по одному для каждого компрессора.

Обслуживание воздухосборников и фильтров производится с площад- κu .

Для монтажа, ремонта и демонтажа оборудования компрессорной станции в машинном зале предусматривается установка ручного однобалочного крана, грузоподъемностью 2 т.

Работа компрессорной станции автоматизирована. Автоматизация работы компрессорной станции осуществляется установкой в машинном зале комплекта контрольно-измерительных приборов, средств автоматизации, приборов местного контроля и аварийной защиты (см.раздел "Автоматизация технологических процессов". Ам. Г Для продувки воздухосоорников, компрессоров и промежуточных колодильников, отстоя масла из водомасляной эмульсии, слива отстоявшегося масла, проектом предусмотрен продувочный бак, устанавливеемый в специальном колодце рядом со зданием компрессорной. Масло из продувочного бака отбирается через краны и отправляется на регенерацию. Шлам и водные остатки собираются в переносную емкость и транспортируются для сброса в специально отведенные места, согласованные с местными санитарными органами.

Для предотвращения замерзания влаги нижняя часть воздухосоорника, трубопровод воздухосоорника, находящийся на открытом воздухе, покрываются теплоизоляцией.

2.2. Эксплуатация компрессорной станции.

При загрязнении фильтров и повышении их сопротивления до 500 На (50 млн.вод.ст.) ячейки должны быть промыты (содовым раствором и горячей водой) и просущени. Чистые ячейки, заправленные висциновым или веретенным маслом, устанавливаются в корпус фильтра. Очистка фильтров и пропитка их маслом производится в вагонном, локомотивном депо или в мастерских.

Продувка воздухосоорников, компрессоров и промежуточных холодильников производится периодически.

Продувка воздухосоорников производится вручную с помощью вентилей, установленных в машинном зале, не менее двух раз в смену.

При вводе в эксплуатацию компрессорной станции для проверки надежности устройств автоматики необходимо установить испытательный срок, в течение которого присутствие наладчиков во время работы компрессорной обязательно.

2.3. Режим работы и штаты.

В период снегопадов компрессорная станция работает круглосуточно. Для обслуживания компрессорной станции в каждой смене работает машинист-компрессорщик, который осуществляет профилактический ремонт и ведет работы компрессорной станции. Штат компрессорной станции составляет 4 человека (группа производственных процессов Ів). Бытовое обслуживание машинистов — компрессорщиков осуществляется в бытовых помещениях службы пути.

3. АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЕ РЕШЕНИЯ

3.1. Условия строительства.

Типовой проект разработан для следующих условий строитель-

- для производства работ при плюсовых температурах;
- расчетная зимняя температура наружного воздуха -20° C; -30° C. -40° C:
- вес снегового покрова для III района 0,98 кПа (IOO кг/м2);
- скоростной напор ветра для I географического района (тип местности Б) 0,264 кПа (27 кг/м2);
- рельеф территории спокойный;
- грунтовые воды на площадке отсутствуют;
- Грунты непучинистые, непросадочные со следующими нормативными характеристиками: γ =0,49 рад. (28), c^H =2 кПа (0,02 кг/см2), E=I4,7 МПа (I50 кг/см2), ρ =I,8 т/м3, Kr=I.

Здание не рассчитано на строительство в районах с сейсмичностью более 6 баллов, на территориях с подработкой горными разработками и в районах вечной мерзлоти.

3.2. Архитектурно-строительные решения

Архитектурно-строительная часть компрессорной станции разработана в соответствии с технологической частью проекта и действующими строительными нормами и правилами проектирования.

Здание компрессорной станции — одноэтажное с несущими кирпичными стенами размером в осях 7,5х6 м. К зданию примыкает открытая площадка для размещения воздухосоорников. Высота помещений до низа плит покрытия — 3,6 м.

Фундаменты под стены предусмотрены ленточные из бетонных камней по ГОСТ I3579-78 и фундаментных плит ГОСТ I3580-85.

Наружные и внутренние стены и перегородки приняты из керами-ческого кирпича плотностью 1600 кг/м3 на растворе марки 50.

Покрытие — из сборных железобетонных многопустотных панелей перекрытий по серии I.141—I вып.63.

Кровля — малоуклонная, рулонная, из 4-х слоев рубероида на битумной мастике с защитным слоем из мелкозернистого гравия, втоплен-

ного в мастику, с неорганизованным водостоком, Утеплитель покрытия - плитный пенобетон плотностью 400 кг/м3.

Толщина утеплителя и наружных стен для различных температур наружного воздуха приведена в таблице на листе AP-3.

Условно за отметку 0.000 принята отметка чистого пола машин-

Планировочная отметка земли вокруг здания принята - 0,150. Степень огнестойкости здания - П.

Класс ответственности здания - П.

Помещение машинного зала оборудовано подвесным ручным краном грузопольемностью Q=2 т.

Ограждение площадки под воздухосборники решено по серии 3.017-I высотой 1,2 м из металлических сетчатых панелей по ж.б. столбам. Калитка ограды - сетчатая, распашная.

Полы - приняты в соответствии со СНиП 2.03.13-88 в зависимости от их назначения. Типы полов приведены в таблице на листе AP-2.

Двери - деревянные наружные по ГОСТ 24698-8I, внутренние по ГОСТ 6629-88.

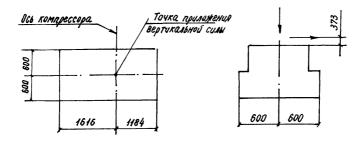
Окна - деревянные с двойным остеклением по серии I.236.5-I2 вып.I.

Внутренняя отделка — ведомость отделки помещений приведена в таблице на листе AP-I. Наружные и внутренние двери окрашиваются масляной краской в светлые тона. Внутренние поверхности переплетов и подоконники окрашиваются масляной краской белого цвета.

Наружная отделка — кладка наружных стен выполняется из керамического пустотелого кирпича с расшивкой швов. Цоколь штукату— рится цементно-песчаным раствором и окрашивается силикатными красками темных тонов. Архитектурное решение фасадов и наружная отделка должны уточняться при привязке проекта с учетом характера окружающей застройки.

Указания по защите строительных конструкций от коррозии приведены на листе КМ-3.

3.3. Фундаменты под компрессор 4ВУІ-5/9М2.


Рабочие чертежи фундаментов под компрессор разработаны в соответствии с требованиями глав СНиП 2.02.05-87, СНиП 2.03.01-84, СНиП 2.02.01-83.

В качестве основания фундамента приняты грунты с модулем деформации Е=15.0 МПа.

Расчет фундамента под компрессор выполнен в соответствии с указаниями главы СНиП 2.02.05-87 на суммарное действие сил в вертикальной и горизонтальной плоскостях. При этом приняты следующие величины статических и динамических нагрузок:

- a) macca kommpeccopa I.5 T:
- б) максимальное значение вертикальной неуравновешенной силы инерции П порядка — 1080 кг;
- в) максимальное значение горизонтальной неуравновешенной силы инерции П порядка 360 кг.
 - г) частота вращения коленчатого вала 735 об/мин.

Координаты приложения неуравновешенных сил инерции приведены на схеме

Горизонтальная сила направлена вдоль оси компрессора. Неуравновешенные силы инерции приложены на отм.0,623 м.

Под подошвой фундамента предусмотрена бетонная подготовка из бетона класса ${\rm B3,5}$ толщиной ${\rm IOO}$ мм.

Защитный слой бетона для арматурных сеток принят 35 мм по подошве фундамента и 25 мм по верхней грани фундамента.

3.4. Рекомендации по организации строительно-монтажных работ.

Конструкции здания и изделия приняты в соответствии с заданием на проектирование.

Строительство рекомендуется осуществлять в два периода: нулевой и основной.

<u>Ц00011-01</u> 9

В нулевой период входят: земляные работы, возведение фундаментов, прокладка подземных коммуникаций, каналов, полготовка под полы.

Работы по возведению фундаментов под компрессоры выполнять согласно требованиям СНиП 3.02.01-87. СНиП 3.03.01-87.

Бетонирование фундамента под компрессор производить без пере-Защиту поверхностей фундамента от воздействия агрессивных сред выполнить в соответствии с указаниями на листе КМ-3. Основание фундамента под компрессор должно быть принято техническим контролем с оформлением акта освидетельствования скрытых работ.

В основной период входят: кладка стен. перегородок. монтаж покрытия, устройство кровли, полов, отделочные работы.

Получение раствора предусматривается в зависимости от местных условий - от централизованной установки или местного растворного узла, размещаемого непосредственно на строительстве объекта.

Строительно-монтажные работы выполнять в соответствии с требованиями СНиП Ш-4-80.

4. ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ

4. І. Исходные данные

- 4.І.І. Проект разработан на основании технологического задания и архитектурно-строительных чертежей с учетом действующих норм и правил: СНиП 2.04.05-91; СН 245-71; ГОСТ 12.1.005-88.
 - 4.1.2. Расчетные параметры наружного воздуха приняты:
- а) для проектирования отопления и вентиляции -20° , -30° , -40° С:
- б) для проектирования вентиляции в летнее время 25° ; 22° ; 21° С:
- в) средняя температура за отопительный период -0.7° ; -6.2° ; -10.2° С;
- r) продолжительность отопительного периода 187, 232, 246 суток.
- 4.1.3. Источником теплоснабжения являются внешние тепловые сети.

Теплоносителем служит перегретая вода I50-70°C.

4.2. Основные решения по отоплению и вентиляции.

Отопление осуществляется по биффилярной схеме и обеспечивает: в машинном зале температуру воздуха $\pm 5^{\circ}$ С, в помещении машиниста $\pm 18^{\circ}$. Догрев машинного зала до расчетных параметров осуществляется за счет тепловыделений. В качестве нагревательных приборов приняты конвекторы типа "Аккорд".

Воздухообмен в машинном зале определен из условия борьбы с теплоизбытками по периодам года. Подача воздуха — с помощью установки ПІ, оборудованной клапанами наружного воздуха и рециркуляционным, позволяющими регулировать количество наружного воздуха. В теплое время года приточный воздух поступает через открывающиеся окна.

Вытяжка осуществляется в летнее и переходное время установкой ВІ, оборудованной крышным вентилятором. Регулирование количества удаляемого воздуха осуществляется с помощью заслонок с электроприводом. В зимнее время воздух удаляется через шахту установки ВІ при неработающем вентиляторе.

Трубопроводы системы отопления выполняются из труб стальных электросварных по ГОСТ IO704-76 и для гнутых участков — из труб водогазопроводных легких по ГОСТ 3262-75.

Трубопроводы и нагревательные приборы окрашиваются краской BT-177 в 2 слоя по грунтовке $P\Phi-02I$.

5. ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ

5. І. Исходные данные.

В состав проекта входят чертежи по силовому электрооборудованию и электроосвещению компрессорной станции.

Проект разработан для двух вариантов отопления здания компрессорной: центрального и электрического.

Вариант с электрическим отоплением может применяться при технико-экономическом обосновании и согласовании с электроснабжающей организацией.

Исходными данными для разработки проекта служили:

- чертежи по технологической, архитектурно-строительной и санитарно-технической части проекта;
- техническое описание и инструкция по эксплуатации K5A.00.00.000TO kommpeccopa 4BVI-5/9M2.

5.2. Электроснабжение.

По надежности электроснабжения электроприемники компрессорной станции при использовании ее для пневматической очистки стрелок относятся, согласно ВНТП/МПС-84 "Ведомственные нормы технологического проектирования. Электроснабжение устройств сигнализации, централизации, блокировки и электросвязи". Приложение 2 - к 2 ка-Teropun.

При использовании компрессорной для воздухоснабжения других объектов надежность электроснабжения должна приниматься в соответствии с требованиями технологического процесса.

т.п. 904-1-95.92 **42 Ав.** I Показатели электроустановки компрессорной станции приведени в таблице.

Наименование	Един. изм.	Количество	ант		
	XI 21A1 •	с цент- ральным отопле- нием	с электрическим отоплением при t н		
			-20°	-30°	-4 0°C
Установленная мощ- ность	кВт	76,4	80,4	82,4	82,4
В том числе:					
силовое электрообору- дование	11	74,8	78,8	80,8	80,8
электроосвещение	11	I , 6	I,6	I,6	I,6
Расчетная мощность	11	68	71,0	72,5	72,5
В том числе:					
силовое электрообору- дование		66,6	69,6	7I , I	71,1
Электроосвещение		I,4	I,4	I,4	I,4

Электроснабжение компрессорной принято двумя взаиморезервируемыми вводами от независимых источников электроэнергии напряжением 380/220 В.

Вводы выполняются к ящикам с рубильниками и предохранителями и через рубильник-переключатель на распределительный пункт от которого осуществляется распределение электроэнергии к электроприемни-кам.

На вводе предусмотрены приборы учета электроэнергии.

Марка, сечение и длина питающих кабелей определяются при привязке проекта.

13

5.3. Силовое электрооборудование.

Силовыми электроприемниками являются электродвигатели компрессоров, сантехнических вентиляторов,и, при варианте с электроотоплением, электрические печи.

Мощность наибольшего асинхронного электродвигателя составляет $37~\mathrm{kBT}$.

Напряжение силовых электроприемников:

электродвигателей - 380 В.

электрических печей - 220 В.

Питание электроприемников осуществляется от распределительного пункта IIIPII.

Компрессоры поставляются комплектно с пусковой аппаратурой.

Для электродвигателей вентиляторов в качестве пусковой аппаратуры приняты:

для вытяжного - пускатель магнитный ПМЛ,

для приточного - ящик управления Я5100.

Управление электроотоплением предусмотрено в двух режимах: ручном и автоматическом. Аппаратура управления электропечами размещена в навесном шкафу.

Распределительная сеть запроектирована кабелем ABBT и проводом AIB в полиэтиленовых трубах, прокладываемых в подготовке пола.

5.4. Электроосвещение.

Электроосвещение машинного зала и кабины машиниста запроекти-ровано светильниками с люминесцентными лампами.

Освещенность помещений принята согласно СНиП П-479 и РД 32.15-91.

Проектом принята система общего рабочего освещения.

Для периодического осмотра и ремонта оборудования запроектировано переносное освещение.

Напряжение сети освещения:

рабочего - 220В;

переносного - 36В.

Групповая сеть запроектирована кабелем АВВГ, прокладываемым по строительным конструкциям.

Обслуживание светильников предусматривается с лестницы стремянки.

5.5. Зануление.

для обеспечения безопасности персонала все металлические нетоковедущие части электрооборудования зануляются путем присоединения к нулевому защитному проводнику распределительной сети или рабочему нулевому проводу сети электроосвещения.

Для связи с нулевой точкой источников электроэнергии используются нулевие жилы питающих кабелей.

В состав проекта входят чертежи по автоматизации технологических процессов компрессорной и по автоматизации сантехсистем.

6. І. Автоматизация технологических процессов

Исходными данными для разработки проекта служили:

- чертежи по архитектурно-строительной и технологической частям проекта:
- техническое описание и инструкция по эксплуатации компресcopa.

6.І.І. Основные решения

Автоматизация компрессорных агрегатов 4ВУІ-5/9М2 принята в объеме поставки завода-изготовителя.

Все операции по управлению, контролю, защите и сигнализации компрессора осуществляются аппаратурой, размещенной на щите управления и сигнализации (ШУС) и щите приборов.

Сигналы, поступающие со щита приборов в шкаф управления обрабатываются его логической частью и. в зависимости от состояния, определяют режим работы компрессора.

Описание работы схемы автоматизации дано в "Техническом описании и инструкции по эксплуатации К5А.00.000 ТО,

6.1.2. Управление компрессорным агрегатом

Предусмотрены два режима управления компрессорным агрегатом: ручной и автоматический.

В ручном режиме пуск, остановка и продувка компрессора при длительной работе осуществляется кнопками со щита ШУС.

В автоматическом режиме система автоматики обеспечивает:

- автоматический пуск компрессора при понижении давления воздуха в воздухосоорнике до 0.61-0.64 MIa (6.2-6.5 krc/cm2);
- автоматическую остановку компрессора при повышении давления воздуха в воздухосборнике до 0.8-0.83 MIa (8.2-8.5 krc/cm2);
- аварийную остановку компрессора при срабатывании защит с одновременным включением продувки и разгрузки компрессора:

6.І.З. Регулирование производительности

Системой автоматики предусмотрено два способа регулирования производительности компрессора в зависимости от расхода воздуха:

- остановкой компрессора с одновременным включением продувки и разгрузки компрессора;
 - перепуском с нагнетания II ступени на всасывание I ступени.

6.І.4. Сигнализация

Система автоматики обеспечивает:

- световую сигнализацию о включении электродвигателя компрессора;
- световую и звуковую сигнализацию при аварийной остановке компрессора с указанием вызвавшей ее причини:
 - проверку исправности сигнальных ламп и звонка.
 - 6.І.5. Щиты. Средства автоматизации и приборы

Аппаратура управления компрессорным агрегатом размещаются в шите управления и сигнализации (ШУС), приборы в щите приборов.

Щиты управления и сигнализации (ЩУС) и щиты приборов поставляются комплектно с компрессорами.

Щить управления и сигнализации и щить приборов размещены в машинном зале.

Датчики и внещитовые приборы устанавливаются на компрессорных агрегатах и трубопроводах по указаниям техдокументации на компрессор.

6.1.6. Электрические и трубные проводки. Зануление

Электрические и трубные проводки прокладываются в каналах, по строительным конструкциям и компрессорам.

Металлоконструкции щита управления и сигнализации, щита приборов, корпуса электромагнитных вентилей занулить путем присоединения к магистрали зануления или специальному проводнику зануления.

6.2. Автоматизация сантехсистем

Исходными данными для разработки проекта служили:

- чертежи по архитектурно-строительной и санитарно-технической частям проекта.
 - 6.2.І. Основные решения Автоматизируются:
 - приточная вентсистема III:
 - узел ввода тепловой сети.

As I 6.2.2. Приточная вентсистема Π I

Проектом предусматривается:

- автоматическое регулирование температуры воздуха в помещении путем изменения количества рециркуляционного и наружного воздуха;
 - управлением электродвигателем приточного вентилятора;
- блокировка клапана наружного воздуха с электродвигателем вентилятора.

В качестве регулятора температуры принят микроэлектронный регулятор ТМ-8.

Аппаратура управления смонтирована в навесном малогабаритном шите.

6.2.3. Узел ввода тепловой сети

Проектом предусматривается:

- измерение температуры на вводе из теплосети и обратной;
- измерение давления воды на вводе из теплосети и обратной.

7. СВЯЗЬ И СИГНАЛИЗАЦИЯ

7.1. Исходные данные

Исходиним материалами при разработке проекта послужили задания на архитектурно-строительной и технологической частям проекта.

7.2. Проектируемые устройства

В компрессорной предусматриваются следующие виды связи и сиг-нализации:

- І. Городская телефонная связь:
- 2. Радиофикация:
- 3. Пожарная сигнализация.

7.2.1. Городская телефонная связь

Телефонизация компрессорной предусмотрена от городской АТС с установкой телефонных аппаратов системы АТС типа ТА-72М2АТС. Проводка от телефонной распределительной коробки КРТ IOx2 до аппарата выполняется проводом ТРП2хО, 4 открыто по стенам. Для защиты телефонного аппарата от грозовых разрядов предусмотрена установка защитного устройства типа АЗУ-5.

7.2.2. Радиофикация

Радиофикация компрессорной осуществляется от городской радиотрансляционной сети с установкой в помещениях абонентских громкоговорителей типа "Эфир".

Проводка к громкоговорителям от абонентского трансформатора выполняется проводом марки ПТПЖ открыто по стенам.

7.2.3. Пожарная сигнализация.

Раздел пожарной сигнализации разработан в соответствии с "Перечнем зданий и помещений учреждений подлежащих оборудованию автоматической пожарной сигнализацией" МТС, СНиП 2.04.09—84 и ГОСТ I2.I.004-85 JCET.

Установка и монтаж оборудования пожарной сигнализации выполняется в соответствии с "Правилами производства и приемки работ установки охранной, пожарной и охранно-пожарной сигнализации" ВСН 25.09.68-85 специализированной организацией "Союзспецавтоматика".

В качестве пожарных извещателей используются тепловие типа ИПІО5-2/I и ручной типа ИПР.

19

Абонентская проводка выполняется проводом марки ТРП 2x0,4 открыто по стенам и потолку.

Проводка к ИПР до отм. +1,5 м защищается металлорукавом РЗ-IX.IO.

Луч пожарной сигнализации выводится на пульт централизованного наблюдения типа IIIC-3, установленный на станции.

Извещатели ИП-105-2/1 шунтируются резисторами МЛТ-0,25-11 ком из комплекта ППС-3.

7.3. Защита устройств связи и сигнализации от опасных напряжений и токов

Для защити устройств связи от опасных напряжений и токов в проекте предусмотрено устройство защитного заземления в соответствии с ГОСТом $464-79^{\text{ж}}$. Защитное заземление рассчитано для суглинистого грунта с сопротивлением 80 см.м и состоит из электродов из угловой стали 50x50x5 длиной 2,5 м, соединенных между собой стальной полосой 40x4 длиной 5 м. Количество электродов уточняется при привязке проекта.

7.4. Техника безопасности и охрана труда.

Техника безопасности и охрана труда персонала, работающего с устройствами связи, обеспечивается в соответствии с ГОСТом I2.4.I54-85CCET, ГОСТом I2.2.003-74CCET.

8. ПРОТИВОПОЖАРНЫЕ МЕРОПРИЯТИЯ

Противопожарные мероприятия предусмотрены в соответствии с СНиП 2.01.02-85, СНиП 2.09.02-85, СНиП 2.04.0I-85, "Правил пожарной безопасности на железнодорожном транспорте" ЦУО/3725-73.

Технологический процесс в компрессорной относится к категории "Д".

Несущие и ограждающие конструкции относятся к П степени огнестойкости. Здание компрессорной оборудуется системой автоматической пожарной сигнализации. Оснащение компрессорной первичными средствами пожаротушения в соответствии с "Нормами оснащения объектов и подвижного состава ж.д. транспорта первичными средствами пожаротушения № ЦУО-4607 от 22.06.88г.

В соответствии с СНиП 2.04.0I-85 п.6.5а и СНиП 2.04.02-84 п.2.II, примечание 2, внутренний противопожарный водопровод и наружные сети пожаротушения не предусматриваются.

9. ОХРАНА ТРУЦА И ПРОИЗВОЛСТВЕННАЯ САНИТАРИЯ

Проектом предусмотрены следующие мероприятия по охране труда и производственной санитарии.

- 9. Г. Расстановка оборудования в машинном зале запроектирована с учетом создания безопасных условий монтажа, обслуживания и ремонта компрессорных агрегатов.
- 9.2. Каналы и приямки в машинном зале перекрыты плитами из рифленной стали.
- 9.3. Не допускается работа компрессоров при давлении свыше 0,902 МПа (9,2 кгс/см2) для чего машины и аппараты оснащены контрольно-измерительными приборами и предохранительными устройствами.
- 9.4. Все аппараты, работающие под абсолютным давлением свыше 0.167 MTa (1.7 кгс/см2) перед пуском в работу, а так же периодически, через установленные сроки, должны быть освидетельствованы органами Госгортехнадзора.
- 9.5. Для монтажа, демонтажа и ремонта компрессоров в машинном зале установлен подвеской кран грузоподъемностью 2 тс.
- 9.6. Все металлические нетоковедущие части электрооборудования зануляются путем присоединения к магистрали зануления или нулевому проводу.
- 9.7. Освещенность помещений принята согласно СНиП II-4-79 и РДЗ915-91.
 - 9.8. Уменьшение шума.
- 9.8.І. Уменьшение шума, возникающего при пуске, работе и продувке компрессора обеспечивается:
- установкой на всасывающем трубопроводе щумопоглощающего устройства:
- выпуском воздуха из продувочной магистрали в продувочный бак, а из него через шумопоглощающий выхлопной трубопровод в атмосферу:
- теплоизоляцией всасывающих, нагнетательных и продувочных трубопроводов (теплоизоляция служит и звукоизоляцией).

После выполнения указанных мероприятий уровень звукового давления будет на 1216 ниже нормативных величин, указанных в FOCT 12.1.003-83.

- 9.8.2. Для повышения звукоизолирующей способности ограждающих конструкций здания следует выполнить:
 - тщательную под гонку дверного полотна и оконных переплетов к коробкам;
 - установить прокладки из пористой резины в притворах открывающихся переплетов.
 - 9.8.3. Для постоянного пребывания машиниста компрессорщика запроектировано отдельное звукоизолированное помещение.
 - 9.8.4. При осмотре работающего оборудования и мелком его ремонте следует пользоваться индивидуальными средствами защити (наушники, ушные заглушки и др.).

ІО. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ОРГАНИЗАЦИИ СТРОИТЕЛЬСТВА

Основные положения по организации строительства разработаны в соответствии со СНиП 3.01.01-85* "Организация строительного производства" и СНиП Ш-4-80 "Техника безопасности в строительстве.

До начала производства основных работ должна быть выполнена планировка стройплощадки.

Разработка грунта в котловане под фундаменти производится экскаватором 30-3322Б. Грунт для обратной засыпки складируется на территории стройплощадки. Перемещение грунта для обратной засыпки производится бульдовером ДЗ-42. Обратная засыпка производится вручную. Уплотнение грунта при обратной засыпке производится пневмотрамбовками.

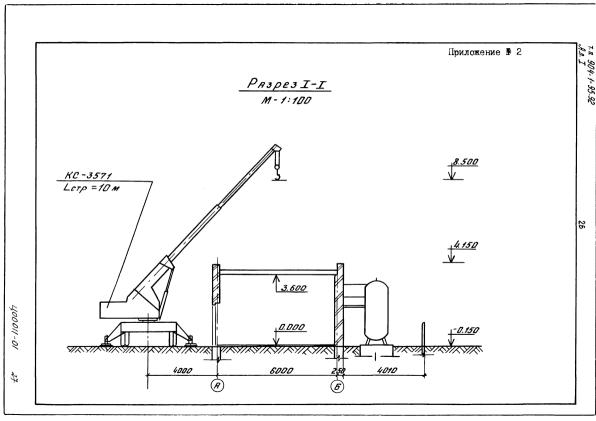
При строительстве здания компрессорной монтаж плит покрытия. подача кирпича и раствора, подача материалов на кровлю производится автомобильным краном КС-357I грузоподъемностью IO т и длиной стрелы IOм.

Конструкции, изделия и материалы доставляются на стройплощадку автотранспортом, разгружаются монтажным краном и складируются в зоне действия крана. Кладка стен из кирпича ведется с подмостей. При производстве строительно-монтажных работ строго соблюдать требования СНиП 3.03.01-87 "Несущие и ограждающие конструкции.

Продолжительность строительства компрессорной определена календарным графиком производства работ и составляет 40 дней./см.прил 3/ При производстве строительно-монтажных работ следует строго соблюдать требования СНиП 111-4-80 Техника безопасности в строительстве". "Правила устройства и безопасной эксплуатации грузоподъемных кранов", ведомственных инструкций по технике безопасности, "Правил технической эксплуатации электроустановок потребителей", "Правил техники безопасности при эксплуатации электроустановок потребителей".

Строительно-монтажние работи на площадке необходимо вести в строгом соответствии с "Правилами пожарной безопасности при производстве строительно-монтажных работ.

Схема монтажа конструкций приведена в приложении №2,схема стройгенплана-в приложении №1.


 \mathcal{F} л. 904-1-95.92 24 \mathcal{A} л. 1 Перечень основных машин и механизмов

MM III	Наименование	Марка	Кол-во	
Ī	2	3	4	~~
I	Экскаватор	эо-3322Б	I	
2	Бульдозер	Д3-42	I	
3	Автомобильный кран	KC-357I	I	
4	Пневмотрамбовка	TP-I	2	
5	Сварочный агрегат	АДБ-ЗІІ	I	

Ведомость рекомендуемой оснастки и инвентаря

NeNe IIII	Наименование	марка	Кол-во в шт.	Приме- чание
I	2	3	4	5
I	Строп грузовой канатный 4-х ветвевой	4CK-5,0	I	СКБ "Мос- строй"
2	Строп канатный кольцевой	УСК-2-2,5	2	СКБ "Мос- строй"
3	Ящик для раствора	_	3	-
4	Панельные подмости	ПП6АТ	2	СКБ "Мос- строй"

Приложение №I Плян M 1:100 7500 0007 KC-3571 Letp = 10 M I

								Прил	ожение № 3	
	<u> Календарный і</u>	PAG	אעמ	np	בעם	водствя	<i>ุกค</i> ชิอกา			
NN	Наименование	Edu-	Объем	0C76 4.	200		Mec.	ब्रयुक्त/		
		4A	ря-	P. A.	KOZ X				2	
חאח	рябот	usme. Pe-		ourd or g	2004	1	Декадь 2	3	4	5
1	Земляные ряботы	M ³	73	1	1	0.5 0.5	E		7	
2	Фундяменты		37	38	8	8				
3	Стены	-	42.7	34	11	-	11			
4	Стальные конструкции		1,04	7	2		ŀ	<u>2</u>		
5	Покрытие	m ²	44,6	10	4			4		
6	Кровля	m ²	58,4	7	3			3		
7	Полы	M2	62.5	5	2			2		
8	RPOEMBI	M2	10,58	6	2			•	 	
9	Монтаж технологического аборудован.	т.руб	1,81	96	10			-	10	
10	Сянтехнические ряботы	1. pys	7,7	13	4			4	+ ,	
11	Электрамонтяжные ряботы	т.руб	2,16	35	4					
12	Сляботочные устройствя	7.руб	0.14	11	2				ا ج	
13	Внутренняя атделка	M2	20,78	7	2				ا ح	
14	Прочие ряботы	-	-	2	1					

II. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ДАННЫЕ И ПОКАЗАТЕЛИ

№ п/п	Наименование показателя	Един. измер.	Значение по	показателей
			проекту	проекту аналогу (т.п.904-I- 54.83)
I	2	3	4	5
I	Проектная мощность (про- изводительность)	м3/мин	IO	10
2	Годовой объем товарной продукции:			
	в натуральном выражении	мЗ	600000	600000
	в оптовых ценах	тыс.руб.	382I	382I
3	Производительность труда на одного работающего	тыс.руб.	0,96	0,96
4	Затратн производства на I руб. товарной продук- ции	коп.	8 8	89
5	Прибыль на I руб. товар- ной продукции	коп.	12,3	10,96
6	Қоәффициент загрузки оборудования		0,7	0,7
7	Уровень автоматизации производства	%	85	85
8	Численность работающих	человек	4	4
	В т.ч. рабочих	11	4	4
9	Уровень рентабельности	%	14	I2,3
IO	Срок окупаемости капитало— вложений	год	7 , I	8,I
II	Приведенные затраты на единицу продукции	pyd.	I,85	I , 86

29

Ī	2	3	4	5
I2	Общая площадь	м2	42	40,4
I3	Строительный объем	мЗ	212,3	212
14	Сметная стоимость стро- ительства	тнс.руб.	30,96	31,12
	на расч.единицу	руб.	3096	3IIS
	В том чи с ле СМР На I м2 общей площади	тыс,руб. руб.	I8.I6 432,38	19,10 472,8
I5	Сметная стоимость строи- тельства с учетом условной привязки	тыс.руб.	37,2	37,3
	на расчетную единицу	pyó.	3720	3730
16	Удельный вес прогрессив- ных видов СМР	%	32	30
I7	Трудоемкость строитель- ства, нормативная	чөлч	2400	2730
	на расчетную единицу	11	240	273
	на I млн.руб. СМР	**	132158	I42930
18	Расход строительных ма- териалов:			
	Цемент, приведенный к M400	T	I4 , 83	13,52
	на расчетную единицу	T	I,48	I , 35
	на I млн.руб. СМР	T	816,53	708
	Сталь, приведенная к классу А-I и СТЗ	T	I,54	4,7
	на расчетную единицу	T	0,154	0,47
	на I млн.руб. СМР	T	245	84,79

I	2	3	4	5
	Лесоматериалы, приведен-			
	ные к круглому лесу	мЗ	4	3,24
	на расчетную единицу	мЗ	0,4	0,324
	на I млн.руб. СМР	мЗ	220,4	I69
	Годовая потребность:			
	в тепле	ГДж	45,I	46,2
	на расчетную единицу	Дж	4,5I·I0 ⁹	4,62·I0 ⁹
	В электроэнергии	МВ т.ч.	47,6	57,2
	на расчетную единицу	кВт.ч	476000	572000

Примечания:

- I. Проект-аналог типовой проект 904-I-54.83 "Компрессорная станция производительностью IO мЗ воздужа в минуту с компрессорами воздушного охлаждения 4ВУ-5/9м2".
- 2. Сметная стоимость в ценах 1991г.