Министерство нефтяной промышленности ВНИИСПТнефть

РУКОВОДЯЩИЙ ДОНУМЕНТ

м етодика

УСКОРЕННОЙ ОЩЕНКИ СРОКА СЛУЖБИ ПОЛИМЕРНЫХ ПОКРИТИЙ ДЛЯ ЗАЩИТЫ НЕФТЕПРОМЫСЛОВОГО ОБОСУЧОВЬ ОТ КОРРОЗИИ

РД 39-30-1093-84

Министерство нефтяной промышленности ВНИИСПТнефть

YTBEPMJEH

первым заместителем министра В.И.Игревским 20 апреля 1984 г.

РУКОВОДЯЩИЯ ДОКУМЕНТ

МЕТОДИКА УСКОРЕННОЙ ОЦЕНКИ СРОКА СЛУЖЕН
ПОЛИМЕРНЫХ ПОКРЫТИЙ ДЛЯ ЗАЩИТЫ
НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ
ОТ КОРРОЗИИ

РД 39-30-1093-84

"Методика ускоренной оценки срока службы полимерных покрытий для защиты нефтепромыслового оборудования от коррозки" разработана ВНИИСПТнефть и MURX и ГП.

Исполнители: от ВНИИСПТнефть - зам. директора по научной работе к.т.н. Б.И.Толкечев; зав. отделом защиты металлов от коррозии к.т.н. К.Р.Низамов; зав.лаб. Э.А.Низамов; старший научный сотрудник Е.Т.Родмонова; от МИНХ и ГП им. И.М.Губкина - доцент кафедры технологии газонефтиного машиностроения, к.т.н. В.Н.Протасов.

РУКОВОДЯШИЯ ЛОКУМЕНТ

Методика ускоренной оценки срока службы полимерных покрытий для защиты нефтепромыслового оборудования от коррозии

PJ 39-30-1093-84

Вводится впервые

Приказом Министерства нефтиной							
промы	пленност	TO N	05.07.84	_ *	412		
срок	введения	уста	новлен с О	1.02	.84		
срок ;	действия	до	01.02.89)			

Методика рекомендуется научно-исследовательским и производственным организациям Миннефтепрома, занимающимся вопросами коррозии и защиты оборудования в сточных водах промыслов.

Руководящий документ содержит сведения о методах ускоренной сравнительной оценки противокоррозионных свойств и определения ориентировочного срока службы систем покрытий на сснове различных лакокрасочных материалов.

Использование данной методики позволяет разработать рекомендации по конкретному применению систем покрытий для защиты оборудования и коммуникаций в системе поддержания пластового давления.

HANHERMORE DOMESHAR

I.I. Срок службы покрытий оценивается интервалом времени, в течение которого они выполняют свои функции при воздействии факторов внешней среды. Основной функцией покрытий, применленых для защиты оборудования от воздействия сточных вод, является предотвращение или торможение коррозионного процесса на воверхности металла под покрытием.

- І.2. Для оценки срока службы покрытий необходимо определить время, в течение которого противокоррозионные свойства покрытий достигают предельных значений при воздействии агрессивных сред.
- 1.3. При определении противокоррозионных свойств покрытий пользуются прямыми и косвенными методами.

При прямых методах оценки определяются непосредственно коррозионные потери массы металла под покрытием. При косвенных методах определяется комплекс свойств покрытия, характеризующих его способность тормозить коррозионный процесс. К указанным свойствам прежде всего относятся его проницаемость по отношению к агрессивной среде, адгезия к металлу.

І.4. Для каждого из этих свойств существуют определенные показатели.

Показателем пронишаемости покрытий по отношению к эксплуатационной среде является величина омического сопротивления покрытия.

Показателем адгезии является адгезионная прочность, определяемая различными методами (метод отслаивания, решетчатого надреза и др.). За показатель подпленочной коррозии принята удельная потеря массы металла под покрытием.

1.5. Для каждого из перечисленных показателей существует предельное значение, выход за которое характеризует низкие противокоррозионные свойства покрытия. Омическое сопротивление покрытия после испытаний должно быть не менее 10^3 Ом: адгезионная прочность при отслаивании не менее 60 H/m; допустимая скорость подпленочной коррозии не должна быть более $(0.05 - 0.1).10^{-4} \text{r/cm}^2 \text{u}$, что соответствует 5 баллу коррозионной стойкости металлов по ГОСТ 13819-68.

I.6. Коррозионные испытания систем покрытий проводятся в соответствии с планом испытаний (ПИ) (приложение I). Результаты испытаний записываются в протокол (приложение 2). Режимы ускоренных коррозионных испытаний выбираются в соответствии с ГОСТ 9.083-78.

2. TPEBOBAHNE SEBODACHOCTN

- 2.1. При проведении окрасочных работ необходимо соблюдать меры предосторожности, изложенные в следующем документе: ГОСТ 12.3.005-75, "Правила и нормы техники безопасности, пожарной безопасности и промышленной санитарии для окрасочных цехов". М.. Изд-во "Машиностроение", 1977.
- 2.2. Большинство лакокрасочных материалов являются пожароопасными и токсичными. Токсичность лакокрасочных материалов
 определяется свойствеми входящих в их состав компонентов. Токсичностью обладает окрасочная аэрозоль, образующаяся при нанесении покрытий. При испытании покрытий могут выделяться остатки растворителей и мсномеры. Содержание растворителей и мономеров не должно превышать величин предельно допустимых концентралий, установленных СН 245-7I и дополнениями к ним, издаваемыми Министерством здравоохранения СССР. Предельно-допустивые
 концентрации токсичных веществ в воздухе приведены в табя. I.
- 2.3. Содержание производственных помещений, в которых расположена испытательная аппаратура, и рабочих мест должно соответствовать общим требованиям "Инструкции по санитарному содержанию помещений и оборудования производственных предприятий". утвержденной Главным санитарно-эпидемиологическим управлением Министерства эдраноохранения СССР от 31 декабря 1966 года. В 658-66, и "Санитарным правилам организации технологических

процессов и гигиенических требований и производственному оборудованию и 1042-73, утвержденным Министерством здравоохранения СССР.

Таблица I Предельно допустимые концентрации токсичных веществ в воздухе ¹⁰

Наименование	ПДК в мг/м ³
Ацетон	200
Уайт-спирит	300
Ксилол	50
Толуол	50
Сольвент	100
Бутиловый спирт	200
Бутилацетат	200
вакосоккоиките	200
Гексаметилендиамин	I
Диэтилентриамин	2

ж) Санитарные нормы проектирования промышленных предприятий — - CH240~71.

2.4. Помещения, где проводятся работы с лакокрасочными материалами, должны быть обеспечены противопожарными средствами и общеобменной приточно-вытяжной вентиляцией.

Приток воздуха в рабочую зону- в соответствии с СН-245-71.

2.5. Все работы по подготовке поверхности, окраске образнов, обработке поверхности металла после испытаний должны проводиться в шкафах с вытяжной вентиляцией.

3. ПОДГОТОВКА ОБРАЗЦОВ К ИСПЫТАНИЯМ И ОЦЕНКА ИХ КАЧЕСТВА

Образны для испытания

- 3.1. Образны для испытаний представляют собой стальную фольгу размером 90х120х(0,025+0,08) мм, на которую нанесена исследуемая система покрытий.
- 3.2. Подготовка партии образиов и коррозионным испетаниям производится в следующей последовательности:

подготовка поверхности фольги;

окраска образиов;

контроль качества покрытия;

подготовка образцов и испитаниям.

3.3. Подготовка поверхности фольги перед окрасной производится в соответствии с ГОСТ 8832-76.

Поверхность фольги должна быть тщатально очищена от загризнений (жировых и других), ржавчины, окалины.

3.4. Изготовление образцов предусматривает следующие операдии:

нарезают фольгу размером I30xII0 ым;

обезжиривают поверхность фольги тианыв, смоченной уайтспиритом, бензином или ацетоном, затем вытирают насухо или высумивают;

натягивают фольгу на обезжиренную стеклиную пластину размером 90xI20 мм и выравнивают, повторно обезжиривают ватным тампоном, смоченным спиртом;

окрашивают фольту системой согласно ПИ.

3.5. При окращивании образцов применяют лакокрасочные материалы одной партии, удовлетворяющие требованиям соответствующай нормативно-технической документации. Способ намесения по-

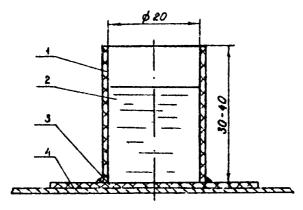
крытия, количество слоев, толщина покрытия, режим сушки выбиравт согласно принятой в эксплуатации технологии окраски и действующими в отрасли рекомендациями по выбору и применению систем покрытий для защиты нефтепромыслового оборудования от коррозии.

3.6. Образим с покрытием снимают со стеклянной пластинки и подвергают контро. по следующим параметрам:

толщина покрытия;

пористость покрытия;

внешний вид.


- 3.7. Толимну покрытил на образце измеряют не менее чем в 5 точках. Ее неравномерность не должна превышать 10% от установленной в ПИ толимне покрытия. Толимну покрытия измеряют ми-крометром или магнитным толимномером МТ-30H.
- 3.8. Испытываемые покрытия не должны иметь сквозных пар и пузырей. Отсутствие пористости проверяют следующим образом. К образцу пластилином прикрепляют стеклянную кювету (рис. I), в которую заливают дистиллированную или водопроводную воду, поджисленную соляной кислотой до p!! 5-6. При температуре воды плюс $(20\pm5)^{\circ}$ С измеряют электрическое сопротивление покрытия при помощи тераочметра MOM-4 и других приборов с пределами измерений (10^2+10^{14}) См.

Тераомметр присоединяют при помощи двух медных проводов, очищенных на концах от изоляции и продуктов коррозии. Один из них опускают в воду, другой соединяют с металлом образца. Сопротивление измеряют через 2, 15, 60 мин. и через 24 ч.

Покрытие считают беспористым, если начальная величина электрического сопротивления больше 10^6 Ом, а ее наибольшее уменьшение в течение 24 ч составляет следующие величины: для начального сопротивления (10^6+10^7) Ом – 10^3 Ом;

$$-" (10^{7}+10^{9})$$
 Om 10^{4} Om;
 $-" (10^{9}+10^{13})$ Om 10^{5} Om.

Схема ковети для замера сопротивления покрытия

I - стеклячная кивета, 2 - агрессивная среда,

3 - полимерное покрытие, 4 - стальная фольга

Pmc. I

После проверки на отсутствие пористости ковету снимают, образец освобождают от остатков пластилина.

- 2.9. При визуальном осмотре на охрашенной поверхности не допускаются пузыри, механическое нарушение покрытия, сморщивание пленки.
- 3.10. Отосранную для испытаний фольту с покрытием разрегают на образцы размером 40х45 мм, готорые попарно складывают покрытием наружу, как показано на рис. 2. Кран обмазывают по всему периметру грунтшпатлевкой эП-00-10 толщиной 0,5-0,7 мм и выдерживают при комнатьюй температуре в течение 48 часов.

Аппаратура, материалы и реактивы

3.II. Для проведения коррозионных испытаний необходимы: стеклинные коветы (см. рис. I);

герметичные стеклянные ячейки (рис. 3);

кассеты (рис. 4);

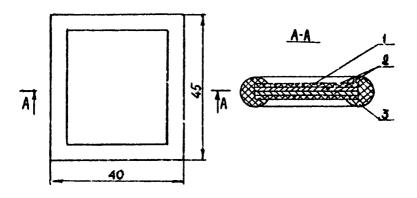
термостаты воздушные типа Е-005 ГОСТ 24785-81;

весы лабораторные ГОСТ 24104-80Е;

класс точности I, пределы измерения 0+50,0 г;

толириномеры (MT-20H, MT-30H) ГОСТ 22261-78, пределы измерения 0+2000 мим;

тераомметры (тип MOM-4 или EE-I3A) ГОСТ 22261-76, пределы измерения $10+10^{14}$ Ом;

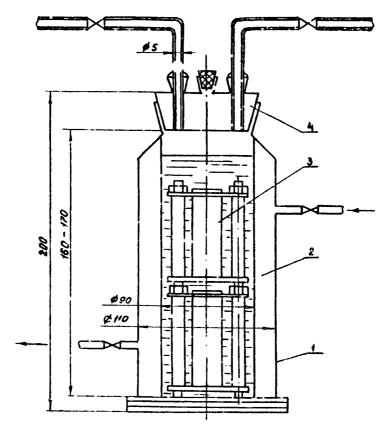

разривная машина универсальная РМУ, ГОСТ 7855-74, предены нагружения 0,01+20 кН. Допустимая погрешность измерения - I%. измеряемся нагружи;

микрометры по ГОСТ III95-74;

колбы глоскодонные по ГССТ 25336-82E емкостыю 250-100 мл; воронкы стеклянные по ГССТ 25336-82E;

пилиндры измерительные по ГОСТ 1770-74E емкостыю 100-1000 мл:

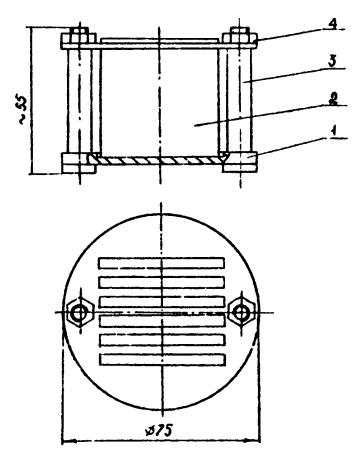
Скема образца для изучения противокоррозионных свойств покрытия



I - полимерное покритие, 2 - стальная фольга.

3 - изомирующий олой толщиной 0,5-0,7 мм

Pmo. 2


водинатипом вки живерь для вопитания образцов

I - корпус, 2 - водяная рубашка, 3 - катушка с ображими, 4 - крышка

Pmc. 3

Кассета для испытания образцов

I - основание. 2 - образец, 3 - крепехный винт, 4 - крышка

PEJ. 4

вода дистилированная ГОСТ 6709-72;
кальций сернокислый 2-водный ГОСТ 3210-77;
кальций хлористый безводный ГОСТ 4460-77;
кагний хлористый ГОСТ 4209-77;
натрий хлористый ГОСТ 4233-77;
уайт-спирит (бекзин-рестворитель) ГОСТ 3134-78;
кисть мягкая колонковая;
лезвие бритвенное или ножници;
линейка металлическая;
резинка чернильная;
фотопластины размером 90х120 ым ГОСТ 683-76;
фольга стальная толщиной 0,025:0,08 ГОСТ 2284-79.

Агрессивные среды

- 3.12. В качестве агрессивных сред используют непосредственно сточную воду конкретного нефтяного месторождения, а также модельные растворы, отвечающие по составу наиболее распространенным сточным водам нефтяных месторождений страны.
- 3.13. Модельный раствор для коррозмонных испытаний содержит, г/я:

сернокислый кальцый 2-водный	- I,4
хлористый кальций 2-водный	- 23
хлористый натрий	- 144
жиздов-6 йинлам бытомдокх	- 22
уайт-спяр ит^и)	- 0,5
деэмульгатор (водорастворимые немоногенные	ПАВ) ^{ж)} .

^{ж)}Ръствориталь уайт-спирит и деэмульгатор добавляют в раствор солей непогредственно перед началом испатаний. В качестве деэмульгаторов можно использовать ПАВ диссольван 4411, диссольван 1490, сепарол 5014, доуфакс, X-2647, сепарол 25 и др.

Плотность этого раствора определяется с помощью стемлянного денсиметра и должно находиться в пределах (1.12+0.02)г/см⁸.

Для приготовления рабочего раствора необходино растворить указанные соли в дистиллированной воде и довести объем до I л. Этот раствор в среднем содержит 4-5 мг/х кислорода.

3.14. Отбор пробы сточной воды перед испытанием производят с нагнетательных линий насосов очистных сооружений при стабильном технологическом режиме установки по подготовке воды. Пробу отбирают в условиях, исключающих контакт отбираемой пробы с кислородом воздуха, для чего емкость заполняют сточной водой через трубку, опущенную до дна. Первые порции отбираемой пробы вытесняются последующими, не контактировавкими с воздухом.

4. ОЦЕНКА ПРОТИВОКОРРОЗИОННЫХ СВОЙСТВ ПОКРЫТИЙ

4.1. За показатели противокоррозионных свойств покрытий приняты:

удельная коррозионная потеря масом фольги под покрытием; величина омического сопротивления покрытия; адгезия покрытия к стальной фольге.

- 4.2. Испытание противокоррозионных свойств систем покрытий проводят при нескольких значениях температур агрессивной среды. Рекомендуемая температура испытаний для системы покрытий, работающих в сточных водах $\sim 40.60.80^{\circ}$ C.
- 4.3. По каждому значению температуры проводят две серчы испытаний и определяют зависимости:

$$ln \mathcal{E} = f_1(T);$$
 $ln \mathcal{E}_{HK} = f_2(T);$
 $ln V = f_3(T);$
(1)

где \tilde{zg} - время достижения предельного значения показателя, ч;

Тик. – продолжительность испытыний до начала коррозик металає под покултием, ч;

✓ - скорость коррозии металла год покрытием, г/см²ч;

7 - температура агрессивной среды. ^оК:

С - концентрация агрессивной среды, % мас.

Проведение испытаний

- 4.4. Для коррозионных испытаний используются стеклянные ячейки (см. рис. 3). Образцы размещаются в кассету по 6 втук (см. рис. 4) и кассета загружается в ячейку. Образцы должны быть полностью погружены в агрессивную среду. Для исключения влияния нажапливающихся продуктов разложения покрытий агрессивная среда в процессе испытаний должна заменяться не реже одного раза в 12 жней.
- 4.5. Агрессивную среду разливают по ячейкам, и ячейка с сбразцами соединяют с термостатом или устанавливают в термостат (в зависимости от типа или марки последнего). В термостате устанавливают заданную температуру. Началом испитаний считают время, когда в термостате установится заданная температура испытаний.
- 4.6. При общей продолжительности испытаний, равной пяти суткам, испытания проводят непрерывно. При продолжительности испытаний более пяти суток допускаются перерывы. Суммарная длительность перерывов должна составлять не более 17% от общей продолжительности испытаний. При расчетах время испытаний увеличивается на 17%.
- 4.7. По истечении заданного времени испытаний термостат отключают, охлаждают до температуры помещения, образцы вынимают из ячейки, высушивают фильтровальной бумагой, производят

визуальный осмотр покрытия. Затем измеряют сопротивление покрытия, определяют адгезионную прочность и коррозионную потерю массы.

Определение показателей противокоррозионных свойств испытаный

- 4.8. Оценка показателей противокоррозионных свойств покрытий производится в исходном состоянии и через определенные промежутки времени: 10, 50, 100, 200, 250, 300, 350, 400, 500ч. Численное значение показателя установливается на основании повторных измерений. Число измерений установливается по приложению 3.
- 4.9. Исходное значение показателей определяется на окрашенном образце размером I30xII0x(0,025+0,08) мм.
- 4.10. Определение сопротивления покрытия производится следующим образом. К образцу пластилином прикрепляется стек лянная ковета (см.рис.1). В ковету заливается выбранная агрессивная среда. При температуре среды (20±5) ос измеряется омическое сопротивление покрытия при помощи тервомметра типа E6-13A или МОМ-4. Сопротивление измеряют через 15 мин. после заполнения коветы агрессивной средой.

Терасыметр приссединяют к образцу согласно п. 3.8.

В таблицу испытаний (прил. 2) заносят результаты не менее 5 измерений, при каждом измерении изменяя положение коветы на вокрытии.

4.II. Определив омическое сопротивление, кивету снимают, образец освобождают от остатков пластилина, обрезают фольгу, оставляя образец с покрытнем размером 90xI20 мм. Образец 90x УI20 мм разревают на полоски размером 90xI0 мм, две крайние отбрасывают и на оставшихся IO образцах определяют адгезию.

- 4.12. Адгезионную прочность покрытия к фольге определяют отслаиванием фольги от покрытия с измерением необходимого для этого усилия на разрывной машине по ГОСТ 15140-78. Результаты измерений записывают в производных единицах Н/м.
- 4.13. Массу фольги образца с покрытием до коррозионных испытаний определяют расчетным путем, зная плотность стальной фольги Q г/см³, площадь фольги под покрытием S см² и толщину фольги G см. Расчет приведен в приложении 4.
- 4.14. После определения показателей в исходном состоянии образым подвергарт испытанию в соответствии с (ПИ).
- 4.15. Определение показателей противокоррозионных свойств покрытий после коррозионных испытаний производится в следующей последовательности: сдвоенные образцы разделяются по окантовке ножом или скальпелем, обрезвется окантовка, оставляя пластины размером $(35\pm3) \times (43\pm2)$ мм.
- 4.16. На пластинах (35 ± 3) х (42 ± 2) мм один из углов очищаит от покрытия для определения омического сопротивления. Сопротивление измеряют в соответствии с п. 4.10.
- 4.17 После определения омического сопротивления коветы снимают, удаляют остатки пластилина, кеждую пластину резрезают на 3 полоски размером 10х40 мм, на которых определяют адгезионную прочность в соответствим с п. 4.12.

Обработка резудьтатов измерений

4.18. При определении адгезии, сопротивления покрытия, удельной коррозионной потери массы наблюдается значительный разброс
результатов. Этот разброс вызывается рядом факторов, связанных
с непостоянством свойств испытываемых метериалов, качества изготовления образцов, условий проведения отдельных опытов и неоднородностью структуры материалов, т.е. рассемвание результатов

испытаний связаносих статистической природсй, оно не может быть устранено никажим удучмением качества изготовления образцов и методики испытаний. Возникает необходимость применения статистических методов обработки результатов испытаний.

- 4.19. Обработку результатов измерений и нахождение зависичестей противокоррозионных свейств покрытий от времени испытаний производят в следующем порядке.
 - 4.19.1. Вычисляют среднее значение из 🗥 измерений:

$$\ddot{\mathcal{G}} = \frac{1}{n} \sum_{l=1}^{n} y_{l} . \tag{2}$$

4.19.2. Находят погрешности отдельных ивмерений:

$$\Delta y_i = \bar{y} - y_i . \tag{3}$$

4.19.3. Бычисляют квадрат погрежностей отдельных измерений:

 $\left(\Delta y_i\right)^2 = \left(\overline{y} - y_i\right)^2. \tag{4}$

4.19.4. Если отдельные измерения резко отличаются от остальных, то проверяют, не являются ли они грубой ожибкой (промахом). Для этого вычисляют среднее квадратичное отклонение отдельного измерения $\mathcal{S}_{\mathcal{K}}$

$$S_{\kappa} = \sqrt{\frac{2}{\tilde{s}_{1}} (\tilde{y} - y_{1})^{2} / n}$$
 (5)

и относительное отклонение для С-го определения

$$\mathcal{J}_{i} = \frac{\mathcal{Y}_{i} - \mathcal{Y}_{i}}{\mathcal{S}_{\kappa} \sqrt{n}} \tag{6}$$

Если вычисленное значение χ_{L}^{2} для любого \mathcal{L} -го измерения \mathcal{H}^{2} превосходит по абсолютной величине табличного значения \mathcal{H}^{2} для выбранного уровня значимости (принимает 0,05) и числа степеней свободы $f=\mathcal{H}^{2}$ (табл. 2), то принимается гипотеза об однородности результатов измерений. В противном случае очениваемый результат исключается из дальнейших расчетов.

Значение γ_T для уровия значимости 0,05

число степене! свободн	11	ī	Ī	2	!	3	1	4	Ī	5	1	6	1	7	1	8	-
$\partial \tau$	I,	412	1	,689)	1,869)	1,9	9 6	2,09	13	2,1	72	2,2	37	2,4	

4.19.5. Определяют среднюю квадратичную погрешность результата серии измерений $S \overline{\mathcal{U}}$:

$$S\bar{q} = \sqrt{\frac{n}{2}} \Delta y^2 / n(n-1)$$
 (7)

Таблина 2

Примечание: Рассчитывать средняю квадратичную погрешность измерений, число которых менее 4, нецелесообразно. В этом случае пользуются средней арифистической погрешностью.

4.19.6. Задают значение надежности Q = 0.95 (практикой доказано, что данная величина является достаточной характеристикой точности измерения).

4.19.7. По таба. З определяют коэффициент Стыщента для ваданной надежности ∞ , числа произведенных измерений n . Таблица З

Значение иритерия Стырдента $t_{\alpha n}$

Число степене свободы	R!	I	!	2	I	3	1	4	1	5	!	6	!	7	!	8
tan	12	71	4	,30	3	,18	2,	,78	2	,57	2	,45	2	,36	2,	3

4.19.8. Точность определения параметра при уровне наделности $\alpha = 0.95$ рассчитывается по формуле:

$$\triangle pash = t_{\alpha n} \cdot Sq.$$

4.19.9. В таблицу (прил. 5) записывают окончательное зна-

чение переметра в виде доверительного интервала:

$$y = \bar{y} \pm \Delta y_{post}$$
.

4.20. Зависимости показателей протквокоррозноных свойств покрытий от времени испытаний при постоянной температуре описываится уравнениями вида ;

$$G_{T} = A_{T} \exp\left(O_{G} G_{T} + \beta_{G} T_{i}^{2}\right) \qquad (10)$$

$$R_{\ell} = A_{\ell} \exp(\alpha_{\ell} T_{i} + \beta_{\ell} T_{i}^{2}) \qquad (II)$$

$$\frac{\Delta m}{S} = C_m (\overline{t_i} - \overline{t_{H,K}}) . \tag{12}$$

где бу - авгезионная прочность поярытия к фольге, определенная методом отсламвания фольги от покрытия, Н/м;

— омическое сопротивление вокрытия, Ом;

🧲 - время выдержим покрытия в агрессивной среде, ч;

 $A_{6}, \alpha_{6}, \beta_{6}$ коэффициенты, определяемые экспериментельно, забисят $C_{m}, A_{6}, \alpha_{6}, \beta_{6}$ от температуры и от типа среды;

 $\Delta \frac{\sqrt{n}}{2}$ - удельная корровионная готеря массы фольги, г/см²;

Гил - время начала коррозии под покрытием, ч.

Нахождение зависимостей противокоррозионных свойств покрытий от времени испытаний сводится и определению коэффициентов (A_S , A_R , α_G , α_R ; β_G ; β_R ; ϵ_R).

- 4.21. Для определения коэффициснтов используют метод накменьших квадратов.
- 4.21.1. Выражают уравнение (10) или (11) в логарифиической формо:

OGOSHAUNB LA G- Yian; LAA = B6 , KNOCH

$$y_{ian} = B_6 + C_6 T_i + \beta_6 T_i^2 . \tag{14}$$

4.21.2. Для определения коеффициентов $eta_{m{d}}$, $lpha_{m{d}}$. $m{\mathcal{E}}_{m{d}}$ решают систему грех уравнений :

$$n\beta_{\delta} + \alpha_{\delta} \gtrsim T_{i} + \beta_{\delta} \gtrsim T_{i}^{2} + \sum_{i=1}^{L} T_{i}^{2} = \sum_{i=1}^{L} y_{i} ; \qquad (15)$$

$$\beta_{\ell} \stackrel{(s)}{\underset{i=1}{\sum}} \mathcal{T}_{i} + \alpha_{\delta} \stackrel{(s)}{\underset{i=1}{\sum}} \mathcal{T}_{i} + \beta_{\delta} \stackrel{(s)}{\underset{i=1}{\sum}} \mathcal{T}_{i}^{s} = \stackrel{(s)}{\underset{i=1}{\sum}} \mathcal{Y}_{i} \mathcal{T}_{i}^{j}; \qquad (16)$$

$$\beta_{g} \stackrel{i:n}{\underset{i}{\longleftarrow}} \Gamma_{i}^{2} + \alpha_{g} \stackrel{i:n}{\underset{i}{\longleftarrow}} \Gamma_{i}^{3} + \beta_{g} \stackrel{i:n}{\underset{i}{\longleftarrow}} \Gamma_{i}^{3} = \frac{i:n}{\underset{i}{\longleftarrow}} y_{i} \Gamma_{i}^{3}, \tag{17}$$

где /7 - число экспериментальных точек (по времени).

Вывод указанных уравнений приведен в приложении 6.

4.21.3. Вычисленные значения водичин $\begin{cases} \frac{1}{2} \mathcal{T}_i, \frac{1}$

$$\sum_{i:j}^{i:n} y_i; \sum_{i:j}^{i:n} y_i \mathcal{C}_i; \sum_{i:j}^{i:n} y_i \mathcal{C}_i^2; \alpha_6; \beta_6; \beta_6$$
 записывают

в табянцу (прил. 7).

4.21.4. Кооффициент C_m рассчитывают по формулам:

$$C_{m} = \frac{\sum_{i=1}^{m} (\vec{t_{i}} - \vec{T}) y_{i}}{\sum_{i=1}^{m} (\vec{t_{i}} - \vec{T})^{2}}; \qquad (18)$$

$$\overline{Q} = \frac{\sum_{i=1}^{K} C_{i}}{K} , \qquad (79)$$

где

 количество измерений, ваятых из /2 измерений в расчет после статистической обработки;

 $\frac{\kappa}{k_{ef}}(\tau_{l}-\bar{\tau})y_{l}$ — среднеарифистическое значение параметра с учетом погрешности продолжительности воздействия агрессивной среды;

- \mathcal{G}_{i} значение коррозионных потерь массы за время \mathcal{T}_{i} (r/cm^{2}):
- С среднеарифистическая длительность воздействия агрессивной среды, ч
- 4.22. Зависимости (см. формулы 10-12) необходимо получить для каждой температуры испытаний.
- 4.23. Обработка экспериментальных даниих приведена в прижожении 7.

5. ОПЕНКА СРОКА СЛУЖБЫ ПОКРЫТИЙ

- 5.1. Оценка срока службы систем покрытий производится по скорости изменения противокоррозионных свойств покрытия во гремени. За нарушение функций покрытий принимается предельное значение выбранных для расчета парэметров в соответствии п. 1.5.
- 5.2. Зависимости применения адгезионной прочности, омического сопротивления и подпленочной коррозии во времени при различных температурах описываются уравнениями (10-12).
- 5.3. Значения срока службы покрытия по изменение показателей противокоррозионных свойств ($\mathcal{T}g$) определяют при предельном значении адгезионной прочности (\mathcal{C}_{n_0} = 60 \mathbb{N}/\mathbb{N}) и омического сопротивления покрытий (\mathcal{R}_{n_0} = 10^3 Ом) в виде корней уравнений:

$$\ln \beta_{np} = \beta_{s} + \alpha_{s} \tau + \beta_{s} \tau^{2} ; \qquad (20)$$

$$Lr \, \delta_{np} = \beta_8 + \alpha_8 \, \mathcal{T} + \beta_2 \, \mathcal{T}^2 \,. \tag{21}$$

5.4. Для каждой температуры испытаний строим графики зависимости срока службы покрытия от изменения противокоррозионных свойств покрытия в координатах " $U \mathcal{T}_G ; f$ ".

По оси ординат откладывают ℓ_{Ω} срока службы систем покрытия для каждой температуры, определенной по уравнениям (20-21), по оси абыжсе — обратную температуру испытаний покрытий в градусах К (T = 273,2° + ℓ ° испыт.).

5.5. Срок службы системы покрытия при температуре эксплуатации определяется по формуле:

$$\mathcal{L}_{g} = \mathcal{L}_{\omega\delta} \cdot e^{\pm g\beta \left(\frac{1}{16\delta} - \frac{1}{16} \right)} \,, \tag{22}$$

где \mathcal{C}_3 — срок службы покрытия при температуре эксплуатации, \mathbf{v}_i ; \mathcal{C}_{ub} — срок службы покрытия при одной из температур испытаний, \mathbf{v}_i ;

79 - температура эксплуатации, ^ОК;

 T_{U3} 8 - температура испытаний, ${}^{\rm O}$ К;

 $tg\beta$ - тангенс угла наклона прямой " $t_{n}\tau_{g;\overline{t}}$ " к оси абимес.

- 5.6. Определив срок службы системы покрытий по изменению адгезионной прочности, омического сопротивления покрытий при температуре эксплуатации, сравнивают между собой полученные значения. За величину срока службы принимают наименьшее из них.
- 5.7. При оценке срска службы систем покрытий по величине коррезионных потерь металла применяется следующая формула:

$$T_g = T_{HK} + \frac{\Delta m_{max}}{S} cp \cdot \frac{1}{V} , \qquad (23)$$

где 📆 - срок службы системы покрытия, ч;

 T_{HK} - гремя начала коррозии при гемпературе эксплуатации,ч; $\frac{\Delta m}{S} mon_{CP}$ максимальная потеря массы, полученная экспериментально при разрушении покрытия, г/см 2 ;

- скорссть коррозии под исследуемым покрытием при температуре эксплуатации, г/см²ч.
- 5.8. Величина $\mathcal{T}_{\mathcal{HK}}$ определяется из уравнения (12) по следупщей формуле:

$$\mathcal{T}_{HK} = \frac{C_M \cdot \mathcal{T} - \frac{\Delta m}{S}}{C_M} . \tag{24}$$

При испытании покрытий при различных температурах получаем несколько значений \mathcal{C}_{HK} .

Для определения величины $\mathcal{C}_{\mathcal{H},\mathcal{K}}$ при температуре эксплуатации строим график зависимости времени начала коррозии стали под покрытием от абсолютной температуры ($\frac{1}{\mathcal{F}}$) и определяем $\mathcal{C}_{\mathcal{H},\mathcal{K}}$ при температуре эксплуатации в соответствии с пунктом 5.5.

5.9. Скорость коррозии металла под покрытием (V) при температура эксплуатации определяется следующим образом.

В уразнении (I2) коэффициент Ст представляет собой усредненную скорость коррозии металла под покрытием для каждого режима испытаний.

Строится зависимость скорости коррозии от температуры испытаний. Скорость коррозии при температуре эксплуатации находится экстраноляцией в область рабочих температур.

5.10. Орментировочный срок службы системы покрытий толщиной \mathcal{A}' мки вычисляется по формуле:

$$\mathcal{T}_{og} = \frac{\mathcal{T}_{g}}{d - d_{og}} , \qquad (25)$$

где 📆 - ориентировочный срок службы покрытия, ч;

Tg - значение срока службы покрытия, определенное по одисму из показателей при температуре эксплуатации, ч;

 d_{xp} - критическая толщина покрытия, см.

Примечанию: Под критической толщиной понимается средняя величина минимальной толщины покрытия, при которой этсутствует сквозная пористесть покрытия.

Приложение I

ILIAH NCIBITAHNA

- I. Цель испытаний (выбор системы покрытий, параметров техмологического процесся).
 - 2. Зацищаемое оборудование или защищаемый металл.
 - 3. Характеристика агрессивной среды в условиях эксплуатации.
 - 4. Испытуемое пскрытие (системы покрытия).
- Технология нанесения покрытия (подготовка поверхности, метод нанесения покрытия, режим сушки).
- Уарактеристика лакокрасочного материала (наименование, даготовитель, партия).
 - 7. Метод испытаний (изменение противокоррозионных свойств).
 - 8. Режими испытания.
 - 9. Количество образцов по каждому режиму.
 - 10. Периодичность замера.

Приложение 2 Форма протокола дабораторных испытаний систем покрытий для определения срока службы

]	Режим испытаний. 7 с _С	, C = % mac	С	
ma ies inperna,	началь- началь- ная мас+ное со- Адге- са об- !против- зия,	НОСТЬ ВОЗНАССЯ ПЕЙСТВИЯ ОС-ЦА	ние характеристик $!$ сопро- $!$ адге- $!$ поте $!$ тивле- $!$ зия, $!$ масс $!$ ние $!$ ние $!$ $!$ $!$ $!$ $!$ $!$ $!$ $!$ $!$ $!$	EPN ΔR, CROCCTB CM, ΔR, KOPPO- OM SHN, 2

Зав. лабораторией Отретственный исполнитель Лаборант

Приложение 3 Справочное

ОПРЕДЕЛЕНИЕ НЕОБХОДИМОГО ЧИСЛА ОБРАЗЦЮВ

- Метод определения необходимого числа образцов основан на зависимостях между теоретической дисперсией распределения и наблюдаемом в реальных условиях размахом выходного нараметра.
- 2. Проводится две серии установочных опитов с разным количеством измерэний // . Значения измеренного параметра располагаются в вариационный ряд по мере возрастания измеренного параметра.
 - 3. Подсчитывается значение

$$\mathcal{L} = \frac{\overline{\mathcal{G}_1} - \overline{\mathcal{G}_2}}{W_{1_1} + W_{1_2}},\tag{1}$$

где t - поведо- t - гритерий (при заданной доверительной вероятности ρ числа опытов c_t);

 W_{n_ℓ} , W_{n_ℓ} размахи въръмрования значений измеряемой величины; $\bar{\mathcal{G}}_\ell$, $\bar{\mathcal{G}}_2$ — усредненное значение параметра при ℓ^2 образиов для каждой серми.

Значение размаха варьирования определяется

$$W_0 = y_{max} - y_{min} . (2)$$

т.е. разность между наибольшим и неименъшим значением парэмечра в вармалионном ряду.

Найденное значение ℓ сравнивается с теоретической велитипой ℓ (ρ'_l , η_ℓ) табльцы.

29

Значение псевдо- ф-критерия

None purso these	!		Количеств	о образц	08	
Доверительная пероятность	3	4	5	6	7	8
P = 0,99	0,87	0,63	0,45	0,36	0,30	0,26
P = 0.95	0,785	0,52	0,405	0,31	0,26	0,22
P = 0,90	0,70	0,41	0,32	0,26	0,22	0,18

Если $l < l mod (P, n_i)$, то различие между сравниваемыми величинами является статистически незначительным.

Для проведения дальнейших экспериментов задаются выбранным комичество опытов 7

Прыложение 4 Справочное

РАСЧЕТ МАССН ФОЛЬГИ

Плотность стальной фольги определяют на образцах из одной партии следующим образом:

10 полос фольти без покрытия размером 10х90 мм очищают от загрязнений, продуктов коррозии, взвешивают на аналитических весах 4-го класса, определяют площадь фольги и микрометром замеряют среднюю толщину фольги.

Плотность стальной фольги рассчитывают по формуле:

$$\hat{Q} = \frac{\sum_{i \neq j}^{k} m_i}{\frac{1}{\sqrt{2}} S_i \delta} ,$$
(I)

где $\frac{40}{6\pi}m_i$ - масса IO образиов, г; $\frac{40}{6\pi}S_i$ - площадь IO образиов, см²; $\frac{40}{6\pi}S_i$ - плотность стальной фольги, г/см³.

Зная плотность фольги и площадь образира, изготовленных из этой портии фольги; рессчитываем $\mathcal{M}_{\bullet} \Gamma$:

$$\mathcal{M}_{\delta} = Q \cdot S \cdot \delta . \tag{2}$$

При этом необходимо соблюдать условия, чтобы способ подготовки поверхности фольги при определении Q был идентичен подготовке поверхности фольги перед нанесением покрытия.

Определение потери массы фольги в процессе коррозионных испытанчй.

После определения адгезии проверьют полноту отделения покрытия от фольги. Эстатки покрытия с фольги удаляют соответствущим рестворителем или механически (например, чернильной резинкой). Образеи обезжиривают спиртом и изъещивают на аналитических весах с точностью до 0,0002 г.

Коррозионные потери массы за время 🧷 определяют по форму-

æ:

$$\frac{\Delta m}{S} = \frac{m_o - m_{\tau}}{S} \,, \tag{3}$$

где /// - масса фольги исходная, г;

т - масса фольги после испытания, г;

S – площадь фольги, см²;

 $\frac{\Delta m}{5}$ - коррозионные потери массы за время τ , r/cm^2 .

Результаты замеров заносят в протокоя испытаний (см. прил. 2).

Придожение 5
Результаты статистической обработки измерений

Режим испытаний! Время!	·	Результаты обработки	
и системы і испы— покрытия і тания	J DY	SK Sý \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y = ÿ ± Δy ρα з δ.

Приложение 6 Справочное

PACUET EKCHEPUMENTAJISHIX KOEPPULINEHTOB β, α, β

- I. Расчет приведен для определения коэффициентов $\alpha_{\epsilon}, eta_{\epsilon}, \mathcal{S}_{\epsilon}$ по изменению адгезионных свойств покрытия. Аналогичные уравнения используются при расчете коэффициентов по изменению омического сопротивления покрытия.
- 2. Математическая рависимость применения во времени адгезгонных свойств покрытий при испытании в агрессивных средах описывается уравнением вида:

$$\mathcal{O}_{T} = A \exp\left(\alpha_{6} \mathcal{T}_{i} + \beta_{6} \mathcal{T}_{i}^{z}\right), \tag{1}$$

где 6q - адгезионная прочность, H/M:

 \mathcal{T}_i - время выдержки в среде, ч.

3. Для определения коэффиционтов A_{6} , $lpha_{6}$, eta_{6} используется метод наименьших кварратов. В логарифмической форме уравнение (I) выражается в следующем виде:

4. Обозначим $L_{\Pi} \mathcal{T}_{i} = \mathcal{Y}_{i}$ си ; $L_{\Pi} A_{Z} = \mathcal{B}_{Z}$; отклонение экспериментальных значений величинь y_i от значений $y_{i\alpha i}$, вычисленных по формуле, через Δ_{ℓ} , тогда

$$\Delta_{i} \quad \mathcal{B}_{c} + \Omega_{c} \mathcal{T}_{i}^{j} + \mathcal{B}_{c} \mathcal{T}_{i,j}^{j2} - \mathcal{Y}_{i,j}^{j} \tag{2}$$

5. В уравнение (2) эходят коэффициенты $\mathcal{L}_{\mathcal{C}}.\mathcal{C}_{\mathcal{E}}.\mathcal{L}_{\mathcal{C}}$. По жетолу наименьших квадратов эти коэффициенты определяются из треболания минимальности выражения:

$$S = \sum_{i=1}^{n} \left(\beta_{i} + \alpha_{i} \tau_{i} + \beta_{i} \tau_{i}^{2} - y_{i} \right). \tag{3}$$

7 - число экспериментальных точек (время); где

S - сумма квадратов погрешностей отдельных измерений (Δi) при каждом времени испытаний.

6. S рассматривают как функцию, зависящую от β_{i} $\propto_{i,j}$ β_{i} . В точках минимума должно соблюдаться условие:

$$\frac{\partial S}{\partial B} = 0; \qquad \frac{\partial S}{\partial \alpha} = 0; \qquad \frac{\partial S}{\partial \beta} = 0, \text{ r.e.}$$

$$\frac{\partial S}{\partial B} = 2 \frac{\partial}{\partial z_i} \left(\beta_6 + \alpha_6 T + \beta_6 T_i^2 - y_i \right); \qquad (4)$$

$$\frac{\partial S}{\partial \alpha} = 2 \oint_{\widetilde{L}_{i}} \left(B_{g} + \alpha_{g} \mathcal{T}_{i} + \beta_{b} \mathcal{T}_{i}^{2} - y_{i} \right) \mathcal{T}_{i} ; \qquad (5)$$

$$\frac{\partial S}{\partial \beta} = 2 \sum_{i=1}^{2} (\beta_6 + \alpha_6 \nabla_i + \beta_6 \nabla_i^2 - y_i) \nabla_i^2.$$
 (6)

Приравнивая производные нулю и раскрывая скобки, получим систему трех уравнений для определения $\mathcal{B}_{\mathcal{G}}$, $\alpha_{\mathcal{G}}, \beta_{\mathcal{G}}$:

$$n\beta_6 + \alpha_6 \sum_{i:j}^n \mathcal{T}_i + \beta_6 \sum_{i:j}^n \mathcal{T}_i^2 = \sum_{i:j}^n y_i \; ;$$

$$\beta_{6} \underset{i:f}{\overset{n}{\sim}} \mathcal{T}_{i} + \alpha_{6} \underset{i:f}{\overset{n}{\sim}} \mathcal{T}_{i}^{2} + \beta_{6} \underset{i:f}{\overset{n}{\sim}} \mathcal{T}_{i}^{3} = \underset{i:f}{\overset{n}{\sim}} y_{i} \mathcal{T}_{i},$$

$$\beta_6 \underset{i:j}{\overset{\alpha}{\sim}} \mathcal{T}_i^2 + \alpha_6 \underset{i:j}{\overset{\alpha}{\sim}} \mathcal{T}_i^3 + \beta_6 \underset{i:j}{\overset{\alpha}{\sim}} \mathcal{T}_i^2 = \underset{i:j}{\overset{\alpha}{\sim}} y_i \mathcal{T}_i^2.$$

Приложение 7 Справочное

ПРИМЕР ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО ОПРЕДЕЛЕНИЮ СРОКА СЛУЖЕН ПОКРЫТИЯ

Для ускоренной оценки срока службы покрытия проведены испытания покрытия грунтшпатлевки 3Π -O010 тоящиной 150 ± 10 мкм в модельном растворе сточной воды при температурах 40, 60, 80 °C. Время испытания 0+500 часов. Покрытие нанесено на стальную фольту 0,025 мм. Установлено, что критическая тоящина покрытия 3Π -O0-I0 равна 50 мкм.

Определение необходимого числа образцов

В соответствии с приложением 3 определии необходимое количество образцов при измерении здгезионной прочности покрытия. В табл. I приведены результаты расчета.

Таблица I Определение необходимого количества образцов

Кол-во	Вариационный	Значение расчетных пара-
образцов	ряд	
5-І серия	600; 600; 610; 620; 620	609 - 20 -0,62 3+7
5-11 серия	680; 640; 650; 650; 670	; 648 648 - 4 0
8-1 серия	600; 600; 610; 620; 630	•
	640; 650; 660;	627,5 - 70 -
∂-П серия	600; 630; 650; 650; 670	•
	680; 700; 800	672,5 - ICO 0,265

Сравнивыя полученные значения псевдо- t-критерия (ℓ = 0,265+0,62) с тебличными, определяем, что количество образцов должно быть в пределах 3+7.

Результаты измерений приводены в табл. 2. Обработка экспериментальных данных произведена в соответствии с разделами 4 и 5 методики.

Определение срока службы покрытия по изменению адгезионной прочности

Ниже приведен порядок расчета экспериментальных данных в исходном состоянии.

I. Определение среднего значения адгезионной прочности ($\vec{6}$):

$$\overline{G} = \frac{600+600+610+620+620+630+640+650+650+670}{10} = 629 \text{ H/w}$$
 .

2. Определение погрешностей отдельных измерений ;

$$\Delta 6$$
, = 629 - 600 = 29

$$\Delta S_{*} = 629 - 610 = 19$$

$$\Delta 6_{v} = 629 - 620 = 9$$

$$\Delta 6_6 = 629 - 630 = -1$$

$$\Delta f_7 = 629 - 640 = -II$$

$$\triangle 6_9 = 629 - 650 = -21$$

$$\triangle 6_0 = 629 - 670 = -41$$

3. Вычисление квадрата погрешностей отдельных измерений:

$$\left(\Delta G_{1}\right)^{2} = 84I$$

$$\left(\Delta G_{2}\right)^{2} = 84I$$

$$(\Delta G_3)^2 = 36I$$

$$(\Delta G_5)^2 = 8I$$

$$(\Delta G_6)^2 = I$$

$$(\Delta G_7)^2 = 12I$$

$$(\Delta G_8)^2 = 44I$$

$$(\Delta G_9)^2 = 441$$

$$(\Delta G_{10})^2 = 168I$$

4. Вычисление среднеквадратичного отклонения отдельного измерения \mathcal{S}_{K} $\mathsf{H}^{\mathbf{I}}/\mathsf{M}$:

$$S_{\kappa} = \sqrt{\frac{841+841+361+81+81+1+121+441+441+1681}{10-1}} = \sqrt{\frac{4990}{9}} = \sqrt{543.3} = 23.35.$$

5. Вычисление относительного отклонения χ_i для i-го определения:

$$\gamma_i = \frac{6i - \overline{6}}{S_K \sqrt{a_i T}}.$$

Опрецелим γ для I, 2, IO измерения, так как погредность измерений $\Delta \hat{b}_t$; $\Delta \hat{b}_z$; $\Delta \hat{b}_{i0}$ больше среднехвадратичного этклонекия:

$$\gamma_1 = \gamma_2 = \frac{29}{23,3} \cdot \frac{29}{\sqrt{10-1}} = \frac{29}{23,3 \cdot 0.95} = 1.31 ;$$

$$\gamma_0 = \frac{41}{23.3 \cdot 0.95} = 1.852 .$$

Сравнии получение значения \mathcal{J}_1 : \mathcal{J}_2 : \mathcal{J}_{10} с табличним значением \mathcal{J}_{7} . \mathcal{J}_{7} при числе степеней свободы, равном 8 (7 - 2), равен 2,4.

Значения χ_i ; χ_2 ; χ_{i0} не превосходит χ_r , следовательно, все значения $\Delta \theta_i^2$ принимаются г расчет.

6. Определение средней квадратичной погрешности серии из-

метения:

$$S_{d} = \sqrt{\frac{2}{k_{i}!}} \Delta G_{i}^{2} / n (n-1) ;$$

$$S_{d} = \sqrt{\frac{489C}{70 \cdot 8}} = \sqrt{54,33} = 7,37 .$$

7. Определение границы доверительного интервала:

Δ6 past = tan·Sz.

По табл. 2 определяют коэффиционт Стьюдента ($t_{\alpha_{\alpha}}$) для числа измерений n=10 и числа степеней свободы 8. $t_{\alpha_{\alpha}}$ равно 2,3.

8. Записываем окончательный результат серии измерений:

Аналогично рассчитывают адгезионную прочность б для каждого времени исплтаний при температурах 313 $^{\rm O}$ K (40 $^{\rm O}$ C), 333 $^{\rm O}$ K (60 $^{\rm O}$ C), 353 $^{\rm O}$ K (80 $^{\rm O}$ C). Результаты статистической обработки представлены в табл. 3.

10. Для получения зависимостей типа

$$y_i = B + \alpha \mathcal{T}_i + \beta \mathcal{T}_i^2$$

для каждой температуры испытаний определяют коэффициенты.

В качестве примера рассчитывают коэффициенты B_{d} , α_{6} , β_{6} для температуры 40 °C (1 серия).

II. Для опредоления коэффициентов $\mathcal{B}_6, \alpha_4, \mathcal{F}_6$ решают систему трех уравнений:

$$\eta \, \mathcal{B}_{\mathcal{C}}^{\dagger} + \alpha_{\mathcal{C}} \sum_{i=1}^{n} \mathcal{T}_{i}^{i} + \beta_{\mathcal{C}} \sum_{i=1}^{n} \mathcal{T}_{i}^{i} = \sum_{i=1}^{n} \mathcal{Y}_{i};$$
(1)

$$\mathcal{B}_{6} \stackrel{\mathcal{P}}{\underset{\leftarrow}{\rightleftharpoons}} \mathcal{T}_{i} + \alpha_{6} \stackrel{\mathcal{P}}{\underset{\leftarrow}{\rightleftharpoons}} \mathcal{T}_{i}^{2} + \beta_{6} \stackrel{\mathcal{P}}{\underset{\leftarrow}{\rightleftharpoons}} \mathcal{T}_{i}^{2} = \stackrel{\mathcal{P}}{\underset{\leftarrow}{\rightleftharpoons}} \mathcal{Y}_{i} \mathcal{T}_{i}^{2}$$

$$(2)$$

$$\begin{array}{ll}
\partial_{G_{ij}} \mathcal{C}_{i} + \alpha_{G_{ij}} \mathcal{C}_{i} + \beta_{G_{ij}} \mathcal{C}_{i} = \sum_{i \neq j} y_{i} \mathcal{C}_{i}; \\
\beta_{G_{ij}} \mathcal{C}_{i}^{2} + \alpha_{G_{ij}} \mathcal{C}_{i}^{3} + \beta_{G_{ij}} \mathcal{C}_{i}^{3} = \sum_{i \neq j} y_{i} \mathcal{C}_{i}^{2}
\end{array} \tag{3}$$

II.I. Рассчитивают экспериментальные данные:

$$\frac{7}{t^{2}} \mathcal{T}_{t} = 10+50+100+200+300+400+500 = 1560 (4)$$

$$7 = 7$$

$$\frac{7}{t^{2}} \mathcal{T}_{t}^{2} = 1.10^{2} +25.10^{2} +1.10^{4} +4.10^{4} +9.10^{4} +16.10^{4} +25.10^{4} = 55,26.10^{4} (4)$$

$$= 55,26.10^{4} (4)$$

$$\frac{7}{t^{2}} \mathcal{T}_{t}^{3} = 1.10^{3} +125.10^{3} +1.10^{6} +3.10^{6} +27.10^{6} +64.10^{6} +125.10^{6} =225,126.10^{6} (4)$$

$$\frac{7}{t^{2}} \mathcal{T}_{t}^{3} = 1.10^{4} +625.10^{4} +1.10^{8} +16.10^{8} +81.10^{6} +256.10^{8} +625.10^{8} =979.10^{8}$$

$$\frac{7}{t^{2}} \mathcal{Y}_{t}^{3} \mathcal{T}_{t}^{2} = 0,639.10^{8} +3,187.10^{2} +6,254.10^{2} +12,49.10^{2} +13,39.10^{2} +24,22.10^{2} +27,25.10^{2} =92,437.10^{2}$$

$$\frac{7}{t^{2}} \mathcal{Y}_{t}^{3} \mathcal{T}_{t}^{2} = 0,0639.10^{4} +1,5933.10^{4} +6,254.10^{4} +55,1718.10^{4} +98,872.10^{4} +136,28.10^{4} =323,223.10^{4}$$

II.2. Расчетные данные заносят в таблицу 4.

II.3. Из уравнения (I) определяют \mathcal{B}_6 :

$$\mathcal{B}_{g} = \frac{\frac{2}{2\pi} y_{i} - \alpha_{6} \frac{2}{2\pi} \tau_{i} - \beta_{6} \frac{2}{2\pi} \tau_{i}^{2}}{2\pi}.$$

12. Ниже приведены завысимости адгезионной прочности и смического сопротивления от времени и температуры для каждой серии испытаний.

Температура 40 °C

I серил

$$ln6_{iGH} = 6,5042 - 0,00217 \ T_i + 0,000001375 \ T_i^2$$

 $lnR_{iGH} = 16,6194 - 0,0258 \ T_i + 0,00002476 \ T_i^2$

С серия

$$L75_{COH} = 6,628I + 0.003130 \, T_i + 0.00000422 \, T_i^2$$

 $LR_{COH} = I4,1874 - 0.002885 \, T_i + 0.000000578 \, T_i^2$
Temmepary pa 60 °C

I серия

$$LnS_{iah} = 6,4051 + 0,001205 T_i - 0,000007616 T_i^2$$

 $LnR_{iah} = 18,0733 - 0,0255 T_i + 0,00001657 T_i^2$

$$ln G_{i CM} = 6.4 + 0.0009752 T_{i} - 0.00000517 T_{i}^{2}$$

 $ln R_{i CM} = 17.5714 - 0.01820 T_{i} + 0.00005389 T_{i}^{2}$

Temneparypa SO OC

I серия

$$\ln 6_{iah} = 6,6816 - 0,003842 \, T_i - 0,000003 \, T_i^2 \, InR_{iah} = 17,1761 - 0,0558 \, T_i + 0,0000992 \, T_i^2$$

П серия

$$ln \, G_{i\, CM} = 7.2669 - 0.001038 \, \mathcal{T}_i - 0.0000026 \, \mathcal{T}_i^2$$

 $ln \, R_{i\, CM} = 16.3417 - 0.0308 \, \mathcal{T}_i + 0.00001873 \, \mathcal{T}_i^2$

Из данных уравнений при предельном значении адгезионной прочности покрытий $\mathcal{S}_{np} = 60$ Н/м и активного сопротивления $\mathcal{R}_{np} = 10^3$ Ом определеим \mathcal{T}_g . Значения \mathcal{T}_g для каждого режима испытаний приведены в таба. 5.

- 13. Для кождой серии испытаний получают зависимость от температуры в координатах " $L \wedge \mathcal{T}_{\mathcal{G}}$; $\frac{1}{\mathcal{T}}$ " (рис. 1) и рассчитывают значение $\mathcal{T}_{\mathcal{G}}$ при температуре эксплуатации ($\mathcal{T}_{\mathcal{G}}$):
- 14. Определим \mathcal{T}_3 при температуре 20 $^{\rm O}$ C по изменению адгезионной прочности для I серии испытаний.

Выражают уравнение (22) в логарифмической форме

Подставляют известные эначения :

$$ln \mathcal{T}_{g_I}^{50} = 6,4524$$
 $\frac{1}{760} = 3,0.10^{-3}$ $lg \beta = \frac{6,6709 - 6,0685}{(2,8 - 3,2).10^{-3}}$ $\frac{1}{720} = 3,4.10^{-3}$

Определяют:

$$l_n T_g^{20} = 6,4524 + \frac{6.6709 - 6.0685}{(2.8 - 3.2).10^{-3}} \cdot (3.0 - 3.4).10^{-3}$$

 $l_n T_g^{20} = 6.4524 + 0.6024 = 7.0548$

Выразив значение $(\mathcal{N} \mathcal{T}_{\mathfrak{I}}^{20})$ через десятичный логарији, определяют значение

где М - модуль десятичного логарифма равный 0,43429:

$$lg \, \mathcal{T}_3^{20} = 7,0548 \cdot 0,43429 ;$$
 $lg \, \mathcal{T}_3^{20} = 3,0638 ;$
 $\mathcal{T}_3^{20} = 1156,2 \, (4) .$

Введя поправку на толщину покрытия, определяют срок служби покрытия по потере адгезионной прочности (\mathcal{C}_{QA}) :

$$T_{OGA} = \frac{1156.2}{(150-50).10^{-4}.24.365}$$
:
 $T_{OGA} = 13.2 \text{ roga}$.

Аналогично рассчитан срок службы покрытия по каждому режиму испытаний (см. табл. 5).

Расчет срока службы покрытия по коррозионным потерям

Обработка экспериментальных данных производится согласно разделу 4 и приложению 3 настоящей методики.

Результаты статистической обработки измерений представлени в табл. 3.

После обработки экспериментальных данных для каждой температуры испытаний получаем зависимость:

$$\frac{\Delta m}{S} = C_m \left(\mathcal{C} - \mathcal{T}_{HK} \right) .$$

Козффициент Ст представляет собой усредненную скорость коррозии металла под покрытием для каждого режима испытаний.

После определсния $\it Cm$ получаем весть уравнений вида: для температуры 40 $^{\rm o}{\rm c}$

$$\frac{\Delta m_i^{mon}}{S} = 0,1126.10^{-4} (\mathcal{T}_i - \mathcal{T}_{H.K.});$$

$$\frac{\Delta m_i^{min}}{S} = 0,0903.10^{-4} (\mathcal{T}_i - \mathcal{T}_{H.K.});$$

$$\frac{\Delta m_i^{max}}{S} = 0.1404.10^{-4} (\mathcal{T}_i - \mathcal{T}_{HK}) ;$$

$$\frac{\Delta m_i^{min}}{S} = 0.1575.10^{-4} (\mathcal{T}_i - \mathcal{T}_{HK}) ;$$

для температуры 80 °С

$$\Delta m_i^{min} = 0,175.10^{-4} (\mathcal{T}_i - \mathcal{T}_{HK}) ;$$

$$\Delta m_i^{max} = 0,2375.10^{-4} (\mathcal{T}_i - \mathcal{T}_{HK}) .$$

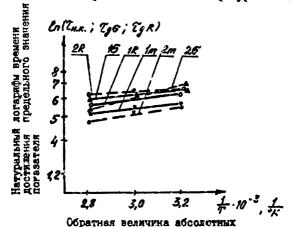
Из каждого уравнения определим $\mathcal{T}_{H.K.}$ при максимальном времени испытаний для каждого режима испытаний (см. табл. 4).

Определив $\mathcal{T}_{H.K.}$ для каждой температуры, строим зависимссть времени начала коррозии от температуры испытаний в координатах ($\mathcal{L}_{H.K.}$, $\frac{1}{\mathcal{T}}$) (см. рис. 5). Аналогично строим зависимость \mathcal{L}_{m} от температуры в тех же координатах (рис. 6).

Определяем время начала коррозии при температуре (20±2) °C. $ln \mathcal{T}_{H.K.}^{20} = 5,6 + \frac{5,6 - 4,825}{(2,8-3,2).10^{-3}}$. (3,2 - 3,4). $lo^3 = 5,9875$

$$ln T_{n\kappa}^{20} = 2,6003$$
 $T_{n\kappa} = 398,14$

Определим усредненную скорость коррозии Cm при температуре (20±2) 0 С (рис. 6). Cm^{20} равна 0,0485. 10^{-4} г/см 2 ч. Определим срок службы покрытия (T_{g}^{20}) при температуре эксплуатания:

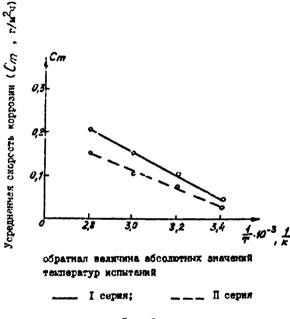

$$\mathcal{T}_g = \mathcal{T}_{H,K} + \frac{\Delta m_{max}}{5} cp \frac{1}{V} ,$$

где $\mathcal{T}_{H.K.}$ - время начала коррозии при температуре (2042) $^{\circ}$ C равно 398,I ч;

 $\frac{\Delta m_{max}}{5}$ максимальная потеря массы при разрушении покрытия, равная 45,41.10⁻⁴ г/см²;

V - усредненная скорость коррозии при температуре эксплуатации, равная 0,0485.10 $^{-4}$ г/с m^2 ч;

Зависимость срока службы покрытия от обратных значений температур испытаний


значений температур испытаний

I6; 26 — по изменению адгезионной прочности

I и 2 серия соответственно: IR; 2R — по
изменению омического сопротивления; Im; 2m —
по премени начале коррозии на металле

Pac. 5

Зависимость усредненной сисрости коррозии от обратных значений температур испытаний

Pmc. 6

$$\mathcal{I}_g = 398, I + \frac{45,41.10^{-4}}{0.0485.10^{-1}} = I334,394$$

Вводя поправку на толщину покрытия, получаем ориентирогочный срок службы покрытия:

$$T_{og} = \frac{1334,39}{24,385(150-50).10^{-4}} = 15,2 \text{ (года)}.$$

Рассчитав срок службы покрытия по 3 показателям противокоррозионных свойств, получаем:

Омичаское сопротивление покрытия достигает предельного значения через 9 лет, через 13.2 года наступает потеря адгезионных свойстя покрытий. Скорость коррозни металла под покрытиєм при температуре эксплуатации, равной 20 $^{\circ}$ C, достигает значения 0.05.1C 4 г/см 2 ч через 15.2 года.

Согласно п. 5.6. срок службы двухслойного покрытия ипатлевки ЭП-00-10 толщиной (150±10) мкм принимается равным 9 годам.

-			CONTARGE?:			arpeccus:	ил среда	- модельн	ый ре теор для ко	ррозисиных ислыг	гачий (л. 2.1	(3) 		
Ас ледуещья зистема вопрытий	like	A-80	Суюм энал толщина покрытия, мим	100 La3-	Flava 15Ha	HERE SHEEDSO	<u>сстезиония</u> грочность, 5 Н/м	erantela cs droute no conta arcequa conta pega for	Macca ofpecua, - m _{c,} f	Изменение жа; акт Сопротисление образца, Ом		MOTERA MOCCH A/7:0-3	(удельна) потеря	Korpos korpos P/ev IO
ī	!	2	, 3	1 4	1 5	1 6 !	7	1 6	1 9	t IO	TI TI	12	1 13	1 14
Dynroeta 11-00-10 Cepus	-	2	ISO ⁻¹⁵		0.12C5: 0.1216 0.1224 0.1225 0.1230 0.1231	(2.27;2.9; 3.0:3.15; 3.0:3.15; 3.5:3.7; 4.2:6)?	600.600, 610,619, 620	0	-	•	•	•	*	*
43 ⁰ C				40 ~2	0.1235 0.1237 0.1244 0.1246 0.1233	3,3.10	630,640, 650,656, 670							
				40 ⁻³	0,1233	3,5.10 ⁷	629	10	•	(1.15;1.2;1.7; 1.7;1.3;2.2; 2.3;2.5;3.2; 4.76)x:0 2.27.40	570,575,580 590,600,600 610,620,625 630), -); ;	-	-
				40 ⁻⁵	0,1233	3,5.10 ⁷	629	50	-	(1.6;2,6;2,9; 3.0;3,15;3,2; 4.70;5,6;5,2; 5.6)x10 ⁶	560,570,577 579,580,590 590,590,600	7 2. 5.	•	•
				40 ⁻⁷	0,1233	3,5.10 ⁷	629	100	-	(0.8:0.95:1.0; 1.46:1.2:1.3; x108 1,2.100), +),	•	•
				40-10 40-10	0,1233	3,6.IC ⁷	629	2:0	0.1205:0.1196: 0.1207:0.1210: 0.1201:0.1241: 0.1200:0.1211: 0.1192:0.1103	(0.97:1.02:1.2: [:5:1.5:1.6: [.6:1668)# #105), 4,64),	I,4 8,656 2,63	4,325
									0,1200	1,384.10	515			

I ! 2!	3 4	5	1 6	1 7 !	8	1 9	1 10 1	u i	12 :	13 1	14
	40= <u>H</u> 2	0,1233	3,5.10 ⁷	629	300	•	(0.87;0.98;1.1; 1.14;1.3;1.42)x 1.135.10 ³	450 .480 .500 .510 .520 .520 .590 .520 .590	•	-	-
	% -13	0,1233	3,5.10 ⁷	629	400	0.1095:0.1096; 0.100:0.1170; 0.100:0.1145; 0.1109:0.1115	(3.6:4.1;4.9; 6,0;6,2;7,8)x 10 ⁴	515,510,480,	II.5+ I2.7	23,28• 25,7	5,82. 6,425
						0,1012	5,4.104	426			
	3 -18	0,1233	3,5.10 ⁷	629	500	0 1011 0 1021 0 1016 0 1120 0 1026 0 1127 0 1032 0 1048	(0.9:1.2:1.35; 1.4:2.2:15)x	130,150,180, 220,250,250, 260,277,290, 350	I,75*	32,84+ 46,8	6,574 9,36
	_					0,1039	1,5.104	233			
Texmepetypa 60 ⁰ С	\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\\\\\\\\\\\\\\\\\\\\\\	0,1233	(5.6:6.0: 6.2:5:5: 6.2:5:5: 7:5:10) x	700,720,740 790,600,820 830,850,870,	10	•	(2.27;3,05;3,2; 4.2;1,5;5,27; 5.76;5,8)x 10?	620,635,684,710,720,730,760,775,781,785	•	-	•
	65.43 85.43		7,03.10	800	-		4,54.10	720			
	% -to	0,7233	7,08.10 ⁷		50	-	(0,66:1,43:1,56: 2,58:2,66:3,65: 4,02:4,14:1,12: 4,18)x10		-	-	-
			•				\$,92.10	6R3			
		0,1233	7,08.10 ⁷		100	-	(3.0:3.2:3.6: 3.0:4.3:4.6: 4.6:5.5;x	510,570,590, 630,700,706,	•	•	-
			_				4,1.10	6 31	•		
		0,1233	7,0e.10 ⁷		200	0.1200:0.1197: 0.1201:0.1193: 0.1195:0.1263	(1.4;1.6;1.75; 1.8;2.2;2.5; 2.71;2.92)x 10 ⁶	320,390,400 430,450,470	8,5	16,2	8,1
						0,1198	2,11.105	410	•		

3 1 4	5	1 6 1	7	1	ક	1 9	1 20	1 11	j	12 1	13	1 14	
	0,1233	7,08.10 ⁷			300	•			343. 481,	•	•	•	
	0,1233	7,08.10 ⁷			400	0.1122:0.1200: 0.1107:0.1096: 0.1112:0.1101:		_	318. 450	12,1	23,04	5,7	
		_				0,1122	4,95.10	329					
	0,1233	7,06.107			500	0.1105;0.1063; 0.1163;0.1207; 0.1076;0.1075	(0.8:0.95;1,1 1,2;1,4;1,51 x10	50.160 1 186.130 210	150 205	12,3	23,7	4,8	
						9111.0	1,16.10	183					
- ଧ୍ୟୁ ଅଧିକର ଅଧିକର	0,1233	(4,8;4,25; 4,9;4,95; 5;5,7;5,7; 5,65;5,94	800		10	•	(3,2;3,5;3,8; 1,0;4,25;4,3 5,09;5,29)x	661 (88 ; 779,522 691	743 875	-	-	-	
§6-6 20-7 20-7		5,3.10	•				4,27.10	780					
60-10 60-10					30	•	(2.7;2.9;3.0; 3.2;3.2;3.3; 3.44;3.65; 3.54;105	680,690, 720,725, 780	760 745	•	•	•	;
					50	•	(4,62;5,1;6,2 7,3)x10		(20. 731	•	-	•	
	0,1233				100	0.1079:0.1084: 0.1087:0.1099: 0.1101:0.1102		9) 430 500 521 57	510. 593	14 l3	22,1	2,7	,
						0,1092	1,43,105	521		•			
	0,1233	5,3.10 ⁷			20 0	0.0973:0.0973: 0.0975:0.1653: 0.1078:0.1073	(4,8;5 ₄ 2;6,4;	270,290 400,430	320 474	21033	4,1	2,1	
						0,1020	5,85x10 ⁴	364		-			
					300	-	(I.I:I.4:I.5; I.64)xI3	170.200 250.300	220,	,			
	3 1 4 1 1 2 7 4 5 9 7 7 4 5 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0,1233 0,1233 0,1233 0,1233 0,1233 80-1 80-5 80-5 80-5 80-6 90-10 0,1233	0,1233 7,08.10 ⁷ 0,1233 7,08.10 ⁷ 0,1233 7,06.10 ⁷ 0,1233 (4,8;4,25; 4,9;4,95; 5,075 5,95;5,94 5,075 5,95;5,95 5,075 5,95 5,95 5,95 5,075 5,95 5,95 5,95 5,075 5,95 5,95 5,95 5,95 5,95 5,95 5,95 5,	0,1233 7,08.10 ⁷ 0,1233 7,08.10 ⁷ 0,1233 7,06.10 ⁷ 0,1233 (4,8;4,85; 800 49;4,95;5,7;5,7;5,6;5,5,9†5,6) 0,1233 7,08.10 ⁷	0,1233 7,08.10 ⁷ 0,1233 7,08.10 ⁷ 0,1233 7,06.10 ⁷ 0,1233 (4.8;4.25; 600 4.9;4.95; 5.5;5.94 5.5;5.94 5.95) x10 ⁷ 0,1233 0,1233	0,1233 7,08.10 ⁷ 400 0,1233 7,08.10 ⁷ 500 0,1233 7,06.10 ⁷ 500 80 ⁻¹ 0,1233 (4,8;4,25; 800 10 80 ⁻² 5;5,15,7 80 ⁻³ 5;5,15,7 80 ⁻⁴ 5,95,810 5,3.70 0,1233 100 0,1233 5,3.10 ⁷ 200	0,1233 7,08.10 ⁷ 400 0,1122;0,1200; 0,1107;0,1096; 0,1116;0,1101; 0,1122 0,1233 7,06.10 ⁷ 500 0,1105;0,1063; 0,1076;0,1063; 0,1076;0,1063; 0,1076;0,1063; 0,1076;0,1063; 0,1076;0,1063; 0,1076;0,1063; 0,1082 0,1233 (4,8;4,25; 800 10 - 60-2 6,10,10,10,10,10,10,10,10,10,10,10,10,10,	0,1233 7,08.10 ⁷ 0,1233 7,08.10 ⁷ 400 0,1122 1,120 1,120 1,151 1,101	0,1233 7,08.10 ⁷ 300 - (3.5;4.2;5.4; 220.270 7,7;8.0)7.5; 533.430 7,08.10 ⁷ 400 0.1122;0.1200; 13.5;3.8;5.0; 170.2120; 0.1165;0.1101; x70 ⁴ 4.95.10 ⁴ 329 0,1233 7,06.10 ⁷ 500 0.1165;0.1207; 12.1; 4.1; 51] 166.10 ⁴ 183 0,1233 7,06.10 ⁷ 500 0.1165;0.1207; 12.1; 4.1; 51] 166.10 ⁴ 183 0,1233 (4.8;4.25; 600 10 - (3.2;3.5;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 600 10 - (3.2;3.3;3.8; 661 668 60	0,1233 7,08.10 ⁷ 300 - (3,5;4,2;5,4; 220,270,342, 57;7;8,05,5;5,5) 450,481, 7;7;8,05,5;5,5;5,5,5;5,5,5,5,5,5,5,5,5,5,5,5,	0,1233 7,08.10 ⁷ 300 - (3,5;4,2;5,4; 220,270,44), - 7,7;8,00 x 530, 430,481, - 7,7;8,00 x 530, - 1,7;8,00 x 53	0,1233 7,08.10 ⁷ 300 - (3,5;4,2;5,4; 220,270,343, 57;5;0;75; 539,430,481, 57;5;0;75; 539,430,481, 57;5;0;75; 539,430,481, 57;5;0;75; 539,430,481, 57;5;0;75; 539,430,481, 61,0 ³ 379 0,1233 7,08.10 ⁷ 400 0,112;0,1200; (3,5;3,6;5,0); 170,215,318, 12,1 23,04	0,1233 7,08,107 300 - (3,5;4,2;5,4; 220,270,143, 5,7;5,0;15,5; 53,430,481, 5,7;5,0;15,5; 53,430,481, 5,7;5,0;15,5; 53,430,481,

<u> </u>	2	1	3	1 4	1 5	1	6	7	1 8	1	9	1	10	1	II	1 I2 1	13	1 I4
					0,1233	5	,3.10 ⁷		250	0.0960 0.0940 0.1000	0.0870 0.0850 0.1020	(0.85	rios1,	41;	60,80,80, 100,110	, 29,3	56,3	16,1
										0,0	940	1,3	1.103		68	•		
ogina) i-co-io i-co-perype i-c	£	150)+15	40-I-2 40-2-2 40-2-3 40-2-4 40-2-5	0.1118 0.1119.2 0.1125 0.1121.2 0.1121.2	i;		640, (50, 670, 675, 680, 700, 640, 840, 850, 870				(3.1: 3.5: 5:51 6.74	3.2:3.3 17:56 ⁶⁷ 17:56 ⁶⁷ 31.10 ⁶	i: -				
				17-2-6 40-2-7	0,1119	I,	5.10	737										
				40-2-8 40-2-9					10						600, 610, 61 627, 627, 61 630, 639, 64 650	(5, - 28, 14,	-	•
				40-2-10	,										627			
									50		-	10.6	5.5:7.3 (0.5) 5:10.9)		560 569 5 610 524 6	90 - 10 27	~	•
													77.100		59 5			
									100		•	(1,2; 2,26 2,45	4;[.5 x105;	i	490 490 4 510 526 5 620 630 6	95 - 70 35	•	-
												1,0	36.10 ⁵		650			
					0,1119	1.	5.10 ⁷	737	200	0.10% 0.10% 0.1066 0.1066	0.1070	(0.5:0	.535)x 105	3	300 ,350 ,3 400 ,410 ,42 440 ,474	20 4 20	7,7	3,8
												1.	103		399			
									300		•	(7,2;1 12,4	3,3;9.0 :11.5 :8)x10 8.10 ⁴		230,265,3 230,245,3 370,470	20 - 50	•	-
					0,1319	,	5.10 ⁷	737	400	2 100	too				330		•	
					0,1114	1,	. o. 10	151	400	0.1030 0.1030 0.1031	0.1030 0.1030 0.1040;	4.4; xI	3.2:3,4 6;6,4)x		170,220,2 200,310,3	50 8,6 SU	16,5	4,
										2122		******	.104	_	265			

1 2 1 3	1 4 1	5	1 6 1	7	1 8	<u> </u>	1 IC	11 1	IS 1	I3	1 14
					500	0.1016:0.1014 0.1026:0.1024	(6,1;1,1;6,9) (6,1;0,1;6,9)	135;149;152	10,2	19,6	3,92
metepatypa Oč	60-1-2 60-2-2 60-3-2 60-4-2 60-6-2		(3.5:3.7 3.9:1.0 4.2:4.8 5.8:5.9 6.05:5.15) x10?		ucx.	0,1017	1,3.104	I57			
	60-6-2 60-7-2 60-8-2 30-9-2 60-10-2	0,1119	4,8x10'	73/	10	-	(3.2;3,7;3,9 4,3;4,6;4,67 5,9;7,8;0;7,76 5,9;7,8;0 4,67,10	610,617,620 633,680,630 639,710,715 735	-	-	-
					50	-	(1,2:1,3:1,45 1,6:1,7:1,8 1,85:1,89 1,9:1,98)	570,570,563 520,605,610 610,624,625 630	-	•	-
					100	•	I,67.10' (3,1;3,7;3,9 4,2;4,4;4,8 5,06;5,32) xIn ⁶	600 550,560,560 570,590,590 600,605,610 615	•	•	-
		0,119	4,8.10?		200	0.1000:0.1050 C.1055:0.1055 0.1055:0.1060 0.1100	4,31,10 ^d (0,98;1,5;1,4; 1,48;1,48; 1,78)x10 ⁸	585 460,490,540 570,665,615 645,673	€,5	12,6	6,25
					300	0,1054	1,48.10 ⁶ (5,2;3,9;4,2 5,4;6,1;7,32) x10 ⁶	575 460,480,500 500,510,520	•	•	-
					400	0.1010x3 0.1010;0,1023 0.1025	5,02.10 ⁵ (3.2:3.5:4.3 5,57;6;7,07) x10	500 400,420,440 454,464,474	10,2	10,2	4,8
						0,1015	4,94.IC ⁴	4/12			

1 1	2 1 3	1 4	1 5	161	7	3 1	1 9	1 10	I II I	12 1	13	1 14
			0,1119	4,8.10 ⁷		500	0.0998.2 0.0990.0 1002 0.1005.0 1006	(0.9:1.2:1.5 2.4:2.56)x	170,200,2 280,312,32	9,11	22,9	4,6
							0,1000	1,94.10	252			
Teumepatypa 80 °C		80-1-2 80-2-2 80-3-2	0.1120 0.1125	(3,2,3,25 3,5,4,6 5,5,5,5,6		10	-	(I,8;2,I;2,12 2,4x4;2,45 2,48;2,54) x10?	640,650,680 700±2,710 715,720,740	-	•	•
		80-4-2 80-5-2 80-6-2 80-7-2	0.0.1115 0.1121x4 0.1120	6.IxI0 ⁷ 4.3.I0 ⁷				2,31.10	700			
		80-6-2 80-9-2 80-70-2			737	30	•	(2.5;2.9;3.2 5;5;3;6;6;1) x10 ⁶	\$77,480,480 \$17,580,586	•	•	•
								4,36.105	527			
						50	•	(0,9:0,95;] 2:5:3:210 ⁸	300 - 300 - 410 420 - 370 - 410 564 - 660	•	•	-
				,				1,8.10	470			
			0,1120	4,3.10 ⁷	737	100	0 1070:0 1076 0 1085:0 1095 0 1098:0 1100	(2,2;2,6;2,72 2,0;2,8;3,1) ×108;3,1)		3,2	6,2	6,2
							0,1087	2,72.105	280			
			0.1120	4,3.10 ⁷	737	200	0 1020:0 1076 0 1075 0 0960 0 0976:0 0960	(7.3;7.8;8,5 9;11;12,2)5 ×10 ⁴	140;120;130	10,1	19,4	9,7
							0,1024	9,3.104	274			
						300	•	(6,22;6,92; 7,62;7,75;8,3 9,561x10	90,60,90 118,120,130	•	•	•
								7,73.10	103			
			0,1120	4,3.107	737	350	0.0870 0.0890 0.0920 0.0947 0.1015 0.1020	(1 5;1,8;2 2,20;2,6;3,0) x10	50,60,70,70 60,90	16,5	31,7	9,1
							0.0944	2,21.103	70			
	Зав. лаборат	орией				correcult, A.G						
	_											

Ответственный исполнитель Техния 2.Т.Родионова И.С.Лобалова

Табячна 3
Результаты статистической обработки измерений

Режим испытаний	!Темпера	ту-!Время	ис+	Знач	ение пром	туточных пар	еметров
CHCTEMA. IIK	ра испы ний,	та-! пытани С і ч	\bar{y}	5.	$S_{ar{g}}$	1 44 0000	$y = \bar{y} \pm \Delta y \rho a s b$
ī	! 2	1 3	! 4	1 5	1 6	1 7	1 8
серил	40°	HCX.	629	23,35	7,37	17	
		10	600	21,2	6,74	15,5	600±15,5
		50	586	17,2	5,45	12,5	586±12,5
		100	521	53,7	16,95	40	521+40
		200	515	42,6	14.2	34,8	515 <u>+</u> 35
		300	460	62,6	22,1	51	460 <u>+</u> 51
		400	426	45,4	14,3	32	426 <u>+</u> 32
		500	233	66,5	21	48	233 <u>+</u> 48
		nex.	800	62,5	19,9	45,8	800 <u>±</u> 45,8
	60 ⁰	10	720	54,5	17,35	40	720 <u>+</u> 40
		50	683	73	27,5	70,7	683 <u>+</u> 70,7
		100	63 I	74	30,2	77,6	631 <u>+</u> 77,6
		200	410	48,5	17,5	55,65	410+56
		300	379	III	42	107,94	379 <u>+</u> 108
		400	329	108	48,3	134	329±134

I	1	2	1	3	1	4	_!_	5	1	6	1	7	!	8	
			500)	183		24	1,2	9	9,9	27	,5		73+27,5	
	80°)	10)	780		82	2,9	29	9,3	71	,8	7	780 <u>+</u> 71,8	
			30)	720		54	1,5	ľ	7,35	40	,0	7	720 <u>+</u> 40	
			50)	63 I		74	1	3	0,2	77	,6	•	31 <u>+</u> 77,6	
			100)	521		53	3,7	I	5,9 5	40		:	521 <u>+</u> 40	
			200)	364		23	2,5	3	3,6	93	,4	:	364 <u>+</u> 93,4	
			300)	228		49	9,3	2	2	70		2	228 <u>+</u> 70	
			350)	83		19	9,3	1	B ,6	27	.3 5	8	38 <u>+</u> 27 , 35	
			Изме	энен	ив экті	ивного	o cor	против	лен	ия покр	RNTLL				
	40	•	10)	2,27	.107	1,0	075.IC	7	0,34.10	⁷ 0	,782.1	107	(2, <i>2</i> 7±0,782).10 ⁷	,
			50)	3,77	.10 ⁶	Ι,	29.10 ⁶	•	0,404.1	:0 ⁶ 0	,93.10	6	(3,77+0,93).10 ⁵	
			ICC)	1,2.1	10 ₆	0,2	286.10	5	0.101.1	06 0	,247.1	106	(1,2 <u>+</u> 0,247).10 ⁶	_

40°	10	2,27.107	1,075.107	0,34.107 0,782.107	(2,27±0,782).10 ⁷
	50	3,77.106	1,29.106	$0,404.10^6 0,93.10^6$	(3,77+0,93).105
	100	1,2.106	0,286.10 ⁵	0.101.106 0,247.106	(1,2 <u>+</u> 0,247).10 ⁶
	200	1,384.10 ⁵	0,279.10 ⁵	0,098.10 ⁵ 0,241.10 ⁵	(1,384±0,241).10 ⁵
	300	1,135.10 ⁵	0,2.10 ⁵	0,082.10 ⁵ 0,238.10 ⁵	(1,135±0,288).10 ⁵
	400	5,4.10 ⁴	1,55.10 ⁴	0,63.104 1,75.104	(5,4±1,75).10 ⁴
	500	1,5.10 ⁴	0,485.104	0,199.10 ⁴ 0,55.10 ⁴	(1,5 _± 0,55).10 ⁴
60 ⁰	10	4,54.10 ⁷	1,31.107	0,415.107 0,95.107	(4,54±0,95).10 ⁷
	50	2,92.107	3.36.107	1,06.107 2,58.107	(2,92+2,58).107

4
- 35

<u> </u>	1 3	! 4	! 5	! 6	! 7	! 8
	100	4,1.106	0,34.10 ⁶	0,395.10 ⁶	c,974.10 ⁶	(4,1±0,974).I0 ⁶
	200	2,11.10 ⁶	4,35.10 ⁶	0,9.10 ⁶	3,87.10 ⁶	(2,11 <u>+</u> 3,87). <u>10⁶</u>
	300	6.10 ⁴	1,45.104	0,515.10 ⁴	1,26.10 ⁴	(6 <u>1</u> 1,26).10 ⁴
	400	4,95.10 ⁴	1,266.104	2,005.10 ⁴	8,121.10 ⁴	(4,95 <u>+</u> 8,12).10 ⁴
	500	1,15.104	0,84.I0 ⁴	0,419.104	1,8.10 ⁴	(1.16 <u>+</u> 1,8).10 ⁴
80°	10	4,72.10 ⁷	0,71.10 ⁷	0,23.10 ⁷	0,53.10 ⁷	(4,27 <u>+</u> 0,53).10 ⁷
	30	3,22.10 ⁶	0,3.10 ⁶	0,094.I0 ⁶	0,216.10 ⁶	(3,22±0,216).10
	50		средне-			5,38.10 ⁵
	100		ари	фиотические		1,426.10 ⁵
	200			эни	Rинэри	5,85.10 ⁴
	300					1,41.10 ⁴
	350					1,31.10 ³
		1	оп эннноисоддої	тери массы		
-	MCX.	0,1233	1,9.10-3	0,613.10-8	I,3.10 ⁻³	0,1233 <u>+</u> 0,0019
•	200	0,1203	0,0007	0,0002	0,0003	0,1203±0,0003
40	400	0,1112	4,00026	0,0008	0,0025	0,1112±0,0025
	500	0,1040	0,0037	0,0015	0,0037	0,1040±0,0037
60	200	0,1197	0,0004	0,00015	0.0004	0,1197±0,0004
	400	0,1112	0,0032	0,0016	0,0027	0,1112+0,0027

I	1	2	1	3	1	4	1	5	!	6	1	7	1	8
			500		0,11	10	0,00	050	0,00	10	0,0	810	0,11	10+0,0018
	80		100		0,10	92	0,0	095	0,00	07	0,0	153	0,10	92±0,0153
			200		0,10	20	0,0	192	0,00	78	0,0	133	0,10	20±0,0133
			350		0,01	40	0,0	4I	0,01	84	0,0	312	0,09	40 <u>+</u> 0,0312

1	! 2	!	3 !	4 !	5 1	6 !	7 1 8
серия			и	Ізменение адгез	ионной прочноз	TH	
	400	исх	737	67,5	30,2	96	737 <u>+</u> 96
		10	627	15	4,76	II	627±11
		50	595	23	7,7	13,2	592±18,2
		100	550	71	23,6	55,7	550 <u>+</u> 55,7
		200	398	46	16,5	40,4	398±40,4
		300	330	54,5	19,3	47,3	330±47,3
		400	265	67,5	27,4	70,4	265+70,4
		500	157	21,2	8,65	24	157 <u>+</u> 24
	60°	MCX.	737	€7,5	30,2	96	737 <u>+</u> 96
		10	670	46	14,5	33,4	670 <u>+</u> 33,4
		50	600	20,0	6,95	15,98	600±16
		100	585	53,3	7	16,0	585±16
		200	575	17,2	5,45	12,5	575 <u>÷</u> 12,5
		30C	500	14	5,74	15,8	500 <u>+</u> 15,8
		400	442	26,3	10,75	29,5	442 <u>+</u> 29,5
		500	252	62	25,5	70	252 <u>+</u> 70
	80°	10	700	67,5	30,2	96	700±96
		30	526	37	11,7	27	526±27

I	! 2	2 1	3	!	4	1	5	1	6	!	7	1	8
		50		470		82,5		29,2		75		470±	75
		100		280		7,33		2,3		5,3	3	280±	5,33
		200		134		17,2		7,02		19,3		134±	19,3
		300		103		29		5,4		12,4	2	103±	12,4
		350		70		19,4		3,6		8,3		70 <u>±</u>	8,3
				Измен	нние а	ОТОН ВК Т Ж	сепро	тивления	вокр	ыткя			
	40°	10		4,31.	106	3,25.1	06	1,23.1	06	3,16	.10 ⁶	(4,3	1 <u>+</u> 3,16).10 ⁶
		50		8,77.	105	1,69.1	05	0,54.1	05	I ,24			7 <u>+</u> 1,24).10 ⁵
		100		1,86.	106	1,89.1	o ⁶	0,775.			45.10 ⁵		6 <u>+</u> 2,15)
		200		1.105	5	0,31.1	o ⁵	0,11.1	o ⁵	0,25	3.10 ³	(I±0	,258).10 ⁵
		300		9,98.		2,12.1	0^{4}	0,865		2,2.	104	(9,9	8±2,2).104
		100		4,4.	10 ⁴	3,29.1	04	1,62.1	04	6,97	.104	(4,9	±6,97).10 ⁴
		500		1,3.	104	0,334.	194	0,14.1	01-	0,34	3.10 ⁴	(1,3	±0,343).10 ⁴
	60 ³	10		4,67	107	0 925.		0,292.	107	0,6%	2.107	(4,6	7±0.672).10
		50		1,67	107	C,335.	107	0,106.	107	0,24	4.107	(1,6	7 <u>+</u> 0,244).10
		100		4,31	.10 ⁶	0,735.	106	0,234.		0,57	3.10 ⁶	(4,3	1±0,573).10
		200		1,48	.10 ^ô	1,47.1	06	0,655.		2,08			8 <u>+</u> 2,08).10 ⁶
		300		5,02	. 10 ⁵	1,54.1	.0 ⁵	0,63.1	05		. 10 ⁵	(5,0	2 <u>+</u> 1,54).10 ⁵

53

I	1	2	1	3	1	4	1	5	:	6	1	7	1	8
			400		4,94	.IC4	3,23	.104	1,62	.104	6,97	.104	(4,9	1+6,97).104
			500			1.104	0,93	.IO ⁴		6.10 ⁴	1,32	3.10 ⁴	(1,9	1 <u>+</u> 1,323).10 ⁴
	හ	:	10		2,31	.10 ⁷	0,39	8.10 ⁷		4.107	0,28	5.10 ⁷	(2,3	(±0,285).10 ⁷
			30		4,36	5.10 ⁶	1,3.	70 ⁶	0,41	.10 ⁶		3.10 ⁶	(4,3	⁶ 01.(1 4 ,0±
			50		1,3.			.10 ⁶	0,77	5. 10 ⁶	2,15	.106	(1,8	(2,15).10 ⁶
			100		2,72	2.10 ⁵	2,8	10 ⁵	0,75	.10 ⁵		5.10 ⁵	(2,7	2 <u>+</u> 2,085).10 ⁵
			200		9,3.	.10 ⁴	7,45	.10 ⁴	3,34	.10 ⁴	9,3.	104		₁ 9,3).10 ⁴
			300		7,73	3.10 ³	1,22	.10 ³	0,50	3.10 ³	1,29	. IU ³	(7,7	3±1,29).10 ³
			350			1.103		2.103	0,58	5. IO ³		6.10	(2,2	1 <u>+</u> 1,626).10 ³
						Коррози	OHHNE I	ютери м	ассы					
	400	•	исх.		0,11	119	3,23	.10-4	1,21	. 10 ⁻⁴	3,11	.10-4	0,11	19±0,0003
			200		0,10	79		5.10 ⁻⁴	4,95	.10-4	12,7	2.10-4	0,10	79±0,00I3
			400		0,10	33	8,1,	10-4	3,06	.10 ⁻⁴	7,86	.10-4	0,10	8000,0 <u>+</u> 8
			500		0,10	17	4,8.	IC ⁻⁴	1,99	.10-4	5,53	.10-4	0,10	17±0,0005
	60		200		0,10	54	29,	5.10-4	II.I	0-4	28,2	4.10-4	0,10	54 <u>±</u> 0,0028
			400		0,10)19	9,5	10-4	3,87	.10 ⁻⁴	10,7	6.10-4	0,10	1940,0011
			500		0,70	000	5,5	10-4	2,26	.10-4	5,81	.10-4	0,10	00±0,0006

I	 !	2	!	3	1	4	!	5	!	6	!	7	1	8
	മറ		100		0,10	087	12,6	.10-4	5,15	.10-4	13,2	1.10-4	0,10	087±0,0013
			200		0,10	810	52,9	.10-4	21,5	5.10 ⁻⁴	59,9	1.10-4	0,10	0300,04810
			350		0,09	954	64,5	.10-4	26,4	.10 ⁻⁴	73,4	. 10-4	0,09	954±0,0073

Pacuet коэффициентов α, β, β

Tenne- pary- pa sc- nur.	i	$ \epsilon_i $	6. 6	Ti	7,3	$ \tau_i^* $	5181	yi Ti	Уі ан	G _{ian}	Δ6;	ε, %	α	BB	•
I	1 2	1 3	1 4	! 5	1 6	1 7	1 8	1 9 1	10 1	II 1	12	1 13 1	14	15116	5
Серия															•
40°C	10	600	6 ,39 7I	100	I.10 ³	1.104	0,0610x x10 ²	0,0610.104	6,4825	653	-53	-8,8		+	
	50	536	6,3733	25.102	125.10 ³	625.10 ⁴	3,1867x xI0 ²	1,5933.104	6,3981	599	-13	-2,2	0,00217	0,000) !
	100	521	6,2539	1.104	1.106	1.108	6,254x	6,2639.10 ⁴	6,3009	545	-24	-4,6	0217	0,000001 375	8
	200	515	6,2442	4.104	8.106	16.108		24,9882×	6,1252	457	+58	+11,2		3	
	300	460	6,1302	9.104	27.108	81.108		x10 ⁴ 55,1718x	5,9169	394	+66	+14,3			
	400	426	6,0545	16.104	64.106	256.10 ⁸	xIO ² 24,22x	x10 ⁴ 92,872.10 ⁴	5,8562	335	+91	+21,4			
	500	233	5,4512	25.10 ⁴	126.10 ⁶	625.IO ⁸		136,28.104	5,7629	317,7	-84,	7 -36,3	3		
Σ	1560	,	42,9044	55,26x x10 ⁴	225.10 ⁶	979.IC ⁸	x10 ² 92,437x x10 ²	323 ₁ 223× ×10 ⁴	T_g^{I}	**0 = 78	194				

I	1 2	! 3	! 4	! 5	! 6	! 7	! 8 !	9 1	IO	! II !	12 !	13 !	14115116
€0°C	IO	720	6,5792	IOC	1.103	1.104	0,658.IO ²	0,0658x xI0 ⁴	6,4171	612	30I+	+15	
	50	683	6,5265	25.10 ²			3,263.10 ²	1,632.104					
	100	6 3 I	6,4314	1.104			6,43.10 ²		6,4495	631,13	+0,13	0	် င့်စုံ
	200	410	6,0162				12,03.10 ²	24,065x xI0 ⁴	6,3417	567,5	-157,5	5 3 8	,4051 ,000007616 ,001205
	300	379	5,93/5			807.16	17,812x x10 ²	53,43.10 ⁴		423,7	-44,7	-II,8	5 7616
	400	329	5,7961			256.10 ⁸	23,184x10 ²			289	+40	+12,1	
	5CC	163	5,2096	25.I0 ⁴	125.10 ⁶	625.10 ⁸	25,048.10 ²	130,24x x10 ⁴	5,1036	164,4	+18,€	+10,2	
Σi	560		42,496	55,24x x10 ⁴	225,126x x10 [©]	979.I0 ⁸	8,94.10 ³	3,086.106		₹ ^{[.60}]	634,19		
80°C	10	780	6,6594	1.102	1.10	1.10 ⁴	0,686.102	6,659.10 ²	6,6434		+12,6	+1,6	
	30	720	6,5792				1,971.102	59,21.10 ²	6,5622		+14	+1,95	
	50	631	6,4473	25.IO ²	125.10 ³	625.IO ⁴	3,22.13 ²	161 .8x x10 ²	6,4770		•	-2,71	9 ငှိ စ
	100	521	6,2557	1.104	1.106		6,26.10 ²	$6,26.10^4$			+4,6	+0,88	6816 000005 ,003042
	200	364	5,9244	4.10^{4}	8.10 ⁶	16.10 ⁸	11,85.10 ²	23,69.104	5,7136		+61	+16,76	£ 8
	300	223	5,4293	9.10 ⁴	27.10 ⁶		16,29.10 ²	48,8637x ×10 ⁴			+68	+29,8	

I	! 2	13	! 4	! 5	1 6	! 7	! 8	! 9 !	10	! II	: 12	! I3 !	14115:16
	35 0	38	4,4774	12,25x xI0 ⁴	42,9.10	6 150,15x xI0 ⁸	15,67.10 ²	54,85.10 ⁴	4,7244		+68	+29,82	
Σ	1040		41,772	27,6.10	[‡] 79,053x xIC ⁶	248,22x x10 ⁸	55,93.10 ²	1,36.10 ⁶		(g. 80)	432 4		
П	l.sr												
-		627	6,4411	1.102	1.103	1.10^{4}	0,644.102	0,0644.104	5,5973	732,8	-I05,8	-14,44	
	50	5-5	6,3386					1,597.104					
	100	550	6,3100	1.104	1.10 ⁶	1.10 ⁸	6,31.10 ²	6,31.10 ²	6,3192	554,3	-4,3	-0,775	
	200	3 98	5,9865	4.104	8.106	16.108	11,973x x10 ²	23,945.10 ⁴	6,0181	410,2	-II,8	-2,8	6287 00000 00313
	300	3 3 0	5,7991	9.10 ⁴	27.10 [©]	81.108	17,397x	52,19.104	5,7254	306,5	+23,5	+7,67	6287 ,000000422 ,003137
	400	265	5,5797	15.10 ⁴	64.10 ⁶	256.10 ⁸	x10 ² 22,319x x10 ²	89,27.10 ⁴	5,4411	230,7	+34,3	+14,87	
	500	157	5,0573	25.10 ⁴	125.106	625.10 ⁸	25,281x x10 ²	125,4.104	5,1632	175,2	-18,3	-10,44	
Σ	1560		41,7413	55,26x xI0 ⁴	225.10 ⁶	979.I0 ⁸		2,998.10 ⁶		G-10 6	920		
60°0	: 10	670	6,5074	1.102	1.103	1.10^4	0,65.10 ²	0,065.104	6,4092	606	+74	+II	
	50	600	6,3971	25.10 ²	125.10 ³	625.IO ⁴	3,198.10 ²	1,599.104	6,4358	629	-29	-4,8	

100	585	6,3717	1.104			6,372.10 ²			629	-44	-7	_
200	575	6,3545	4.10^{4}			12,71.10 ²			594	-I9	-II,3 _ L	_
300	500	6,2147	9.10^{4}	27.19 ⁶	81.10 ⁸	18,644.10 ²	55,93.10 ⁴	6,2272	50 6	-6	0,00006517 0,0009752 +12 -1,75	5,4
400	442	6,0830	$^{76.10^4}$	61.10 ⁶	256.10 ⁸	24,36.10 ²	97,424.I0 ⁴	5,9628	388,2	+52,7	+12	
500	252	5,5295				27,65.10 ²		5,5951	256,4	-4,4	-I,75 % 5	
∑ I560		43,4£39	55,26x xI0 ⁴	225,126x x10 ⁶	979. IO ⁸	93,58.10 ²	3,25.10 ⁶	Ğ, π	£ 769	Tg2 = 5	580 ₄	
80°C TO	700	6,5511	1.10 ²	1.103	1.104	0,65.10 ²	6,55.10 ²	7,1629	1288	-598	-84	
30	527	6,2672	9.102			1,88.10 ²				-513	-97,3	
50	470	6,1528	25.10 ²	125.10 ³	625.10^4	3,076.10 ²	153,82.10 ²	6,7414	847	-377	-80,2 6 6	.7
100	280	5,6349	1.10^{4}			5,635.10 ²	5,635.10 ⁴	6,2029	493,2	-213,2	-76 001038 -21 -21	38
200	134	4,8979	4.10^{4}	8.106	16.10 ⁸		19,59.104	5,0868	162	-28	-2I & & &	Ó
300	103	4,6347	9.10 ⁴	27.10 ⁶			41,71.104		50,2	+52,8	+51,4	
350	70	4,2628	25,25x xIO ⁴	*TOE	*108	14,9.10 ²		3,3150	27,2	+43,8	+61	
≥ 1040		38,40	27,6x xI0 ⁴	79,053x xI0 ⁴	248,22 xI0 ⁸	(4,985.I0 ³	121,3.104		7 90 3	2884		

8

I 1 2 1 3 1 4

5 !

6 !

7 !

! \$ 1

IO ! II ! I2 ! .3 !I4! I5!I6

Изменение активного сопротивления

i cepus	,												
40 ⁰ C	IO	~TO?						0,1694.104		-7A7	wtn ⁷		
	50	3,77x x10 ³	15,1426	25. 10 ²	125.10 ³	625.10 ⁴	7,571.10 ²	3,78.104	15,1478	3,78x x10 ⁶	-0,01x	-0,26	
	ICO	1,2x x 6	13,9980	1.104	1.106	1.109	13,998x x10 ²	13,998.104	14,3071	1,63x x10 ⁶	-0,43x xI0 ⁶	-0,26 -0,000,20 -35,83,000,20 -91,47	
	200	1,384x x10 ⁵	11,8382	4.104	8.106	15.108	23,676x 10 ²	47,353.10 ⁴	12,4901	2,65x xI0 ⁵	-1,26x x10 ⁵	-9I.47 6	
	300	xIO					xIO ²	104,749.104		xIO4	xIC		
	400	5,4x x10 ⁴	10,8969	16.104	64.10 ⁶	256.10 ⁹	43,580x x10 ²	174,35.104	10,3421	3,1x x10 ⁴	+2,3x ×10 ⁴	+42,59	
	500	1,5	9,6159	25.10 ⁴	125.106	625. 10 ⁸	48,079	240,397	10,0111		-0,7x xI0 ⁴	-46,67	
Σ	1560		90,07	55,261 x10 ⁴	225.104	979.108	1,735x xIO ⁴	5,85.10 ⁶	G _R ■	516,8			
60°C	10	4,54x ×10 ⁷	17,6334	1.102	1.103	1.104	I,763x xI0 ²	1,763.10 ³	17,8178	5,47x x10 ⁷	-0,93x xI0	-20,5	
	50	2,92x xIO	17,1899	25. IO ²	125.10 ³	625.IO ⁴	8,595.10	2 42,97.103	16,8368	2,05x x10 ⁷	+0,87x XIO	+29,8	

I ! 2	1 3 1 4 1	5 1	6 !	7!	8 !	9!	IO 1	II!	12 1	13 1	14!15!16
100	4,Ix I5,2267 xI0 ⁶	1.104	1.106	1.108	15,227.10 ²	15,23.10 ⁴	15,684	6,47x xI0 ⁶	-2,37x x10 ⁶	-57,8	J
200	2,IIx 14,5629 x10 ⁶	4.I0 ⁴	8.106	16.108	29,125.10 ²	58,25.10 ⁴	13,6361	3,32x · xI0 ⁵	+12,784 ×10 ⁶	+60,6	0,0
	5,998x II,033 xI0 ⁴						II,8996	x10 ⁵	xIO ⁵		86
	4,95x IQ,8990 xIO ⁴						10,5043	3,65x xI0 ⁴	+I ,3x ×I0 ⁴	+26,3	3
500	I,I6x 9,3589 xI0 ⁴	25.10 ⁴ 12	25.10 ⁶ (525. 10 ⁸	46,795.10 ²	234.10 ⁴	9,4408	1,29x x10 ⁴	-0,1x x10 ⁴	-8,62	:
≥ I560	95,813	55,26x 22 x10 ⁴ x	25, I26x I0 ⁶	979x x10 ⁸	1,78.104	5,86.10 ⁶	$T_{\mathcal{G}_R}^{7-6L}$	4494;	G _R = 1	5374	
80°C 10	4,27x 17,5698 x10 ⁷	1.102	1.103	1.104	1,757.10 ²	0,1757.104	16,5980	2.107	+2,27x ×10 ⁷	+53	
30	3,22x 14,9851 x10 ⁶	9.10 ²	27. IO ³	81.104	4,495.10 ²	1,3436.104	15,5042	5,86x xI0 ⁶	-2,6x xI0 ⁶	-82	607
5C	5,88x 13,2847 x10 ⁵	25.10 ² 1	25.10 ³ (625.10 ⁴	6,62.10 ²	6,6423.10 ⁴	14,4738	1,93x xI0 ^S	-1,33x 201x	-220	1761 0000992 0388
100	1,426x 11,8697 x10 ⁵	1.10 ⁴	1.1c ⁶	1.10 ⁸	11,869.10 ²	II,8697x xI0 ⁴	12,2881	2,2 <u>x</u> xI0 ⁵	-0,7742 x10 ⁵	c-54,3	, ,,

а	į
ā	į
•	

I	1 2		! 3	1		4	!	5		1 6	5	1	7	!	8	1	9	!	10	!	11	1	12	2 !	13	! I	4!15	! 16
	200		5,85x cI0 ⁴	I	0,	976	9	4.10	4	3.1	06		16. IC	3 21	,954.	. 10 ²	43,907	.10 ⁴	11,3	163	8,6 xIC	óx 4	-2, x)	8x 10 ⁴	17,	86		
	300	-	,41x :10 ⁴	ç	,5	539		9.10	4	27.!	:06	1	81.10 ⁸	3 28	,662.	. 102	85,98 5	.104	8,49	38	4,5 xIO	2		683 103	x +4	8,6	ı	
	350		,3Ix 10 ³	7	', I	779		2,25: 10 ⁴	X	42,9 xIO		I.	50, 15: 10 ⁸	c 25	,123	.102	87,9 29	. 104	8,74	3 I	6,3 x10			99x 10 ³	-3	80		
Σ :	1040			8	5,	42		6,6x 10 ⁴		79,05 ×10 ⁶	Зх	24 X	48, 15: 10 ⁸	c 10	,05.	103	2,378.	10 ⁶			Гġ́R	70 z	293,	,37√	;			
ери									•		_					•												
o ^o C	10		1,01x 10 ⁶	Ι	5,	2043	3	1.10	2	I.I	03		1.10	۱,	522.	102	0,1520	.104	14,1	775	I,4			,58x ენ	+64	,3		
	50		3,77x :10 ⁵	I	3,	6844	1 2	5.IO	2 ;	125.1	03	62	5.10 ⁴	6,	842.	102	3,421.	104	13,6	946	8,8 xIO	х 5		,03x :05	-0,	34	L _	H
	100		,95ж 10 ⁵	Ι	2,	1336	5	1.10	4	I.T	ინ		1.108	12	,133	.102	12,134	.104	13,2	047	5,4 xI0	K .		,56x 10 ⁵	-19]	0,00000	4,1874
																	46,052		12,2	3 35	2,0 xIO			,05x :0 ⁵	-IO	5	000000573	
	300	9	,98x :10 ⁴	I	I,	5109	9	9.10	4	27.1	06	8	1.108	34	,533.	.102	103 ₄ 59 x10 ⁴	8x	11,2	739	7,8 xI0	4		IIx 04	+21	,I		

1	!	2	! 3	1	4	!		5	!	6	1	7		8	3	!	9 !	10	1 1	Ι!	12		13	14	115!16
	40	0	4,4.	104	10	,692	Ι!	16.10	4	64.	106	256	.10 ⁸	42,7	768. I	02	171 67x x10 ⁴	10,3259	3,0 xI0		+I,3! ×I0	5x	+30	,68	-
	50	0	1,3.	IC4	9,	4727	2	25.10	4 I	25.	106	625	.10 ⁸	47,3	363.I	:0 ²	236 ₄ 82x x10 ⁴	9,3894	I,2		+0,I: xI0		+7,7	7	
Σ	156	O			84	,211	5	55,26: xIO ⁴		225, (10 ⁶		979	.10 ⁸	1,68	3.10 ⁴	1	5,882.10	$\mathcal{T}_{g_R}^{i}$	7-40 7, = 8	3 004	; G _{R2} =	, 16	302	4	
ec ^o c	I	0	4,67 xIO	x	17	,659	4	1.10	2	ı.	103	I	.10 ⁴	1,76	6.IC	2	0,1766x x10 ⁴	17,3894	3,4 xI0	'7	-I,2; xIO	Į Ix	-25	,93	
	5	Ю	I,67 xIO ⁷		16	.631	0 :	25.10	² 1	25.	103	625	×10 ⁴	8,31	5. IC		4,1578x x10 ⁴	16,8249	2,0 xI0	. 7	-0,30 xIO	•	-21	,6	
	10	Ю	4,31 x10 ⁸		15	,276	6	1.10	4	I.	106	I	.108	15,2	276.1		15,8053x x10 ⁴	15,8053	7,3 xI(-3,0 xIO	Ξ.	-69	_ا 6,	0,0
	20	0	I.48		17	,207	7	4.10	4	8.	106	16	.108	28,4	115.1	102	56,813x x10 ⁴	14,1470) I,3		+0,0°	9x	+6,0	8 2	5714 500005
	30	ю	5,02 xIO		13	3,126	5	9.10	4	27.	106	81	.10 ⁸	39,3	379.1	(0 ²	118,138x *10 ⁴	12,5964	3,9 xI0				+21	,3	389
	40	Ю	4,94 x10 ⁴		10	,807	7	16.10	4	64.	10 ⁶	256	.108	43,2	23.10	2	172,923x x10 ⁴	11,1536	6,6 xI		-2,0 xI0	4x	-4 I	,3	
	50	ю	I,94 xI0 ⁴		9,	,8731		25.10	4]	125.	106	625	.10 ⁸	49,	365.1	102	246 ₄ 827x x10 ⁴	9,8186	I,8		+0,I: xI0	A .	+5,	5	

I	1 2	! 3	!	4	!	5	1	ô	!	7	!	8	!	9 !	ΙO	1	H	!	1	2 !	13	! 14	115116
≥ 1	560		97	,592	55, xIO			5,12 06	6x 9	779.I	0 ⁸ I	,857.IC	6,	14.10 ⁶	G _{R,} =	2 6	559,6	674	, G	· 60	-2624	1,8	' ;
30°C	10	2,31x x10 ⁷	16	, 95II	I.	102	I	.103	3 1	.104	I,	695.IO ²	2 0,1	695.10 ⁴	16,035	55	9,2 xIO	x S	+Ι, xΙ		+60)	
	30	4,36x xIC ^S	15	,2666	9.	102	27	.103	81	.10 ⁴	4,	583.10 ²	2 1,3	749. IO ⁴	15,434	13	5,0 xI0	5x	-0, xI		-15,	,28	
	50	I,8x xI0 ⁶	14	,4035	25.	IC ²	125	.103	623	5.10 ⁴	7,	202.10 ²	² 3,6	6008.IO4	14,848	35	2,8 xI0		-I.	106	- 55,	,5	
	100	2,72x xIC ⁵	12	,5137	I.	104	I	.10 ⁶	3]	.10 ⁸	12 xI		12, xI0	5137x 4	13,449	9	6,9 xIO	2x	-4, xI	2x 0 ⁵	-154	4	, 6,0 6,0 6,0 7,0
	200	9,3x xI0 ⁴	II	,4403	4.	104	8	.:o [€]	16	5.10 ⁸		,881x 0 ²	45,	762.10 ⁴	10,930	9	5,50 x10	Эx	+3,	72x	+39,7	78	3417 00001877 03087
	300	7,73x xI0 ³	8,	9530	9.	104	27	.:0 ⁶	81	.10 ⁸	26 xI		80,	,577.10 ⁴	8,7874		6,5 xIO		+I, xI	2	+15,2	26	ω
	350	2,21x xI0 ³	7,	7068	12, xIO			.9x 06	150 x10	a TEx		,95 3 x	94, xIO	3348x 4	7,8516		2,5 xIO	3x	-0, xI		-16,	,7	
Σː	040		87,	24	26, x10			,05x 0 ⁶	x10		10	,268'x	2,3	8.10 [€]	FgR, = 4	IC5	;; '	ç	.ī81 GR. *	0 12:	38,65	òγ	

Показатель про-! тивокоррознон-	Гравнские тила Ј	= 3 + a Ti + B Ti		la on fore the cota not put la Tg										
HHX CEONCTS	€ 0°	€Ç°	80°	1 400	: 60 €	8CC	40°	i 60°	1 80°	120°C	покрытия			
I :	5	3	•	5	6	7	8	1 9	i Io	II	1 12			
ланноисэгда. Строн Роде Кицер I	\$\fam=6,50\p2-0,002177; \$\displayse\$\frac{1}{10}\tag{0.0001315}7;\$\frac{2}{10}\$	4. 6,4051.c.cg12037.	المروض	2 T 789	634,19	432	6.7508 6.6709	6,4088 6,4524	5,8861 6,0685	1156,2	16.43			
Д серия	40,00000 €27,5 40,00000 €27,5		4,7,2669-0,00103 -0,0000026 (\$50 \$50	580 (769)	288	-	6,3620	5,6630	1845,4	21			
. Активное сопротивление														
1 серия	412-16,6194-0,0256 40,00002-06-71	9;₀-18,0733-0,02555√; •0,00001557√;	96-17 1761-0.0558	ີ ່ 5 1 6.8	449	293,3	7 6,2477	6,1069	5,6918	781,65	8,9			
В серия	33200, 24 731, 11, 12, 12, 13, 14, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18				659,67	405	•	6,4908	6,0040	1300	14,8			
. Удельные кор- резмонные по-	2m *10,090,10* 1	3 - +0,1575.10 * (7- tre)	Δη ^π ο 175.10 °C-C) 280	268	9 I								
тери І серия	. (7 -4: .)) 5 -6.1404.10 -4 (Ti-Ta)	~		270	159								
	5 °C, CE63. D °C, -C	25 0.052.10 (Ti-Ci)	<u>∆min</u> 0,234,10 V; √,	J274.	263,5 (70)	124.3	5,6	5,57	4,825		15,2			
		Amail 3 =0.569.10-4 (Fi-Fac)			260,6	(yc) 136,9		• "	•					
	0 - 12-13-00 64 A	2 - 11-01-100 - 1-1 18C	Acb	.261	251,1	143,1		5 5,53	9,962	354,^	18,35			

Примечание: Іля (3) показателя в графах (5-10) представлени вначения времени начала коррозии под покрытием ($\mathcal{C}_{n,\kappa}$)

перечень

стандартов и ТУ, на которые даны ссылки в данном документе

FOCT 9.083-78	ЕСЭКС. Покрытия лакокрассчные. Методы ус-
	коренных испытаний на долговечность в жид-
	ких агрессивных средах
FOCT 13819-68	ЕСЭКС. Металям и сплавы. Десятибальная шка-
	ла коррозионной стойкости
FOCT 12.3.005-75	ССЕТ. Работы окрасочные. Общие требования
	безопасности
CH 245-7I	Санитарные нормы проектирования промышлен-
	ных предприятий
FOCT 8832-76	Материалы лакокрасочные. Методы получения
	жакокрасочного покрытия для испытаний
FOCT 24785-8I	Регуляторы температуры
ΓΟCT 7855-74	Машины разрывные и универсальные для ста-
	тических испытаний металлов
FOCT 11195-74	Микрометры настольного типа с ценой деле-
	ния 0,01 мм. Типи. Ссновные параметры. Тех-
	нические требования
FOCT 24104-80E	Весы лабораторные общего назначения и образ-
	повые. Общие технические условия
POCT 22281-76	Средства измерений электрических величин.
	Общие технические условия
FOCT 25336-82E	Посуда и оборудование лабораторные стеклян-
	ные. Типы. Основные параметры и размеры
FOCT 1770-74E	Посуда мерная лабораторная стеклянняя. Ци-
	линдры, мензурки, колбы. Технические усло-
	RNA

ΓΟCT 6709-72	Вода дистиллированная
FOCT 3210-77	Калылий сернокислый 2-водный
FOCT 4460-77	Кальций хлористый
FOCT 4209-77	Магний хлористый 6-водный
FOCT 4233-77	Натрий хлористый
FOCT 3134-78	Бензин - растворитель для лакокрасочной
	промышленности
FOCT 684-75	Стекло для фотографических пластин
FOCT 15140-78	Материалы лакокрисочные. Методы определе-
	ния адгезии
FOCT 2284-79	Лента хлоднокатанная из углеродистой кон-
	струкционной стали. Технические условия
OCT 39-099-79	Ингибиторы коррозии. Метод оценки эффек-
	тивности защитного действия ингибитора
	коррозии в нефтепромысловых сточных водах
FOCT 4165-78	Медь сернокислая 5-водная

СОДЕРЖАНИЕ

	Crp
І. Общие положения	3
2. Требования безопасности	5
3. Подготовка образцов и испытаниям и оценка их	
качества	7
4. Оценка противокоррозионных свойств покрытий	15
5. Оценка срока службы покрытий	23
Приложение І. План испытаний	26
Приложение 2. Форма протокола лабораторных испытаний	
систем покрытий для определения срока	
службы	27
Приложение 3. Определение необходимого числа образцов	
(справочное)	28
Приложение 4. Расчет массы фольги (справочное)	30
Приложение 5. Результаты статистической обработки	
измерений	3 2
Приложение 6. Расчет экспериментальных коэффициентов	
(справочное)	33
Приложение 7. Пример обработки экспериментальных данных	
по определению срока службы покрытия	
(справочное)	35
Перечень стандартов и ТУ	20

РУКОВОДЯЩИЙ ДОКУМЕНТ

методика

УСКОРЕННОЙ ОЦЕНКИ СРОКА СЛУЖЕЫ ПОЛИМЕРНЫХ ПОКРЫТИЙ ДЛЯ ЗАЩИТЫ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ОТ КОРРОЗИИ

РД 39-30-1093-84

450055, Уфа, просп. Октября, 144/3

Подписан в печать I3.02.66г. ПО I22I Формат 60x90 I/I6. Уч.-нзд.я., 3,5. Тираж I35 екз. Заказ 54

Ротапринт ВНИИСПТнефти