ИНСТРУКЦИЯ ПО ЗАЩИТЕ ГОРОДСКИХ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ ОТ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ

Разработана Академией коммунального хозяйства им. К. Д. Памфилова Утверждена ВО «Росстройгазификация» при Совете Министров РСФСР 6.12.89 г.

Часть 1. ОБЩИЕ ПОЛОЖЕНИЯ

Глава 1.1. ПОРЯДОК И ОРГАНИЗАЦИЯ ПРОВЕДЕНИЯ ЗАЩИТНЫХ МЕРОПРИЯТИЙ

- 1.1.1. Требования настоящей Инструкции должны учитываться и выполняться при проектировании, строительстве, реконструкции, эксплуатации и ремонте стальных трубопроводов (кроме теплопроводов), прокладываемых в пределах территории городов и других населенных пунктов, промышленных предприятий, а также газопроводов давлением газа до 1,2 МПа (12 кгс/см²) включительно, предназначенных для газоснабжения городов, населенных пунктов и промышленных предприятий, но прокладываемых вне их территорий.
- 1.1.2. Все подземные стальные трубопроводы должны быть защищены от почвенной коррозии, коррозии, вызываемой блуждающими токами, а для источников блуждающих токов должны быть предусмотрены мероприятия по ограничению токов утечки в соответствии с требованиями ГОСТ 9.602—89 «Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии» и настоящей Инструкции. Подземные стальные водопроводные трубы должны быть также защищены от внутренней коррозии в соответствии с требованиями, изложенными в ч. 8 настоящей Инструкции.
- 1.1.3. Мероприятия по защите от коррозии подземных трубопроводов осуществляют, как правило, организации и предприятия, в ведении которых находятся эти сооружения.
- 1.1.4. Мероприятия по ограничению утечки токов в землю осуществляют организации и предприятия, в ведении которых находятся действующие, реконструируемые и строящиеся сооружения, являющиеся источниками блуждающих токов.
- 1.1.5. Защиту подземных трубопроводов от коррозии в городах и населенных пунктах производят специализированные предприятия по защите от коррозии (конторы или предприятия «Подземметаллзащита», производственные управления «Антикор», специальные службы защиты, входящие в состав организации, эксплуатирующей данные трубопроводы и др.).

- 1.1.6. Основными задачами специализированных предприятий являются организация и выполнение по договорам работ по защите подземных металлических сооружений от почвенной коррозии и коррозии, вызываемой блуждающими токами, на территории области (края, республики).
- В основные функции специализированных предприятий входят: контроль коррозионного состояния подземных металлических сооружений и эксплуатация установок электрохимической защиты; разработка проектов электрохимической защиты отдельных участков эксплуатируемых подземных стальных трубопроводов; выполнение строительно-монтажных и пусконаладочных работ по устройству электрохимической защиты эксплуатируемых трубопроводов; выдача технических условий на проектирование электрохимической защиты.
- 1.1.7. Защита от коррозии подземных стальных трубопроводов осуществляется по проектам, составленным в соответствии с требованиями ГОСТ 9.002—89 и настоящей Инструкции.
- 1.1.8. Проекты защиты от коррозии подземных стальных трубопроводов должны разрабатываться одновременно с проектированием трубопроводов.
- 1.1.9. Проект защиты подземных трубопроводов от коррозии, как правило, разрабатывает организация, проектирующая трубопровод.
- 1.1.10. Проектирование электрохимической защиты действующих городских подземных сооружений осуществляется специализированными проектными институтами или предприятиями по защите от коррозии.
- 1.1.11. Мероприятия по защите от коррозии строящихся подземных трубопроводов, включение в работу устройств электрохимической защиты должны осуществляться до сдачи трубопроводов в эксплуатацию, но не позднее чем через 6 мес после укладки трубопроводов в грунт.

Для подземных стальных газопроводов электрохимическая защита должна быть введена в действие в зонах опасного влияния блуждающих токов не позднее одного месяца, а в остальных случаях не позднее 6 мес после укладки газопровода в грунт.

- 1.1.12. Строительство электрозащитных установок на действующих подземных сооружениях выполняют на основании утвержденных исполкомами городских Советов народных депутатов титулов строительных работ и графиков, согласованных с заказчиками.
- 1.1.13. Все строительно-монтажные работы по устройству средств защиты на строящихся подземных трубопроводах, как правило, должны выполнять строительно-монтажные организации, осуществляющие строительство трубопроводов. Пусконаладочные работы выполняют специализированные предприятия по защите от коррозии.
- 1.1.14. Строительно-монтажные работы по устройству средств защиты трубопроводов, находящихся в эксплуатации, выполняют строительно-монтажные организации, организации, эксплуатирующие данные сооружения, а также специализированные предприятия по защите от коррозии.
- 1.1.15. Вносить изменения в согласованные проекты без разрешения специализированного предприятия по защите от коррозии и проектной организации запрещается.

Коррозионная агрессивность грунта по отношению к углеродистой и низколегированной стали

Коррозионная агрессивность грунта	Удельное электрическое сопротивление грунта, Ом·м	Средняя плотность катодного тока i_{κ} при $E-E_{\kappa op}=100~{\rm mB/m^2},$ мА
Низкая	Свыше 50	До 0,05
Средняя	От 20 до 50	От 0,05 до 0,20
Высокая	До 20	Свыше 0,20

Глава 1.2. КРИТЕРИИ ОПАСНОСТИ КОРРОЗИИ ПОДЗЕМНЫХ СТАЛЬНЫХ ТРУБОПРОВОДОВ. СПОСОБЫ ЗАЩИТЫ ОТ КОРРОЗИИ

- 1.2.1. Критериями опасности коррозии подземных стальных трубопроводов являются: коррозионная агрессивность среды по отношению к металлу сооружения (почвенная коррозия), опасное воздействие постоянного и переменного блуждающих токов (коррозия блуждающими токами).
- 1.2.2. Коррозионная агрессивность грунта по отношению к стали характеризуется удельным электрическим сопротивлением грунта, определенным в полевых и лабораторных условиях, и средней плотностью катодного тока $i_{\rm k}$ при смещении потенциала E на 100 мВ отрицательней потенциала коррозии стали $E_{\rm kop}$ в грунте и оценивается по табл. 1. Если при определении одного из показателей установлена высокая коррозионная агрессивность грунта, находить другие показатели не требуется.
- 1.2.3. Опасным действием блуждающих токов на подземные стальные трубопроводы считается наличие знакопеременного (знакопеременная зона) или изменяющегося во времени положительного (анодная зона) смещения разности потенциалов между трубопроводом и электродом сравнения.

Примечание. Для вновь проектируемых трубопроводов опасным является наличие блуждающих токов в земле.

- 1.2.4. Опасность коррозии подземных трубопроводов блуждающими токами оценивают на основании электрических измерений.
- 1.2.5. Опасность коррозии стальных подземных трубопроводов при действии переменного тока характеризуется смещением среднего значения разности потенциалов между трубопроводом и медносульфатным электродом сравнения в отрицательную сторону не менее чем на 10 мВ по сравнению с разностью потенциалов, измеренной при отсутствии влияния переменного тока.
- 1.2.6. Защита подземных стальных трубопроводов от почвенной коррозии и коррозии, вызываемой блуждающими токами, может быть осуществлена путем изоляции трубопровода от контакта с окружающим грунтом и ограничения проникания блуждающих токов в трубопроводы из окружающей среды (рациональный выбор трасс прокладки трубопровода, применение различных типов изоляционных покрытий, использование специальных способов прокладки трубопроводов) и путем катодной поляризации металла трубопровода.
- 1.2.7. Подземные стальные трубопроводы, прокладываемые непосредственно в грунтах высокой коррозионной агрессивности, следует защи-

щать от почвенной коррозии защитными покрытиями и катодной поляризацией.

1.2.8. При защите от почвенной коррозии катодная поляризация подземных стальных трубопроводов (кроме трубопроводов, транспортирующих нагретые выше 20 °С жидкие или газообразные среды) должна осуществляться таким образом, чтобы значения поляризационных потенциалов металла находились в пределах от —0,85 до —1,1 В.

Примечание. При невозможности измерения поляризационных потенциалов (действующие стальные трубопроводы не оборудованы контрольно-измерительными пунктами для измерения поляризационных потенциалов либо с поверхности земли в зимний период) допускается осуществлять катодную поляризацию таким образом, чтобы значения разности потенциалов (включающие поляризационную и омическую составляющие) между трубой и медносульфатным электродом сравнения находились в пределах от —0,9 до —2,5 В.

- 1.2.9. Катодная поляризация подземных стальных трубопроводов, по которым транспортируются нагретые среды, должна осуществляться таким образом, чтобы поляризационные потенциалы стали находились в пределах от —0,95 до —1,15 В.
- 1.2.10. При защите от коррозии блуждающими токами катодная поляризация подземных стальных трубопроводов должна осуществляться таким образом, чтобы обеспечивалось отсутствие на сооружении анодных и знакопеременных зон.
- 1.2.11. При защите подземных стальных трубопроводов в грунтах высокой коррозионной агрессивности и одновременном опасном влиянии блуждающих токов средние значения поляризационных потенциалов или разности потенциалов должны находиться в пределах, указанных в пункте 1.2.8. При этом мгновенные значения потенциалов по абсолютной величине должны быть не менее значения стационарного потенциала, а при отсутствии возможности его определения не менее 0,7 В.
- 1.2.12. Защита стальных подземных трубопроводов от коррозии, вызываемой влиянием блуждающих токов электрифицированного на переменном токе транспорта, осуществляется в опасных зонах независимо от коррозионной активности грунтов путем катодной поляризации. Катодная поляризация должна выполняться в соответствии с пунктом 1.2.8.
- 1.2.13. Катодную поляризацию подземных стальных трубопроводов проводят так, чтобы исключить вредное влияние ее на соседние подземные металлические сооружения. Это влияние заключается в уменьшении абсолютного значения минимального или увеличении абсолютного значения максимального защитного потенциала на соседних металлических сооружениях, имеющих катодную поляризацию, а также в появлении опасности электрохимической коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты от нее.
- 1.2.14. В случаях, когда при осуществлении катодной поляризации нельзя избежать вредного влияния на соседние металлические сооружения, необходимо выполнять совместную защиту этих сооружений или применять другие меры, устраняющие влияние.

Часть 2. КОРРОЗИОННЫЕ ИЗМЕРЕНИЯ НА ПОДЗЕМНЫХ СТАЛЬНЫХ ТРУБОПРОВОДАХ

Глава 2.1. ОСНОВНЫЕ ВИДЫ ИЗМЕРЕНИЙ. ОРГАНИЗАЦИЯ ИЗМЕРИТЕЛЬНЫХ РАБОТ

- 2.1.1. Коррозионные измерения на подземных стальных трубопроводах выполняют с целью определения опасности электрохимической коррозии подземных трубопроводов и эффективности действия электрохимической защиты.
- 2.1.2. Коррозионные измерения на подземных трубопроводах подразделяются на проводимые при проектировании, при строительстве и при эксплуатации противокоррозионной защиты подземных стальных трубопроводов.
- 2.1.3. При проектировании защиты вновь сооружаемых подземных трубопроводов проводят коррозионные измерения с целью выявления участков трасс, опасных в отношении подземной коррозии. При этом определяют коррозионную агрессивность грунтов и наличие блуждающих токов в земле. Коррозионные измерения проводят, как правило, организации, разрабатывающие проект прокладки данного сооружения, или специализированные организации, проектирующие защитные противокоррозионные мероприятия для городских подземных сооружений.

Объем и состав коррозионных исследований при проектировании подземного трубопровода устанавливает организация, разрабатывающая проект (раздел) защиты от коррозии исходя из требований ГОСТ 9.602—89 и настоящей Инструкции.

2.1.4. При проектировании защиты уложенных в землю трубопроводов проводят коррозионные измерения с целью выявления участков трубопроводов, находящихся в зонах коррозионной опасности, вызванных агрессивностью грунта или влиянием блуждающих токов. При этом определяют коррозионную агрессивность грунтов и смещение разности потенциалов между трубопроводом и электродом сравнения.

Коррозионные измерения проводят организации, разрабатывающие проект защиты трубопроводов от электрохимической коррозии, а также организации, эксплуатирующие защитные устройства. Объем и состав коррозионных измерений устанавливаются исходя из требований ГОСТ 9.602—89 и настоящей Инструкции.

- 2.1.5. При строительстве подземных трубопроводов проводят две группы коррозионных измерений: при производстве изоляционно-укладочных
 работ и при работах, связанных с монтажом и наладкой электрохимической защиты. При монтажных работах и наладке электрохимической
 защиты измерения проводят с целью определения параметров установок
 электрохимической защиты и контроля эффективности их действия.
- 2.1.6. Коррозионные измерения при эксплуатации противокоррозионной защиты трубопроводов проводят с целью определения эффективности действия средств электрохимической защиты.
 - 2.1.7. На сети действующих трубопроводов измерение потенциалов

проводят в зонах действия средств электрозащиты подземных сооружений и в зонах влияния источников блуждающих токов — 2 раза в год, а также после каждого значительного изменения коррозионных условий (режима работы электрозащитных установок, системы электроснабжения электрифицированного транспорта, а также условий, связанных с развитием сети подземных сооружений и источников блуждающих токов, изменений удельного сопротивления грунта в результате его загрязнения). Результаты измерений фиксируют в картах-схемах подземных трубопроводов. В остальных случаях измерения проводят 1 раз в 2 года.

2.1.8. Для проведения периодических измерений все подземные коммуникации целесообразно делить по территориальным признакам на трассы (маршруты).

Примечание. Каждый маршрут должен иметь свой постоянный номер и может включать до 20—25 пунктов измерений потенциалов; местоположение пунктов измерений с указанием вида пункта (сифон, ввод, контрольно-измерительный и т. д.) записывают в форму 1-1 прил. 1. На каждый маршрут составляют общий эскиз с нанесенными пунктами измерений.

Глава 2.2. ПРИБОРЫ ДЛЯ КОРРОЗИОННЫХ ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНОЕ ОБОРУДОВАНИЕ

- 2.2.1. Удельное сопротивление грунта может быть определено с помощью специальных измерительных приборов М-416, Ф-416, МС-08 и ЭП-1М. Технические данные указанных приборов приведены в табл. 2.
- 2.2.2. Для измерения напряжения и тока при коррозионных измерениях используют показывающие и регистрирующие приборы. Применяют вольтметры с внутренним сопротивлением не менее 20 кОм на 1 В. Технические данные приборов, рекомендуемых для проведения коррозионных измерений, приведены в табл. 3.
- 2.2.3. При проведении коррозионных измерений наибольшее распространение получили неполяризующиеся медносульфатные электроды.
- 2.2.4. Медносульфатный неполяризующийся электрод ЭН-1 состоит из пористой керамической чашки и пластмассовой крышки, в которую ввинчивается медный стержень. В медном стержне сверху высверлено отверстие для присоединения вилки. Во внутреннюю полость электрода заливается насыщенный раствор медного купороса. Сопротивление электрода не более 200 Ом. Габаритные размеры электрода: высота 102, диаметр 94 мм; масса 0,35 кг. Электрод поставляют в футляре, в котором размещаются два электрода.
- 2.2.5. Неполяризующийся медносульфатный электрод сравнения HM-C3-58 (рис. 1) состоит из неметаллического сосуда 3 с деревянной пористой диафрагмой 6, крепящейся к сосуду с кольцом 4. В верхней части сосуда через резиновую пробку 1 проходит медный стержень 2, имеющий на наружном конце зажим (гайку с шайбами) для подключения соединительного провода.

Технические характеристики приборов, рекомендуемых для измерений сопротивления

					Условия эк	сплуатации		
Тип	Назначение			Питание	Температу- ра, °С	Относи- тельная влажность, %	Габаритные размеры, мм	Мас- ca, кг
M-416	Измерение сопротивления заземления и удельного сопротивления грунта		0—10; 0—50; 0—200; 0—1000	Автономное, от су- хих батарей типа 373	$-25 \div +60$	95 (при 35°C)	245×140×160	3
Ф-416	Измерение сопротивления заземляющих устройств, удельного сопротивления грунта, активных сопротивлений		0—5; 0—10; 0—100; 0—1000	От встроенного генератора с ручным приводом (частота вращения рукоятки генератора 120—145 мин ⁻¹)	- '	98 (при 30°С)	230×170×215	6
ЭП-ІМ	Измерение напряжения, тока, удельного сорротивления грунта		По напряжению 0,05—495 мВ; по току 0,5 · 10 ⁻³ —4,95 · 10 ³ A	От поляризатора и компенсатора	_	-	330×210×120	4,5
MC-08	Измерение сопротивления проводников, за- землений и удельного сопротивления грунта		0—10; 0—100; 0—1000	От встроенного генератора с ручным приводом		80 (при 30°C)	390×195×205	10,5

- 2.2.6. Переносный неполяризующийся медносульфатный электрод сравнения МЭП-АКХ состоит из пластмассового корпуса с пористым керамическим дном и навинчивающейся крышкой с впрессованным в нее медным электродом. Электрод выпускают с различной формой пористого дна плоской, конической или полусферической. Материалы, из которых изготовлены электроды МЭП-АКХ, и заливаемый в них электролит позволяют проводить измерения при температуре до —30 °С. Электролит состоит из насыщенного раствора CuSO₄ · 5H₂O в смеси из двух частей этиленгликоля и трех частей дистиллированной (деионизированной) воды. В теплое время года в этих электродах может быть использован обычный электролит из насыщенного раствора сульфата меди.
- 2.2.7. При использовании медносульфатных электродов необходимо проводить следующие работы:
- очистить медный стержень от загрязнений и окисных пленок либо механически (наждачной бумагой), либо травлением азотной кислотой. После протравки стержень тщательно промывают дистиллированной или кипяченой водой. Попадание кислот в сосуд электрода недопустимо;
- залить электрод насыщенным раствором чистого медного купороса в дистиллированной или кипяченой воде с добавлением кристаллов купороса. Заливать электроды следует за сутки до начала проведения измерения. После заливки все электроды установить в один сосуд (стеклянный или эмалированный) с насыщенным раствором медного купороса так, чтобы пористые пробки были полностью погружены в раствор. Верхние концы стержней соединить между собой проводом.
- 2.2.8. Стальные электроды применяют в качестве заземлителей и питающих электродов при измерении удельного сопротивления грунта, в качестве электрода сравнения при измерениях на рельсовых путях электрифицированного транспорта.

Стальной электрод представляет собой стержень длиной 30—35 см, диаметром 15—20 мм. Конец электрода, забиваемый в землю, заточен конусом. На расстоянии 5—8 см от верхнего конца электрод просверлен, и в отверстие запрессован болт с гайкой для подключения измерительных приборов. Перед проведением измерений поверхность металлических электродов должна быть зачищена до металлического блеска.

2.2.9. Неполяризующиеся медносульфатные электроды длительного действия с датчиком потенциала типов МЭСД-АКХ и ЭНЕС используют в качестве электродов сравнения при измерениях разности потенциалов между трубопроводом и землей, поляризационного потенциала стального трубопровода, защищаемого методом катодной поляризации, а также в системах автоматического регулирования режима работы установок электрохимической защиты.

Неполяризующийся медносульфатный электрод длительного действия с датчиком электрохимического потенциала МЭСД-АКХ (рис. 2) состоит из керамического корпуса, заполненного электролитом повышенной вязкости, стержня из красной меди марки М1-Т-КР7, установленного в электролите, датчика потенциала, соединительных проводников и предохранительной трубки длиной 1,5 м.

Технические характеристики приборов, рекомендуемых

	T		Пределы измерений			
Тип	Назначение	Класс точности		по напряжению,		
M-231	Измерение постоянного напряжения и тока	-	0,005—0—0,005; 0,05—0—0,05; 0,1—0—0,1; 1—0—1; 5—0—5; 10—0—10	0,075—0—0,075; 0,5—0—0,5; 1—0—1; 5—0—5; 10—0—10; 50—0—50; 100—0—100		
ву	Измерение постоянного напряжения и тока, эффективных значений переменного напряжения и тока, электрического сопротивления постоянному току		Постоянного тока: $0.3 \cdot 10^{-6}$; $1 \cdot 10^{-6}$; $10 \cdot 10^{-6}$; $100 \cdot 10^{-6}$; 0.001 ; 0.01 ; 1 Переменного тока: $3 \cdot 10^{-6}$; $100 \cdot 10^{-6}$; 0.001 ; 0.01 ; 1	пряжения: 0,01; 0,03; 0,1; 0,3; 1; 3; 10; 30; 100; 300; 3000		
Н-399	Измерение и регистрация тока и напряжения в цепях постоянного тока	1,5	пользуемым шун-	0,001; 0,005; 0,01; 0,025; 0,5; 0,075; 0,25; 1; 2,5; 5; 10; 25; 50; 100		
M-254	Измерение постоянного напряжения и тока	0,5	$1.5 \cdot 10^{-5};$ $3 \cdot 10^{-5};$ $6 \cdot 10^{-5};$ $1.5 \cdot 10^{-3};$ $6 \cdot 10^{-3};$ $15 \cdot 10^{-3};$ $15 \cdot 10^{-3};$	_		
Щ-1312 (цифровой электроиз- меритель- ный)	Измерение постоянного напряжения	_	- ·	1; 10; 100; 500		
укип-75	Измерение напря- жения и тока	2,5	0,5; 5; 10	0,6; 1,2; 3; 6; 12; 120		
Ф-431/2 (электрон- ный на транзисто- рах)	Измерение переменного тока и напряжения	2,5 на пре- делах измере- ния 0,05—4	$0.01 \cdot 10^{-3}$; $0.015 \cdot 10^{-3}$; $0.05 \cdot 10^{-3}$; $0.15 \cdot 10^{-3}$; $0.5 \cdot 10^{-3}$; $1.5 \cdot 10^{-3}$; $5 \cdot 10^{-3}$;	0,005; 0,03; 0,1; 0,3; 1,3; 10; 30; 100; 300		

ļ	Время	Условия э	ксплуатации	ļ		
Входное сопротивле- ние, Ом/В	успо- кое- ния стрел- ки, с	Темпера- тура, °С	Относи- тельная влажность, %	Габаритные размеры, мм	Mac- ca, кг	Питание
20 · 10³	3	-30 ÷ +40	90 (при 30°C)	180×178×94	1,5	
При постоян- ном напряже- нии: (1,4 ÷ 13) · 10 ⁶ При перемен- ном напряже- нии: (90 ÷ 200) · 10 ³	4	-30 ÷ +50	98 (при 35°C)	275×180× ×160	4,2	Автономное от элементо 373 «Марс»
10 · 10 ⁶ на пре- делах до 250 мВ; 2 · 10 ⁵ на пре- делах 1—100 В		0 ÷ 50	95 (при 30°C)	230×180× ×315	10	От сети и а то номное опреобразов телей П-
2·10 ⁴	4	-10÷+35	80 (при 30°C)	224×158× ×100	1,8	_
1 · 10 ⁶	_	10÷30	80 (при 30°C)	220×125× ×260	4,5	От сети пер менного то напряжени ем 220 В
_		5 ÷ 50	80 (при 30°C)	290×220× ×135	3,2	Автономное
1 · 10 ⁵ на пределах 0,005—0,1; 20 · 10 ³ на остальных	_	10—35	80 (при 30°C)	115×215× ×90	1,5	*

на остальных пределах изме-

рения

			Пределы	измерений
Тип	Назначение	Класс точности	по току, А	по напряжению, В
43312	Измерение постоян ного и переменного тока и напряжения	0	2·10 ⁻⁵ —1,0	Постоянного напряжения: 0,1—1000 Переменного напряжения: 0,2—1000 Поляризационного потенциала: 0,1—2
43313.1	То же		1 · 10 ⁻⁷ —20,0	Постоянного напряжения: 1 · 10 ⁻⁴ —200 Переменного напряжения: 1 · 10 ⁻³ —600 Поляризационного потенциала: 0,01—2,0
ЭВ 2234	Измерение постоянного тока и напряжения		0,00500,005; 0,0500,05; 0,1-00,1; 1-0-1; 10-010	0,5—0—0,5; 1—0—1; 5—0—5; 10—0—10; 50—0—50; 100—0—100

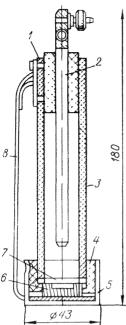
Датчик потенциала представляет собой стальную пластинку размером 25×25 мм и толщиной 1,5—2 мм. Датчик вмонтирован в гнездо, укрепленное на внешней цилиндрической поверхности электрода. Свободные концы соединительных проводников от медного стержня электрода и датчика припаяны к штекерам. Штекер от датчика на конце имеет косой срез.

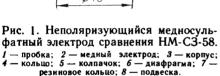
Основные параметры и размеры электрода МЭСД-АКХ следующие.

Переходное электрическое сопротивление электрод	a,
кОм, не более	. 10
Диаметр корпуса электрода, мм	$.120 \pm 10$
Высота корпуса электрода, мм	
Длина защитного кожуха (трубки) контактных провод	
ников электрода, мм, не менее	
Масса электрода, кг. не более	

Корпус электрода может быть заполнен электролитом, не замерзающим при температуре до $-40\,^{\circ}\text{C}$. Рецептура электролита приведена в табл. 4.

Электролит изготавливается в следующем порядке.


1. Желатин заливают $400\pm10~{\rm cm}^3$ дистиллированной воды и оставляют набухать на $50\pm10~{\rm muh}$ при температуре $20\pm5~{\rm ^{\circ}C}$.


	Время					
Входное сопротивле- ние, Ом/В	кое- ния стрел- ки, с	Темпера- тура, °С	Относи- тельная влажность, %	Габаритные размеры, мм	Мас- са, кг	Питание
1 · 10e	_	5—40	— 23	0×148× ×146	3	Автономное
1 · 10 ⁷		-10÷+40	-			От сети пере- менного тока и автономное

$$2\cdot 10^5$$
 3 $-30\div +50$ 90 $200\times 106\times$ 1,4 $-$ (при 30 °C) $\times 100$

- 2. Медь сернокислую помещают в эмалированную емкость, добавляют оставшееся количество дистиллированной воды и этиленгликоль и перемешивают до полного растворения сернокислой меди.
- 3. Массу, полученную по п. 1, нагревают в водяной бане, непрерывно помешивая, до 60 ± 2 °C, и, продолжая перемешивать, вливают в раствор, полученный по п. 2.
- 4. Полученную смесь нагревают при непрерывном перемешивании до температуры 70 ± 5 °C и продолжают перемешивать до получения однородной вязкой жидкости, но не менее 40 мин.
- 5. Приготовленный электролит заливают в корпус электрода при температуре 40—50 °C и закрывают горловину корпуса пробкой, заливают битумом.

Неполяризующийся медносульфатный электрод длительного действия ЭНЕС (рис. 3) состоит из пластмассового корпуса 8, заполненного в заводских условиях электролитом 9, незамерзающим при температуре окружающей среды до минус 40 °С, медного стержня 7, ионообменной мембраны 11, диафрагмы 12 из пористой керамики, предохранительной трубки 3 с проводниками 5 от медного стержня 7 и датчика потенциала 2.

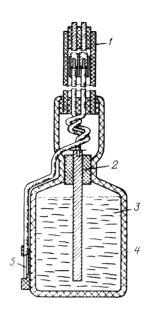


Рис. 2. Неполяризующийся электрод длительного действия с датчиком электрохимического потенциала МЭСД-АКХ.

1 — предохранительная трубка; 2 — медный стержень; 3 — электролит; 4 — керамический кортус; 5 — датчик электрохимического потенциала.

Датчик 2 представляет собой стальную пластинку размером 25×25 мм, вмонтированную в пластмассовое гнездо, закрепленное на корпусе электрода.

Основные параметры и размеры электрода ЭНЕС следующие.

Переходное электрическое сопротивление электрода,	
кОм, в пределах	$0.2 \div 15$
Потенциал по отношению к хлорсеребряному электроду	
ЭВЛ-1МЗ, мВ	
Диаметр корпуса внутренний, мм, не более	83
Количество электролита в корпусе, см ³	$290 \div 300$
Длина проводников, мм	2000
Масса электрода полная, кг, не более	1.0

Таблица 4
Рецептура и методика приготовления незамерзающего электролита
для заполнения электродов МЭСД

Обозначение документа	Наименование составной части, единица измерения	Величина
ΓΟCT 6709—72 ΓΟCT 4165—78* ΓΟCT 11293—78* ΓΟCT 19710—83Ε	Вода дистиллированная, см ³ Медь сернокислая хч или чда, г Желатин пищевой, г Этиленгликоль первого или высшего сорта, см ³	750 ± 10 250 ± 10 50 ± 1 450 ± 10

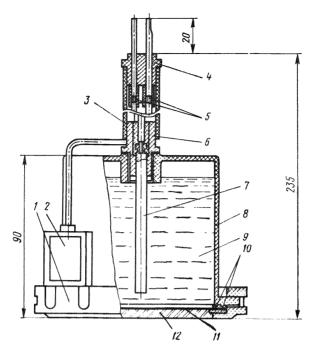


Рис. 3. Неполяризующийся электрод длительного действия с датчиком потенциала ЭНЕС.

1 — гайка; 2 — датчик потенциала; 3 — предохранительная трубка; 4 — пробка верхияя; 5 — проводники; 6 — пробка нижняя; 7 — стержень мерный; 8 — корпус; 9 — электролит; 10 — прокладки; 11 — мембрана; 12 — днафрагма.

2.2.10. Прерыватель тока ПТ-1 предназначен для автоматической коммутации цепей датчика—трубопровод и датчик—электрод сравнения при измерении поляризационных потенциалов трубопроводов, а также при определении коррозионной агрессивности грунтов по плотности катодного тока и при определении опасного действия блуждающих токов по полярности омического падения потенциалов.

Глава 2.3. МЕТОДИКА ПРОВЕДЕНИЯ ИЗМЕРИТЕЛЬНЫХ РАБОТ ПО ОПРЕДЕЛЕНИЮ ОПАСНОСТИ КОРРОЗИИ

Определение коррозионной агрессивности грунтов

2.3.1. Удельное электрическое сопротивление грунта определяют для выявления участков трассы прокладки трубопровода с высокой коррозионной агрессивностью грунта, требующей защиты от коррозии, а также для расчета катодной и протекторной защиты.

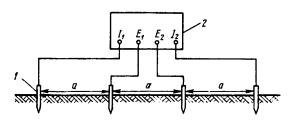


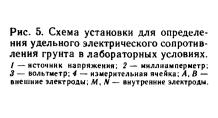
Рис. 4. Схема определения удельного сопротивления грунта.

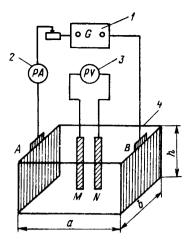
1 — электрод; 2 — прибор.

Удельное электрическое сопротивление грунта определяется в полевых и лабораторных условиях.

- 2.3.2. Удельное электрическое сопротивление грунта в полевых условиях определяют непосредственно на местности по трассе подземного трубопровода без отбора проб грунта. В качестве аппаратуры применяются измерители сопротивления типа Ф-416, М-416, МС-08. Допускаются другие приборы. В качестве электродов применяются стальные электроды длиной 250—350 мм и диаметром 15—20 мм.
- 2.3.3. Измерение электрического сопротивления грунта производят по четырехэлектродной схеме (рис. 4). Электроды размещают по одной линии, которая для проектируемого сооружения должна совпадать с осью трассы, а для уложенного в землю сооружения должна проходить перпендикулярно или параллельно этому сооружению на расстоянии 2—4 м от его оси. Измерения выполняют в период отсутствия промерзания грунтов на глубине заложения подземного сооружения, с интервалами 100—500 м. На действующей сети измерения проводят через каждые 100—200 м.

Глубина забивки электродов в грунт не должна быть более 1/20 расстояния между электродами.


2.3.4. Удельное электрическое сопротивление грунта ρ , Ом \cdot м, определяют по формуле


$$\rho = 2\pi Ra$$

где R — измеренное по прибору сопротивление, Ом; a — расстояние между электродами, принимаемое одинаковым.

Результаты измерений и расчетов заносят в протокол (форма 1-2а прил. 1).

- 2.3.5. Для определения удельного электрического сопротивления грунта в лабораторных условиях необходимо произвести отбор и обработку проб испытываемого грунта.
- 2.3.6. Методика отбора проб грунта заключается в следующем: пробы грунта отбирают в шурфах, скважинах и траншеях из слоев, расположенных на глубине прокладки сооружения с интервалами 50—200 м на расстоянии 0,5—0,7 м от боковой стенки трубы. Для пробы берут 1,5—2 кг грунта, удаляют твердые включения размером более 3 мм. Отобранную пробу помещают в полиэтиленовый пакет и снабжают паспортом, в котором указываются номера объекта, пробы, место и глубина отбора пробы.

2.3.7. Определение удельного электрического сопротивления грунта в лабораторных условиях проводится по четырехэлектродной схеме на постоянном или низкочастотном переменном токе. Принципиальная схема установки представлена на рис. 5. Установка включает источник регулируемого напряжения 1, миллиамперметр 2, вольтметр с внутренним сопротивлением не менее 10 МОм 3, измерительную ячейку 4, электроды A, B, M, N.

Ячейка прямоугольной формы из материала с диэлектрическими свойствами (стекло, фарфор, пластмасса и т. д.) или из стали с внутренней футеровкой изоляционным материалом. Внутренние размеры ячейки рекомендуются следующие: $a=100\,$ мм, $b=45\,$ мм, $h=45\,$ мм. Могут быть и другие произвольные размеры.

Внешние электроды \hat{A} и \hat{B} представляют собой прямоугольные пластины (из углеродистой или нержавеющей стали) с ножкой, к которой крепится или припаивается проводник — токоподвод. Размеры электродов 44×40 мм, где 40 — высота электрода. Одну сторону электродов, которая примыкает к торцевой поверхности ячейки, изолируют.

Внутренние электроды *М* и *N* изготавливают из медной проволоки или стержня диаметром 1—3 мм и длиной более высоты ячейки.

Отобранную пробу грунта смачивают дистиллированной водой до влагонасыщения, т. е. появления на поверхности непоглощенной влаги. Электроды A и B зачищают шкуркой шлифовальной (ГОСТ 6456—75) зернистостью 40 и меньше, обезжиривают ацетоном, промывают дистиллированной водой и устанавливают вплотную к торцовым поверхностям внутри ячейки. Засыпают ячейку грунтом на высоту меньше высоты ячейки на 4 мм. Электроды M и N, предварительно подготовленные так же, как и электроды A и B, устанавливают в грунт вертикально, опуская их до дна по центральной линии ячейки на расстоянии 50 мм друг от друга и 25 мм от торцевых стенок ячейки.

Электроды A и B подключают к источнику напряжения или тока. Устанавливают определенное значение силы тока I и измеряют падение напряжения U

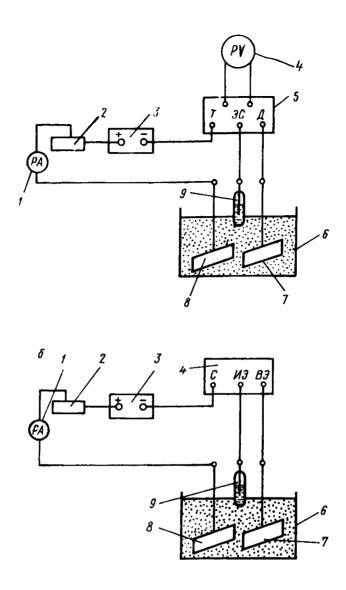


Рис. 6. Схема установки для определения плотности катодного тока.

1 — миллиамперметр; 2 — регулируемое сопротивление; 3 — источник напряжения; 4 — вольтметр; 5 — прерыватель тока; 6 — ячейка; 7 — рабочий электрод; 8 — вспомогательный электрод; 9 — электрод сравнения.

между электродами M и N. Измерения проводят при трех разных значениях силы тока ($I_1 < I_2 < I_3$, например $1 \cdot 10^{-3}$, $2 \cdot 10^{-3}$, $3 \cdot 10^{-3}$ A). При работе на постоянном токе меняют полярность электродов A и B и измерения повторяют. Сопротивление грунта рассчитывают по формуле $R_i = U_i/I_i$. Определяют среднее значение сопротивления грунта $R_{\rm cp} = \Sigma R_i/n$, где n — число измерений.

Примечание. В отсутствии тока разность потенциалов V_0 между электродами M и N может отличаться от нуля на 10— 30 мВ. При расчете тогда используют формулу $R_i = (U_i - U_0)/I_i$.

Удельное электрическое сопротивление грунта, Ом - м, определяют по формуле

 $\rho = R_{cp}(S/l)$

где S — площадь поверхности одной стороны электродов A (и B), м²; l расстояние между электродами M и N. м.

Для ячейки с приведенными выше размерами электродов А и В и расстоянием между электродами M и $N \rho = 3.5 \cdot 10^{-2} \cdot R_{cp}$, Ом · м.

Результаты заносят в протокол (форма 1-26 прил. 1).

2.3.8. Определение коррозионной агрессивности грунта по отношению к стали по плотности катодного тока при смещении потенциала на 100 мВ отрицательнее потенциала коррозии стали в грунте производится на специальной установке (рис. 6).

Установка включает источник напряжения постоянного тока 3. вольтметр 4 с внутренним сопротивлением 10 МОм, прерыватель тока 5 (рис. 6, а) или измерительный прибор, содержащий прерыватель тока, например 43312 (рис. 6, б), регулируемое сопротивление 2, миллиамперметр 1. ячейку 6, рабочий 7 и вспомогательный 8 электроды, электрод сравнения 9. Ячейка прямоугольной формы из материала, обладающего диэлектрическими свойствами (стекло, фарфор, пластмасса и т. д.) объемом от 0,5 до 1,0 л. Рекомендуемые внутренние размеры ячейки $70 \times 70 \times 100$ mm.

Рабочий электрод представляет собой прямоугольную пластину из стали толщиной 1,5-2 мм, размером 50 × 20 мм. Вспомогательный электрод из углеродистой стали, формой и размером такой же, как рабочий электрод. Электрод сравнения — насыщенный медносульфатный, хлорсеребряный и т. д.

Пробу грунта отбирают по пункту 2.3.6. Отобранную пробу загружают в ячейку, сохраняя ее естественную влажность. Если при хранении проб после их отбора возможно изменение естественной влажности грунта, то необходимо определять влажность отобранной пробы. Для определения влажности грунта отбирают часть пробы (массой несколько единиц или десятков граммов), подготовленной по пункту 2.3.6 и взвешивают (m_1) , затем ее высушивают при $t \le 105$ °C и снова взвешивают (m_2). Влажность определяют по формуле $W = [(m_1 - m_2)/m_2] \cdot 100\%$. Перед проведением исследования вновь определяют влажность пробы грунта. Если влажность уменьшилась, то ее доводят до естественной влажности с помощью дистиллированной воды.

На дно ячейки насыпают на высоту 20 мм грунт и уплотняют. Устанавливают вертикально напротив друг друга рабочий и вспомогательный электроды. Электроды должны быть обращены друг к другу рабочими поверхностями, расстояние между ними 2—3 см. Грунт постепенно насыпают и уплотняют его с усилением 3-4 кг, добиваясь максимально возможного уплотнения грунта по мере добавления каждой новой порции. Расстояние от верхней кромки рабочего электрода до поверхности грунта должно составлять 50 мм. Электрод сравнения устанавливают сверху ячейки в грунт, заглубляя его на 1,0-1,5 см.

Рабочий электрод выдерживают в грунте до включения поляризации 15-20 мин. Измеряют его потенциал, коррозии, т. е. разность потенциалов между рабочим электродом и электродом сравнения.

21

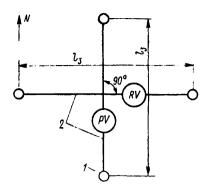


Рис. 7. Схема измерения для обнаружения блуждающих токов в земле.

1 — медносульфатные электроды; 2 — изолированные провода: 13 — расстояние между измерительными электродами.

Катодную поляризацию рабочего электрода осуществляют, подключая его к отрицательному полюсу источника тока, а вспомогательный электрод — к положительному. Потенциал рабочего электрода смещают на 100 мВ отрицательнее его потенциала коррозии.

Измеряют силу тока I_{κ} . Измерения выполняют несколько раз за период поляризации рабочего электрода при потенциале на 100 мВ отрицательнее потенциала коррозии, что позволяет определить характер изменения I_{κ} во времени. Последнее измеренное значение I_{κ} берут для определения среднего значения $I_{\kappa,cp}$. Если значение I_{κ} постоянно или уменьшается во времени, то длительность поляризации составляет 10—15 мин, в течение которых измеряют и записывают I_{κ} 3—4 раза. Если сила тока во времени растет, то измеряют и записывают I_{κ} 5—6 раз; длительность поляризации составляет 40 мин или тот промежуток времени, в течение которого плотность тока превысит 0,2 A/m^2 (что при рекомендуемом размере поверхности рабочего электрода S=10 см 2 соответствует силе тока 0,0002 A). Превышение силы тока над 0,0002 A характеризует высокую коррозионную агрессивность грунта.

Определение $I_{\mathbf{k}}$ выполняют для одного грунта не менее чем в трех ячейках и вычисляют среднее арифметическое значение силы катодного тока $I_{\mathbf{k} \times \mathbf{p}}$.

Плотность тока i_{κ} , A/M^2 , определяют по формуле

$$i_{\kappa} = I_{\kappa,cp}/S = I_{\kappa,cp}/0,001.$$

Результаты измерения заносят в протокол (форма 1-2в прил. 1).

Определение блуждающих токов в земле

2.3.9. Наличие блуждающих токов в земле на трассе проектируемого трубопровода определяют по результатам измерений разности потенциалов между проложенными в данном районе подземными металлическими сооружениями и землей.

- 2.3.10. При отсутствии подземных металлических сооружений наличие блуждающих токов в земле на трассе проектируемых трубопроводов следует определять, измеряя разность потенциалов между двумя точками земли через каждые 1000 м по двум взаимно перпендикулярным направлениям при разносе измерительных электродов на 100 м. Схема электрических измерений для обнаружения блуждающих токов в земле приведена на рис. 7.
- 2.3.11. При проведении измерения используют медносульфатные электроды сравнения, которые подбирают так, чтобы разность электродвижущей силы (э.д.с.) двух электродов не превышала 2 мВ.

В качестве вольтметра используют высокоомные показывающие или самопишущие приборы (M-23, ЭВ 2234 или H-399). Показания приборов рекомендуется отсчитывать через каждые 5—10 с в течение 10—15 мин в каждом пункте измерения.

- 2.3.12. Возможны два варианта расположения измерительных электродов на местности: параллельно будущей трассе сооружения, а затем перпендикулярно к оси трассы в соответствии со сторонами света. Второй вариант наиболее удобен в тех случаях, когда изучаются коррозионные условия целого района, а также при сложной трассе подземного сооружения.
- 2.3.13. При проведении измерений необходимо особенно внимательно следить за подключением клемм прибора.

Если одна из установок ориентирована по предполагаемой трассе трубопровода, то положительная клемма прибора должна подключаться к электроду, направленному в сторону начала трассы. Электроды, установленные перпендикулярно, следует подключать так, чтобы «нижний» электрод соединялся с положительной, а «верхний» — с отрицательной клеммой прибора. При расположении по второму варианту электроды, ориентированные на юг и запад, соединяют с положительными клеммами соединительных приборов, а на север и восток — с отрицательными.

2.3.14. Если измеряемая разность потенциалов устойчива, т. е. не изменяется по амплитуде и знаку, это указывает на наличие в земле токов почвенного происхождения либо токов от линии передачи постоянного тока по системе провод—земля.

Если измеряемая разность потенциалов имеет неустойчивый характер, т. е. изменяется по амплитуде и знаку или только по амплитуде, это указывает на наличие блуждающих токов от электрифицированного транспорта.

Определение опасного действия блуждающих токов на подземные трубопроводы

- 2.3.15. Опасное действие блуждающих токов на подземные трубопроводы определяется смещением разности потенциалов между трубопроводом и электродом сравнения.
- 2.3.16. Смещение разности потенциалов между трубопроводом и электродом сравнения определяется двумя методами.

Метод 1 — по разности между значением измеренного потенциала сооружения и значением его стационарного потенциала.

Метод 2 — по полярности омического падения потенциала между сооружением и специальным вспомогательным электродом сравнения.

- 2.3.17. При определении смещения разности потенциалов по методу 1 измерения выполняются в контрольно-измерительных пунктах, колодцах, шурфах и т. д. контактным методом с применением высокоомных регистрирующих или показывающих приборов. Положительную клемму измерительного прибора присоединяют к сооружению, отрицательную к электроду сравнения.
- 2.3.18. При проведении измерений на контрольно-измерительных пунктах соединительный провод от отрицательной клеммы вольтметра подключают к электроду сравнения контрольно-измерительных пунктов. В остальных случаях соединительный провод подключают к временному электроду сравнения.
- 2.3.19. Временные электроды сравнения устанавливают на минимальном расстоянии от трубопровода. Если электрод устанавливают на поверхности земли, то желательно поместить его над осью трубопровода. Если электрод устанавливают в колодце или камере, то располагают его на дне или в стенке на минимальном расстоянии от трубопровода.

В качестве электрода применяют неполяризующийся медносульфатный электрод сравнения.

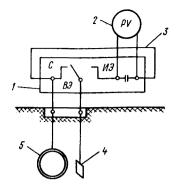
2.3.20. При измерениях в зоне влияния блуждающих токов трамвая с частотой движения 15—20 пар в 1 ч продолжительность измерения должна быть не менее 10-мин. Измерения необходимо производить в часы утренней или вечерней пиковой нагрузки электротранспорта.

При измерениях в зоне влияния блуждающих токов электрифицированных железных дорог период измерения должен охватывать пусковые моменты и время прохождения электропоездов в обе стороны между двумя ближайшими станциями (платформами).

2.3.21. В зоне действия блуждающих токов электрифицированного транспорта разность потенциалов между трубопроводом и землей рекомендуется измерять при помощи самопишущих приборов. Скорость движения диаграммной бумаги 180 или 600 мм/ч.

При подготовке к пуску самопишущего прибора на диаграммной бумаге указываются привязка пункта измерения (его номер или адрес), дата и время начала записи, тип электрода сравнения, регистрируемая величина (например, потенциал трубопровода по отношению к земле), заводской номер прибора, предел измерения, скорость движения диаграммной бумаги.

2.3.22. Разность между измеренным потенциалом сооружения и значением его стационарного потенциала определяется по формуле


$$\Delta U = U_{\rm \scriptscriptstyle H3M} - U_{\rm \scriptscriptstyle C},$$

где $U_{\text{нам}}$ — наименее отрицательная или наиболее положительная за период измерений мгновенная разность потенциалов между сооружением и медносульфатным электродом сравнения; U_{c} — стационарный потенциал сооружения.

Примечание. Стационарный потенциал — потенциал металлического сооружения, измеренный относительно электрода сравнения при отсутствии блуждающих токов, поляризации от внешних источников тока.

Рис. 8. Принципиальная схема определения полярности омического падения потенциала.

1 — прерыватель тока с запоминающей емкостью;
 2 — вольтметр;
 3 — перемычка между зажимами
 С и ИЗ (измерительный электрод);
 4 — вспомогательный электрод;
 5 — трубопровод.

При отсутствии возможности измерить U_c его значение принимается равным (относительно медносульфатного электрода сравнения) —0,70 В. Результаты измерений заносят в протокол (форма 1-3 прил. 1).

В тех случаях, когда наибольший размах колебаний потенциала сооружения, измеряемого относительно медносульфатного электрода сравнения (абсолютные значения разности потенциалов между наибольшим и наименьшим значением этого потенциала), не превышает 0,04 В, смещение потенциала не характеризует опасного действия блуждающих токов.

Действие блуждающих токов признается опасным при наличии за период измерений мгновенного положительного смещения потенциала.

2.3.23. Метод определения опасного действия блуждающих токов по полярности омического падения потенциала заключается в измерении разности потенциалов между трубопроводом и специальным электродом (ВЭ) в момент разрыва электрической цепи между трубопроводом и ВЭ (рис. 8).

Метод не применяется в тех случаях, когда размах колебаний потенциала трубопровода, измеряемого относительно медносульфатного электрода сравнения, не превышает 0,04 В.

Вспомогательный электрод представляет собой пластину квадратной формы из стали марки СтЗ размером 25 × 25 мм, толщиной 1,5—2 мм. К одной из сторон пластины припаивают изолированный проводник. Сторону крепления проводника изолируют эпоксидной смолой. Перед установкой ВЭ зачищают шкуркой шлифовальной (ГОСТ 6456—82) зернистостью 40 и меньше, обезжиривают ацетоном, промывают дистиллированной водой.

Для измерения разности потенциалов между трубопроводом и ВЭ могут быть использованы вольтметры с прерывателем тока (например, прибор типа 43313) либо прерыватель тока с запоминающей емкостью (например, типа ПТ-1) в комплекте с вольтметром с внутренним сопротивлением не менее 20 кОм на 1 В шкалы.

2.3.24. Для проведения измерений вспомогательный электрод (ВЭ) устанавливают в специальном шурфе, расположенном над трубопроводом (рис. 9). Место шурфа выбирают на участке трассы без дорожного покрытия.

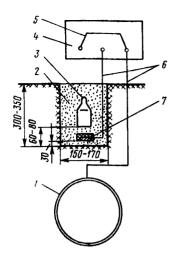


Рис. 9. Схема для определения полярности омического падения потенциала. 1 — трубопровод; 2 — шурф; 3 — груз; 4 — прибор для измерения поляризационных потенциалов или прерыватель тока с вольтметром; 5 — перемычка; 6 — контрольные проводники от трубопровода и вспомогательного электрода; 7 — вспомогательный электрода; 7 — вспомогательный электрода.

Подготовку шурфа и установку ВЭ производят в следующем порядке: в намеченном пункте измерений с помощью трассоискателя или по привязкам на плане трассы трубопровода определяют месторасположение трубопровода;

над трубопроводом делают шурф глубиной 300—350 мм и диаметром 150—170 мм.

Вспомогательный электрод устанавливают таким образом, чтобы его рабочая (неизолированная) поверхность была обращена к трубопроводу. Предварительно из взятой со дна шурфа части грунта, контактирующего с ВЭ, должны быть удалены твердые включения размером более 3 мм. Над ВЭ, как показано на рис. 8, устанавливают груз массой 0,8—1,0 кг. Электрод перед установкой подготавливают по пункту 2.3.29. При наличии атмосферных осадков предусматривают меры против увлажнения грунта и попадания влаги в шурф.

2.3.25. Измерения с использованием прибора, содержащего прерыватель тока, например типа 43313, выполняют в определенной последовательности:

включают прибор, устанавливают переключатели в положения, соответствующие режиму измерения поляризационного потенциала;

устанавливают переключатель диапазонов измерений в положение «2 V»;

присоединяют контрольный проводник от трубопровода к зажиму C, контрольный проводник от вспомогательного электрода — к зажиму $B\mathfrak{I}$, между зажимами C и $B\mathfrak{I}$ устанавливают перемычку.

Первые показания прибора снимают не ранее, чем через 10 мин после подключения к прибору контрольных проводников от трубопровода и ВЭ и установки перемычки. Снятие показаний прибора производят через каждые 5 с.

2.3.26. При использовании прерывателя тока, например типа ПТ-1, в комплекте с регистрирующим прибором, например типа Н-339, измерительные работы производят в такой последовательности:

присоединяют контрольные проводники от трубопровода и ВЭ соответственно к зажимам T и \mathcal{A} , между зажимами T и $\mathcal{A}C$ устанавливают перемычку, включают прерыватель тока;

устанавливают переключатель диапазона измерений в положение 0,25 В и скорость движения диаграммной бумаги, например 600 мм/ч, при замкнутых выводах прибора на диаграммной бумаге фиксируют нулевую линию в течение 1 мин;

к клеммам прерывателя тока «Прибор» подключают прибор H-339, при этом к клемме «+» подключают положительный вывод прибора, а к клемме «-» — отрицательный вывод. Показания прибора учитывают не ранее, чем через 10 мин после подключения к прибору контрольных проводников от трубопровода и ВЭ и перемычки.

При определении опасного действия блуждающих токов по полярности омического падения потенциала на трубопроводах в зоне влияния блуждающих токов трамвая продолжительность измерений должна быть не менее 10 мин. Измерения производят в часы утренней или вечерней пиковой нагрузки электротранспорта. В случаях прокладки трубопроводов в зоне влияния блуждающих токов электрифицированных железных дорог период измерений должен охватывать пусковые моменты и время прохождения электропоездов в обе стороны между двумя ближайшими станциями.

2.3.27. Для определения характера влияния блуждающих токов на подземные трубопроводы производят обработку результатов измерений по формуле

$$\Delta U = 0.03 - U_{\rm m}$$
, B,

где ΔU — омическое падение потенциала между трубопроводом и вспомогательным электродом, B; $U_{\rm II}$ — показания прибора 43313 (с учетом знака), B (при использовании прерывателя тока типа ПТ-1 в комплекте с прибором типа H-339 — максимальные по абсолютной величине отрицательные значения и минимальные по абсолютной величине положительные значения потенциала за период измерения).

Результаты измерений заносят в протокол (форма 1-3 прил. 1).

Если среди полученных значений ΔU имеются значения со знаком *+», то фиксируется наличие опасности коррозии.

По окончании измерительных работ и извлечении из шурфа ВЭ и груза шурф засыпают грунтом. В целях обеспечения повторных измерений в данном пункте на плане прокладки трубопровода делают соответствующие привязки.

2.3.28. Зоны опасного влияния переменного тока выявляют на участках стальных трубопроводов, на которых зафиксированы значения напряжения переменного тока между трубопроводом и землей, превышающие 0.3 В.

2.3.29. Измерение смещения потенциалов стальных трубопроводов, вызываемого переменным током, производят на вспомогательном электроде (ВЭ) относительно переносного насыщенного медносульфатного электрода сравнения (МЭС) до и после подключения ВЭ к трубопроводу через конденсатор емкостью 4 мкФ (рис. 10). Выполнение ВЭ и подготовка его к работе аналогичны описанным в пункте 2.3.25.

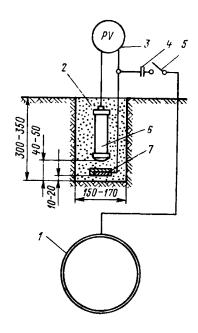


Рис. 10. Схема измерений смещения потенциала трубопровода.

1 — стальной трубопровод; 2 — шурф; 3 — вольтметр; 4 — конденсатор; 5 — выключатель; 6 — медносульфатный электрод сравнения; 7 — вспомогательный электрод.

ВЭ и МЭС устанавливают в специальном шурфе над трубопроводом. ВЭ устанавливают таким образом, чтобы его рабочая (неизолированная) поверхность была обращена к трубопроводу. Предварительно из части грунта, контактирующего с ВЭ, должны быть удалены твердые включения размером более 3 мм. Грунт над ВЭ утрамбовывают с усилием 3—4 кг на площадь ВЭ. При наличии атмосферных осадков предусматривают меры против попадания влаги в грунт.

Для измерения смещения потенциала собирают схему, приведенную на рис. 9, при разомкнутой цепи между ВЭ и трубопроводом. Вольтметр должен иметь входное сопротивление не менее 10 МОм (например, типа 43313).

Измерения выполняют в такой последовательности:

через 10 мин после установки ВЭ в грунт измеряют его стационарный потенциал относительно МЭС;

подключают ВЭ к трубопроводу и через 10 мин снимают первое показание вольтметра. Следующие показания снимают через каждые 5 с. Продолжительность измерения не менее 10 мин.

Результаты измерений заносят в протокол (форма 1-4 прил. 1).

Среднее значение смещения потенциала ВЭ за период измерений определяют по формуле

$$\Delta U_{\rm cp} = \frac{\sum_{i=1}^{m} U_i}{m} - U_{\rm c}, \text{ MB},$$

где $\sum_{i=1}^m U_i$ — сумма мгновенных значений потенциала ВЭ при подключении ВЭ к трубопроводу, мВ; U_c — стационарный потенциал ВЭ, мВ; m — общее число измерений.

Глава 2.4. КОНТРОЛЬ ЗАЩИЩЕННОСТИ ПОДЗЕМНЫХ СТАЛЬНЫХ ТРУБОПРОВОДОВ

- 2.4.1. Контроль защищенности подземных стальных трубопроводов производится по значению поляризационного потенциала или по значению разности потенциалов (включающей поляризационную и омическую составляющие) между трубопроводом и электродом сравнения.
- 2.4.2. Контроль защищенности подземных стальных трубопроводов по значению поляризационного потенциала производят в следующих случаях:
- при проведении проектно-изыскательских работ с целью получения исходных данных для проектирования средств электрохимической защиты методом опытного включения:
- в процессе проведения наладочных работ на установках электрохимической защиты;
- при проведении плановой проверки эффективности действия находящихся в эксплуатации средств электрохимической защиты.
- 2.4.3. Контроль эффективности электрохимической защиты подземных стальных трубопроводов должен производиться на стационарных контрольно-измерительных пунктах (КИП), оборудованных для измерения поляризационного потенциала медносульфатным электродом длительного действия с датчиком потенциала. Допускается оборудование КИП устройством, позволяющим использование переносного медносульфатного электрода сравнения.
- 2.4.4. На участках стальных трубопроводов, не оборудованных стационарными КИП, поляризационный потенциал может быть измерен с помощью переносного неполяризующегося медносульфатного электрода сравнения и датчика электрохимического потенциала (при наличии талого грунта на уровне установки датчика и дна электрода).

Методика измерения поляризационного потенциала стальных трубопроводов на стационарных КИП

2.4.5. Методика применима при прокладке трубопроводов в грунтах с удельным электрическим сопротивлением не более 150 Ом · м.

Поляризационный потенциал стальных трубопроводов измеряют на специально оборудованных контрольно-измерительных пунктах (КИП) двумя методами.

Метод 1 — при помощи стационарного медносульфатного электрода сравнения с датчиком электрохимического потенциала (рис. 11).

Метод 2 — при помощи переносного медносульфатного электрода сравнения и датчика электрохимического потенциала (рис. 12).

Датчик потенциала представляет собой стальную пластину размером 25×25 мм, изолированную с одной стороны и укрепленную этой стороной на электроде сравнения (рис. 11) или на специальной трубе из асбестоцемента диаметром 100-120 мм (рис. 12).

2.4.6. Для проведения измерений по методу 1 стационарный электрод с датчиком потенциала устанавливают на КИП так, чтобы дно корпуса

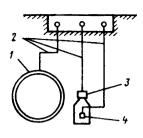


Рис. 11. Схема контрольно-измерительного пункта со стационарным электродом сравнения. 1 — трубопровод: 2 — контрольные проводники; 3 — медносульфатный электрод; 4 — датчик потенциала.

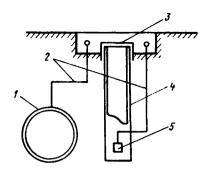
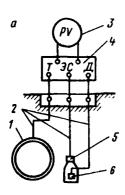


Рис. 12. Схема контрольно-измерительного пункта с переносным электродом сравнения.


1 — трубопровод;
 2 — контрольные проводники;
 3 — заглушка;
 4 — труба для установки переносного электрода сравнения;
 5 — датчик потенциала.

и датчик находились на уровне нижней образующей трубопровода и на расстоянии 50—100 мм от его боковой поверхности, при этом плоскость датчика должна быть перпендикулярна к оси трубопровода. Если трубопровод проложен выше уровня промерзания грунтов, то электрод длительного действия устанавливают таким образом, чтобы дно корпуса электрода находилось на 100—150 мм ниже максимальной глубины промерзания грунтов. Перед проведением измерений собирают схему по рис. 13.

- 2.4.7. Для проведения измерений по методу 2 трубу и датчик устанавливают так, чтобы нижний торец трубы и датчик находились на уровне нижней образующей трубопровода и на расстоянии 50—100 мм от его боковой поверхности, при этом плоскость датчика должна быть перпендикулярна к оси трубопровода. В трубу опускают укрепленный на специальной штанге электрод сравнения до соприкосновения с грунтом. Собирают схему по рис. 14.
- 2.4.8. Измерение поляризационных потенциалов проводят при помощи прерывателя тока (например, типа ПТ-1) и вольтметра или измерительного прибора, содержащего прерыватель тока (например, типа 43313).

Прерыватель тока обеспечивает попеременную коммутацию цепей «датчик—трубопровод» и «датчик—электрод сравнения». Продолжительность коммутации цепи «датчик—электрод сравнения» должна быть в пределах 0,2—0,5 мс, продолжительность коммутации цепи «датчик—трубопровод» — в пределах 5—10 мс. Вольтметр должен иметь входное сопротивление не менее 20 кОм/В и пределы измерения 1—0—1, 3—0—3. Допускается применение прерывателя с продолжительностью коммутации цепи «датчик—электрод сравнения» в пределах 20—30 мс, цепи «датчик—трубопровод» в пределах 0,5—2,0 с. Вольтметр должен иметь входное сопротивление не менее 10 мОм.

2.4.9. Измерение поляризационного потенциала при помощи прерывателя тока проводят следующим образом: к соответствующим клеммам

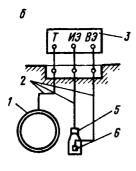
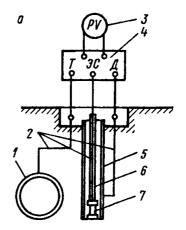



Рис. 13. Схема измерения поляризационного потенциала с использованием стационарного электрода сравнения. 1— трубопровод; 2— контрольные проводники; 3— вольтметр; 4— прерыватель тока; 5— медносульфатный электрод сравнения; 6— датчик потенциала.

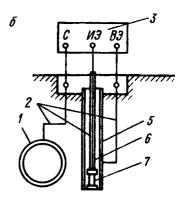
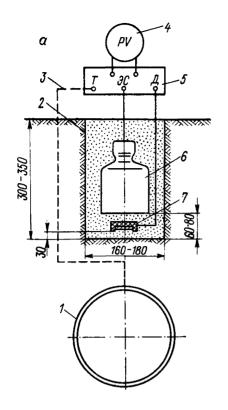


Рис. 14. Схема измерения поляризационного потенциала с использованием переносного электрода сравнения.


трубопровод;
 жонтрольные проводники;
 вольтметр;
 прерыватель тока;
 труба для установки электрода сравнения;
 стальная штанга;
 медносульфатный электрод сравнения.

прерывателя тока присоединяют контрольные проводники от трубопровода, датчика, электрода сравнения и вольтметр; включают прерыватель тока; через 10 мин после включения прерывателя тока измеряют потенциал через каждые 5 с.

2.4.10. Измерение поляризационного потенциала при помощи вольтметра с прерывателем тока проводят следующим образом: к соответствующим клеммам прибора присоединяют контрольные проводники от трубопровода, датчика и электрода сравнения; включают прибор; через 10 мин после включения прибора измеряют потенциалы через каждые 5 с.

Продолжительность измерений поляризационных потенциалов должна быть не менее 10 мин.

Результаты измерения заносят в протокол (форма 1-5).

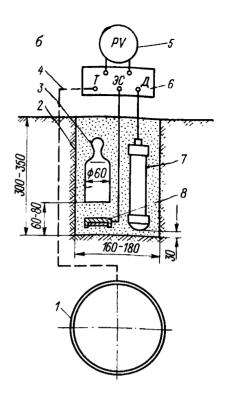


Рис. 15. Схема подключения приборов к нестационарному КИП. а: 1— трубопровод; 2— шурф; 3— контрольный проводник от трубопровода; 4— вольтметр; 5— прерыватель тока; 6— медносульфатный электрод; 7— датчик электрохимического потенциала. 6: 1— трубопровод; 2— шурф; 3— груз (латунь, сталь); 4— контрольный проводник от трубопровода; 5— вольтметр; 6— прерыватель тока; 7— электрод сравнения; 8— датчик электрохимического потенциала.

2.4.11. Среднее значение поляризационного потенциала ϕ_{ep} , определяется по формуле

$$\varphi_{\rm cp} = \frac{\sum_{i=1}^{m} \varphi_i}{m},$$

где $\sum_{i=1}^{m} \varphi_{i}$ — сумма мгновенных значений потенциалов за весь период измерений, В; m — общее число измерений.

Измерение поляризационного потенциала стальных трубопроводов на нестационарных КИП.

- 2.4.12. Для проведения измерений поляризационного потенциала на нестационарных КИП используют те же приборы и оборудование, что и на стационарных КИП. В качестве трассоискателя может быть использован аппарат типа АНПИ.
- 2.4.13. Датчик и электрод сравнения устанавливают в специальном шурфе глубиной 300—350 мм, расположенном над трубопроводом (рис. 15). В грунте не должно содержаться строительного мусора, шлака и других загрязнений.

- 2.4.14. Подготовку шурфа, установку датчика и электрода сравнения производят в следующем порядке:
- в назначенном пункте измерений поляризационного потенциала с помощью трассоискателя определяют месторасположение трубопровода;

над трубопроводом делают шурф глубиной 300—350 и диаметром 160—180 мм. Извлекаемый из шурфа грунт укладывают на полиэтиленовую пленку. Нижний слой грунта в шурфе толщиной около 100 мм после удаления из него включений крупнее 3 мм помещают в полиэтиленовый мешок:

на выровненное дно шурфа из полиэтиленового мешка насыпают слой грунта толщиной 30 мм. Затем укладывают датчик таким образом, чтобы его рабочая (неизолированная) поверхность была обращена к трубопроводу. Этим же грунтом засыпают датчик до отметки 60—80 мм от дна шурфа. Перед укладкой в грунт датчик электрохимического потенциала обезжиривают ацетоном, затем промывают чистой водой и протирают насухо чистой марлей;

устанавливают электрод сравнения по центру шурфа и засыпают его оставшимся грунтом до верхней отметки.

При наличии атмосферных осадков должны быть предусмотрены меры против увлажнения грунта и попадания влаги в шурф.

- 2.4.15. Для измерения поляризационного потенциала могут быть использованы переносные неполяризующиеся медносульфатные электроды сравнения, в частности типа МЭП-АКХ. В этих случаях над датчиком, как указано на рис. 14, 6, должен быть установлен груз массой 0,8 кг.
- 2.4.16. Датчик и электрод сравнения следует устанавливать на расстоянии не менее 3h от трубок гидравлических затворов, конденсатосборников и контрольных трубок (h расстояние от поверхности земли до верхней образующей трубопровода).
- 2.4.17. Для получения электрического контакта с трубопроводом контрольный проводник присоединяют к трубопроводу на любом доступном его участке (вводе в здание, сифонной трубке, КИП, колодце и т. д.). На участке от пункта присоединения контрольного проводника до пункта измерения на трубопроводе не должно быть фланцевых соединений, если на них не установлены электрические перемычки.
- 2.4.18. Измерение поляризационных потенциалов производят аналогично описанному в пунктах 2.4.7 и 2.4.10.
- 2.4.19. Среднее значение поляризационного потенциала определяют по пункту 2.4.11.
- 2.4.20. По окончании измерительных работ и извлечения из шурфа электрода и датчика шурф засыпают грунтом. В целях обеспечения возможности повторных измерений поляризационного потенциала в данной точке на плане прокладки трубопровода делают привязку пункта измерений.

Определение средних значений потенциалов подземных трубопроводов по отношению к электроду сравнения

2.4.21. При определении защищенности подземных сооружений по разности потенциалов между трубопроводом и медносульфатным электродом сравнения подсчет средних значений потенциалов производят по формуле

33

$$U_{\rm cp} = \frac{1}{n} \sum_{i=1}^n U_i,$$

где $\sum_{i=1}^{n} U_{i}$ — сумма мгновенных значений измеренной разности потенциалов; n — общее число отсчетов.

2.4.22. Данные, полученные в результате проведения измерительных работ по определению опасности коррозии стальных трубопроводов, по проверке эффективности их электрохимической защиты, после обработки заносят в сводный журнал измерений потенциала сооружения относительно земли (форма 1-6), а также фиксируют на картах-схемах подземных трубопроводов.

План трассы трубопровода рекомендуется обрабатывать следующим образом:

участки трубопроводов, на которых обнаружено опасное влияние блуждающих токов, окрашивают в красный цвет;

участки трубопроводов, проложенных в грунтах высокой коррозионной агрессивности, окрашивают в желтый цвет;

участки трубопроводов, на которых осуществляется электрохимическая защита, окрашивают в синий цвет.

На план трассы трубопровода наносят пункты измерений и около каждого пункта записывают значения измеренного защитного потенциала. При определении эффективности электрохимической защиты по поляризационному потенциалу рядом с цифрой ставится буква «П» (например, «—0,85П»);

участки трубопроводов, не требующих электрохимической защиты, окрашивают в зеленый цвет.

Часть 3. ИЗОЛЯЦИЯ ТРУБОПРОВОДОВ И РЕЗЕРВУАРОВ

Глава 3.1. ОБЩИЕ ПОЛОЖЕНИЯ

- 3.1.1. Все стальные трубопроводы и резервуары, укладываемые в грунт в пределах городов, населенных пунктов и территории промышленных предприятий, должны иметь защитные покрытия весьма усиленного типа в соответствии с требованиями действующих нормативно-технических документов и настоящей Инструкции.
- 3.1.2. В зависимости от используемых материалов полимерные защитные покрытия могут быть мастичные, экструдированные из расплава, оплавляемые на трубах из порошков, из липких или наклеиваемых на трубу лент.
- 3.1.3. Материалы для защитных покрытий должны удовлетворять требованиям нормативно-технической документации.
- 3.1.4. Вновь разрабатываемые материалы для защитных покрытий и их конструкции вводятся в практику строительства и ремонта трубопроводов в соответствии с требованиями нормативно-технической документа-

Структура защитных покрытий весьма усиленного типа на основе битумных мастик

Конструкция и материалы защитного покрытия	Толщина, мм, не менее			
	каждого слоя	общая		

Покрытия на основе битумно-атактической и битумно-резиновой мастики

Битумная грунтовка		
Битумная мастика	2,5—3	ì
Армирующая обмотка из стеклохолста	Не нормирована	ŀ
Битумная мастика	2,5—3	7,5—9,0
Армирующая обмотка из стеклохолста	Не нормирована	7,5—3,0
Битумная мастика	2,5—3	
Наружная обертка	В зависимости от материала	j
rapyment coopers		,

Покрытия на основе битумно-асбополимерной мастики

Битумная грунтовка Битумная мастика Армирующая обмотка из стеклохолста Битумная мастика	2,5 Не нормирована 2.5	
Армирующая обмотка из стеклохолста Битумная мастика Наружная обертка	Не нормирована 2,5 В зависимости от материала	7,5

Примечания. 1. В качестве материалов для наружной обертки следует применять бумагу мешочную (ГОСТ 2228—81), оберточную марки А (ГОСТ 8273—75*), бризол (ТУ 38-105-1819—88), пленку ПЭКОМ (ТУ 102-284—81), бикарул (ТУ 102-38—76).

2. Толщина одного слоя наружной обертки входит в общую толщину покрытия только

на основе битумно-атактической и битумно-резиновой мастик.

4. При изоляции труб диаметром до 150 мм битумно-атактической, битумно-резиновой мастиками допускается общая толщина покрытия не менее 7.5 мм.

ции, согласованной с головной организацией по защите от коррозии подземных металлических сооружений и утвержденной в установленном порядке.

3.1.5. Применение импортных материалов для защитных покрытий допускается по согласованию с головной организацией по защите от коррозии подземных металлических сооружений и с органами государственного надзора.

Технология нанесения защитных покрытий на основе импортных материалов должна точно соответствовать требованиям фирмы, выпускающей эти материалы.

3.1.6. Защитные покрытия на стальные трубы наносят механизированным способом в условиях производственных баз строительно-монтажных организаций или в трассовых условиях с использованием специальных механизмов.

^{3.} Допускается применение четырех слоев битумно-атактической или битумно-резиновой мастики с тремя слоями армирующей обмотки при соблюдении общей толщины покрытия не менее 9 мм.

^{5.} При применении вновь разработанных покрытий в соответствии с требованиями п. 3.1.4 допускается изменять как структуру, так и общую толщину покрытия в пределах, установленных нормативно-технической документацией на эти покрытия.

Структура защитных покрытий весьма усиленного типа на основе полимерных липких лент и полимерного рудонного материала «бутит»

Структура покрытия	Толщина, мм, не менее	
На основе полимерных	липких лент	
Грунтовка битумно-полимерная Липкая лента толщиной не менее 0,4 мм, 2—3 слоя Обертка защитная, один слой из рулонных материалов	0,05 1,2 В зависимости от материала	
На основе рулонного мат	ериала «бутит»	

Мастика бутилкаучуковая 0,05 Материал рулонный «бутит», 2 слоя 2,4 \pm 0,4 Обертка наружная, один слой из рулонных В зависимости от материала материалов

Примечания. 1. Для покрытий на основе полимерных липких лент в качестве материала для наружной обертки могут быть использованы: бризол (ТУ 38-105-1819—88), стеклорубероид (ГОСТ 15879—70), изол (ГОСТ 10296—79), пленка ПЭКОМ(ТУ 102-284—81), бикарул (ТУ 102-38—76). 2. Допускается применять покрытия другой структуры, обеспечивающие требуемую защиту по нормативно-технической документации.

Изоляционные работы на месте укладки трубопроводов и установки резервуаров допускается выполнять ручным способом при изоляции сварных стыков, мелких фасонных частей, исправлении повреждений покрытия, возникших при транспортировке резервуаров и труб в размере не более 10% от площади изоляции, а также при их капитальном ремонте.

- 3.1.7. Для обеспечения заданных свойств защитных покрытий на всех этапах строительно-монтажных работ по изоляции труб и резервуаров, прокладке и ремонту подземных сооружений проводится контроль нормируемых показателей качества покрытий.
- 3.1.8. Хранение и транспортировка изолированных труб, а также монтаж и укладка сооружений должны производиться в максимально сжатые сроки, в условиях, исключающих порчу защитных покрытий. При этом следует руководствоваться «Инструкцией по хранению, погрузке, транспортировке и разгрузке изолированных труб», помещенной в настоящем сборнике.

Глава 3.2. СТРУКТУРА ЗАЩИТНЫХ ПОКРЫТИЙ

- 3.2.1. Структура защитных покрытий весьма усиленного типа на основе битумных мастик приведена в табл. 5.
- 3.2.2. Структура защитных покрытий весьма усиленного типа на основе полимерных липких лент и из полимерного рулонного материала «бутит» приведена в табл. 6.
- 3.2.3. Структура защитных покрытий весьма усиленного типа из экструдированного и напыленного полиэтилена представлена в табл. 7.

Основа покрытия	Общая толщина, мм, не менее	
Адгезионный подслой Полиэтилен экструдированный на трубы	Не нормирована	
диаметром, мм: до 250 250—500 500 и выше	2,5 3,0 3,5	
Полиэтилен напыленный на трубы диаметром, мм:	-,-	
до 250 250—500 500 и выше	2,3 2,5 3,0	

Глава 3.3. МАСТИЧНЫЕ ПОКРЫТИЯ

Материалы для мастичных покрытий (грунтовки, мастика, армирующие и оберточные материалы)

- 3.3.1. Для приготовления битумных грунтовок используются нетоксичные нефтяные растворители, обеспечивающие быстрое высыхание грунтовки на металлической поверхности до «отлипа» и адгезию битумного покрытия к металлу.
- 3.3.2. Для приготовления битумной грунтовки нужное количество соответствующего битума расплавляют, обезвоживают и охлаждают до температуры 70 °C. Затем в бак наливают необходимое количество растворителя, в который (а не наоборот) при непрерывном перемешивании деревянной лопастью вливают небольшими порциями битум. Соотношение битума и растворителя должно быть 1:3 по объему или 1:2 по массе. Грунтовка считается готовой, если в ней после смешивания нет комков битума.
- 3.3.3. Приготовленные грунтовки могут храниться в герметически закрытой таре не более 10 сут. Перед заливкой грунтовок в грунтовочное устройство их обязательно перемешивают деревянной лопастью.
 - 3.3.4. Составы битумных мастик приведены в табл. 8.
- 3.3.5. Для повышения механической прочности покрытий из мастик в их конструкцию должны входить армирующие слои из стекловолокнистых материалов.
- 3.3.6. Для армирования защитных покрытий следует применять стеклохолсты марок ВВ-К (ТУ 21-33-43—79) и ВВ-Г (ТУ 21-23-44—79).
- Допускается применять стеклохолсты других марок (например, ПСМ-Т и ПСМ-К), соответствующих основным показателям, установленным в нормативно-технической документации на ВВ-К и ВВ-Г.
- 3.3.7. Слекловолокнистые холсты должны отвечать показателям, приведенным в табл. 9.

Составы битумных мастик

Мастика	Битум БНИ-IV (ГОСТ 9812—74) или БН-70/30 (ГОСТ 6617—76)	Атактический полипропилен (ТУ 6-05-131-2—83 или ТУ 6-05-1902—81)	Асбест хризотиловый (ГОСТ 12871—67*), сорт 7-й	Низкомолеку- лярный полиэтилен (ТУ 6-05-10—75) или ТУ 38302-116—76)
Битумно-	95	5	_	_
атактическая Битумно- асбополимерная	87—90		10—7	3

Примечание. Битумно-резиновая мастика изготавливается только в заводских условиях по Γ OCT 15836—79.

Изготовление мастик.

- 3.3.8. Битумные мастики по физико-механическим свойствам должны отвечать требованиям, указанным в табл. 10.
- 3.3.9. Для приготовления мастики битум освобождают от тары и кусками загружают в котел на 3/4 его вместимости. Перед загрузкой котел должен быть тщательно очищен. Загруженный битум нагревают при температуре 140—150 °C до полного расплавления.
- 3.3.10. В случае интенсивного вспенивания для его прекращения в битум добавляют низкомолекулярный силоксановый каучук СКТН-1 из расчета 2 г на 1 т массы или пеногаситель ПМС-200 в тех же пропорциях.
- 3.3.11. После полного обезвоживания при температуре 170—180 °C в битум при непрерывном перемешивании добавляют наполнитель.
- 3.3.12. Для получения однородной, без комков и сгустков, мастики необходимо интенсивное ее перемешивание в процессе изготовления, для чего котлы должны быть снабжены механическим перемешивающим устройством.
- 3.3.13. При применении в качестве наполнителя атактического полипропилена последний следует добавлять в расплавленный и обезвоженный битум порциями не более 10—15 кг или добавлять его в расплавленном виде.
- 3.3.14. При применении в качестве наполнителя асбеста и низкомолекулярного полиэтилена вначале в расплавленный и обезвоженный битум при температуре 170—180 °C вводят в нужном количестве асбест (порциями не более 15 кг). После получения однородной обезвоженной массы ее температуру снижают до 150 °C и в котел вводят низкомолекулярный полиэтилен кусками по 10—15 кг.
- 3.3.15. Готовые битумные мастики должны быть хорошо перемешаны, однородны и не иметь неперемешанных включений наполнителя.
- 3.3.16. В целях предупреждения коксования битумных мастик не следует держать их при температуре свыше 190 °C более 1 ч.

Примечание. Признаком начавшегося коксования битума является появление на поверхности расплавленной массы пузырей и зеленовато-желтого дымка.

Наименование показателя	Стеклохолсты			
	ПСМ-К	ПСМ-Т	ВВ-Г	вв-к
Толщина, мм	1,0		0.5 ± 0.1	0.5 ± 0.1
Разрывная на- грузка, Н	140	100	100	130
Гибкость, число изгибов	10	10	10	10
Содержание связующего, %	20			16—22
Устойчивость в горячем битуме (—160—170°С),	5	5		5
мин, не менее Характеристика волокна	Стекл. волокно, диаметр не более 16 мм, стекло марки СП-93		Нетканый материал из хаотич. стекл. волокон	Нетканый материал из хаотич. стекл. штап. волокон
Связующее	Мочевиноформальдегид КФ-17, ПВА дисп. марок ДФ-47/7С, ДФ-48/5С		Мочевинофор- мальдегид МФ-17, ПВА ДФ-48/4С, ДФ-47/7С	МФ-17, ПВА ДФ-47/7С ДФ-48/4С

Примечание. Ширина холста по согласованию с заказчиком может иметь другие размеры. Стекловолокнистые холсты ВВ-Г и ВВ-К должны быть неворсистыми и без складок. Намотка холста в рулоны должна быть плотной, ровной с торцов.

3.3.17. Температура готовой битумно-асбополимерной мастики в изоляционной ванне в процессе нанесения на трубы должна быть в зависимости от температуры наружного воздуха в пределах 150—170 °C.

Нанесение защитных покрытий на основе битумных мастик

3.3.18. Важнейшими условиями, определяющими эффективность защитного покрытия и продолжительность срока его службы, являются качественная очистка и грунтовка поверхности труб, а также соблюдение температурного режима в процессе изготовления мастики и нанесения ее на трубы. Толщина наносимого мастичного изоляционного слоя, сплошность и прилипаемость его, степень пропитки армирующей обмотки зависят от вязкости мастики, регулируемой изменением температуры в ванне в зависимости от температуры окружающей среды.

Основные требования к покрытиям на основе битумных мастик

Отсутствие пробоя при испытательном электрическом	
напряжении, кВ/мм толщины покрытий	4,0
Адгезия к стальной поверхности, кгс/см ² , при 25 °C	5,0
Переходное электрическое сопротивление после оконча-	·
ния строительства, Ом M^2 , не менее	$2 \cdot 10^{4}$

Мастика	Температура размягчения (ГОСТ 11506—73*), °С, не менее	Глубина проникновения иглы при 25°C (ГОСТ 11501—78*), 10 ⁻¹ мм, не менее	при 25 °C	Вспенивание
Битумно-атактическая (ТУ 204 РСФСР 1057—80)	80	14	1,5	Не допускается
Битумно-асбополимерная (ТУ 204 РСФСР 896—76)	75	14	2	То же

- 3.3.19. Поверхность изолируемых труб до нанесения грунтовки просушивают, очищают от грязи, ржавчины, неплотно сцепленной с металлом, окалины и пыли. После очистки поверхность металла должна оставаться шероховатой, обеспечивая совместно с грунтовкой достаточное сцепление защитного покрытия с трубой.
- 3.3.20. Трубы высушивают при помощи специальной проходной печи или в помещении естественной сушкой на стеллажах-накопителях.
- 3.3.21. Трубы очищают механическим способом с помощью вращающихся проволочных щеток или дробеструйным и дробеметным методами.

При проведении изоляционных работ на месте сооружения трубопроводов поверхности очищают специальными очистными машинами. Очистку поверхности фасонных частей и зоны сварных соединений производят вручную плоскими или вращающимися щетками.

- 3.3.22. Грунтовку наносят на сухую поверхность труб сразу после их очистки, на механизированных линиях с помощью специальной установки для нанесения грунтовки, а в полевых условиях с помощью кистей, мягкой ветоши и полотенец.
- 3.3.23. Слой грунтовки на поверхности труб должен быть ровным, без пропусков, сгустков и пузырей.

Грунтовка перед нанесением защитного покрытия должна быть высушена «до отлипа». Толщина высушенной грунтовки, как правило, не должна превышать 0,05 мм.

3.3.24. Нанесение покрытия на трубы должно производиться не позднее, чем через сутки после нанесения грунтовки.

При температуре воздуха выше 30 °C допускается снижение температуры битумной мастики до 140—150 °C.

- 3.3.25. Мастику наносят по периметру и длине трубы ровным слоем заданной толщины без пузырей и посторонних включений.
- 3.3.26. Слой армирующей обмотки из стеклохолста и наружная обертка из бумаги должны накладываться на горячую мастику по спирали с нахлестом и определенным натяжением, исключающим пустоты, морщины и складки и обеспечивающим непрерывность слоя и необходимую толщину защитного покрытия.
- 3.3.27. При нанесении защитных покрытий на трубы должны быть оставлены неизолированными концы труб длиной: 150—200 мм для труб диаметром 57—219 мм; 250—300 мм для труб диаметром 219 мм и более.

Глава 3.4. ПОЛИМЕРНЫЕ ПОКРЫТИЯ

Материалы для полимерных покрытий

- 3.4.1. Для изготовления защитных покрытий используются в соответствии с нормативно-технической документацией полимерные липкие ленты и грунтовки. Под полимерные липкие ленты используются полимерные ингибированные грунтовки (ТУ 102-340—83; ТУ УССР-88-264-58—90).
- 3.4.2. Типы полимерных липких лент для изготовления защитных покрытий трубопроводов и физико-механические свойства лент приведены в табл. 11.
- 3.4.3. Для защиты покрытий из полимерных липких лент от механических повреждений при транспортировке, укладке и засыпке трубопроводов в траншее следует предусматривать наружную обертку покрытия рулонными материалами (с прочностью не менее 2,5 кгс/см ширины полотнища).
- 3.4.4. В качестве рулонного материала на основе бутилкаучука используется полимерный гидроизоляционный материал «бутит» (ТУ 21 УССР-452—88). Основные свойства «бутита» следующие.

Условная прочность, МПа (кгс/см ²), не менее		.1,7 (17,0)
Относительное удлинение, %, не менее		. 100
Водопоглощение за 24 ч, мас.%, не более		. 0,15
Толщина, мм		$1,2\pm0,2$

Нанесение полимерных покрытий на трубы

- 3.4.5. Перед нанесением покрытий из полимерных липких лент или «бутита» поверхность изолируемых труб должна быть осушена, очищена так, как указано в пунктах 3.3.19—3.3.21. Основные требования к покрытиям из полимерных липких лент и «бутита» приведены в табл. 12.
- 3.4.6. Для нанесения на трубы покрытий из полимерных липких лент могут быть использованы: линии ГТБ-1, ГТБ-2 и ГТБ-3 после специальной переделки шпуль (для осуществления необходимого натяжения липкой ленты); изоляционные машины (специально выпускаемые для нанесения на трубы полимерных липких лент и защитных оберток механизированным способом в трассовых условиях), оборудованные четырьмя шпулями для изоляции труб диаметром 57—114 мм ПИЛ-1 и ПИЛ-2, диаметром 189—529 мм ИМ-23, ИМ-2A, ИМ-521, диаметром 631—1200 мм ИМ-17, ИМЛ-7М, ИМ-121, диаметром 1020—1420 м ИМ-1422.
- 3.4.7. Для получения покрытия весьма усиленного типа (три слоя полимерной липкой ленты и один слой обертки) используют две шпули изоляционной машины. С помощью одной шпули наносят полимерную ленту с нахлестом на 2/3, а второй шпулей (закрепленной под тем же углом и вынесенной от цевочного колеса на ширину рулона липкой ленты) наносят наружную обертку.
- 3.4.8. Для использования изоляционных машин, указанных в пункте 3.4.6, в стационарных условиях на высоте 0,8 м укрепляют базовую трубу того же диаметра, что и изолируемая.

Физико-механические свойства полимерных липких лент

Показатель	ПВХ-БК (ТУ 102-166—82)	ПИЛ (летняя) (ТУ 6-19-103—78)	ПВХ-Л (ТУ 102-320—86)
Цвет	Натуральный	Черный или синий	
Толщина ленты, мм	0.4 ± 0.05	0.4 ± 0.05	0.4 ± 0.05
Ширина ленты, мм	450 ± 10 ;	410 ± 10 ;	90 ± 10 ;
	$480 \pm 10;$ 500 ± 10	450 ± 10	$150 \pm 10;$
	300 ± 10		$450 \pm 10;$ 500 ± 10
Разрушающее на-	150	130	200
пряжение при растяжении, кгс/см²,		.00	200
не менее Относительное удли-	120	190	200
нение при разрыве, %, не менее	120	130	200
Слой клея на пластикате, г/м²	4070	Не норми	руется
Морозостойкость,	—50	30	—40
°С, не ниже Удельное объемное	$1\cdot 10^{11}$	1 · 1011	1 · 1011
электросопротивление при 20°C, Ом · см, не менее			

Примечание. В отдельных случаях заводы-изготовители выпускают полимерные липкие ленты по своим действующим техническим условиям (ТУ), иногда не совпадающим с приведенным номером ТУ на соответствующую ленту. В этом случае полимерную липкую ленту можно использовать для изоляции трубопроводов только при строгом соответствии технической характеристики на ленту, выпускаемую заводом, и технической характеристики ленты, представленной в таблице.

Один конец базовой трубы выступает консольно за опору на 1,5 м. На консоль базовой трубы с соблюдением мер предосторожности насаживают изоляционную машину и встык к этой трубе устанавливают очищенную и покрытую грунтовкой трубу, подлежащую изоляции; одним концом изолируемая труба опирается на деревянную пробку длиной 250 мм, вставленную в консоль базовой трубы, а другим концом — на опору высотой 0,8 м. Изоляционная машина холостым ходом с консоли перегоняется до противоположного конца изолируемой трубы, а обратным ходом изолирует ее, оставляя на обоих концах неизолированные участки длиной по 25—30 см.

- 3.4.9. Рулоны липкой ленты перед применением должны быть хорошо отторцованы, для чего на торцах должны быть срезаны неровности и выступающий клей. Телескопические сдвиги слоев необходимо устранить перед торцовкой. Для этого рулоны устанавливают вертикально на ровной твердой поверхности, нажимая на них сверху.
- 3.4.10. Изоляционную машину перед нанесением липких лент необходимо отрегулировать по диаметру изолируемого трубопровода, ширине и величине нахлеста. Для обеспечения равномерной и ровной укладки витков ленты шпули должны обеспечивать торможение, создающее необходимое натяжение ленты (около 1 кгс/см ее ширины).

Основные требования к покрытиям из полимерных липких лент и «бутита»

Показатель	Ленточное покрытие	Покрытие из «бутитах	
Отсутствие пробоя при испытательном электри- ческом напряжении, кВ/мм толщины покрытия	5	5	
Адгезия к стальной поверхности, Н/см	5	10	
Переходное электрическое сопротивление после окончания строительства, Ом м², не менее	5 · 104	5 · 10 ⁴	
Число слоев материала в покрытии	2-3	2	
Толщина покрытия (без учета обертки), мм, не менее	1,2	2,0	

- 3.4.11. Последний и первый виток ленты на конце рулона следует всегда наносить без натяжения. Для этого из рулона надо размотать немного ленты и конец ее свободно наложить на трубу.
- 3.4.12. При нанесении липких лент любым способом следят за тем, чтобы строго соблюдалась нахлестка витков и на покрытии не образовывалось складок, морщин и пузырей. При обнаружении дефектов ленту надо снять с трубопровода и, устранив дефект, намотать вновь; воздушные прослойки между трубой и полимерной лентой допускаются лишь в зоне сварных швов.
- 3.4.13. Для изоляции труб покрытием из материала «бутит» могут быть использованы линии ГТБ-1, ГТБ-2 и ГТБ-3 и др. с дополнительным приспособлением, обеспечивающим нанесение на обе стороны материала подклеивающей грунтовки.
- 3.4.14. Перед изоляцией труб материалом «бутит» рулоны должны быть хорошо отторцованы (см. п. 3.4.9.).

Непосредственно перед нанесением на трубы или резервуары «бутита» на обе стороны наносится подклеивающий слой мастики БК-М (ТУ 21 УССР-452—88). Толщина слоя мастики должна составлять не менее 0.05 мм.

- 3.4.15. «Бутит» с подклеивающим слоем должен наноситься на поверхность трубы с нахлестом каждого слоя не менее 15—20 мм.
- 3.4.16. Допускается нанесение покрытия из «бутита» ручным способом при выполнении изоляционных работ в небольших объемах.

Глава 3.5. ПОКРЫТИЯ ИЗ НАПЫЛЕННОГО ИЛИ ЭКСТРУДИРОВАННОГО ПОЛИЭТИЛЕНА

- 3.5.1. Для полиэтиленовых покрытий применяют порошкообразный и гранулированный полиэтилен. Порошкообразный полиэтилен наносят на трубы методом напыления (без адгезива), а гранулированный методом экструзии (по жесткому или мягкому адгезивам).
- 3.5.2. Полиэтиленовые покрытия, наносимые в заводских и базовых условиях, должны соответствовать техническим требованиям, изложенным в табл. 13.

Показатель	Нормируемое значение		
Диэлектрическая сплошность при напряжении, кВ Адгезия к стальной поверхности, H/см², не менее:	5 (на 1 мм толщины)		
напыленные без адгезива	35		
экструдированные по жесткому адгезиву	35		
экструдированные по мягкому адгезиву («Анти- корэкс»)	15		
Прочность при ударе (на 1 мм толщины покрытия), Дж, не менее	5		
Переходное электросопротивление на законченных строительством и засыпанных участках сооружений, Ом · м², не менес	1 · 10 ⁵ e		

- 3.5.3. В качестве исходного материала для получения покрытий методом напыления используют порошкообразный полиэтилен низкого давления (высокой плотности), выпускаемый по ГОСТ 16338—85.
- 3.5.4. Для изоляции труб также применяют порошкообразный полиэтилен в виде композиций с термо- и светостабилизаторами рецептур № 13 и 58 базовых марок 20608-012, 20708-016 и 20808-024.
- 3.5.5. Трубы, предназначенные для изоляции, проходят через печь для сушки, где с их поверхности удаляются влага, снег, иней и наледь, и поступают в трубоочистную машину. С поверхности металла труб удаляют все жировые загрязнения, пыль, ржавчину, окалину.
- 3.5.6. Очищенная труба по рольгангу поступает в газопламенную печь, где ее поверхность нагревается до 230—250 °C в зависимости от толщины стенки трубы и свойств применяемой полиэтиленовой композиции в соответствии с технологией.
- 3.5.7. Далее нагретую трубу захватывают специальным устройством и помещают над ванной напыления, в которую поступает из бункера по шнековым транспортерам порошкообразный полиэтилен.
- 3.5.8. Труба располагается над поверхностью порошка, приводимого с помощью вращающихся роторов в псевдосжиженное состояние.
- 3.5.9. Частицы порошкообразного полиэтилена в псевдосжиженном слое приобретают отрицательный заряд и под действием сил электрического поля при напряжении 60 кВ, а также воздушных потоков осаждаются на нагретой положительно заряженной поверхности вращающейся трубы, прилипают к ней, плавятся и образуют непрерывную хорошо адгезированную к металлу полимерную пленку.
- 3.5.10. В процессе оплавления нанесение, покрытие из полиэтилена уплотняется с помощью прикатывающих валиков, покрытых специальной резиной.
- 3.5.11. Трубу со сформированным покрытием погружают в ванну с холодной водой, где температура на поверхности наружного слоя изоляции понижается до 60—70 °C, и затем по рольгангу с обрезиненными роликами передают на участок контроля качества покрытия.
- 3.5.12. При экструзионном нанесении покрытия используют гранулированный полиэтилен высокого и низкого давления и его сополимеры. При

этом в конструкции покрытия обязательно предусматривается подклеивающий слой (адгезив).

- 3.5.13. В качестве адгезива можно применять сополимеры этилена с эфирами акриловой кислоты, сополимер этилена с винилацетатом (жесткие адгезивы ТУ 6-05-1636—78), а также ингибированные композиции на основе бутилкаучука (мягкий адгезив ТУ 400-24-559—87).
- 3.5.14. Для нанесения основного слоя покрытия может быть использован термо- и светостабилизированный полиэтилен высокого давления базовых марок 10203-003, 10404-003, 15303-003 (ГОСТ 16337—77*).
- 3.5.15. При изоляции методом экструзии трубы по рольгангу поступают в сушильную печь для удаления с их поверхности влаги, снега, инея, наледи и далее в камеру дробеметной или дробеструйной очистки. Трубы очищают так же, как и перед нанесением покрытия из порошкообразного полиэтилена.
- 3.5.16. Трубы большого диаметра нагревают в газопламенной печи до 220 °C. При изоляции труб диаметром менее 600 мм для нагрева используют высокочастотные индукторы.
- 3.5.17. При нанесении полиэтиленового покрытия экструзионно-намоточным способом на трубы диаметром более 500 мм, совершающие равномерное вращательно-поступательное движение, из экструдера через щелевую головку поступает лента клеевого слоя (адгезива) толщиной 0,15—0,2 и шириной 200—250 мм. На этой же позиции поверх клеевого слоя из другого экструдера также через щелевую головку наносится в несколько слоев основное покрытие из термо- и светостабилизированного полиэтилена.
- 3.5.18. Температура изоляционных материалов на выходе из щелевых головок экструдеров составляет 200—220 °C. Толщина полиэтиленового покрытия регулируется кратностью нахлеста спирально наматываемой ленты из головки экструдера, что обусловливает частоту вращения и осевое перемещение труб. Толщина ленты основного слоя 0,5—0,8 мм.
- 3.5.19. Для получения покрытия толщиной 2,5—3 мм выполняют многократный нахлест ленты основного слоя. В процессе формирования изоляционного покрытия трубы вращаются и перемещаются в продольном направлении со скоростью 0,5—1,2 м/мин. Вращение труб осуществляется за счет косорасположенных роликов рольганга.
- 3.5.20. Для уплотнения полиэтиленового покрытия используется прижимной ролик с фторопластовым покрытием, который, обжимая изоляцию, способствует соединению отдельных слоев полиэтилена и превращает его в монолитное покрытие.
- 3.5.21. Покрытие методом непрерывной экструзии «чулком» для труб диаметром до 500 мм наносится с помощью кольцевой головки, питание которой обеспечивается двумя или тремя экструдерами в зависимости от диаметра труб и производительности изоляционной установки.
- 3.5.22. Температурный режим работы экструдеров и головки аналогичен экструзионно-намоточному способу. Для обеспечения оптимальных условий формирования адгезионной связи между клеевым слоем (адгезивом) и поверхностью трубы применяется вакуумирование головки.
 - 3.5.23. После нанесения полиэтиленового покрытия его охлаждают

- до 60—70 °C, обливая трубы холодной водой. Далее охлажденные трубы поступают на участок контроля качества покрытия.
- 3.5.24. Мягкий адгезив ингибированная бутилкаучуковая грунтовка — наносится на трубы при изготовлении покрытия «Антикорэкс».
- 3.5.25. Покрытие «Антикорэкс» наносится на огрунтованные трубы диаметром 57—630 мм экструзионно-намоточным способом.

Глава 3.6. ИЗОЛЯЦИОННЫЕ РАБОТЫ НА МЕСТАХ СТРОИТЕЛЬСТВА ПОДЗЕМНЫХ СООРУЖЕНИЙ

- 3.6.1. Зоны сварных соединений труб, места повреждений защитных покрытий подземных сооружений, а также фасонные части изолируют теми же мастичными материалами с армирующими слоями, что и трубопроводы и линейную часть, или липкими лентами.
- 3.6.2. Для обеспечения надежного прилипания (адгезии) наносимого защитного покрытия в зоне сварных соединений с имеющимся на трубе мастичным покрытием необходимо края защитного покрытия, примыкающие к сварному шву, срезать на конус на 15—20 см. Прочно приклеивающуюся обертку из невлагостойких материалов соскабливают ножом или удаляют, смачивая растворителем. Затем срезанное конусом покрытие зачищают, делая его гладким и ровным.
- 3.6.3. На очищенную (в виде конуса) поверхность покрытия наносят кистью или распылением слой грунтовки (без сгустков, пропусков и подтеков). После высыхания грунтовки «до отлипа» мастику наносят вручную, обливая стык в три слоя из лейки и растирая мастику в нижней части трубы полотенцем.
- 3.6.4. В качестве армирующих обмоток в мастичных покрытиях на битумной основе для емкостей, для ремонта мест повреждений защитных покрытий, а также на сварных стыках труб и фасонных частях допускается применять бризол или другие материалы в соответствии с нормативнотехнической документацией.
- 3.6.5. Перед нанесением на трубы полимерных липких лент необходимо в зоне сварки срубить зубилом и спилить рашпилем все острые выступы, заусеницы и капли металла.
- 3.6.6. При изоляции стыков полимерными липкими лентами на сварной шов для дополнительной его защиты по грунтовке наносят один слой липкой ленты шириной 100 мм, затем стык и зачищенные конусом покрытия линейной части обертывают (с натяжением и обжатием) двумя-тремя слоями липкой ленты. При этом лента не должна на 2—3 мм доходить до оберток, имеющих повышенную влагонасыщаемость. На полимерную липкую ленту накладывают наружную обертку.
- 3.6.7. При нанесении защитного покрытия из полимерных лент на участках стыков и повреждений необходимо следить за тем, чтобы переходы к существующему покрытию были плавными, а нахлест был не менее 10 см.
- 3.6.8. Нахлест витков у защитного покрытия из липких лент должен быть не менее 2 см. При послойном нанесении ленты нахлесты смежных слоев не следует располагать друг над другом.

- 3.6.9. При изоляции фасонных частей со сложной конфигурацией допускается взамен наружной обертки покрывать верхний слой мастики меловой или известковой эмульсией.
- 3.6.10. Проведение изоляционных работ в трассовых условиях во время дождя, снегопада и тумана допускается только при условии защиты изолируемой поверхности от попадания влаги и при температуре воздуха не ниже —25 °C.

Глава 3.7. КОНТРОЛЬ КАЧЕСТВА ЗАЩИТНЫХ ПОКРЫТИЙ

- 3.7.1. Контроль качества защитных покрытий подземных металлических сооружений должен осуществляться на всех этапах изоляционных и строительных работ, а также в условиях эксплуатации.
- 3.7.2. Качество очистки, грунтовки и изоляции труб, выполняемых в заводских условиях и на производственных базах строительно-монтажных организаций, проверяет и принимает отдел технического контроля предприятия. Проверку качества изоляционных работ на трассе должны осуществлять инженерно-технические работники строительно-монтажной организации, выполняющей изоляционные работы, а также технический надзор заказчика.
- 3.7.3. Качество очистки проверяют осмотром внешней поверхности труб.
- 3.7.4. Состав изоляционных мастик, дозировку компонентов, режим приготовления (температура и продолжительность) проверяют в лабораториях строительно-монтажных организаций. Контрольные пробы мастик с целью определения температуры размягчения отбирают по одной пробе каждой марки не реже 1 раза в день. Растяжимость и пенетрацию мастики (глубину проникновения иглы) определяют периодически.
- 3.7.5. Качество нанесенного на трубы защитного покрытия определяют внешним осмотром, измерением толщин, проверкой сплошности и прилипаемости к металлу. Трубопровод укладывают в траншею, присыпают грунтом на 20—25 см и проверяют отсутствие непосредственного электрического контакта между металлом труб и грунтом с выявлением дефектов в защитном покрытии.
- 3.7.6. Толщину защитных покрытий контролируют приборным методом неразрушающего контроля с применением толщиномеров и других измерительных приборов:

для экструдированного полиэтилена и битумно-мастичных покрытий в базовых и заводских условиях на каждой десятой трубе одной партии не менее, чем в четырех точках по окружности трубы, и в местах, вызывающих сомнение;

для битумно-мастичных покрытий — в трассовых условиях на 10% сварных стыков труб, изолируемых вручную, в тех же точках;

для битумно-мастичных покрытий на резервуарах — в одной точке на каждом квадратном метре поверхности, а в местах перегибов изоляционных покрытий через 1 м по длине окружности.

3.7.7. Качество защитного покрытия из полимерных липких лент и полимерного рулонного материала «бутит» проверяют при намотке ленты внешним осмотром и контролем числа слоев и ширины нахлеста.

3.7.8. Адгезию защитных покрытий к стали контролируют приборным методом с применением адгезиметров.

Допускается определение адгезии методом выреза треугольника с углом 45° в соответствии с ТУ на каждый вид покрытия.

- 3.7.9. Адгезию липких лент и полимерного рулонного материала «бутит» определяют через сутки после их нанесения на трубы и резервуары.
- 3.7.10. Сплошность покрытий контролируют на всей поверхности приборным методом неразрушающего контроля с помощью искрового дефектоскопа при напряжении не менее 4 кВ на 1 мм толщины покрытия после окончания процесса изоляции труб, а также на траншее после изоляции трубопровода и стыков. Сплошность покрытия из полимерного рулонного материала «бутит» толщиной 2 мм проверяют при напряжении 10 кВ.

При проведении работ в зимних условиях контроль сплошности покрытий проводят после оттаивания грунта.

- 3.7.11. Проверку защитного покрытия после присыпки трубопровода на отсутствие внешних повреждений, вызывающих непосредственный электрический контакт между металлом труб и грунтом, производят приборами в соответствии со специальной инструкцией, составленной применительно к типу и схеме приборов.
- 3.7.12. Дефектные места, а также повреждения защитного покрытия, выявленные во время проверки его качества, должны быть исправлены до окончательной засыпки трубопровода. При этом должна быть обеспечена однородность, монолитность защитного покрытия. После исправления ремонтируемые места вторично проверяют.
- 3.7.13. Защитное покрытие уложенного трубопровода принимают представители заказчика с оформлением акта на скрытые работы.

При сдаче защитного покрытия трубопровода по требованию представителя заказчика должны быть предъявлены: сертификаты (паспорта) на каждую партию материалов или результаты лабораторных испытаний материалов — данные лабораторных испытаний проб, взятых из котлов в процессе приготовления битумной мастики; журнал изоляционных работ; акт проверки качества защитного покрытия.

Глава 3.8. НАНЕСЕНИЕ ПОКРЫТИЯ ИЗ «БУТИТА» НА РЕЗЕРВУАРЫ ДЛЯ ХРАНЕНИЯ СЖИЖЕННОГО ГАЗА

- 3.8.1. Нанесение защитного покрытия на основе бутилкаучука на резервуар объемом до 5,0 м³ производится вручную в условиях заготовительных мастерских специализированных строительно-монтажных организаций. Допускается нанесение защитного покрытия на месте установки резервуара.
- 3.8.2. Металлическая поверхность резервуаров перед нанесением защитного покрытия должна быть предварительно осушена и тщательно очищена от ржавчины, пыли и поддающейся очистке окалины. При наличии на поверхности слоя консервационного покрытия он должен быть полностью удален.

- 3.8.3. Защитное покрытие следует наносить на сухую поверхность резервуара сразу же после их очистки и снятия консервационного слоя. Нанесение покрытия на резервуар на открытой площадке во время дождя или снега запрещается.
- 3.8.4. Перед нанесением защитного покрытия на резервуар следует предварительно произвести раскрой рулонного материала с учетом сложной конфигурации емкости. Для предупреждения загрязнения материала раскрой следует производить на специально оборудованном настиле из досок, фанеры и т. п.
- 3.8.5. Подготовленные к нанесению на резервуары и раскроенные листы материала промазываются с одной стороны тонким слоем мастики БК-М с помощью валика, кисти, квача и т. п.

Для смачивания валика, кисти и т. п. мастика БК-М из емкости, поставляемой заводом-изготовителем, небольшими порциями выливается в чистую емкость, куда погружается кисть либо другое приспособление для смазки материала. Сливать остатки мастики после окончания работ в емкость, в которой она была доставлена с завода-изготовителя, не рекомендуется. Для дальнейшего использования остатков мастики емкость, в которой они находятся, следует плотно закрыть. В мастике не должно быть загрязняющих ее включений.

3.8.6. Мастику следует наносить на поверхность рулонного материала тонким, равномерным слоем. Расход мастики при нанесении должен составлять 50—70 г/м² рулонного материала.

В случае образования на поверхности материала излишков мастики в виде сгустков, подтеков и густых мазков их следует удалить кистью, квачом, скребком и т. п.

3.8.7. Рудонный материал, смазанный с одной стороны тонким слоем мастики, сразу же после ее нанесения наклеивается на поверхность резервуара внахлест. Ширина нахлеста (двухслойной полосы) листов материала должна быть 30—40 мм. Склеивание шва происходит за счет смазки поверхности рудонного материала мастикой.

Покрытие должно плотно прилегать к металлической поверхности. Для исключения пустот и складок рулонный материал при наклейке следует слегка натянуть и затем прикатать к поверхности емкости валиком.

- 3.8.8. Защитное покрытие из «бутита» наносится на резервуары в два слоя. Второй слой следует наносить на полностью изолированную одним слоем «бутита» поверхность резервуара в соответствии с пунктами 3.8.4—3.8.7.
- 3.8.9. Прочное склеивание рулонного материала с поверхностью металла и в швах, а также склеивание листов материала в случае двухслойного покрытия происходит в течение суток после нанесения покрытия на сооружение.

Глава 3.9. СКЛАДИРОВАНИЕ И ТРАНСПОРТИРОВКА ИЗОЛИРОВАННЫХ ТРУБ И РЕЗЕРВУАРОВ ДЛЯ ХРАНЕНИЯ СЖИЖЕННОГО ГАЗА

3.9.1. При складировании изолированных труб и резервуаров, а также их транспортировке к местам сооружения следует принимать меры для предохранения защитного покрытия от повреждения и учитывать требо-

вания «Инструкции по хранению, погрузке, транспортировке и разгрузке изолированных труб», утвержденной МЖКХ РСФСР.

- 3.9.2. Поднимают, перемещают и опускают изолированные трубы и резервуары с помощью механизмов вертикального транспорта с надежными захватными приспособлениями, исключающими повреждение покрытий.
- 3.9.3. Участок трубопровода опускают в траншею при помощи мягких полотенец, плавно без ударов труб о стенки траншеи на постель из мягкого грунта. Освобождать полотенца из-под трубы следует без рывков после проверки правильности укладки трубопровода в траншею.
- 3.9.4. Транспортируют изолированные трубы и резервуары в автомобилях, оборудованных турникетными кониками и комплектуемых прицепами-роспусками, на которых также установлены турникетные коники.

Сбрасывание труб и резервуаров с автомобилей при их разгрузке не допускается.

Глава 3.10. ТЕХНИКА БЕЗОПАСНОСТИ

- 3.10.1. К выполнению работ по нанесению защитных покрытий на трубы и резервуары допускаются лица, обученные правилам техники безопасности и сдавшие экзамен в установленном порядке.
- 3.10.2. Независимо от сдачи экзамена каждый рабочий при допуске к работе должен получить инструктаж по технике безопасности на рабочем месте, с соответствующей распиской инструктируемого в журнале по проведению инструктажа.
- 3.10.3. На трубозаготовительных базах (мастерских) должны быть все необходимые инструкции по технике безопасности и промышленной санитарии, а также журналы установленной формы проведения инструктажа рабочих.

На рабочих местах должны быть вывешены четко отпечатанные необходимые правила безопасности и промышленной санитарии.

- 3.10.4. При выполнении работ по нанесению защитных покрытий на трубы и резервуары и приготовлению мастик работающий персонал должен быть обеспечен соответствующей спецодеждой и средствами индивидуальной защиты в соответствии с требованиями действующих правил.
- 3.10.5. Рабочие места по нанесению защитных покрытий на трубы и резервуары должны быть оборудованы соответствующими вентиляционными устройствами. Мастиковарочные котлы и устройства по нанесению защитных покрытий должны иметь противопожарные средства.

Часть 4. ПРОЕКТИРОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ

Глава 4.1. ОБЩИЕ ПОЛОЖЕНИЯ

4.1.1. Основанием для проектирования электрохимической защиты подземных трубопроводов являются данные коррозионной активности грунтов и наличия блуждающих токов. Указанные данные могут быть получены в результате изысканий, выполненных организацией, разрабатывающей проект подземных сооружений, либо специализированной организацией, привлекаемой на субподрядных началах. Кроме того, проектирование электрохимической защиты может осуществляться на основе технических условий на проектирование защиты, разрабатываемых предприятием по защите от коррозии.

На действующих подземных трубопроводах основанием для проектирования электрохимической защиты может так же являться наличие коррозионных повреждений на трубопроводах.

- 4.1.2. Исходными данными для проектирования электрохимической защиты являются: совмещенный план проектируемых и существующих подземных сооружений, а также рельсовых сетей электрифицированного транспорта в масштабе 1:500, 1:1000, 1:2000 или 1:5000. По проектируемым и существующим сооружениям должны быть указаны длина и диаметр сооружений; по существующим сооружениям места установки электрохимической защиты, по рельсовым сетям точки подключения отрицательных кабелей и существующих дренажных установок, данные о коррозионной активности грунтов и о наличии блуждающих токов, геолого-геофизический разрез для выбора конструкции анодных заземлителей.
- 4.1.3. В соответствии со СНиП I.02—85 «Инструкция о составе, порядке разработки, согласования и утверждения проектно-сметной документации на строительство предприятий, зданий и сооружений» в состав проектной документации входят: пояснительная записка; совмещенный план защищаемых трубопроводов и смежных коммуникаций с рельсовой сетью электрифицированного транспорта и расположением установок и устройств электрозащиты («Схема расстановки устройств электрозащиты»); раздел «Организация строительства»; рабочая документация, включающая рабочие чертежи, где на плане М 1:500 указывается расположение установок электрохимической защиты, анодных заземлителей, пунктов подключения дренажных кабелей к подземным сооружениям, трасс дренажных и питающих кабелей с привязками к постоянным ориентирам, расположение перемычек, контрольно-измерительных пунктов, изолирующих фланцевых соединений; рабочие чертежи, на которых приводятся согласования с соответствующими организациями на производство земляных, строительных и монтажных работ, функциональная схема электрозащиты, в том числе и схема подключения установки к сети переменного тока; сводная смета, сметы, сметные расчеты.

Пояснительная записка содержит: основание для разработки проекта, характеристику защищаемых коммуникаций, сведения об источниках блуждающих токов, результаты проведенных коррозионных изысканий, оценку коррозионной ситуации; обоснование выбора типа установок электрохимической защиты, расчет количества и параметров установок (сводная таблица); сведения о проведенных согласованиях и соответствии проекта требованиям ГОСТ, СНиП и другим нормативным документам; рекомендации по охране природы.

В состав рабочей документации входят: установочные чертежи оборудования электрохимической защиты (привязанные к данному проек-

ту) — типовые и повторного применения, спецификация оборудования и ведомость материалов.

В городах, где имеется рельсовая сеть трамвая, при необходимости производится расчет схемы электроснабжения трамвая с разработкой мероприятий по ограничению токов утечки.

Каждый проект должен иметь «Паспорт проекта», где указывается краткая техническая характеристика, состав проекта и технико-экономические показатели.

- 4.1.4. При проектировании трубопровода проектом должна быть предусмотрена установка контрольно-измерительных пунктов с интервалом не более 200 м. На прямолинейных участках трассы вне населенных пунктов допускается установка контрольно-измерительных пунктов через 500 м.
- 4.1.5. Контрольно-измерительные пункты следует устанавливать на участках трубопровода, где ожидаются минимально и максимально допустимые значения поляризационных защитных потенциалов:

на участках трубопроводов, ограничивающих заданную зону защиты;

- в пунктах подключения дренажного кабеля к трубопроводу и на участках максимального сближения трубопроводов с анодными заземлителями:
- в местах пересечения трубопроводов с рельсами электрифицированного транспорта;
- в пунктах установки электроперемычек со смежными подземными коммуникациями;
- в пунктах пересечений трубопроводов со смежными подземными металлическими коммуникациями, не включенными в систему совместной зашиты.
- 4.1.6. С целью увеличения эффективности работы электрохимической защиты в проектах должна быть предусмотрена установка электроизолирующих фланцевых соединений на газопроводах в соответствии с «Методическими указаниями по использованию изолирующих фланцевых соединений при электрохимической защите городских подземных сооружений» (РДМУ 204 РСФСР 3.1-81-170).

Глава 4.2. ПРОЕКТИРОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ВНОВЬ ПРОКЛАДЫВАЕМЫХ ТРУБОПРОВОДОВ

- 4.2.1. Проектирование электрохимической защиты вновь прокладываемых подземных трубопроводов осуществляется одновременно с проектированием трубопроводов.
- 4.2.2. Объем измерений, выполняемых при определении коррозионной агрессивности грунтов, принимается в соответствии с пунктами 2.3.1—2.3.8 настоящей Инструкции.
- 4.2.3. Определение наличия блуждающих токов по трассе проектируемого сооружения при отсутствии уже проложенных сооружений производится по данным измерения потенциалов между двумя точками земли в двух перпендикулярных направлениях в соответствии с пунктами 2.3.9—2.3.14 настоящей Инструкции.

- 4.2.4. При наличии сооружений, проложенных вблизи трассы проектируемого сооружения на расстоянии не более 100 м, определение блуждающих токов осуществляется путем измерения потенциалов на существующих сооружениях (пункты 2.3.15—2.3.25). Шаг измерений 200 м.
- 4.2:5. В случае прокладки подземного сооружения вблизи рельсового транспорта, электрифицированного на постоянном токе (на расстоянии до 300 м), необходимо измерить потенциалы рельсовой сети с целью определения возможности и выбора места осуществления дренажной защиты.
- 4.2.6. При проектировании трубопровода в зоне действия электрохимической защиты проложенных ранее сооружений необходимо запросить от эксплуатирующих организаций данные о номинальных параметрах установленных защитных установок, а также данные о режимах их работы: значения токов и напряжений на выходе установок, радиусы действия электрозащиты.
- 4.2.7. При проектировании трубопроводов на территориях, имеющих незащищенные трубопроводы, необходимо получить от эксплуатирующих организаций данные в соответствии с пунктом 4.1.2.

В случае отсутствия данных необходимо определить параметры электрозащиты для существующих сооружений с помощью метода опытного включения, а для проектируемых — расчетным путем.

- 4.2.8. Определение параметров электрохимической защиты подземных трубопроводов производится расчетным путем.
- 4.2.9. Методика расчета позволяет определить параметры катодных станций, необходимые для обеспечения защитного потенциала на всех сооружениях, которые расположены в зоне действия установок электрохимической защиты и имеют контролируемые и неконтролируемые металлические соединения, обеспечивающие электрическую проводимость.
- 4.2.10. За основной расчетный параметр принята средняя плотность защитного тока, представляющая собой отношение тока катодной станции к суммарной поверхности трубопроводов, защищаемых данной установкой.
- 4.2.11. Если проектируемые сооружения будут иметь соединения с действующими, оборудованными защитными установками, необходимо расчетным путем проверить возможность обеспечения защиты проектируемых сооружений от действующих установок.
- 4.2.12. Исходными данными для расчета катодной защиты являются параметры проектируемых сооружений, а также удельное сопротивление грунта по трассе сооружения.
- 4.2.13. Площадь поверхности каждого из трубопроводов, которые имеют между собой технологические соединения, обеспечивающие электрический контакт, либо соединяемые специальными перемычками, определяется так, м²:

$$S = \pi \sum_{i=1}^{n} d_i l_i \cdot 10^{-3}, \tag{4.1}$$

где d_i — диаметр сооружения, мм; l_i — длина участка сооружения, имеющего диаметр d_i , м.

Таким образом, по формуле (4.1) определяют площади поверхности газопроводов $S_{\rm r}$, водопроводов $S_{\rm B}$, теплопроводов, прокладываемых в каналах, $S_{\rm ren}$, м².

Поверхность теплопроводов при бесканальной прокладке суммируется с поверхностью водопроводов, поэтому здесь и ниже величина $S_{\text{теп}}$ относится к теплопроводам, прокладываемым в каналах.

Суммарная площадь поверхности всех трубопроводов, электрически связанных между собой, равна

$$\Sigma S = S_r + S_B + S_{ren}. \tag{4.2}$$

4.2.14. Определяется удельный вес поверхности каждого из трубопроводов в общей массе сооружений, %:

водопроводов
$$b = (S_n/\Sigma S) \cdot 100;$$
 (4.3)

теплопроводов
$$c = (S_{\text{теп}}/\Sigma S) \cdot 100;$$
 (4.4)

газопроводов
$$g = (S_r/\Sigma S) \cdot 100.$$
 (4.5)

4.2.15. Определяется плотность поверхности каждого из трубопроводов, приходящаяся на единицу поверхности территории, м²/га:

газопроводов
$$d = S_r/S_{rep}$$
; (4.6)

водопроводов
$$e = S_B/S_{rep}$$
; (4.7)

теплопроводов
$$f = S_{\text{теп}}/S_{\text{тер}}$$
. (4.8)

4.2.16. Средняя плотность тока, необходимого для защиты трубопроводов, определяется так, м A/m^2 :

$$j = 30 - (100b + 128c + 34d + 3e + 0.6f + 5\rho) \cdot 10^{-3}.$$
 (4.9)

- 4.2.17. В случае, когда в защищаемом районе нет теплопроводов, значения коэффициентов с и f в формуле (4.9) принимаются равными нулю. Аналогично при отсутствии водопроводов b и e равны нулю.
- 4.2.18. В случае, когда защищается только газопровод, а водопровод и теплопровод отсутствуют, средняя плотность защитного тока определяется так, MA/M^2 :

$$j = 20 + (100g - 34d - 5\rho) \cdot 10^{-3}$$
 (4.10)

- 4.2.19. Если значение средней плотности защитного тока, полученное по формулам (4.9) или (4.10), менее 6 мА/м², то в дальнейших расчетах следует принимать j, равное 6 мА/м².
- 4.2.20. Значение суммарного защитного тока, который необходим для обеспечения катодной поляризации подземных сооружений, расположенных в данном районе, равно, А:

$$I = 1,3i\Sigma S. \tag{4.11}$$

Примечание. Коэффициент 1,3 в формуле (4.11) применяется в том случае, если защитная плотность тока определяется по формулам (4.9) и (4.10).

4.2.21. Выбор способа электрохимической защиты осуществляют следующим образом.

В случае сближения подземных трубопроводов с рельсовой сетью электрифицированных на постоянном токе железных дорог на участках с устойчивыми отрицательными потенциалами рельсов относительно земли выбирают точки подключения автоматического усиленного дренажа.

При этом должны соблюдаться требования пунктов 4.3.11 и 4.3.13 настоящей Инструкции. Радиус действия одного усиленного дренажа, м, может быть ориентировочно определен по формуле

$$R = 60\sqrt{I_{AP}/(jK)},\tag{4.12}$$

где I_{AP} — среднее значение тока усиленного дренажа, A; j — плотность защитного тока, A/м; K — удельная плотность сооружений,

$$K = \Sigma S / S_{\text{rep}}; \tag{4.13}$$

 ΣS — суммарная поверхность защищаемых трубопроводов, м²; S _{тер} — площадь территории, занимаемой защищаемыми сооружениями, га.

Ток дренажа, А, может быть определен по формуле

$$I_{\rm Ap} = U_{\rm Ap}/(R_{\kappa a \delta} + 0.05),$$
 (4.14)

где $U_{\rm ap}$ — номинальное напряжение на выходе дренажа, В; $R_{\rm ka6}$ — сопротивление дренажного кабеля, Ом; 0,05 — входное сопротивление защищаемого трубопровода, Ом.

В случае сближения защищаемых трубопроводов с рельсовой сетью трамвая, имеющей устойчивый отрицательный или знакопеременный потенциал, целесообразно предусматривать устройство усиленного автоматического дренажа. Радиус его действия определяется по методике, изложенной выше.

Остальные участки трубопроводов, подлежащие катодной поляризации, защищают с помощью катодных станций или протекторов. При этом необходимо иметь в виду, что протекторная защита может быть применена для катодной поляризации отдельных участков трубопроводов небольшой протяженности и не имеющих электрических контактов с другими сооружениями.

- 4.2.22. Число катодных станций определяют из условий оптимального размещения анодных заземлителей (наличие площадок, удобных для размещения анодов), наличия источников питания и т. д. При этом значение тока катодной станции рекомендуется ориентировочно принять $25\,$ А, поэтому число катодных установок может быть определено приближенно, как n=I/25, где значение I найдено по формуле (4.11).
- 4.2.23. После размещения катодных установок на совмещенном плане необходимо рассчитать зону действия каждой из них. Для этой цели определяют радиусы действия каждой из катодных установок, м:

$$R = 60\sqrt{I_{KC}/jK}, \tag{4.15}$$

где $I_{\rm KC}$ — ток катодной станции, для которой определяется радиус действия, A; K — удельная плотность сооружений, определенная по формуле (4.13).

4.2.24. Если площади окружностей, радиусы которых соответствуют радиусам действия катодных установок (4.15), а центры находятся в точках размещения анодных заземлителей, не охватывают всей территории защищаемого района, необходимо изменить либо места расположения катодных установок, либо значения их токов и вновь выполнить проверку, указанную в пункте 4.2.22.

- 4.2.25. Тип преобразователя для катодной установки выбирается с таким расчетом, чтобы допустимое значение напряжения было на 30% выше расчетного с учетом перспективного развития сети трубопроводов, старения защитных покрытий и анодных заземлителей.
- 4.2.26. Выбор оптимальных параметров анодных заземлителей целесообразно производить в соответствии с методикой, приведенной в прил. 2 данной Инструкции.
- 4.2.27. Для расчета протекторной защиты определяют сопротивление растеканию протектора

$$R_{\rm np} = \frac{\rho_{\rm r}}{2\pi l_3} (l_{\rm np} \frac{2l_{\rm a}}{d_{\rm a}} + \frac{1}{2} l_{\rm np} \frac{4h + l_{\rm a}}{4h - l_{\rm a}} + \frac{\rho_{\rm a}}{\rho_{\rm r}} l_{\rm np} \frac{d_{\rm a}}{d_{\rm np}}, \tag{4.16}$$

где $\rho_{\rm r}$ — удельное сопротивление грунта, Ом · м; $l_{\rm a}$ — высота активатора, окружающего проектор, м; $d_{\rm a}$ — диаметр активатора, м; h — глубина установки протектора; м; $\rho_{\rm a}$ — удельное сопротивление активатора Ом · м; $d_{\rm np}$ — диаметр проектора, м.

Для упакованных протекторов типа ПМ5У, ПМ10У и ПМ20У при $\rho = 10$ Ом \cdot м; сопротивление, Ом,

$$R_{\rm np} \approx 0.4 \rho;$$
 (4.17)

ток протектора, А,

$$I_{\rm np} = I/R_{\rm np}; \tag{4.18}$$

зона защиты протектора (шаг установки), м,

$$L = 1.3 I_{np} / (j\pi d_{\tau}),$$
 (4.19)

где j — защитная плотность, A/м; d_{τ} — диаметр трубопровода, м; срок службы протектора, лет,

$$T = G_{np}q \,\eta_{H} \,\eta_{np}(8760I_{np}),$$
 (4.20)

где $G_{\rm np}$ — масса протектора, кг; q — теоретическая токоотдача (без учета к.п.д.) протектора, А · ч/лет; $\eta_{\rm np}$ — к.п.д. протектора; $\eta_{\rm w}$ — коэффициент использования протектора (при отсутствии уточненных данных принимается 0,95).

Для упакованных протекторов типа ПМ10У срок службы, лет, может быть определен по формуле

$$T = 1, 14/I_{np}.$$
 (4.21)

Глава 4.3. ПРОЕКТИРОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ДЕЙСТВУЮЩИХ ТРУБОПРОВОДОВ

4.3.1. Методика определения параметров электрохимической защиты проектируемых сооружений (гл. 4.2) может быть использована и для действующих трубопроводов. Однако в данном случае более надежным является метод опытного включения.

- 4.3.2. В результате опытного включения устанавливают тип электрозащиты (дренажная или катодная) и основные ее параметры, а также пункты присоединения дренажных кабелей к подземным сооружениям и источникам блуждающих токов или места установления анодных заземлений; зону действия защиты; характер влияния защиты на смежные сооружения, необходимость и возможность осуществления совместной защиты.
- 4.3.3. Для защиты подземных трубопроводов от коррозии, вызываемой блуждающими токами, следует применять дренажную защиту (поляризованные или усиленные дренажи). Усиленные дренажи используют для защиты от коррозии в тех случаях, когда применение поляризованных дренажей неэффективно или неоправданно по экономическим показателям.
- 4.3.4. В тех случаях, когда включением электродренажей не удается обеспечить защиту трубопровода в пределах опасной зоны и на отдельных ее участках (обычно периферийных) остаются анодные зоны, то в комплексе с электродренажной применяется защита катодными установками.
- 4.3.5. При значительном удалении трассы трубопровода от источника блуждающих токов, а также в случаях прокладки трубопроводов в грунтах высокой коррозионной агрессивности применяют катодную защиту.
- 4.3.6. Для опытного включения при отсутствии передвижных лабораторий можно использовать стандартные электродренажные установки и катодные станции, перечень которых приведен в гл. 4.5.
- 4.3.7. При защите от блуждающих токов точка подключения кабеля к трубопроводу выбирается на таком участке, где средние значения положительных потенциалов трубопровода по отношению к земле максимальны.

Кроме того, пункт подключения дренажных кабелей к трубопроводу выбирается с учетом наименьшего расстояния от пункта присоединения к источнику блуждающих токов (рельсам, дроссель-трансформаторам, отсасывающим пунктам, тяговым подстанциям), возможности доступа к трубопроводу без вскрытия (в регуляторных станциях и т. п.).

При возможности выбора нескольких мест присоединения предпочтение отдают участкам сетей с наибольшими диаметрами при прочих равных условиях.

- 4.3.8. Дренажный кабель присоединяют к рельсам трамвая или к отсасывающим пунктам. Не допускается непосредственное присоединение установок дренажной защиты к отрицательным шинам тяговых подстанций трамвая, а также к сборке отрицательных линий этих подстанций.
- 4.3.9. Подключение усиленного дренажа к рельсовым путям электрифицированных железных дорог не должно приводить в часы интенсивного движения поездов к тому, чтобы в отсасывающем пункте появлялись устойчивые положительные потенциалы. Не допускается присоединение усиленного дренажа в анодных зонах к рельсовой сети, а также к рельсам деповских путей.
- 4.3.10. Поляризованные и усиленные дренажи, подключаемые к рельсовым путям электрифицированных железных дорог с автоблокировкой, не должны нарушать нормальную работу рельсовых цепей системы централизованной блокировки во всех режимах.

Поляризованные и усиленные дренажи подключаются к рельсовым путям: при однониточных рельсовых цепях — к тяговой нити в любом месте; при двухниточных рельсовых цепях — к средним точкам путевых дроссель-трансформаторов в местах установки междупутных соединителей, к средним точкам путевых дроссель-трансформаторов, отстоящих на три рельсовые цепи от точек подключения междупутных соединителей или от других путевых дроссель-трансформаторов, к средним точкам которых подключены защитные установки и конструкции, имеющие сопротивление утечки переменного тока 50 Гц через все сооружения и конструкции менее 5 Ом.

Допускается более частое подключение защитных установок, если сопротивление всех параллельно подключенных к путевому дроссельтрансформатору устройств и сооружений более 5 Ом для сигнального тока частотой 50 Гц. Во всех случаях сопротивление утечке переменного тока включает сопротивление защитной установки при шунтированном поляризованном элементе и сопротивление заземления собственно сооружения.

4.3.11. С целью ограничения блуждающих токов присоединение усиленного дренажа к рельсовым путям электрифицированных железных дорог не должно приводить к появлению положительных потенциалов в точке отсоса в часы интенсивного движения поездов.

Ток усиленного дренажа в часы интенсивного движения поездов должен быть ограничен значением, при котором не устанавливаются устойчивые положительные потенциалы на рельсах в пункте присоединения усиленного дренажа.

Не допускается присоединять усиленный дренаж в анодных зонах рельсовой сети, а также к рельсам деповских путей.

Среднечасовой ток всех установок дренажной защиты, подключенных к рельсовому пути или сборке отрицательных питающих линий тяговой подстанции магистральных участков электрифицированных дорог постоянного тока, не должен превышать 25% общей нагрузки данной тяговой подстанции.

- 4.3.12. При опытном включении в качестве дренажного кабеля можно использовать шланговые кабели сечением 16—120 мм².
- 4.3.13. При присоединении дренажного кабеля к трубопроводу и элементам отсасывающей сети электротранспорта должен быть обеспечен надежный электрический контакт путем плотного скрепления контактирующих поверхностей.

Присоединение к рельсам трамвая и железных дорог может выполняться при помощи специальной струбцины, обжимающей подошву рельса, или болтовых соединений. В случае сварных стыков используются отверстия, имеющиеся в шейках рельсов.

Подключение дренажного кабеля к отсасывающему пункту, сборке отсасывающих кабелей и средней точке путевого дросселя выполняется с использованием существующего болтового соединения с применением дополнительной гайки.

4.3.14. На опытное включение дренажной установки должно быть получено разрешение транспортного ведомства. Представитель организации при опытном включении присоединяет дренажный кабель к сооружениям источников блуждающих токов.

- 4.3.15. Объем измерений, выполняемых при опытном включении, определяется организацией, проектирующей защиту. Порядок измерений излагается в программе, составленной перед началом работ, в которой указываются режимы работы защиты при опытном включении, пункты измерений на трубопроводах и смежных сооружениях, продолжительность измерений в каждом пункте с указанием размещения самопишущих и показывающих приборов.
- 4.3.16. Продолжительность работы опытной дренажной защиты зависит от местных условий и составляет от нескольких десятков минут до нескольких часов. При этом, как правило, должен быть охвачен период максимальных нагрузок электротранспорта.
- 4.3.17. Измерение тока дренажа, потенциалов на защищаемом трубопроводе, смежных подземных сооружениях и рельсах электротранспорта производят в соответствии с режимами работы защиты, намеченными программой.
- 4.3.18. Если в результате измерений установлено, что зона эффективного действия поляризованной дренажной установки не распространяется на весь район выявленной опасности, пункт дренирования перемещают или включают одновременно несколько дренажных установок в различных пунктах.

При недостаточной эффективности принятых мер проводят опытное включение усиленных дренажных установок или комплекса дренажных установок с катодной станцией. В последнем случае опытное включение катодной станции проводят после окончательного выбора параметров дренажных установок.

- 4.3.19. Измерения потенциалов на смежных сооружениях в период опытного включения дренажной защиты, как правило, выполняются организациями, эксплуатирующими эти сооружения. В отдельных случаях эти работы выполняются организацией, проектирующей защиту, в присутствии представителей эксплуатационных организаций, в ведении которых находятся смежные сооружения.
- 4.3.20. При испытаниях электрохимической защиты должны быть приняты меры по исключению вредного влияния катодной поляризации на смежные сооружения.
- 4.3.21. Вредное влияние защиты на смежные подземные металлические сооружения может быть устранено уменьшением тока защиты; регулировкой режима работы защиты на смежных сооружениях (если они имеются); включением смежных сооружений в систему совместной защиты.
- 4.3.22. При опытном включении катодной защиты для установки временных заземлений, как правило, выбирают участки, на которых впоследствии предполагается разместить и стационарные заземления.
- 4.3.23. Временное анодное заземление представляет собой ряд металлических электродов, помещенных вертикально в грунт на расстоянии 2—3 м друг от друга в 1 или 2 ряда. В качестве электродов обычно применяют некондиционные трубы диаметром 25—50 мм и длиной 1,5—2 м, забитые в землю на глубину 1—1,5 м.
 - 4.3.24. Анодное заземление следует относить от подземных сооружений

на максимально возможное расстояние. В отдельных случаях при отсутствии достаточной площади для размещения анодного заземления применяют распределенные заземления, состоящие из двух и более групп электродов, расположенных на отдельных участках. Группы электродов соединяют между собой кабелем либо индивидуально подключают к катодной станции.

Для повышения эффективности действия катодной защиты целесообразно выбирать участки размещения анодных заземлений, на которых между защищаемыми трубопроводами и анодным заземлением отсутствуют прокладки других подземных металлических сооружений.

По возможности анодное заземление следует размещать на участках с минимальным удельным электрическим сопротивлением грунта (газоны, скверы, пойменные участки рек, прудов и т. п.).

- 4.3.25. Электрические измерения по определению эффективности действия катодной защиты и характера ее влияния на смежные подземные сооружения аналогичны измерениям при опытном включении электродренажей (см. пункты 4.3.19—4.3.21).
- 4.3.26. Қак правило, при опытном включении электрохимической защиты определяют основной ее параметр среднее значение силы тока в цепи электрозащиты.

При составлении проекта остальные параметры защиты (сопротивление дренажного кабеля, сопротивление растеканию анодного заземления, напряжение на зажимах катодной станции или вольтодобавочного устройства усиленного электродренажа) рассчитывают либо выбирают с учетом технико-экономических показателей различных вариантов соотношения параметров.

- 4.3.27. Исходными данными для выбора анодного заземления являются ток катодной защиты и среднее значение удельного сопротивления грунта на площадке, где предполагается разместить анодное заземление. Выбор оптимальных параметров анодного заземления производят в соответствии с методикой, изложенной в прил. 2.
- 4.3.28. Протекторную защиту трубопроводов в основном применяют при почвенной коррозии. При защите от блуждающих токов протекторную защиту применяют при незначительных средних потенциалах (до +0.3 В) и оборудуют вентильными устройствами.
- 4.3.29. Протекторы следует использовать в грунтах с удельным сопротивлением не более 50 Ом м, устанавливая их на глубине не менее 1 м ниже границы промерзания грунта.
- 4.3.30. Протекторную защиту осуществляют с одиночной или групповой расстановкой протекторов. Схему расстановки протекторов выбирают с учетом технико-экономических показателей для данного сооружения.
- 4.3.31. Расчет протекторной защиты производится в соответствии с пунктом 4.2.27.
- 4.3.32. Располагать протекторы на расстоянии ближе 3 м от трубопровода не рекомендуется, так как это может привести к повреждению изоляционного покрытия солями растворяющегося протектора. Как правило, протекторы располагают на расстоянии 4—5 м от трубопровода.

Глава 4.4. СОВМЕСТНАЯ ЗАЩИТА ГОРОДСКИХ ПОДЗЕМНЫХ СООРУЖЕНИЙ

- 4.4.1. При проектировании защиты подземных сооружений городов и населенных пунктов, как правило, должна быть предусмотрена совместная защита всех коммуникаций. При этом целесообразно руководствоваться «Рекомендациями по совместной защите от коррозии подземных металлических сооружений связи и трубопроводов. Р333—78.»
- 4.4.2. Для обеспечения защиты от коррозии все совместно защищаемые подземные сооружения должны быть соединены между собой специальными электрическими перемычками (если отсутствуют технологические соединения) и защищаться общими для всех установками электрохимической защиты.
- 4.4.3. При совместной защите городских подземных металлических сооружений оборудуют прямые или регулируемые перемычки между совместно защищаемыми трубопроводами и вентильные перемычки (блоки совместной защиты БДР, БЗК-10, БЗК-50, БДЗ-10, БДЗ-150) между кабелями связи и трубопроводами.
- 4.4.4. При проектировании совместной защиты существующих трубопроводов и кабелей связи перемычки следует устанавливать так, чтобы они соединяли точки наиболее высоких положительных потенциалов на кабелях связи с близлежащими точками трубопроводов, имеющими наиболее высокие отрицательные потенциалы.
- 4.4.5. Место установки перемычек на параллельных трубопроводах определяется путем снятия потенциальных диаграмм для обоих трубопроводов. Перемычку монтируют в точке наиболее положительного потенциала незащищенного трубопровода. К защищенному трубопроводу перемычку подключают в точке с наиболее высоким по абсолютному значению отрицательным потенциалом, расположенным на расстоянии, равном не более удвоенному расстоянию между трубопроводами.
- 4.4.6. Если при опытном включении устанавливают, что на сооружении, включенном в совместную защиту, анодная зона снимается не полностью или возникающий отрицательный потенциал по абсолютному значению меньше защитного, необходимо провести следующие мероприятия:
 - уменьшить сопротивление перемычки;
- увеличить отрицательный потенциал на основном подземном сооружении, с которым осуществляется совместная защита, путем регулирования защитных устройств на этом сооружении;
- увеличить число перемычек, устанавливая дополнительные в тех местах, где положительные потенциалы на защищаемом сооружении имеют максимальное значение;
 - установить дополнительные средства электрохимической защиты.
- 4.4.7. Методика проектирования электрохимической защиты вновь прокладываемых подземных трубопроводов (гл. 4.2) предусматривает расчет параметров электрохимической защиты, обеспечивающей совместную защиту всех трубопроводов, расположенных на территории данного района. При этом рассчитанный запас мощности защитных установок

Технические характеристики преобразователей дренажной защиты

Тип устрой- ства	Номи- нальный ток, А	Дополни- тельное обратное напряже- ние, В	Макси- мальное дроссель- ное напряже- ние, Ом	Масса, кг	Размеры, мм
БДР	100	300	0,24	20	470×300×210
ПЭД-200	200	800	<u>-</u>	30	270×565
ПЭД-160	160	800		30	270×565
ПЭД-100	100	800	_	30	270×565
ПЭД-60	60	150	_	30	270×565
БДЗ-10	10	100	0,30	2,2	$153 \times 100 \times 181$
БДЗ-50	50	100	0.24	6,2	$201 \times 161 \times 243$
УДП-500	500		0,24	80	$650 \times 535 \times 660$
БЗК-50-VI	50	100	<u>-</u>	6,5	
Б3K-10-VI	10	100	-	2,5	

обуславливает возможность включения в систему совместной защиты кабелей связи без увеличения числа и мощности защитных установок.

4.4.8. Включение в систему совместной защиты с помощью перемычек стальных трубопроводов и силовых кабелей не допускается.

Глава 4.5. УСТАНОВКИ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ

- 4.5.1. Установки дренажной защиты состоят из поляризованного дренажа (преобразователя) и соединительных кабелей. Технические характеристики преобразователей дренажной защиты, которые рекомендуется применять при защите подземных сооружений от коррозии, вызываемой блуждающими токами, приведены в табл. 14.
- 4.5.2. Установки катодной защиты состоят из катодной станции (преобразователя), анодного заземления, защитного заземления и соединительных кабелей. Технические характеристики преобразователей катодной защиты приведены в табл. 15.
- 4.5.3. Установка проекторной защиты состоит из анодного протектора (группы протекторов), активатора, соединительных проводов, клеммной коробки или контрольно-измерительного пункта в случае групповой установки протекторов. Основные технические данные анодных протекторов приведены в табл. 16.

При расчетах для протекторов типа ПМ-5У, ПМ-10У, ПМ-20У рекомендуется принимать следующие параметры:

Стационарный потенциал относит	елы	O M	едно	осу	ЛЬ	фа	T-	
ного электрода сравнения, В						٠.		-1,6
Теоретическая токоотдача, А · ч/кг								2330
КПД протекторов:								
из сплава МП1								0,65
из сплава МП2								0,6
Удельное омическое сопротивлени	e ai	ктива	атор	a,	0	м .	M	1,6

-			-	
I е хнические	характеристики	преобразователей	катодной	защиты

Тип устройства	Выходная мощность, кВт	Напряжение выпрям- ленного тока, В	Выпрям- ленный ток, А	Масса, кг	Размеры
ОПС-25-24-VI	0,6	24	25	95	606×400×900
ОПС-50-24-VI	1,2	24	50	115	$606 \times 400 \times 900$
ОПС-63-48-VI	3,0	48	63	115	$606 \times 400 \times 1100$
OПС-100-48-VI	5,0	48	100	205	$606 \times 400 \times 1100$
CK3M-5.0-VI	5,0	96/48	52/104	160	$1000 \times 685 \times 425$
KCC-600	0,6	12/24	50/25	75	$590 \times 713 \times 345$
KCC-1200	1,2	12/24	100/50	95	$934 \times 830 \times 470$
KCC-600	0.6	24/48	25/12,5	75	$590 \times 713 \times 345$
KCC-1200	1,2	24/48	50/25	95	$934 \times 830 \times 472$
KCK-500-1	0,5	5 0	10	31	265×585
KCK-1200-1	1,2	60	20	60	294×595
APT3 0,6-48/24	0,6	48/24	12,5/25	140	$690 \times 810 \times 465$
APT3 1,2-48/24	1,2	48/24	25/50	150	$690 \times 810 \times 465$
APT3 2.0-96/48	2.0	96/48	21/42	160	$690 \times 810 \times 465$
APT3 3.0-96/48	3,0	96/48	31/62	180	$690 \times 810 \times 465$
APT3 5,0-20/48	5,0	96/48	52/104	250	$710\times910\times805$

Таблица 16
Технические данные магниевых протекторов, упакованных с активатором

Тип	Габаритные	Масса (округленно),	
протектора	Диаметр	Длина	кг кг
ПМ-5У	165	580	16
ПМ-10У	200	700	30
ПМ-20У	270	710	60

- 4.5.4. В качестве анодных заземлителей установок катодной защиты применяют железокремниевые, углеграфитовые, стальные и чугунные электроды, помещенные в грунт или коксовую засыпку.
 - 4.5.5. Рекомендуемые конструкции анодных заземлителей:
- из железокремниевых электродов, выполненных в виде цилиндрических отливок (типа A3M-2) или цилиндрических отливок с утолщением на концах, длиной 762—1525 и диаметром 50—125 мм, на торцах электродов имеются глухие отверстия для устройства токовводов. При использовании этих электродов следует руководствоваться «Методическими рекомендациями по применению железокремниевых анодов для катодной защиты подземных металлических сооружений»;
- из углеграфитовых электродов типа ЭГТ (ТУ 48-20-97—87), состоящих из двух частей; графитопластовой трубы, выполняющей роль активной части и имеющей в рабочем состоянии непосредственный контакт с грунтом; соединителя токоввода, предназначенного для соединения труб между собой и подвода к ним тока;

- из стальных труб с активатором из коксобетона или коксовой мелочи с использованием стальных труб диаметром 274×4 и 70×4 мм соответствующих длин; активатор размещается между внутренней (анод) и наружной трубами;
- из водопроводных чугунных труб марки 4HP1Б0 ×3000 (6000). Конструктивные решения устройств анодных заземлителей приведены в альбоме типовой документации на конструкции, изделия и узлы зданий и сооружений серии 5.905-6 «Узлы и детали электрозащиты подземных инженерных сетей от коррозии».
- 4.5.6. При невозможности разместить поверхностные анодные заземлители предусматривают глубинные анодные заземлители, при устройстве которых следует руководствоваться «Рекомендациями по методике расчета и выбору конструкций глубинных анодных заземлителей для катодной защиты» (М., ОНТИ АКХ, 1982).

Глава 4.6. ПРОЕКТИРОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ ТРУБОПРОВОДОВ, НАХОДЯЩИХСЯ ДЛИТЕЛЬНОЕ ВРЕМЯ В ЭКСПЛУАТАЦИИ

- 4.6.1. Электрохимическая защита подземных трубопроводов, длительное время эксплуатировавшихся в коррозионно-опасных условиях и имеющих коррозионные повреждения, осуществляется после оценки их технического состояния в соответствии с РД 204. РСФСР 33—87 «Техническое состояние подземных газопроводов. Общие требования. Методы оценки и устранения выявленных недостатков.»
- 4.6.2. В случае, если защитный потенциал на трубопроводе достигается при плотностях защитного тока порядка 40 мА/м² и более, необходимо проверить технико-экономическую целесообразность электрохимической защиты, сопоставив приведенные затраты на электрохимическую защиту с затратами на капитальный ремонт (либо перекладку) трубопровода.

Если при осуществлении электрохимической защиты обеспечение защитных потенциалов в соответствии с пунктами 1.2.8—1.2.9 представляется технически невозможным или экономически нецелесообразным, допускается применение «временной защиты» по критериям и на сроки, согласованные с эксплуатационной, проектной и головной научноисследовательской организациями.

- 4.6.3. В случае применения временной защиты эксплуатирующей организацией должны быть разработаны и осуществлены дополнительные меры, обеспечивающие безопасную эксплуатацию трубопровода.
- 4.6.4. В связи с тем что при включении электрохимической защиты возможно восстановление и отслаивание продуктов коррозии на поверхности трубопровода, необходимо в течение 1-го года эксплуатации электрохимической защиты осуществить проверку плотности (а по возможности и прочности) трубопровода и проверку изоляции «надтрассовым» методом.

Часть 5. МОНТАЖ И НАЛАДКА УСТАНОВОК ЭЛЕКТРОЗАЩИТЫ

Глава 5.1. ОБШИЕ ПОЛОЖЕНИЯ

- 5.1.1. Монтаж установок электрозащиты выполняют в соответствии с чертежами рабочих проектов электрохимической защиты.
- 5.1.2. При производстве строительно-монтажных работ должны быть соблюдены правила техники безопасности, предусмотренные СНиП III-A.11—70. Электромонтажные работы должны производиться в соответствии с требованиями «Правил устройства электроустановок» (ПУЭ), СНиП III-33—76 «Электротехнические устройства» и «Инструкции по прокладке кабелей до 110 кВ» (СН 85—74).
- 5.1.3. При монтаже установок электрозащиты рекомендуется использовать альбом «Узлы и детали электрозащиты подземных инженерных сетей от коррозии (серия 5.905-6)».

Глава 5.2. МОНТАЖ И НАЛАДКА ДРЕНАЖНЫХ И КАТОДНЫХ УСТАНОВОК

- 5.2.1. В объем работ по монтажу установок дренажной защиты входят устройство дренажа, прокладка и подключение дренажных кабелей или проводов к защищаемому сооружению и рельсовой сети, устройство защитного заземления.
- 5.2.2. В объем работ по монтажу установок катодной защиты входят установка катодной станции (преобразователя), прокладка кабеля и подводка питания к катодной станции, устройство анодного и защитного заземления, подключение катодной станции к защищаемому сооружению.
- 5.2.3. На дверцах корпусов защитных устройств указывают наименование и номер телефона организации, обслуживающей защитное устройство. Дверцы должны запираться специальными замками.
- 5.2.4. Корпусы катодных станций и усиленных электродренажей подлежат заземлению. Устройство заземления выполняют в соответствии с требованиями ПУЭ.
- 5.2.5. Устройство электрозащиты подключают к источникам питания переменного тока (распределительные щитки, трансформаторные пункты, воздушные линии электропередачи низкого напряжения и др.), при согласовании на подключение и выполнение требований организаций, которым подведомственны источники. Подключение производят в присутствии представителя этих организаций.
- 5.2.6. Концы кабелей, вводимых в корпусы электрозащитных устройств, помещают в трубы, нижняя часть которых углублена в землю на 400—500 мм.
- 5.2.7. Дренажный кабель подсоединяют сначала к электродренажу (при выключенном рубильнике), а затем к рельсам, путевому дросселю или сборно-минусовой шине тяговой подстанции в соответствии с проектом.

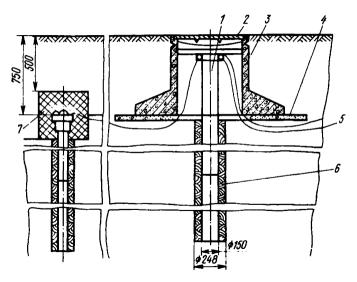


Рис. 16. Анодное заземление из чугунных труб. 1— электрод; 2— люк; 3— подушка под люк; 4— гравий; 5— кабель электрохимической защиты; 6— глинистый раствор; 7— битум.

- 5.2.8. Все работы, связанные с присоединением дренажных кабелей к соответствующим устройствам сети электрифицированного рельсового транспорта, производят согласно предписаниям эксплуатационных организаций (трамвая и железных дорог) и в присутствии представителей этих организаций.
- 5.2.9. Анодные заземления устанавливают на запроектированной площадке в соответствии с расчетом и рабочими чертежами, приведенными в проекте.
- 5.2.10. Работы по устройству поверхностного анодного заземления выполняют в такой последовательности: подготавливают шурфы и траншеи для установки заземлителей и укладки соединительной полосы; устанавливают заземлители (электроды); сваривают отдельные заземлители в контур и гидроизолируют места сварки; засыпают шурфы и траншеи.
- 5.2.11. Сооружение анодного заземления из чугунных труб диаметром 150 мм, длиной 12 (6) м рекомендуется выполнять следующим образом: бурят скважины до глубины (13) 7 м станками УКС-22, УРБ-50 м и др. и укрепляют обсадными трубами; опускают в скважины чугунные трубы; соединяют трубы сваркой и изолируют смоляной лентой и битумом; по окончании буровых работ обсадные трубы извлекают; пространство между чугунными трубами и стенками скважины заливают глинистым раствором.

На рис. 16 представлено анодное заземление из чугунных труб диаметром 150 мм, длиной 12 (6) м.

5.2.12. Монтаж анодных заземлений из железокремниевых анодов рекомендуется осуществлять в соответствии с «Методическими рекомендациями по применению железокремниевых анодов для катодной защиты

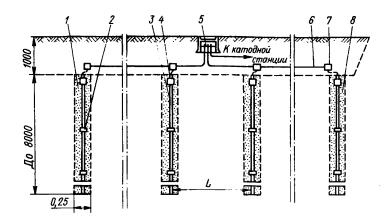


Рис. 17. Анодное заземление с вертикальным размещением железокремниевых электродов.

1 — коксовая мелочь; 2 — изоляционное соединение встык; 3 — железокремниевый электрод; 4 — токовод с кабельным выводом; 5 — контактное устройство; 6 — кабельная магистраль; 7 — фитинг ФГ-20; 8 — буровая скважина.

подземных металлических сооружений». На рис. 17 показана конструкция анодного заземления из железокремниевых анодов с вертикальной установкой. Для монтажа анодов бурят скважину глубиной до 10 м, диаметром до 0,25 м. В каждую скважину опускают до пяти электродов. Скважину заполняют коксовой мелочью или глинистым буровым раствором. Электрические выводы от вертикальных анодов с основной кабельной магистралью соединяют с помощью фитингов, которые устанавливают в предварительно вырытой траншее вдоль группы вертикальных анодов. Траншеи роют в 0,3—0,5 м от оси анодов. Глубина траншеи около 1 м, ширина 0,3—0,5 м.

- 5.2.13. Установку и монтаж анодных заземлений из углеграфитовых электродов рекомендуется производить в соответствии с альбомом «Узлы и детали электрозащиты подземных инженерных сетей».
- 5.2.14. По окончании монтажа контура анодного заземления измеряют сопротивление растеканию, которое не должно превышать значения, указанного в проекте.
- 5.2.15. Исполнительные чертежи на построенные электрозащитные установки составляют строительные организации в процессе производства строительных работ.
- 5.2.16. Представители эксплуатационных и проектных организаций, осуществляющие технический и авторский надзор, обязаны контролировать выполняемые работы в процессе строительства, делать соответствующие записи в журналах авторского и технического надзора и после завершения работ подписывать акт на строительно-монтажные работы (форма 3-1 прил. 1), при обнаружении серьезных отступлений от проекта или низком качестве строительно-монтажных работ официальным предписанием остановить работы и о выявленных дефектах составить акт.

- 5.2.17. Строительно-монтажная организация, получив предписание, обязана в намеченный срок исправить допущенные дефекты, после чего вызвать представителя заинтересованных организаций для повторной приемки объекта.
- 5.2.18. После окончания строительства и монтажа электрозащитных установок подрядная организация передает заказчику: один экземпляр проекта; исполнительные чертежи; оформленные акты на строительномонтажные работы (на каждую установку в отдельности); справку городской электросети, разрешающую эксплуатацию установки.
- 5.2.19. Наладку установок электрозащиты производит специализированная строительная или эксплуатационная организация. В случае недостаточной эффективности работы электрозащитных устройств (зона действия меньше предусмотренной проектом, недостаточный защитный потенциал сооружения и т. д.) наладку устройств выполняют совместно с представителями проектной организации.

Наладка электрозащитных установок выполняется также после капитального ремонта установок.

5.2.20. Налаживают и регулируют установку электрозащиты подбором оптимального режима ее работы с одновременным контролем распределения потенциалов на защищаемых сооружениях и смежных подземных металлических коммуникациях.

О результатах наладки составляют справку установленной формы (форма 3-3 прил. 1).

- 5.2.21. При наладке дренажной защиты проверяют дренажный ток и потенциал трубопровода относительно земли в точке дренирования.
- 5.2.22. При наладке катодной станции проверяют выпрямленные напряжение и ток катодной станции, а также потенциал трубопровода относительно земли на контактном устройстве.
- 5.2.23. При наладке усиленного дренажа проверяют потенциал трубопровода в точке дренирования, ток дренажа, выпрямленное напряжение, а также соответствие напряжения рельс—трубопровод допустимому обратному напряжению выпрямленного элемента (вентиля). Напряжение рельс—трубопровод измеряют в момент наибольшей положительной полярности рельса.
- 5.2.24. Перед установкой заданного режима автоматического усиленного дренажа и автоматической катодной станции следует проверить работу цепи автоматической регулировки.
- 5.2.25. В результате наладки установок электрозащиты значения минимального и максимального защитных потенциалов металлического сооружения по отношению к земле в пределах зоны, предусмотренной проектом, должны соответствовать требованиям пунктов 1.2.8—1.2.11.
- 5.2.26. Влияние защитной установки на смежные подземные сооружения определяют представители организаций, эксплуатирующих эти сооружения. При этом составляют справку по установленной форме (форма 3-4 прил. 1).
- 5.2.27. Если запроектированные средства электрозащиты оказались недостаточно эффективными, составляют акт, в котором указывают причины создавшегося положения и рекомендации по их устранению. Акт

составляет пусконаладочная организация и подписывают представители заказчика, проектной и эксплуатирующей организации. На незащищенный участок трубопровода проектная организация разрабатывает дополнительный проект защиты, который должен быть осуществлен в сроки, согласованные с заказчиком.

Глава 5.3. МОНТАЖ И УСТАНОВКА ПРОТЕКТОРОВ

- 5.3.1. Монтаж протекторов, упакованных в порошкообразном активаторе, выполняют в такой последовательности: бурят скважину диаметром 250—320 мм, глубиной 1,5—3,5 м в зависимости от влажности грунта; упакованные протекторы доставляют к месту установки в бумажных мешках, снимают которые непосредственно перед закладкой в скважину; упакованный протектор опускают в скважину и устанавливают в центре ее, затем засыпают грунтом и утрамбовывают с предосторожностями, необходимыми для сохранения провода и протектора; в сухих грунтах при глубоком залегании грунтовых вод после установки протектора и засыпки его грунтом скважину заливают водой (2—3 ведра), после чего ее полностью засыпают грунтом с послойной утрамбовкой; соединение протектора с трубопроводом осуществляется через контрольно-измерительный пункт, чтобы иметь возможность контролировать работу протекторной установки; к трубопроводу провод подключают термитной или электросваркой. Место сварки тщательно изолируют битумной мастикой.
- 5.3.2. Монтаж протекторов без активатора выполняется в такой последовательности: перед установкой с поверхности протектора удаляют окисную пленку и жирные вещества; проводник в полихлорвиниловой изоляции припаивают к выступающему из протектора концу внутреннего стержня, зачищенному до металлического блеска; изолируют место пайки грунтовкой и слоем битума толщиной не менее 4 мм; концы стального сердечника и соединительного провода зачищают и залуживают припоем. Жилы провода продевают через прорезь в стальном сердечнике, плотно обматывают вокруг него. Место пайки и весь оголенный участок сердечника изолируют битумной мастикой слоем не менее 10 мм.

При установке групповых протекторов к каждому протектору припаивают монтажный провод, который подключают к общему соединительному проводу.

5.3.3. При установке неупакованного протектора в шурфе на дно его предварительно помещают заполнитель толщиной 100—150 мм. В центре шурфа устанавливают протектор, вокруг которого укладывают активатор с уровнем, превышающим верхнюю часть протектора на 150—200 мм.

Активатор должен быть равномерно распределен вокруг протектора. Для этого активатор помещают в специальную форму из листовой стали в виде цилиндра диаметром не менее 250 мм. Для удобства эту форму делают разъемной с двумя ручками. После укладки в форму заполнителя яму засыпают грунтом до верхнего торца формы, грунт трамбуют и извлекают из него форму.

5.3.4. Для наблюдения и регулировки работы протектора соединительный провод вводят в контрольное устройство, представляющее собой

контактный вывод. Контрольное устройство можно устанавливать над защищаемым трубопроводом в ковере, настенном ящике и в контрольноизмерительной колонке.

- 5.3.5. Проверка и промежуточная приемка протекторов заключается в техническом надзоре за их установкой и измерении электрических параметров.
- 5.3.6. При техническом надзоре за установкой протекторов необходимо проверить соответствие проекту качества монтажа протекторов, длины защищаемого участка, привязок на месте, размеров установки, а также технологию установки.
- 5.3.7. Измерению подлежат следующие электрические параметры установки: потенциал трубопровода до присоединения протектора; потенциал протектора относительно земли до присоединения к трубопроводу (для магниевых протекторов составляет 1,5—1,6 В по медносульфатному электроду сравнения); разность потенциалов между трубопроводами и протектором до присоединения; потенциал трубопровода относительно земли после присоединения протектора; ток в цепи протектор—трубопровод.

Результаты измерения заносят в специальный журнал (форма 2-4 прил. 1).

Глава 5.4. УСТАНОВКА ЭЛЕКТРОИЗОЛИРУЮЩИХ ФЛАНЦЕВ

- 5.4.1. Электроизолирующие фланцы на трубопроводах устанавливают на участках, указанных в проектах электрозащиты.
- 5.4.2. Проверку и приемку электроизолирующих фланцев производят после окончания монтажа трубопроводов. При этом следует руководствоваться «Методическими указаниями по использованию изолирующих фланцевых соединений при электрохимической защите городских подземных газопроводов».

Глава 5.5. УСТРОЙСТВО КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ ПУНКТОВ

- 5.5.1. Контрольно-измерительные пункты (КИП) устанавливают на подземном сооружении после укладки его в траншею до засыпки землей. Установку контрольно-измерительных пунктов на действующих сооружениях выполняют в специальных шурфах.
- 5.5.2. Контрольно-измерительные пункты на подземных металлических сооружениях должны обеспечивать надежный электрический контакт проводника с защищаемым сооружением; надежную изоляцию проводника от грунта; механическую прочность при внешних воздействиях; отсутствие электрического контакта между электродом сравнения и сооружением или контрольным проводником; доступность для обслуживающего персонала и возможность проведения измерения потенциалов независимо от сезонных условий.
- 5.5.3. При оборудовании контрольно-измерительных пунктов неполяризующимися медносульфатными электродами сравнения длительного

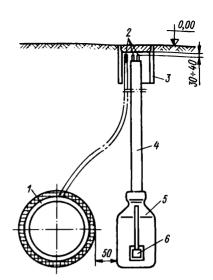


Рис. 18. Устройство контрольно-измерительного пункта с электродом длительного действия.

І — трубопровод;
 2 — контрольные проводники;
 3 — ковер;
 4 — предокранительная трубка;
 5 — электрод сравнения;
 6 — датчик
 электрохмымческого потенциала.

действия (см. пункт 2.2.9) необходимо выполнить следующее. Электрод установить в специальном вырытом шурфе или траншее таким образом, чтобы дно корпуса находилось на уровне нижней образующей трубопровода; плоскость датчика при этом должна быть перпендикулярна к оси трубопровода (рис. 18). Если электрод заполнен электролитом, замерзающим при температуре ниже 0 °C, то при прокладке трубопровода выше уровня промерзания грунтов электрод устанавливают таким образом, чтобы дно корпуса находилось на 10—15 см ниже максимальной глубины промерзания грунта.

При установке электродов в глинистых или суглинистых грунтах специальной подготовки грунта не требуется. В сухих песчаных или супесчаных грунтах электрод устанавливают на специальную подушку из глины толщиной 100 мм, корпус электрода полностью засыпают просеянным грунтом, заливают 3—4 ведрами воды и осторожно утрамбовывают.

Перед установкой электрода в рабочее положение через предохранительную трубку протягивают соединительные проводники; на штекеры насаживают пробку, которую вставляют в трубку. Верхний конец предохранительной трубки устанавливают ниже крышки ковера контрольно-измерительного пункта на 100 мм, нижний — вводят в горловину корпуса электрода, предварительно залитую битумом.

5.5.4. Проверку и приемку контрольно-измерительного пункта производят после засыпки траншеи. При приемке представляют: схему трассы трубопровода (только в случаях установки контрольно-измерительного пункта на вновь строящихся трубопроводах); эскизы с точными привязками на местности установленных контрольно-измерительных пунктов (если таковые не могут быть даны на схеме). По окончании приемки представителю строительной организации выдают справку (форма 3-5 прил. 1).

5.5.5. Проверку исправности контрольно-измерительного пункта, оборудованного медносульфатным электродом сравнения с датчиком потенциала, осуществляют измерением сопротивления между выводами «электрод сравнения — трубопровод» и «датчик — трубопровод».

Измерения производят с помощью мегомметров типа М-4100 (модификации М-4100/1, М-4100/2 или М-4100/3). Контрольно-измерительный пункт считается исправным, если сопротивления между выводами «электрод сравнения—трубопровод» контрольно-измерительного пункта находятся в диапазоне значений 0,1—10 кОм (МЭСД-АКХ) и 0,2—15 кОм (ЭНЕС) и между выводами «датчик—трубопровод» в диапазоне 0,1—20 кОм.

Глава 5.6. МОНТАЖ ЭЛЕМЕНТОВ СОВМЕСТНОЙ ЗАШИТЫ

- 5.6.1. Места включений электрических перемычек при осуществлении совместной защиты намечаются в проекте и уточняются при наладке.
- 5.6.2. Монтаж элементов совместной защиты включает: рытье траншеи для прокладки перемычек между совместно защищаемыми подземными сооружениями; прокладку и подключение перемычек к защищаемым подземным сооружениям; включение в перемычки предохранителей, сопротивлений и вентильных элементов (при необходимости).
- 5.6.3. Электроперемычки к трубопроводу присоединяют термитной сваркой или электросваркой. Площадь сварного шва присоединения должна быть не менее 500 мм². Стальную полосу и места присоединения ее к трубопроводу изолируют битумным покрытием толщиной не менее 9 мм или другими равноценными материалами.
- 5.6.4. Подключение перемычек между кабелем связи с совместно защищаемым трубопроводом должно выполняться в местах расположения соединительных муфт на кабелях связи.

Глава 5.7. ПРЕДУСТАНОВОЧНЫЙ КОНТРОЛЬ ОБОРУДОВАНИЯ, ПРИМЕНЯЕМОГО ПРИ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЕ

- 5.7.1. С целью повышения эксплуатационной надежности аппаратура, применяемая для электрохимической защиты, должна подвергаться предустановочному контролю. Предустановочному контролю подлежат преобразователи для катодной и дренажной защиты, протекторы, блоки для совместной защиты.
- 5.7.2. При получении оборудования необходимо убедиться, что тара и упаковка не имеют внешних повреждений. В случае наличия повреждений получатель должен предъявить акт-рекламацию транспортному предприятию.

После распаковки оборудования необходимо проверить комплектность поставки согласно сопроводительной документации. В случае некомплектности поставки получатель должен предъявить акт-рекламацию заводу-изготовителю.

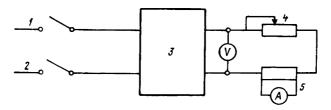


Рис. 19. Схема предустановочного контроля преобразователей.

1. 2 — питающая сеть 220 В; 3 — преобразователь; 4 — регулируемое сопротивление; 5 — амперметр с шунтом.

- 5.7.3. Перед проверкой работоспособности и надежности оборудования необходимо тщательно его осмотреть, удалить консервационную смазку и загрязнения, проверить надежность узлов, креплений и затяжку болтовых соединений, наличие предохранителей, соответственно их номиналу.
- 5.7.4. Проверка работоспособности и надежности преобразователей ОПС и СКЗМ проводится согласно схеме рис. 19.

В качестве нагрузочного сопротивления могут быть использованы элементы типа НФА-1, имеющие сопротивление 0,06 Ом и рассчитанные на ток 120 А. Для испытания преобразователей мощностью 2 кВт и ниже могут быть использованы ползунковые реостаты, включаемые параллельно. Для каждого из испытываемых преобразователей с помощью перемычек набирается величина нагрузочного сопротивления, равная отношению номинального выпрямленного напряжения к номинальному выпрямленному току.

Автоматические преобразователи переводятся в режим ручного управления, с помощью ручки потенциометра проверяется диапазон регулирования выходного напряжения, значение которого для всех преобразователей указанного типа должно меняться в пределах от 10 до 100% номинального.

Затем при номинальном напряжении устанавливается номинальный ток и производится трехкратное отключение и включение питающего напряжения, проверяется работоспособность преобразователя при работе в номинальном режиме в течение не менее 1 ч.

Указанные выше испытания проводятся на обеих ступенях выходного напряжения преобразователя. На преобразователи, не выдержавшие испытаний предустановочного контроля, составляется акт-рекламация, который предъявляется заводу-изготовителю.

- 5.7.5. Все испытания преобразователей проводятся с соблюдением «Правил безопасности при работе с электроустановками».
- 5.7.6. Предустановочный контроль блоков диодно-резисторных (БДР) заключается в проверке целостности узлов и деталей, в проверке затяжки болтовых соединений, а также в определении проводимости каналов в прямом и обратном направлении.

Определение проводимости каналов БДР осуществляется с помощью омметра либо авометра. Плюс прибора подключается к клемме «Выходы каналов», минус — к клемме «Вход». В этом случае показания омметра должны быть ближе к нулю. При перемене полярности прибора омметр должен показывать величину порядка нескольких сотен килоом.

73

5.7.7. Предустановочный контроль протекторов сводится к тщательному визуальному осмотру. При этом необходимо убедиться в наличии маркировки на хлопчатобумажных и бумажных мешках. Маркировка должна содержать данные о типе протектора, марке сплава, заводе-изготовителе. При поставке неупакованных протекторов маркировка сплава наносится краской на торце анода, хлопчатобумажные мешки не должны иметь разрывов, следов влаги и грязи.

Необходимо убедиться в том, что проводник надежно присоединен к сердечнику и место присоединения тщательно изолировано мастикой.

Протекторы, не соответствующие перечисленным требованиям, установке не поллежат.

часть 6. ЭКСПЛУАТАЦИЯ УСТАНОВОК ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ

Глава 6.1. ОБЩАЯ ЧАСТЬ

- 6.1.1. Задача повышения эксплуатационной надежности установок электрохимической защиты сводится к максимальному снижению отказов в работе катодных, дренажных, протекторных установок и, как следствие этого, к уменьшению длительности перерывов в работе устройств электрохимической защиты.
- 6.1.2. Основными способами повышения надежности работы установок электрохимической защиты являются:

качественное ведение технического надзора за строительством и капитальным ремонтом установок защиты;

повышение качества работ по приемке установок электрохимической защиты;

предустановочный контроль аппаратуры, применяемой при электрохимической защите;

повышение уровня эксплуатации за счет внедрения обоснованной системы планово-предупредительных ремонтов;

усовершенствование конструкций устройств электрохимической защиты, узлов и деталей;

применение телеконтроля за работой устройств электрохимической защиты;

улучшение организации и качества работ по ремонту устройств электрохимической защиты;

организация четкого контроля за работой устройств электрохимической защиты, анализ причин отказов, оперативная разработка мероприятий по их предотвращению.

Глава 6.2. ПОРЯДОК ПРИЕМКИ И ВВОДА В ЭКСПЛУАТАЦИЮ УСТАНОВОК ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ

6.2.1. Установки электрохимической защиты вводят в эксплуатацию после завершения пусконаладочных работ и испытания на стабильность в течение 72 ч.

- 6.2.2. Электрозащитные установки принимает в эксплуатацию комиссия, в состав которой входят представители следующих организаций: заказчика; проектной (по необходимости); строительной; эксплуатационной, на баланс которой будет передана построенная электрозащитная установка; предприятия «Подземметаллзащита» (службы защиты); местных органов Госгортехнадзора СССР; городских (сельских) электросетей.
- 6.2.3. Данные проверки готовности объектов к сдаче заказчик сообщает телефонограммой организациям, входящим в состав приемной комиссии не менее чем за сутки.
- 6.2.4. Заказчик предъявляет приемной комиссии: проект на устройство электрической защиты; акты на выполнение строительно-монтажных работ (форма 3-1 прил. 1); исполнительные чертежи и схемы с нанесением зоны действия защитной установки; справку о результатах наладки защитной установки (форма 3-3 прил. 1); справку о влиянии защитной установки на смежные подземные сооружения (форма 3-4 прил. 1); паспорта электрозащитных устройств; акты на приемку электрозащитных установок в эксплуатацию (форма 3-2 прил. 1); разрешение на подключение мощности к электрической сети; документацию о сопротивлении изоляции кабелей и растеканию защитного заземления.
- 6.2.5. После ознакомления с исполнительной документацией приемная комиссия проверяет выполнение запроектированных работ средств и узлов электрозащиты, в том числе изолирующих фланцевых соединений, контрольно-измерительных пунктов, перемычек и других узлов, а также эффективность действия установок электрохимической защиты. Для этого измеряют электрические параметры установок и потенциалы трубопровода относительно земли на участке, где в соответствии с проектом зафиксирован минимальный и максимальный защитный потенциал, а при защите только от блуждающих токов предусмотрено отсутствие положительных потенциалов.

Электрозащитные установки, не соответствующие проектным параметрам, не должны подлежать приемке.

- 6.2.6. Электрозащитную установку вводят в эксплуатацию только после подписания комиссией акта о приемке.
- 6.2.7. В случае необходимости в соответствии с пунктом 1.1.11 настоящей инструкции может быть осуществлена приемка во временную эксплуатацию электрохимической защиты на незаконченном строительством трубопроводе.

После окончания строительства электрохимическая защита подлежит повторной приемке в постоянную эксплуатацию.

- 6.2.8. Если при проверке эффективности защиты установлено, что длина защитной зоны менее предусмотренной проектом, либо имеют место «провалы» потенциалов на отдельных участках трубопроводов, необходимо выполнить дополнительную проверку изоляции и устранить обнаруженные неисправности, выявить наличие металлической связи с незащищенными сооружениями, устранить обнаруженные контакты.
- 6.2.9. При приемке электрохимической защиты на подземных трубопроводах, пролежавших в грунтах более 6 мес (подземные газопроводы в зонах опасного влияния блуждающих токов — более 1 мес), необходимо

проверить их техническое состояние в соответствии с РД 204.РСФСР 33—87 и при наличии повреждений установить сроки их устранения.

- 6.2.10. Қаждой принятой установке присваивают порядковый номер и заводят специальный паспорт электрозащитной установки (форма 2-1 прил. 1), в который заносят все данные приемочных испытаний.
- 6.2.11. При приемке в эксплуатацию изолирующих фланцев представляют: заключение проектной организации на установку изолирующих фланцев; схему трассы газопровода с точными привязками мест установки изолирующих фланцев (привязки изолирующих фланцев могут быть даны на отдельном эскизе); заводской паспорт изолирующего фланца (если последний получен с завода).

Приемку в эксплуатацию изолирующих фланцев оформляют справкой (форма 3-5 прил. 1). Принятые в эксплуатацию изолирующие фланцы регистрируют в специальном журнале (форма 2-3 прил. 1).

- 6.2.12. При приемке в эксплуатацию шунтирующих электроперемычек представляют заключение проектной организации на установку электрической перемычки с обоснованием ее типа; исполнительный чертеж перемычки на подземных сооружениях с привязками мест установки; акт на скрытые работы со ссылкой на соответствие проекту конструктивного исполнения электроперемычки.
- 6.2.13. При приемке в эксплуатацию контрольных проводников и контрольно-измерительных пунктов представляют исполнительный чертеж с привязками, а также оформляют справку по форме 3-5 прил. 1.

Глава 6.3. ПРОФИЛАКТИЧЕСКОЕ ОБСЛУЖИВАНИЕ УСТАНОВОК ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ

6.3.1. Профилактическое обслуживание электрозащитных устройств включает периодический технический осмотр установок, проверку эффективности их работы, а также контрольные измерения потенциалов на защищаемом трубопроводе в опорных пунктах.

Для каждой защитной установки необходимо иметь журнал контроля работы защитной установки (форма 2-2 прил. 1), в который заносят результаты технического осмотра и измерений.

6.3.2. Обслуживание установок электрохимической защиты в процессе эксплуатации должно осуществляться в соответствии с графиком технических осмотров и планово-предупредительных ремонтов. График профилактических осмотров и планово-предупредительных ремонтов должен включать в себя определение видов и объемов технических осмотров и ремонтных работ, сроки их проведения, указания по организации учета и отчетности о выполненных работах.

Основное назначение работ по профилактическим осмотрам и плановопредупредительным ремонтам — содержание электрохимической защиты в состоянии полной работоспособности, предупреждения их преждевременного износа и отказов в работе.

6.3.3. Технический осмотр включает: осмотр всех элементов установки с целью выявления внешних дефек-

тов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений:

проверку исправности предохранителей;

очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

измерение тока и напряжения на выходе преобразователя;

измерение поляризационного или суммарного потенциала трубопровода в точке подключения установки;

производство записи в журнале установки о результатах выполненной работы.

6.3.4. Технический осмотр с проверкой эффективности действия защиты включает:

все работы по техническому осмотру;

измерения поляризационных или суммарных потенциалов в постоянно закрепленных опорных пунктах.

6.3.5. Текущий ремонт включает:

все работы по техническому осмотру с проверкой эффективности; измерение сопротивления изоляции в соответствии с требованиями и нормами ПУЭ (разд. 1, п. 1.8.34);

одну или две из указанных ниже работ: ремонт линий питания (до 20% протяженности), ремонт выпрямительного блока, ремонт блока управления, ремонт измерительного блока, ремонт корпуса установки и узлов крепления, ремонт дренажного кабеля (до 20% протяженности), ремонт контактного устройства контура анодного заземления, ремонт контура анодного заземления (в объеме менее 20%).

6.3.6. Капитальный ремонт включает:

все работы по техническому осмотру с проверкой эффективности действия электрохимической защиты;

более двух работ из перечня ремонтов, перечисленных в пункте 6.3.5, либо ремонт в объеме более 20% — линии питания, дренажного кабеля, контура анодного заземления.

6.3.7. Внеплановый ремонт — вид ремонта, вызванный отказом в работе оборудования и не предусмотренный годовым планом ремонта.

Отказ в работе оборудования должен быть зафиксирован аварийным актом, в котором указываются причины аварии и подлежащие устранению дефекты.

6.3.8. Рекомендуемые сроки проведения технических осмотров и планово-предупредительных ремонтов:

технический осмотр — 2 раза в месяц для катодных, 4 раза в месяц — для дренажных и 1 раз в 6 мес — для протекторных установок (при отсутствии средств телемеханического контроля);

технический осмотр с проверкой эффективности — 1 раз в 6 мес; текущий ремонт — 1 раз в год;

капитальный ремонт — в зависимости от условий эксплуатации (ориентировочно 1 раз в 5 лет).

6.3.9. С целью оперативного выполнения внеплановых ремонтов и со-

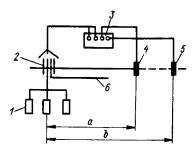


Рис. 20. Измерение сопротивления растеканию анодных заземлителей.

1 — анодные заземлители; 2 — контрольно-измерительный пункт; 3 — измерительный прибор; 4 — измерительный электрод; 5 — питающий электрод; 6 — дренажный провод.

кращения перерывов в работе электрохимической защиты в организациях, эксплуатирующих устройства электрохимической защиты, целесообразно иметь резервный фонд преобразователей для катодной и дренажной защиты из расчета 1 резервный преобразователь на 10 действующих.

- 6.3.10. При проверке параметров электродренажной защиты измеряют дренажный ток, устанавливают отсутствие тока в цепи дренажа при перемене полярности трубопровода относительно рельсов, определяют порог срабатывания дренажа (при наличии реле в цепи дренажа или цепи управления), а также сопротивление регулируемого реостата в цепи электродренажа.
- 6.3.11. При проверке параметров работы катодной станции измеряют ток катодной защиты, напряжение на выходных клеммах катодной станции и потенциал в точке защитного тока.
- 6.3.12. Эффективность работы дренажных и катодных установок проверяют 2 раза в год, а также при каждом изменении режима работы электрозащитных установок и при изменениях, связанных с развитием сети подземных сооружений и источников блуждающих токов.
- 6.3.13. Состояние регулируемых и контролируемых перемычек при совместной защите нескольких подземных сооружений проверяют определением их омического сопротивления (измерение разности потенциалов между сооружениями и землей и в местах подключения перемычек).

Состояние глухих перемычек определяют путем сравнения потенциалов на защищаемых сооружениях.

- 6.3.14. При обнаружении недостаточной эффективности действия защиты (сокращена зона ее действия) или превышения потенциалов, установленных проектом защиты, необходимо произвести регулирование режима работы защиты.
- 6.3.15. Сопротивление растеканию анодного заземления следует измерить во всех случаях, когда режим работы катодной станции резко меняется, но не реже 1 раза в год.

Измерения производят в период минимальной проводимости грунта (сухой грунт). Схема измерения сопротивления растеканию анодного заземления приведена на рис. 20. Для измерения используют измеритель сопротивления M-416 и два стальных электрода.

При длине анодного заземлителя $l_{a,s}$ питающий электрод относят на расстояние $b\geqslant 3l_{a,s}$, измерительный электрод — на расстояние $a\geqslant 2l_{a,s}$; соотношение b/a>1,5.

- 6.3.16. Сопротивление защитного заземления электроустановок измеряют на реже 1 раза в год. Схема измерения сопротивления защитного заземления такая же, как и на рис. 20. Измерения следует производить в наиболее сухое время года.
- 6.3.17. Эффективность действия протекторной защиты определяют измерением: потенциала трубопровода по отношению к земле в точке подключения протектора при включенном и отключенном протекторе; тока в цепи протектор защищаемое сооружение; потенциала протектора относительно земли до подключения к трубопроводу. Результаты измерения заносят в журнал (форма 2-4а прил. 1).
- 6.3.18. Если потенциал трубопровода на участке подключения окажется меньше проектного (по абсолютному значению) или минимального защитного потенциала, необходимо проверить исправность соединительного провода между протектором и трубопроводом, места припайки его к трубопроводу и протектору. Если соединительный провод и места припайки его окажутся исправными, то производят активацию «обмазки». Если и после этого потенциал не увеличится, то делают шурф на глубину закопки электрода для его осмотра и проверки наличия вокруг него заполнителя.
- 6.3.19. При применении протекторной защиты с включением полупроводникового диода в цепь между защищаемым сооружением и протектором необходимо проверить вентильное действие указанных диодов.
- 6.3.20. Исправность изолирующих фланцевых соединений проверяют не реже 1 раза в год в соответствии с методическими указаниями (пункт 5.4.2). При этом измеряют падение напряжения на изолирующем фланце и синхронно разность потенциалов по обеим сторонам изолирующего фланца по отношению к земле. Измерение проводят при помощи двух милливольтметров.

При исправном фланцевом соединении синхронное измерение показывает скачок потенциала.

- 6.3.21. При проверке изолирующих фланцев в колодцах прибор присоединяют к выводам КИП на поверхности люка колодца.
- 6.3.22. В случае, если на действующей установке электрохимической защиты в течение года наблюдалось 6 и более отказов в работе преобразователя, то последний подлежит замене. Для определения возможности дальнейшего использования преобразователя необходимо провести его испытание в объеме, предусмотренном требованиями предустановочного контроля.
- 6.3.23. Все неисправности в работе установки электрохимической защиты должны быть устранены в течение 24 ч после их обнаружения.
- 6.3.24. В случае, если за все время ее эксплуатации общее количество отказов в работе электрохимической защиты превысит 12, необходимо провести обследование технического состояния трубопровода по всей длине защитной зоны в соответствии с РД 204.РСФСР. 33—87 и решить вопрос о возможности их дальнейшей эксплуатации.
- 6.3.25. Организации, осуществляющие эксплуатацию устройств электрохимической защиты, должны ежегодно составлять отчет об отказах в работе защитых устройств по форме 3-6.

6.3.26. В случае отсутствия опасного влияния блуждающих токов и при чередовании грунтов с разными физико-химическими свойствами по трассе трубопроводов в зоне действия катодной установки допускается суммарная продолжительность перерывов в работе катодной установки не более 7 суток в течение года; при наличии по трассе трубопроводов грунта одного вида или при засыпке трубопровода мягким (или песчаным) грунтом (пункт 4.20 СНиП 2.04.08.87) допускается суммарная продолжительность перерывов не более 14 суток в течение года.

Продолжительность каждого перерыва в работе катодной установки не должна превышать 7 суток.

Примечание. Если при техническом осмотре (пункт 6.3.4) установлено, что катодная установка не работает, а непрерывный контроль и возможность определить продолжительность ее работы отсутствуют, следует принять, что перерыв в работе установки составил 14 суток (от одного технического осмотра до другого).

6.3.27. В зонах опасного влияния блуждающих токов на подземные трубопроводы суммарная продолжительность перерывов в работе установок электрохимической защиты не должна превышать 48 ч в год.

Часть 7. ОСНОВНЫЕ УКАЗАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ ПРИ ПРОВЕДЕНИИ РАБОТ ПО ЗАЩИТЕ ПОДЗЕМНЫХ МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ ОТ КОРРОЗИИ

- 7.1. Все работы по защите подземных металлических сооружений от коррозии должны выполняться в соответствии с «Правилами безопасности в газовом хозяйстве», «Правилами устройства электроустановок», «Правилами техники безопасности при работах на кабельных линиях связи и радиофикации», а также действующей НТД, утвержденной в установленном порядке.
- 7.2. К выполнению работ по защите подземных металлических сооружений от коррозии допускаются лица, прошедшие обучение и инструктаж по ГОСТ 12.0.004—79. При допуске к работе каждый рабочий должен получить инструктаж по технике безопасности на рабочем месте с соответствующей записью в журнале по проведению инструктажа.
- 7.3. При осуществлении работ по защите от коррозии следует выполнять требования техники безопасности по ГОСТ 12.3.016—87, ГОСТ 12.3.008—75, ГОСТ 12.3.005—75, ГОСТ 12.2.004—75 и «Правилам пожарной безопасности при проведении строительно-монтажных работ».
- 7.4. На каждом рабочем участке должна быть инструкция по технике безопасности и охране труда.
- 7.5. При выполнении работ по защите подземных сооружений от коррозии работающий персонал должен быть обеспечен спецодеждой и средствами индивидуальной защиты (противогазами, спасательными поясами, диэлектрическими перчатками и т. д.) в соответствии с требованиями действующих правил безопасности.

- 7.6. При проведении работ должны быть предусмотрены предупредительные знаки в соответствии с требованиями ГОСТ 12.4.026—76, обеспечиваться требования по шуму в соответствии с ГОСТ 12.1.003—83, содержание вредных веществ в воздухе рабочей зоны не должно превышать предельно допустимых концентраций, установленных ГОСТ 12.1.005—88.
- 7.7. При производстве на подземных сооружениях работ, связанных с электрическими измерениями, монтажом, ремонтом и наладкой электрозащитных установок, следует соблюдать «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок потребителей» Госэнергонадзора.
- 7.8. Работы в пределах проезжей части улиц и дорог для автотранспорта, на рельсовых путях трамваями железных дорог, источниках электропитания электрозащиты выполняются бригадой в составе не менее двух человек, а при проведении работ в колодцах, туннелях или глубоких траншеях (глубиной более 2 м) бригадой в составе не менее трех человек.
- 7.9. Не разрешается проводить работы в колодцах с наличием газа до устранения причин загазованности сооружения.
- 7.10. Для спуска в колодцы, не имеющие скоб, котлована, люка должны использоваться металлические лестницы достаточной длины с приспособлениями для закрепления у края колодца, котлована, люка, не дающие искрения при ударе или трения о твердые предметы.
- 7.11. Измерения в контрольных пунктах, расположенных на проезжей части дорог, на рельсах трамвая или электрифицированной железной дороги, должны проводить два человека, один из которых следит за безопасностью работ и ведет наблюдения за движением транспорта.
- 7.12. Все работы на тяговых подстанциях и отсасывающих пунктах электротранспорта проводятся в присутствии персонала подстанции.
- 7.13. При применении электрифицированного инструмента необходимо проводить работу только в диэлектрических перчатках при заземленных корпусах электроинструментов.
- 7.14. На весь период работы опытной станции катодной защиты у контура анодного заземления должен находиться дежурный, не допускающий посторонних лиц к анодному заземлению, и установлены предупредительные знаки в соответствии с ГОСТ 12.4.026—76.

Часть 8. ЗАЩИТА ВОДОПРОВОДНЫХ ТРУБ ОТ ВНУТРЕННЕЙ КОРРОЗИИ

Глава 8.1. ОПРЕДЕЛЕНИЕ КОРРОЗИОННОЙ АКТИВНОСТИ ВОДЫ

- 8.1.1. Для уменьшения ущерба, причиняемого внутренней коррозией, для правильного, своевременного и наиболее рационального выбора мер по борьбе с ней необходимо знать и постоянно контролировать коррозионную активность воды.
- 8.1.2. Коррозионная активность воды определяется ее физико-химическими характеристиками. Она может заметно меняться в процессе обработки воды на водопроводных станциях.
- 8.1.3. Определение коррозионной активности воды проводят на устройстве типа ОКА. Оно состоит из смонтированного на кронштейне электродвигателя, валом которого через промежуточные детали вращается цилиндрический образец с частотой порядка 1500 мин⁻¹. Кронштейн может перемещаться по штативу и фиксироваться на нем винтом. Штатив крепится к плите. Стакан с исследуемой водой устанавливают на кронштейн. Цилиндрический образец, имеющий в верхней части хвостовик с резьбой, ввинчивается в медную втулку. На медную втулку насажена фторопластовая обойма.
- 8.1.4. Цилиндрические образцы изготовляют из углеродистой стали марки Ст3ПС и имеют диаметр 10, длину 35 мм. Чистота обработки поверхности должна соответствовать классу чистоты не ниже 10. Устройство ОКА комплектуется 10 образцами.
- 8.1.5. Коррозионная активность воды определяется по общему количеству продуктов коррозии (в растворе и на образце), образовавшихся за время опыта (в течение 3 ч). При определении коррозионной активности воды используется следующая классификация: невысокая не более 0,1; средняя 0,1—0,2; высокая более 0,2 мг/см².
- 8.1.6. Для обеспечения возможности количественного определения коррозионной активности воды и соответствия ее критериям, указанным в пункте 8.1.5, необходимо использовать образцы из углеродистой стали постоянных состава и структуры.

Пригодность образцов для фиксирования коррозионной активности воды определяют проведением опытов в растворах следующих составов, r/π :

Если коррозионная активность первого раствора не более 0,1 мг/см², а второго — более 0,2 мг/см², то образцы пригодны для опытов.

- 8.1.7. Диаметр цилиндрического стакана, в котором приводится определение коррозионной активности воды, равен 80—100 мм, а высота не менее 120 мм. Необходимый объем раствора для определения коррозионной активности составляет 0,5 л.
- 8.1.8. Если определение коррозионной активности воды проводится при температуре 15—22 °C, то термостатирование сосуда необязательно. В остальных случаях сосуд с раствором помещают в термостат, где поддерживается заданная температура.

Глава 8.2. ПРОТИВОКОРРОЗИОННАЯ ОБРАБОТКА ВОДЫ НА ВОДОПРОВОДНЫХ СТАНЦИЯХ

- 8.2.1. Противокоррозионную обработку проводят с целью уменьшения коррозионной активности воды. Ее следует проводить, когда вода имеет среднюю или высокую коррозионную активность и предполагается использовать металлические трубы без защитных покрытий.
- 8.2.2. Для противокоррозионной обработки воды на водопроводных станциях следует использовать соду, известь, гексаметафосфат или триполифосфат натрия, а также силикат натрия.
- 8.2.3. Перед проведением противокоррозионной обработки воды на эксплуатируемых системах очищают трубы от продуктов коррозии, так как их наличие значительно снижает эффективность такой обработки. Для новых труб предварительной очистки не требуется.
- 8.2.4. При дозировании ингибиторов исходят из следующих соображений: нижний предел диктуется необходимостью обеспечить минимальное содержание ингибиторов, достаточное для заметного торможения коррозионного процесса на отдаленных от места обработки участках системы, а верхний предел необходимостью не превысить (особенно в зонах, близких к участкам дозирования) содержания ингибитора, установленного санитарными нормами.
- 8.2.5. Обработка воды известью или содой (стабилизационная обработка) проводится непрерывно. Сначала создают положительный индекс насыщения (0,5—0,7), необходимый для наращивания карбонатной пленки. Длительное время поддерживать индекс насыщения на этом уровне не рекомендуется, так как могут образоваться толстые карбонатные осадки, уменьшающие пропускную способность труб. Для образования карбонатного осадка на протяженных системах следует вместе с щелочными реагентами вводить 0,25—0,5 мг/л гексаметафосфата натрия. После образования карбонатной пленки необходимо поддерживать индекс насыщения близким к нулю. Дозы реагентов (щелочных) для стабилизационной обработки воды определяют согласно СНиП 11-31—74 «Водоснабжение. Наружные сети и сооружения».

При исходной жесткости воды ниже 25 мг/л (в пересчете на CaCO₃) стабилизационная обработка не обеспечивает получения осадка с высокими защитными свойствами.

8.2.6. При обработке воды гексаметафосфатом или триполифосфатом натрия остаточное количество реагента не должно превышать 3,5 мг/л (в пересчете на PO_4^{-3}). После образования защитной пленки первона-

чальная доза реагента может быть уменьшена в зависимости от коррозионной активности воды.

8.2.7. Подбор типа и дозировки ингибиторов для противокоррозионной обработки воды, необходимой для снижения коррозионной активности воды до требуемого уровня, следует проводить на устройстве ОКА. Это устройство позволяет также осуществлять контроль за эффективностью обработки воды в период образования защитных пленок. С этой целью производят отбор проб воды из точек системы, находящихся на различном расстоянии от места обработки, и определение их коррозионной активности.

Глава 8.3. ЗАЩИТНЫЕ ПОКРЫТИЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ВОДОПРОВОДНЫХ ТРУБ

- 8.3.1. Для изоляции внутренней поверхности водопроводных труб используют лакокрасочные и цементные покрытия.
- 8.3.2. Из лакокрасочных материалов следует применять следующие: полистирольную смолу КОРС (ТУ 38—30322—81), лак КОРС (ТУ 38—103118—78), эмаль ХС-720 (ТУ 6—10—708—74), эмаль ХС-710 (ГОСТ 9355—81). К этим материалам добавляют 10—15% алюминиевой пудры. До рабочей вязкости они доводятся ксилолом.
- 8.3.3. Лакокрасочные материалы наносят на внутреннюю поверхность труб методом пневматического распыления, требуемая толщина покрытия (130—180 мкм) достигается при нанесении четырех слоев.
- 8.3.4. Перед нанесением лакокрасочного покрытия поверхность трубы очищают стальной или чугунной дробью от продуктов коррозии, окалины и других загрязнений. После очистки поверхность трубы должна иметь ровный серо-матовый цвет.
- 8.3.5. Для нанесения лакокрасочного покрытия используют пневматические краскораспылители, которые комплектуются стандартным вспомогательным оборудованием (масловлагоотделителем, красконагнетательным баком, к которым он присоединяется резино-тканевыми шлангами).
- 8.3.6. При окрашивании трубы, которая находится в неподвижном положении, краскораспылитель перемещается внутри трубы и равномерно подает красочный аэрозоль. Краскораспылитель закрепляется консолью или опирается на роликовые опоры из фторопласта. Для удаления окрасочного тумана у конца трубы, противоположного месту ввода краскораспылителя, устанавливается вытяжное устройство, обеспечивающее отсос загрязненного воздуха.
- 8.3.7. Межслойная сушка проводится в сушильной камере при температуре 50—60 °C в течение 10—15 мин. При нанесении полистирольной смолы КОРС краскораспылителем, опирающимся на роликовые опоры, межслойная сушка проводится при температуре 75—85 °C в течение 15—18 мин.
- 8.3.8. Качество лакокрасочного покрытия определяется по толщине и внешнему виду покрытия. Для измерения толщины покрытия исполь-

зуют толщиномеры ИТП-1, МТ-32Н, МИП-10. Внешний вид покрытия определяется визуально. Покрытие не должно иметь пузырей, подтеков, наплывов и непрокрашенных мест.

- 8.3.9. Для изоляции внутренней поверхности труб покрытиями на основе цемента используют цементно-песчаные смеси.
- 8.3.10. Цементно-песчаная смесь состоит из портландцемента марки не ниже 400 (ГОСТ 10178—76), песка с модулем крупности 1,5—2,3 мм (ГОСТ 10268—80). Водоцементное отношение 0,35—0,45.
- 8.3.11. Цементно-песчаная смесь должна обладать пластичностью с осадкой стандартного конуса 8—12 см.
- 8.3.12. Цементно-песчаные покрытия наносятся в цеховых и базовых условиях методом центрифугирования или центробежного набрызга.
- 8.3.13. Толщина цементно-песчаного покрытия для труб различного диаметра указана ниже.

Диаметр труб, мм	Толщина покрытия, мм
200—700	8
800—900	10
1000—1100	12
1200—1400	14
Более 1400	16

8.3.14. Технологический процесс нанесения цементно-песчаного покрытия включает в себя приготовление раствора, очистку внутренней поверхности трубы, нанесение покрытия, уход за покрытием в процессе твердения.

Облицовка труб может проводиться на открытой площадке (летом) и в цеховых условиях.

8.3.15. После нанесения облицовки проводится либо термовлажностная обработка в пропарочной камере, либо увлажнение водой.

Режим термовлажностной обработки следующий, ч:

Предварительное выдерживание в естествен-	
ных условиях	2-3
Подъем температуры до 60—65 °C	2-3
Изотермический прогрев при 60—65 °C	4-6
Охлаждение до температуры окружающей	
среды	2-6

8.3.16. Покрытие должно быть плотным, гладким, одинаковой толщины по всей длине трубы, без борозд и наплывов. Допускаются отдельные места незаглаженной поверхности с высотой выступов не более 2 мм и диаметром не более 10 м, трещины шириной раскрытия 0,2 мм. Не допускаются дефекты, обусловленные плохим перемешиванием раствора (цементные и песчаные комья, вздутия и т. д.).

			Формы техни	ческои докумен	гации	Форма 1-1
Город	·					
Видо	ооруже	ения				
			(для	газопроводов ука	зать давление)
			Маршрут	№	_	
N₂ n	/п	Номер измер		Адрес пункта измерения		ид пункта змерения
	•) маршру язки пунк	та тов измерения			
						Форма 1-2
			СВОДНА	я ведомост	Ь	
				ррозионной агр Істой и низколеі		
	•••	_	•		прованной ст	asın
		Гор	од			
№ п/п	Адрес	№ пункта по схеме	Удельное сопротивление грунта, определенное в полевых условиях, Ом м	Удельное сопротивление грунта, определенное в лабораторных условиях, Ом·м	Средняя плотность катодного тока, A/м²	Оценка коррозионной агрессивности грунта
<i>П</i> ј 1-26, 1	риложен -2в).	ше. 1. Пла	н (схема) трубо	проводов. 2. Про [,]	гоколы измерен	ий (формы 1-2а, Форма 1-2а
		Протокол	і измерения уд	ельного сопроті	вления грунт	a
			19	г.		
Погод	ные усл	повия				

			NA -/-		Адрес	pi	ракте- истика	Pac	стояние,		опроти	вление	Коррози	онная		
			№ п/п		места мерения	C	рунта поверх- ности		M		Эм	Ом - м	агрессив	вность		
			Измерил Провери													
		Протог	кол опреде	DKHAN	VIICILH	nro ai	iektnuue	CKOFO	COUDOT	M RSEU	wa rn	VHTA R	наболатол	NHY VC#OR		орма 1-26
Город		•			•	J. O 34	icki pii ic	CHOIG	compor		пи гр;	y u . b .	паооратор	men yester		
			бот «			19	r.									
Дата	отбора пр	об «	×		19	г.										
		№	Условное		Сила т	ока <i>I</i> ,	напряже	ение (Ји сопр	отивле	ние <i>R</i>		Среднее	W	Удельное	Корро-
№ π/п	Адрес отбора проб	лункта по схеме	направ- ление измери- тельного тока	/ ₁ ,	<i>U</i> ₁ , B	<i>R</i> і. Ом	/ ₂ ,	<i>U</i> ₂, B	R ₂ , Om	/ ₃ ,	U ₃ ,	R ₃ , Om	значение сопротив- ления, Ом, <i>R</i> _{ср}	Константа ячейки, м	электри- ческое сопротив- ление, р, Ом · м	зионная агрессив- ность грунта
:			+													
			-													

83

Анализ провел

___19____г.

Протокол определения средней плотности катодного тока

Город	-
Дата отбора проб «»	r.
	

	Annec				Вре	эмен км	ерения	<i>t</i> и сил	а тока	I		Среднее	Средняя	Коррозион-
№ п/п	Адрес отбора проб	№ пункта по схеме	№ образца	<i>t</i> ₁ , мин	I ₁ ,	t ₂ , мин	1 ₂ ,	<i>t</i> ₃ , мин	13, A	t _k , мин	<i>I_k</i> , A	значение силы тока, І _{ср} , А	плотность тока, i_{cp} , A	ная агрес- сивность грунта
			1											
			2											!
			3											

Протокол измерений смещения разности потенциалов между трубопроводом и электродом сравнения при определении опасности постоянных блуждающих токов

Горо	од												
Вид	подземно	го соору	жени	яип	ункта	изме	рения						
Дат	a						_						
Bpe	ия измере	ния нач	ало_			_, кон	ец						
Тип	и № прис	бора											
				Да	нные	измер	ений,	мВ					
	<i>t</i> , мин	0	5	10	15	20	25	30	35	40	45	50	55
1	$U_{ extsf{k} extsf{SM}} \ \Delta U$												
2	$U_{H3M} = \Delta U$												
3	$\frac{U_{HSM}}{\Delta U}$								_				
4	$U_{\scriptscriptstyle H3M} \ \Delta U$												
5	U _{HSM} ΔU												
6	$U_{H3M} = \Delta U$												·
7	$U_{H3M} = \Delta U$												
8	$U_{H3M} = \Delta U$												
9	U _{изм} ΔU								·				
10	$U_{ extsf{H}, extsf{SM}} \ \Delta U$												
		ротокол при опр										Форм	a 1-4
-	д подземног	o coopy	жени	я и п	VHKTA		рения						
	·					-		рения					
	и № приб												
потег	еренное зн нциала вст грода ВЭ	помогат	ельно	ro	oro "	oneu .							

Данные измерений, мВ

<i>t</i> , ми	Н	0	5	10	15	20	25	30	35	40	45	50	55
1 2 3													
4 5													
6													
7 8													
9													
10													
			Кам	ераль	ная об	брабо	отка и	змере	ний				
Число и	змерени	й		мгно начен	венных й	, c	редня	я велі	Ічина	Ср	еднее смец	значе кинэ	ние
Измерил													
Обработа							Пр	овери	л				
	ротоко					ющи	ми пр	нбора	ми Л	.		•	ıa 1-5
Город													
Вид подзе							рения	i					
Дата: «		_					P	· ———					
Время из						MU	וט אסי	цеп	U		мии		
Адрес пу											_ MM		
Адрес пут Вид измер									งห์ แกา	гении.	——— ал)		
		Pusik			navios,		pnout						
Режим из	мерени	ня			 						•		
T 10	_				(без з								
Тип и № г Тип в поит													
тип элект	трода сравнения								. ,.				
		-				B	ремя,	c					
	0	5	10	15	20	25	5 3	0 3	35	40	45	50	55
1 мин							•	-	•			•	
2 мин													
3 мин													
4 мин 5 мин													
5 мин 6 мин													
7 мин													
8 мин 9 мин													
9 мин 10 мин													

Камеральная обработка измерений

Разность потен		Сумма		симум	Средне	е минии	м Число измерений
			L		Snaven		измерении
Положительна Отрицательная							
Измерил			Обра	аботал			
Проверил			-				
	Протоков о		-cvoñ	00040		ютенциалов	Форма 1-5
	•	BIUMAINH	CCROM	per ner	Грации и	отспциалов	
Город							
Вид подземног							
Дата: «							
Адрес пункта							
Время измерен						^V	INH
Вид измерения						 	
Режим измере	ния	·		П			
Тип и № прибо						ерении	
Тип электрода							
	Камеральна	я обработ	гка л	ент авт	оматиче	ской записи	
Знак	Отсчита: площа:			Для	ина Ганного		ее значение
Shak	CM ²	дв,			іенты, см		трируемой чины, см
(+) (-)			<u> </u>	•	_		
		Разност	ъ по	генци а л	тов, В		
Поло	эжительный ((+)			Отр	ицательный (-)
Максималь- ный	Средний	миним йын		Макси не	ім аль- ый	Средний	Минималь- ный
Измерил				OK.	n a6ces =		
Проверил				00	paooran		
Проверни			•				
							Форма 1-
Журна	ъл измерени	А потенци	алов	соорух	кений от	гносительно	земли
Вид подземног	о сооружені	ия ки					
Маршрут № _							

				Разност	гь потен	циалов	сооруж	ение—з	емля, В
№ п/п	Адрес	№ пункта измерения по схеме	Дата измерения		Положительное значение		Отрицательное значение		
				средн.	макс.	мин.	средн.	макс.	мин.

Coc	ставил
	Форма 1-7
	Акт коррозионного обследования подземного сооружения
	«19г.
1.	Адрес места повреждения
	Характеристика газопровода:
	год постройки
3.	Тип изоляционного покрытия: толщина изоляции состояние изоляции: гладкая, морщинистая, бугристая, продавленная грунтом сверху, снизу, с боков (подчеркнуть) наличие повреждений
	(сквозная продавленность грунтом, механическое повреждение и др.). прилипаемость изоляции к трубе
4.	Состояние наружной поверхности трубы: наличие ржавчины на трубе (под изоляцией) в местах отсутствия или повреждения изоляции характер ржавчины (цвет, бугристая, сплошная, легко- или трудноотделяе- мая от трубы)
	наличие каверн (сверху, снизу, сбоку, примерное число на 1 дм²) размеры каверн (диаметр, глубина)
5. 2	Характеристика грунта: род влажность по внешнему осмотру: сухой, полусухой, влажный, мокрый, плывучий (подчеркнуть) наличие грунтовой воды наличие загрязненной почвы
6. 2	Характер коррозионного повреждения: вид коррозии по внешнему осмотру предполагаемые причины коррозии
7.	Результаты коррозионных исследований: степень коррозионности грунта
_	
J	Результаты измерений потенциалов

8. Тип установки ЭХЗ
9. Дата ввода в эксплуатацию
10. Суммарное время простоя до обнаружения повреждения
11. Потенциал в месте повреждения: при работе установки ЭХЗ при отключенной установке
12. Обстоятельства обнаружения повреждений (опрессовка и т. п.)
Заключение
Подписи:
Форма 2-1
ПАСПОРТ
(преобразователь катодной защиты, преобразователь дренажной защиты)
№
Адрес
1. Тип установки (дата выпуска, заводской №)
(дата выпуска, заводской №)
2. Способ крепления
3. Дата ввода в эксплуатацию
4. Характеристика узлов защиты:
(марка, сечение, длина) анодное заземление
(материал, конструкция, число электродов)
сопротивление растеканию
защитное заземление
прочие устройства
5. Проектные параметры защиты: напряжение источника питания установки сила выходного тока
выходное напряжение
сопротивление цепи потенциал поляризационный на контактном устройстве (КУ):
максимальный <u>средний</u> или разность потенциалов на КУ; максимальная
или разность потенциалов на Ку; максимальная
срок службы анодного заземления
6. Протяженность защищаемых сооружений
Составил
«

Перечень опорных пунктов измерения

			Перечен	нь опор	ных пунктов	измер	.111171		
№ п/п	контр измери	ид Оольно- Ітельных Іктов	1	ектрод Дата ввнения Адрес установи				Сведения о техническом состоянии	
Состан	зил				«>		19	r.	
	Жур	нал ког	ітроля р	аботы у	установки эл	ектрохі	імическ	:ОЙ За	Форма 2- ициты
00	бход	Пара	зметры іновки		Потенци относитель	ал на Н	(y		Выполненна работа
Дата	Время	Ток, А	Напря- жение, В	Су	уммарный макс. мин.	Поля	ризацио	нный мин.	и оценка работы установки
1нвен		•		* -	установки эл Адрес				•
		№	аметры	* -	Адрес Проекти потенци Потенци	ный (н нал на нал на М	аладочі КУ (У		Выполненна
Oc	тарный Бход	No	вметры новки Напря-		Адрес _ Проект потенци	ный (н 1ал на 1ал на 1 1ал на 1	аладочі КУ (У	ный)	Выполненна работа и оценка
Oc	тарный	No	аметры новки		Адрес_ Проект потенци Потенци относитель	ный (н 1ал на 1ал на 1 1ал на 1	аладочи КУ ку и, В	ный)	выполненна работа
Дата	бход Время риложен	Пара уста Ток, А	аметры новки Напря- жение, В	Су средн.	Адрес Проекти потенци относитель макс. мин. цения анодно	ный (н нал на н но земл Поля средн.	аладочн КУ (У ни, В ризацио макс.	ный) онный мин.	Выполненна работа и оценка работы установки
Ос Дата П	бход Время риложен	Пара уста Ток, А	аметры новки Напря- жение, В	Су средн.	Адрес Проекти потенци относитель макс. мин. цения анодном	ный (нал на кал на кал на кал на кал на кал на кал поля средн.	аладочн КУ (У ни, В ризацио макс.	ный) онный мнн. и КУ.	Выполненна работа и оценка работы

Журнал учета электроизолирующих соединений (фланцев)

№	Адрес	Дата уста-	Газоп	ровод	Место уста-	Тип соеди-	оеди-	Приме-
№ п/п		новки	Диа- метр	Дав- ление	новки	нения		чание

Форма 2-3а

Данные проверки работы электроизолирующих соединений (фланцев)

№ п/п		Адрес	Дата		Потенциал руба— земля, В напря- жения на		Подпись Прим чани	Приме-
,		проверки	до фланца	после фланца	фланце, В		Tanne	

Форма 2-4а

Журнал контроля работы протекторной установки

	П	араметры	Средний потенци	-	
Дата	Сила тока, мА	Потенциал отключенного протектора, В	при отключенном протекторе	при включенном протекторе	Примечание

Форма 2-4

ПАСПОРТ установки протекторной защиты №

D = 0 = 0 = 0		
Введена в экспл	гуатацию	
	(дата)	
Газопровод		
	(диаметр, тип изоляции, введен в эксплуатацию, дата)	
Зона защиты	KM	
Проектная орган	нзация	
	· · · · · · · · · · · · · · · · · · ·	
Марка протекто	ООВ	
pp		
Число протектор	ов в группе	
Число протектор	ов в группе	
Число протектор Сечение и марка	ов в группе	
Число протектор Сечение и марка Расстояние от п	ов в группе	
Число протектор Сечение и марка Расстояние от пр Расстояние меж,	ов в группе	

cor	оы протекторной установки при сдаче в эксплуатацию: противление цепи протектор — газопроводОм
TOP	к А зность потенциалов труба — земля
pa.	зность потенциалов труба — земля (до и после установки протекторов)
уде	ельное сопротивление грунта в зоне установки протекторов
_	Ом - м
	печание. К паспорту прилагается принципиальная схема и план разме- отекторной установки.
«»	19r.
	Форма 3-1
	AKT
	на приемку строительно-монтажных работ
г	
По улице	работы выполнены по проекту
	(наименование организаций и № проекта)
	(наименование организации и ле проекта)
Мы, ниже	еподписавшиеся:
ог заказч	еподписавшиеся: ика (должность, фамилия) тепьной оправизации
от строит	ельной организации
	(должность, фамилия)
от эксплу	итационной организации
от проект	(должность, фамилия)
	(donwhocib, wamning)
	и настоящий акт в том, что ов соответствии с проектом.
	о в соответствии с просктом. ссии были предъявлены следующие узлы строительно-монтажных работ:
1(OMP)	
V - 6	Кабельные прокладки
длиной	арки уложен в траншее на глубине м,м и защищенм
	(покрыт кирпичом, в трубах и т. д.)
	Анодное заземление
Электроді	ы заземления выполнены из
==uuoŭ	(материал, профиль, сечение)
длинои	м, числом шт.
	(с обсыпкой или без обсыпки)
расстояни соедините	ие между электродамим, диаметр скважиным; эльная полоса (шина) выполнена из
	(материал, профиль, сечение)
	длинойм, на глубинем
	(в обсыпке или изолированно)

Места приварки соединительног Общее сопротивление растекан		трованы
Конта	иктные устройства	
выпол (вид сооружения)	нено из(материал, с	сечение, профиль)
по чертежу № _	Қонтакт с защ	ищаемым сооруже-
нием осуществлен путем	(сварки или болтового соед	ппопла)
Противокоррозновные покрыти	• •	
Противокоррозионные покрыти		:нии
Контактное устройство на		выполнено из
	(вид сооружения)	V
(материал, сечение, профиль)	по чертежу №	Контакт с за-
щищаемым сооружением осуществ.	vien hytem	
	(сварки ил	и болтового
	соединения)	
Противокоррозионное покрытие	на защищаемом сооружени	ін
On	TODHNE TVHKTN	
Выполнены в количестве	шт. по чертежу №	
Электро Установка (вид оборудования	—————————————————————————————————————	
Установка	_ питается от сети перемень	ного тока напряже-
(вид оборудования))	
ниемВ, размещена		
(место	, метод крепления)	
Электропроводка переменного	тока выполнена	
(марка, сечени	е, длина кабеля, проводка)	
Монтаж проводки осуществле	H	
	(по фасад	y,
в подв	зале, земле и т. п.)	
Отключающее устройство выпо.	лнено	
Защитное заземление выполне	но	
	(указать сп	особ и
•	вление растеканию)	
Сопротивление изоляции кабел	ія Ом	
	очие устройства	
		_
Замечания по мон	тажно-строительным работа	ам
Подписи:		
заказчика		
строительной организ		
эксплуатационной орг	ганизации	
проектной организаци	1И	

АКТ на приемку электрозащитной установки в эксплуатацию

Г.				«»	19r.
	в составе пр		:		
1 ocro	ртехнадзора	บดนี้ การงบนว	2111111		
	TROOPTER	нои организа i организаци			
	SECULVAT	HINDRANG OFF	и анизации	-,,,,,,,,, .	
	3 8 Казчика		апизации	2-11-1	
OSH SKOME	Jangstari Juyat o Aouius	HECKUN TOKAN	euraniueu ocuori	рев все узлы элег	<u>หากกร อเบมามกนี้</u>
	г, смонтирова:			pen nee yaaru aare	прозащиться
,	., ee			тена, опора,	
по адресу	/		фундамент)	нена по проекту	
1			защита выполн	нена по проекту	
(д	ренажная, кат	одная и др.)		•	
Z. COMAN	IIIPOIRMENNO	, го защищаем	ных сетей		
B TOM	числе				
3. Характ обо	геристика узл орудование	ов защиты:	(тип, кол		
ĸ a f	 Бель		(тип, кол (марка, для	нчество)	
,,,,,			(марка дл	ина)	
анс	одное заземле	ение	(Mapha, Mi)		
u.i.	JANGE SUSCIMI	(xapakı	епистика значен	не сопротивления	растеканию)
		(- F	· · · · · · · · · · · · · · · · · · ·	comportanticum	pacitude
					
опо	орные пункты				
			(количество и на	каких сооружения	ix)
пер	емычки меж,	ту			
					Форма 3-3
	Справка	O DESVILTATA	х наладки защи	тной установки	
	Opub	o posjul-1211		The yellinoon.	
			произведена	налалка	
(организ	ация, произво	лившая налалі	(v)		
	троенной уст		-37		
RГ.	•	по ал	pecv	 	
протяжен	ность зашиш	aeminx coopy	кений		
Тип элект	рода сравнен	ия			
Лата про	ведения работ				
•	•			_	
В рез	ультате пуско	наладочных р	работ выбран рег	жим работы уста	новки:
сила тока	в цепи	А, н	апряжение	В, сопрованы	отивление
	——цепи ——	Ом,	при котором	зафиксированы	следующие
потенциал	ы на опорных	(контрольны	х) пунктах		
				(сооружени	e)
no ornom	ению к земле				
IIO OINOM	CHINO K SCMITE	·			
			Потенциал	сооружения	
N₂	№ лунктов	Место		но земли, В	l _
11/U	измерения	измерений		1	Примечание
· /			без защиты	с включенной защитой	
				Jaminion	

Замечания:		
Выводы:		
Подписи:		
Справка о влияни металлические соор	и электрозащитной установкі ужения в зоне действия этих в совместную защиту	установок, не включенных
Месторасположение ус	тановки	
тип установки Параметры электрозац	цитной установки	
	строзащитной установки на с	
D	Потенциал сооружения	относительно земли, В
Вид сооружения	до включения	после включения
представи	тель заказчика тель эксплуатационной орган тели владельцев смежных по	дземных сооружений
		Форма 3-Е
	Справка	
о приемке изолирующи контрольного пункта_	х фланцев шт.,	
Проведена проверк пункта по вызову от _	а исправности электроизолиру	(адрес) ующих фланцев, контрольного
	организации)	
с помощью прибора	(илась методом	проекту
Подпись		

99

Форма учета отказов в работе устройств электрохимической защиты

№ п/п	Тип и общее количество установок данного типа	Нарушение контакта в схеме пре- образователя	Пробой силового выпрямителя или тиристора	Повреждение силового трансформатора или дросселя	Повреждения блока управления пре- образователя
1	2	3	4	5	6

Повреждения питающей сети	Разрушение анодного заземлителя	Нарушение работы гро- зозащиты и защиты от пе- ренапряжения	Разрушение ввода в анодный заземлитель	Повреждение кабеля	Неисправность электрода сравнения
7	8	9	10	11	12

ПРИЛОЖЕНИЕ 2

Выбор оптимальных параметров анодных заземлителей для катодной защиты

Технико-экономический расчет анодных заземлителей заключается в определении оптимальных конструктивных параметров анодных заземлителей, характеризуемых минимальными суммарными затратами, отнесенными к одному году эксплуатации. Эти параметры определяют в соответствии с табл. 1—9. Таблицы составлены для наиболее распространенных конструкций анодных заземлителей, входящих в альбом «Узлы и детали электрозащиты подземных инженерных сетей от коррозии».

Наиболее экономичный вариант анодного заземления выбирают в зависимости от тока в цепи катодной защиты, максимально допустимого сопротивления, оптимального срока службы, материала, длины и числа электродов.

Таблицы технико-экономических показателей анодных заземлителей составлены без учета влияния коксовой засыпки.

Длина,	Годовые расходы Э, руб./год Число				Удельное	электри	ческое с	эпротивле	ение груг	та, Ом∙і	м		
M	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
	0	днорядно	е анодн	ое зазем	иление и	з чугунн	ых труб	диамет	ром 150	мм			
6	Э	162	178	194	210	226	241	257	272	288	304	320	380
	n	4	4	4	4	4	4	4	4	4	4	4	5
	R	0,43	0,86	1,29	1,72	2,15	2,58	3,01	3,44	3,87	4,3	5,16	5,46
10	$oldsymbol{artheta}$	182	195	208	221	235	248	261	274	287	301	327	367
	n	3	3	3	3	3	3	3	3	3	3	3	3
10	R	0,36	0,72	1,09	1,45	1,81	2,17	2,53	2,9	3,26	3,62	4,34	5,43
12	<i>3</i>	147 2	163 2	179	194	210 2	236 2	241 2	267 2	273	289	320	365 3
	n R	0,43	0,86	2 1,29	2 1,72	$\frac{z}{2,15}$	2,58	3,01	3,44	2 3,87	$\begin{array}{c} 2\\4,29\end{array}$	3 5,15	4,71
15	e e e e e e e e e e e e e e e e e e e	170	184	1,29	210	2,13 223	236	249	263	276	289	315	355
10	n	2	2	2	210	2	200	2 + 3	203	2/0	203	2	2
	R	0,36	0.72	1,07	1,43	1,79	2,15	2,51	2,86	3,22	3,58	4,29	5,37
18	$\hat{\boldsymbol{\vartheta}}$	202	213	225	236	247	258	270	281	292	303	326	362
, ,	\overline{n}	2	2	2	2	2	2	2	2	2	2	2	2
	R	0,31	0,62	0,92	1,23	1,54	1,85	2,16	2,47	2,77	3,08	3,70	4,62
		Двухряд	ное ано,	дное за з	емление	из чугу	нных тру	уб диаме	етром 15	0 мм			
6	$oldsymbol{artheta}$	167	184	200	217	234	251	267	284	301	318	351	409
	\boldsymbol{n}	4	4	4	4	4	4	4	4	4	4	4	6
	R	0,46	0,92	1,37	1,83	2,29	2,75	3,21	3,67	4,12	4,58	5,5	5,14
		O	цнорядне	ое анодн	юе зазем	ление и	з электр	одов ЗЖ	(K-12-1				
1,5	Э	94	121	149	171	193	215	232	248	264	279	308	348
1,0	n	12	12	16	16	16	24	24	24	28	28	32	36
	R R	0,74	1,47	1,78	2,38	2,97	2,65	3,1	3,54	3,53	3,92	4,25	4,89

101

Длина,	Годовые расходы Э, руб./год Число				Удельное	электри	ческое со	противле	ние грун	та, Ом м			
М	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
	Одноря	ядное ано	дное за	землени	е из чуг	унных тј	руб диам	етром 1	50 мм				
6	Э	224	267	293	319	345	371	396	422	448	474	522	597
	п	6	6	6	6	6	6	6	6	6	6	6	8
	R	0,31	0,63	0,94	1,26	1,57	1,89	2,2	2,52	2,83	3,15	3,36	3,82
10	3	244	268	292	316	339	363	387	311	434	458	506	575
	n	4	4	4	4	4	4	4	4	4	4	4	5
	R	0,29	0,58	0,87	1,16	1,45	1,74	2,02	2,31	2,6	2,89	3,47	3,66
12	9	119	245	270	296	322	348	373	399	425	451	495	563
	n	3	3	3	3	3	3	3	3	3	3	4	4
	R Э	0,31	0,63	0,94	1,25	1,57	1,88	2,2	2,51	2,82	3,14	3	3,75
15	Э	255	277	298	320	341	363	384	406	427	449	492	556
	n	3	3	3	3	3	3	3	3	3	3	3	3
	R	0,26	0,52	0,78	1,05	1,31	1,57	1,83	2,09	2,35	2,62	3,14	3,92
18	3	216	242	267	292	317	343	368	393	419	444	495	563
	п	2	2	2	2	2	2	2	2	2	2	2	4
	R	0,31	0,62	0,92	1,23	1,54	1,85	2,16	2,47	2,77	3,08	3,7	3,38
	Двухряд	ное анод	ное зазе	емление	из чугун	ных тру	б диаме	тром 150) мм				
6	Э	250	278	306	334	362	391	419	447	475	503	556	632
	n	6	6	6	6	6	6	6	6	6	6	6	8
	R	0,34	0,69	1,03	1,37	1,71	2,06	2,4	2,74	3,09	3,43	3,3	4,12
	Од	цнорядное	е анодно	е зазем	ление из	электро	дов ЗЖ	K-12-1					
1,5	3	144	186	227	264	298	327	357	384	411	434	475	534
•	n	20	20	24	28	32	32	36	36	44	48	52	60
	R	0,51	1,03	1,33	1,56	1,77	2,13	2,28	2,61	2,52	2,59	2,9	3,2

Длина, м	Годовые расходы Э, руб./год Число				Удельное	электрич	еское со	противле	ние грунт	га, Ом∙м			
м	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
	Одноряд	цное анод	цное зазе	емление	из чугуі	ных тр	уб диаме	тром 150	0 мм				
6	Э	321	358	395	433	470	507	544	581	619	657	738	835
J	n	8	8	8	8	8	8	8	8	8	9	10	11
	R	0,26	0,51	0,76	1,02	1,28	1,53	1,78	2,04	2,3	2,32	2,57	3
10	R Э	310	345	381	417	452	488	523	559	5 95	630	697	792
	n	5	5	5	5	5	5	5	5	5	5	6	7
	R	0,24	0,49	0,73	0,98	1,22	1,46	1,71	1,95	2,2	2,44	2,53	2,82
12	3	292	328	365	401	438	474	511	547	584	626	688	781
	n	4	4	4	4	4	4	4	4	4	5	5	6
	R	0,25	0,5	0,75	1	1,25	1,5	1,75	2	2,25	2,11	2,32	2,74
15	3	272	310	349	387	425	463	501	540	384	6,15	676	772
	n	3	3	3	3	3	3	3	3	4	4	4	5
	R	0,26	0,52	0,78	1,05	1,31	1,57	1,83	2,09	1,88	2,09	2,51	2,64
18	Э	315	348	384	417	449	482	515	548	581	614	679	772
	n	3	3	3	3	3	3	3	3	3	3	3	4
	R	0,23	0,45	0,68	0,9	1,13	1,35	1,58	1,8	2,03	2,25	2,7	2,7
	Двухряд	дное анод	цное зазо	емление	из чугуі	ных тр	уб диаме	тром 15	0 мм				
6	3	333	373	414	454	494	534	575	614	655	700	767	871
U	n n	8	8	8	8	8	8	8	8	8	10	10	12
	R R	0,28	0,55	0,82	1,1	1,38	1,65	1,92	2,2	2,48	2,3	2,76	2,99
		днорядно							•	-	-	•	
1.5		_				=			520	551	589	640	721
1,3													80
												2,29	2,49
1,5	Э n R	183 24 0,44	248 24 0,88	308 32 1,06	360 36 1,3	408 44 1,4	448 48 1,56	484 52 1,69	520 60 1,71	551 60 1,92	582 64 2,02	6	68

Длина,	Годовые расходы Э, руб./год Число		2		Удельное	электри	ческое со	противле	ние грун	та, Ом·м	1		
М	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
		Одноряді	ioe auon	une 2226	ANDERNA	as uvrvu	ULIV TOV	б лизио	rnow 150	· · · · · · · · · · · · · · · · · · ·		·	1
		Одпориді	юс апод	noc sasc	mvienne i	из чугуп	nna ipy	о днаме	гром тос	(A) (A)			
6	$oldsymbol{artheta}$	341	450	499	548	597	646	695	744	793	843	932	1057
	n	10	10	10		10	10	10	10	10	11	12	14
	R	0,21	0,43	0,64	0,86	1,07	1,29	1,5	1,72	1,93	2	2,24	2,49
10	3	376	424	472	520	538	616	664	712	761	810	895	1021
	n	6	6	6	6	6	6	6	6	6	7	7	9
	R	0,21	0,42	0,63	0,84	1,05	1,27	1,48	1,69	1,9	1,88	2,25	2,34
12	$oldsymbol{artheta}$	366	414	463	511	559	667	655	703	755	797	880	999
	n	5	5	5	5	5	5	5	5	6	6	6	7
	R	0,21	0,42	0,63	0,84	1,06	1,27	1,48	1,69	1,64	1,83	2,19	2,44
	Э	368	405	453	500	548	59 6	643	691	738	789	869	975
	n	4	4	4	4	4	4	4	4	4	5	5	5
	R	0,21	0,42	0,63	0,83	1,04	1,25	1,46	1,67	1,88	1,76	2,12	2,28
18	R Э	379	460	501	542	583	624	665	706	747	788	870	991
	n	4	4	4	4	4	4	4	4	4	4	4	5
	R	0,18	0,36	0,54	0,72	0,9	1,08	1,26	1,44	1,62	1,8	2,16	2,28
	Į	Івухрядн	ое анодн	юе зазег	мление и	з чугунн	іых труб	диамет	ром 150	мм			
6	Э	376	429	481	534	586	639	710	784	836	889	980	1131
	n	10	10	10	10	10	10	10	10	10	12	12	16
	R R	0,23	0,46	0,69	0,92	1,15	1,38	1,61	1,84	2,07	1,99	2,39	2,43
1,5		Одно	рядное	анодное	заземле	ние из э	лектродо	ов ЗЖК	-12-1				
1,0	Э	234	314	396	458	514	564	611	654	696	736	811	915
	n	32	32	44	52	60	64	68	72	76	80	88	100
	Ŕ	0,35	0,71	0,84	0,97	1,07	1,21	1,34	1,46	1,56	1,66	1,84	2,08

Длина,	Годовые расходы Э, руб./год Число				Удельное	электри	ческое со	противле	ние грун	та, Ом∙м	4		
м	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
	One	юрядное	2020470		IVTVHHЫX	труб лі	ia metbon	г 150 мм					
										054			
6	Э	483	544	605	667	681	728	851	912	974	1084	1145	1313
	<u>n</u>	12	12	12	12	12	12	12	12	13	14	15	18
	Ŗ	0,19	0,37	0,56	0,75	0,93	1,12	1,31	1,49	1,58	1,66	1,89	2,09
10	Э	443	504	566	628	672 7	751	813	875	940	999	1102	1255
	n	7	7	7	7	-	7	7	. 7	. 8	9	. 9	11
	R 3	0,19	0,38	0,56	0,75	0,94	1,13	1,31	1,5	1,54	1,56	1,87	2,01
12		440	500	560	620	680	740	800	960	924	977	1089	1232
	n	6	6	6	6 0,73	6	. 6	1.00	6	7	7	. 8	9
	R	0,18	0,37	0,55		0,91	1,1 734	1,28	1,46	1,47	1,63	1,78	2,02
15	3	445	502	560	618 5	676 5	73 4 5	792 5	849	913	963	1063	1207
	n	5	5	5	0,7	0,88	1,06		5	6	6	6	7
18	R 3	0,18	0,35	0,53	614	674	732	1,23 792	1,41 851	1,37	1,52	1,83	2,03
10		437	496 4	555 3	4	4	132	192	651 4	910 4	970	1070	1212
	n R	4 0,18	0,36	0,54	0,72	0,9	1,08	1,26	1,44	1,62	5 1, 52	5 1,82	6 1,97
		цное анод	•		•			тром 150		.,	-,	-,	-,-
6		2134	566	631	697	762	827	893	958	1023	1089	1215	1385
U	Э n	12	12	12	12	12	12	12	12	1023	1009	1215	20
	Ř	0,2	0,4	0,6	0,8	0,99	1,19	1,39	1,59	1,79	1,77	1,94	2,02
	O	днорядно	е анодно	ое зазем	ление из	электро	одов ЗЖ	K-12-1		•	•	•	,
1,5	Э	277	384	475	551	619	682	739	792	845	894	987	1124
.,0	n n	36	36	52	60	68	76	80	84	92	96	100	100
	Ř	0,33	0,65	0,73	0,85	0,96	1,04	1,16	1,28	1,33	1,43	1,66	2,08

Длина,	Годовые расходы Э, руб./год Число				Удельное	электри	ческое (сопротив	ление гру	унта Ом	· M		
M	электродов п Сопротивление растеканию R, Ом	10	20	30	40	50	60	70	80	90	100	120	150
	Однорядно	е анодное	заземле	ение из	чугуннь	ах труб	диаметр	ом 150	MM				
6	Э	534	613	91	769	848	926	1005	1083	1658	1228	1368	1580
U	n	13	13	13	13	13	13	13	14	15	15	17	23
	R	0,18 0	,35 0	,53	0,7	0,88	1,05	1,23	1,33	1,42	1,58	1,73	1,75
10	$\boldsymbol{\dot{\mathcal{F}}}$					817	893	975	1045	114	1184	1319	1496
10	n	8	8	8	8	8	8	9	9	9	10	12	13
		0,17 0	,34 0	.51	0,68	0,86	1,03	1,09	1,25	1,4	1,44	1,5	1,76
12	Э	516 5	38 6		734	806	879	952	1025	1101	1170	1291	1470
12	n	7	7	7	7	7	7	7	7	8	9	9	11
	R	0,16 0	0.33 0	,49	0,65	0,81	0,98	1,14	1,3	1,33	1,35	1,62	1,74
15	$\dot{\boldsymbol{g}}$				735	803	871	939	1007	1071	1145	1266	1446
.0	n	6	6	6	6	6	6	6	6	6	7	7	9
	R	0,18 0	,35 0	,53	0,7	0,88	1,06	1,23	1,41	1,58	1,36	1,63	1,69
18	R 9					811	878	946	1013	1082	1152	1269	1442
10	n	5	5	5	5	5	5	5	5	5	6	6	7
		0,15 0		,46	0,61	0,76	0,91	1,06	1,21	1,37	1,31	1,57	1,75
	Двухрядно	е анодное	заземле	ение из	чугуннь	ах труб	диаметр	ом 150	MM				
6	Э	586 6	665 7	' 45	824	903	982	1062	1141	1220	1305	1435	1633
U	n	14	14	14	14	14	14	14	14	14	18	18	24
	Ř					0,89	1,06	1,24	1,42	1,59	1,46	1,76	1,72
		-		, заземле	-	лектрод	•	•	•	·	·	•	•
15	Э	329 4	143 5	557	648	728	802	862	937	999	1061	1185	
1,5	n	44		6 0	72	80	88	96	100	100	100	100	_
	Ř						0,92	1	1,11	1,25	1,39	1,66	2

Tаблица 7 (I = 40 A)

Длина, м	Годовые расходы Э, руб./год Число	Удельное электрическое сопротивление грунта, Ом м											
M (электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
	Одноряд	цное ано,	цное заз	емление	из чугу	нных тру	/б диаме	етром 15	0 мм		•		
6	Э п R	616 15 0,16	708 15 0,32	800 15 0,47	894 15 0,63	984 15 0,79	1076 15 0,95	1168 15	1262 16	1352 17	1437 17	1611 22	1832 27
10	Э п	579 9	670 9	761 9	852 9	943 9	1034 9	1,1 1129 10	1,2 1213 10	1,3 1300 11	1,44 1379 12	1,45 1525 13	1,53 1747 16
15	R Э n	0,16 592 8	0,31 678 8	0,47 76 5 8	0,62 861 8	0,78 937 8	0,93 1024 8	1,01 1120 8	1,15 1190 8	1,21 1290 9	1,25 1283 10	1,41 1364 11	1,52 1708 13
18	R Э n	0,15 560 5	0,3 649 5	0,44 737 5	0,59 826 5	0,74 914 5	0,89 1003 5	1,04 1091 6	1,08 1178 6	1,21 1255 6	1,24 1231 6	1,39 1476 7	1,53 1695 9
	R	0,15 дное ано	0,3	0,46	0,61	0,76	0,91	0,92	1,05	1,18	1,31	1,4	1,45
6	9 n R	672 16 0,16	767 16 0,32	861 16 0,48	955 16 0,65	1050 16 0,81	1144 16 0,97	1238 16 1,13	1334 18 1,17	1420 18 1,32	1508 20 1,35	1660 22 1,48	1896 28 1,52
	O,	днорядно	е анодн	ое зазем	ление из	з электр	одов ЗЖ	(K-12-1					
1,5	Э п R	378 52 0,24	520 60 0,43	641 72 0,55	745 80 0,67	839 92 0,74	917 100 0,83	1008 100 0,97	1089 100 1,11	1169 100 1,25	1250 100 1,39	- -	

Длина,	Годовые расходы Э, руб./год Число				Удельно	е электрі	ическое с	сопротивл	ение гру	нта, Ом	М		
M	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
	Одноряд	ное анод	цное заз	емление	из чугу	нных тру	/б диаме	етром 150	О мм				
6	Э	700	806	913	1020	1127	1234	1340	1450	1555	1660	1830	
	n	17	17	17	17	17	17	17	18	19	23	25	
	R	0,14	0,29	0,43	0,58	0,72	0,87	1,01	1,11	1,21	1,16	1,3	1,35
10	Э	648	754	860	966	1072	1179	1289	1388	1480	1570	1740	2022
	n	10	10	10	10	10	10	11	12	12	13	14	19
	R	0,14	0,29	0,43	0,57	0,72	0,86	0,94	1,0	1,13	1,18	1,33	1,35
12	Э	667	767	867	966	1066	1165	1265	1366	1464	1555	1719	1962
	n	9	9	9	9	9	9	9	10	11	12	13	16
	R	0,13	0,27	0,4	0,54	0,87	0,81	0,94	1,0	1,04	1,08	1,22	1,31
15	Э	639	740	840	940	1040	1140	1240	1345	1440	1523	1689	1903
	n	7	7	7	7	7	7	7	8	8	9	10	12
	R	0,14	0,27	0,41	0,54	0,68	0,81	0,95	0,99	1,01	1,13	1,25	1,36
18	Э	663	759	856	953	1050	1147	1244	1341	1440	1525	1704	1930
	n	6	6	6	6	6	6	6	6	7	7	9	10
	R	0,13	0,26	0,79	0,52	0,66	0,79	0,92	1,05	1,05	1,17	1,16	1,34
	Двухряд	ное анод	цное зазо	емление	из чугу	нных тру	б диаме	тром 150) мм				
6	Э	758	866	975	1083	1191	1299	1408	1524	1616	1712	1809	2192
ŭ	n	18	18	18	18	18	18	18	22	22	24	26	34
	$\overset{\cdots}{R}$	0,15	0,29	0,44	0,59	0,73	0,88	1,02	0,99	1,11	1,15	1,29	1,31
	Од	норядно	е анодн	ое зазем	ление и:	з электро	одов ЗЖ	(K-12-1					
1,5	Э	420	586	725	945	953	1056	1158	1261	1363	_	_	
-,0	n	56	64	80	92	100	100	100	100	100			
	Ř	0,23	0,4	0,5	0,59	0,69	0,83	0,97	1,11	1,25	_		

Длина, м	Годовые расходы Э, руб./год Число				Удельное	электрич	еское со	противле	ние грун	та, Ом м			
M	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	60	70	80	90	100	120	150
	Одноря	дное анод	ное заз	емление	из чугу	нных тру	/б днаме	тром 150	0 мм				
6	Э	784	406	1039	1152	1274	1397	1520	1649	1758	1858	2057	2348
	n	19	19	19	19	19	19	19	23	25	25	28	37
	R	0,13	0,27	0,4	0,54	0,67	0,81	0,94	0,93	0,98	1,09	1,19	1,22
10	Э	717	840	962	1084	1207	1333	1452	1560	1667	1773	1940	2289
	n	11	11	11	11	11	12	13	13	14	15	16	22
10	R	0,13	0,27	0,4	0,54	0,67	0,75	0,82	0,94	1,0	1,06	1,21	1,21
12	Э	744	857	971	1084	1198	1311	1425	1545	1644	1745	1933	2234
	n D	10	10 0,25	10	10	10	10 0,75	10	12	12	13	14	18
15	R Э	0,12 735	0,25 854	0,37 974	0,5 1094	0,62 1 20 5	1308	0,87 1411	0,87 1513	0,97 1621	1,02 1716	1,15 1910	1,21 2155
10	n	733 8	8	8	8	9	1308	9	1313	1021	1710	1910	12
	R R	0,12	0,25	0,37	0,5	0,56	0,68	0,79	0,9	0,94	1,04	1,08	1,2
18	$\ddot{\hat{m{artheta}}}$	765	872	978	1085	1191	1298	1404	1511	1625	1730	1906	2191
	n	7	7	7	7	7	7	7	7	8	9	9	12
	R	0,12	0,23	0,35	0,47	0,58	0,7	0,82	0,93	0,96	0,97	1,16	1,17
	Двухря	дное анод	ное заз	емление	из чугу	ных тру	/б диаме	тром 15	О мм				
6	Э	844	967	1090	1213	1336	1458	1583	1701	1806	1916	2118	2462
	n	20	20	20	20	20	20	22	24	24	26	28	
	R	0,13	0,27	0,4	0,54	0,67	0,81	0,87	0,92	1,03	1,07	1,22	38 1,2
	0	днорядно	е анодн	ое зазем	ление из	з электро	одов ЗЖ	(K-12-1					
1,5	Э	466	654	812	947	1073	1200	1326	1453			_	
	n	60	72	92	100	100	100	100	100				
	R	0,21	0,36	0,44	0,55	0,69	0,83	0,97	1,1				_

Анодное заземление из железокремнистых электродов, расположенных вертикально

Ток катодной защиты, А	Длина электрода, м	Годовые расходы Э, руб./год Число электродов п	Удельное	е сопротивл	пение грунт	а, Ом · м
		Сопротивление растеканию R, Ом	10	30	60	100
		3	85	160	240	315
10	7	n	1	2	2	3
		R Э	1,39	2,394	4,788	5,79
		Э	104	155	231	307
10	13,8	n	1	1	1	2
		R 9	0,74	2,22	4,44	5,2
			187	347	513	682
20	7	n R Э	2	4	6	8
		R	0,798	1,389	1,985	2,48
		3	180	337	499	665
20	13,8	n R Э	1	2	3	4
		R	0,74	1,26	2,622	3,17
		Э	296	547	805	1070
30	7	n	3	6	9	12
		R Э	0,798	0,993	1,362	1,93
		Э	292	532	788	1046
30	13,8	n	2	3	4	6
		R Э	0,52	1,311	1,902	1,81
		9	410	755	1110	1474
40	7	n	4	8	12	16
		R Э	0,463	0,744	1,158	1,57
		Э	397	735	1084	1143
40	13,8	п	2	4	6	8
		R	0,52	0,951	1,086	1,46

Таблица 11 Анодное заземление из железокремнистых электродов, расположенных горизонтально

Ток к атодной	Годовые расходы, Э, руб./год Число	Уд	ельное э	лектрич	еское со	противл	ение, Ол	и · м
защиты, А	электродов п Сопротивление растеканию R, Ом	10	20	30	40	50	70	100
10	Э	222	281	342	472	505	680	866
	n	5	5	5	10	10	15	20
	R 3	1,64	3,28	4,92	4,04	5,05	5,25	5,3
20	3	402	621	767	915	1062	1254	1512
	n	5	10	10	10	10	15	20
	R 3	1,64	2,03	3,03	4,04	5,05	5,25	5,9
30	<i>3</i>	657	981	1219	1396	1620	1920	2300
	n	10	15	15	20	20	30	40
	n R	1,01	1,5	2,25	2,36	2,95	2,87	3,1
40	Ġ	915	1340	1685	1935	2174	2628	3112
	n	10	20	20	30	30	40	40
	R	1,01	1,18	1,77	1,64	2,05	2,17	3,1

Анодное заземление из углеграфитовых труб типа ЭГТ-2900, расположенных вертикально

Длина,	Годовые расходы Э, руб./год Число	Удельно	е элект	рическое	e conpo	гивление	грунта	, Ом · м
M	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	70	100
3	<i>3</i>	165 5	190 5	215 5	341 5	266 5	316 5	388 6
6	n R 3	0,627 142 3	1,254 164 3	1,88 185 3	2,508 207 3	3,135 228 3	4,389 271 3	5,47 336 3
9	n R Э	0,542 179	1,084 200	1,626 221	2,168 241	2,71 262	3,79 303	5,42 366
12	n R Э	0,54 226	1,08 243	2 1,62 259	2 2,16 275	2,7 292	3,78 325	5,4 374
	n R	0,437	2 0,874	2 1,311	2 1,748	2 2,185	2 3,059	2 4,37
				<u> </u>	 	Таблиц	a 13 (I =	=15 A)
Длина,	Годовые расходы Э, руб./год Число	Удельно	е элект	рическое	е сопрот	гивление	грунта	, Ом·м
M 	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	70	100
3	Э	240	284	328	372	417	504	617
	<u>n</u>	7	7	7	7	7	8	10
	R	0,492	0,984	1,476	1,968	2,46	3,56	4,45
6	<i>Э</i>	169 3	217 3	266	314 3	358 4	436 5	535
	n R	0,542	1.084	3 1,626	2,168	2.14	2,527	6 3,09
9) Э	273	308	343	378	413	484	589
_	n	3	3	3	3	3	3	3
	R	0,392	0,784	1,177	1,569	1,961	2,745	3,92
12	Э	247	284	321	357,5	394	466	579
	n D	2	2	2	2	2	2	2
	R	0,437	0,874	1,311	1,748	2,185	3,059	4,37
						Таблиц	a 14 (I =	=20 A)
Длина,	Годовые расходы Э, руб./год Число	Удельно	е элект	рическое	сопрот	ивление	грунта,	, Ом·м
м	электродов <i>п</i>				1	· · · · · · · · · · · · · · · · · · ·	1	
	Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	70	100
3	Э	340	400	460	520	580	698	853
	n	10	10	10	10	10	11	13
•	R	0,375	0,75	1,125	1,5	1,875	2,429	3,05
6	Э	261	320	380	440	500	607	742
	n R	5 0,361	$\begin{matrix} 5\\0,722\end{matrix}$	5 1,083	5 1,444	5 1,805	6 2,163	8 2,5

Длина,	Годовые расходы Э, руб./год Число	Уделі	ьное эле	ктричес	кое сопр	отивлен	ие грунт	а, Ом∙м
М	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	70	100
9	Э	368	419	470	521	572	673	826
	п	4	4	4	4	4	4	4
12	R	0,309	0,618	0,927	1,236	1,545	2,163	3,09
	Э	364	414	463	513	562	661	310
	n	3	3	3	3	3	3	3
	R	0,317	0,634	0,951	1,268	1,585	2,219	3,17

Таблица 15 (I=25 A)

						,	1-	,
Длина,	Годовые расходы Э, руб./год Число	Удельно	е элект	рическо	е сопро	тивление	грунта	ı, Ом·м
M	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	70	100
3	Э	440	516	593	670	746	897	1094
	n	13	13	13	13	13	14	17
	R	0,305	0,610	0,915	1,22	1,525	2,016	2,52
6	Э	323	404	486	567	645	790	957
	n	6	6	6	6	7	7	1 i
	R	0,309	0,618	0,227	1,236	1,365	1,911	1,94
9	Э	464	532	600	667	735	870	1068
	n	5	5	5	5	5	5	6
	R	0,261	0,522	0,783	1,044	1,305	1,827	2,24
12	Э	483	546	609	672	735	861	1050
	n	4	4	4	4	4	4	4
	R	0,25	0,5	0,75	1,00	1,25	1,75	2,5

Таблица 16 (I=30 A)

Длина,	Годовые расходы Э, руб./год Число	Удельно	элект	рическо	е сопро	гивление	грунта	, Ом·м
M	электродов <i>п</i> Сопротивление растеканию <i>R</i> , Ом	10	20	30	40	50	70	100
3	3	517	616	715	813	912	1099	1339
	n	15	15	15	15	15	17	21
	R	0,275	0,5	0,825	1,1	1,375	1,764	2,13
6	Э	416	511	605	700	79 5	961	1174
	n	8	8	8	8	9	10	13
	R Э	0,25	0,5	0,75	1,0	1,13	1,519	1,75
9	Э	561	646	732	817	902	1072	1315
	n	6	6	6	6	6	6	8
	R	0,224	0,448	0,672	0,896	1,12	1,568	1,81
12	Э	510	602	692	783	874	1055	1297
	n	4	4	4	4	4	4	5
	R	0,25	0,5	0,75	1,0	1,25	1,75	2,11
		•						

	Годовые расходы										
Длина,	Э, руб./год Число	Удельно	/дельное электрическое сопротивление грунта, Ом·м								
М	электродов <i>п</i> Сопротивление										
	растеканию R, Ом	10	20	30	40	50	70	100			
3	Э	619	735	851	967	1083	1304	1587			
	n	18	18	18	18	18	21	25			
	R	0,243	0,486	0,729	0,972	1,215	1,49	1,8			
6	3	480	598	715	833	946	1143	1396			
	n	9	9	9	9	10	12				
•	R	0,226	0,452	0,678	0,904	1,085	1,267				
9	<i>3</i>	659	762	866	969	1072	1279				
	n R	7	7	7 0,591	7 0.788	7 0.085	7 1,379				
12	r Đ	0,197 630	0,394 735	840	945	0,985 1050	1,379				
12	n	5	5	5	5	5	5	_			
	Ä	0,211	0,422	0,633	0,844	1,055	1,477				
	• •	0,211	0,122	0,000	0,011	.,000	.,	1,01			
						Таблиц	a 18 (I=	=40 A			
	Годовые расходы							_			
	<i>Э</i> , руб./год	Удельно	е элект	рическо	е сопро	гивление	грунта	, Om·m			
Длина,	Число			,							
M	электродов <i>п</i> Сопротивление	1						100 1587 25 1,8			
	растеканию R, Ом	10	20	30	40	50	70	100			
	L		<u> </u>	<u> </u>		L	L				
3	3	698	837	976	1115	1254	1510				
	n D	20	20	20	20	20	24				
6	R Э	0,223 544	0,446 686	0,669	0,892	1,115	1,33				
U	n	10	10	828 10	970 10	1100 11	1328				
	"R	0,217	0,434	0,651	0.868	0,97	15 1,085				
9	$\hat{\boldsymbol{\vartheta}}$	691	825	960	1096	1231	1490				
	n	7	7	7	7	7	8				
	R	0,197	0,394	0,591	0,788	0,985	1,267				
12	Э	750	870	990	1110	1230	1470				
	n	6	6	6	6	6	6	_			
	R	0,181	0,362	0,543	0,724	0,905	1,267	1,6			
							40.1-				
						Таблиц	a 19 (I =	=45 A			
	Годовые расходы	VIAILUA			00000		EB. WE	Ον. ν			
Длина,	Э, руб./год Число	о делько	C SVICKI	JNACCKOC	Compor	пвленис	групта,	OM M			
м м	электродов <i>п</i>		 1		· · ·						
	Сопротивление						Į.				
	растеканию R, Ом	10	20	30	40	50	70	100			
3	Э	800	957	1114	1272	1429	1727	2168			
	n	23	23	23	23	23	25				
	R	0,198	0,396	0,594	0,792	0,99	1,302				
6	Э	609	776	943	1106	1255	1514				
	n	11	11	11	12	14	17				
•	R	0,194	0,388	0,582	0,724	0,815	0,994	1,3			
9	9	790	944	1098	1253	1408	1703	2084			
	n D	8	8	8	8	8	9				
10	Ř	0,181	0,362	0,543	0,724	0,905	0,814				
12	ġ	782	934	1086	1238	1390	1683				
	n D	6	6	6	6	6	7				
	R	0,181	0,362	0,543	0,724	0,905	1,12	1,46			

Анодное заземление из углеграфитовых труб типа ЭГТ-2900, расположенных горизонтально

Ток ка- тодной Число электродов	Годовые расходы З, руб/год Число электродов п	Удельное электрическое сопротивление грунта, Ом·м									
		10	20	30	40	50	60	70	80	90	100
10	Э	301	309	317	326	334	343	351	360	368	377
	n	5	5	5	5	5	5	5	5	5	5
	R	0,231	0,462	0,693	0,924	1,155	1,386	1,617	1,848	2,079	2,31
15	э	311	330	3 4 8	368	387	406	425	444	464	482
	n	5	5	5	5	5	5	5	5	5	5
	R	0,231	0,462	0,693	0,924	1,155	1,386	1,617	1,848	2,079	2,31
20	Э	326	359	393	427	460	494	528	561	595	629
	n	5	5	5	5	5	5	5	5	5	5
	R	0,231	0,462	0,693	0,924	1,155	1,386	1,617	1,848	2,079	2,31
25	Э	615	645	675	704	734	764	794	823	854	884
	n	10	10	10	10	10	10	10	10	10	10
	R	0,131	0,262	0,393	0,524	0,644	0,786	0,917	1,048	1,179	1,31
30	$\boldsymbol{\vartheta}$	628	671	714	757	800	843	886	929	972	1015
	n	10	10	10	10	10	10	10	10	10	10
	Ŗ	0,131	0,262	0,393	0,524	0,655	0,786	0,917	1,048	1,179	1,31
35	$\dot{\boldsymbol{\vartheta}}$	643	702	760	819	818	930	995	1053	1112	1170
	n	10	10	10	10	10	10	10	10	10	10
	R	0,131	0,262	0,393	0,524	0,655	0,786	0,917	1,048	1,179	1,31
40	Э	661	737	814	891	967	1044	1120	1197	1273	1350
	n	10	10	10	10	10	10	10	10	10	10
	R 3	0,131	0,262	0,393	0,524	0,655	0,786	0,917	1,048	1,179	1,31
45	3	948	1019	1090	1161	1232	1302	1374	1444	1515	1586
	n	15	15	15	15	15	15	15	15	15	15
	R	0,096	0,192	0,288	0,384	0,480	0,576	0,672	0,768	0,804	0,96

Примечание. Длина электрода $l=2\times2900$ м.

Пример расчета электрохимической защиты подземных сооружений (на стадии проектирования)

Определить параметры катодной защиты подземных сооружений на территории квартала новой застройки площадью 10 га.

Исходные данные для расчета: совмещенный геодезический план территории района в масштабе 1:500 с нанесенными подземными сооружениями; сведения о коррозионной активности грунта.

На территории района, требующего защиты, расположены газопроводы низкого и среднего давления, теплопроводы и водопроводы следующих диаметров D и длин l.

Газопро	воды	Водопр	оводы	Теплопроводы		
<i>D</i> , мм	<i>l</i> , m <i>D</i> , mm		<i>l</i> , м	D, mm	<i>l</i> , m	
200	732	2×100	100	2×125	155	
150	624	100	480	2×70	134	
100	323	2×150	80	2×200	284	
89	70	200	253	2×100	266	
		150	140	2×250	158	

Коррозионная агрессивность грунта на территории защищаемого района от 15 до 50 Ом м. Принимаем среднее значение $\rho = 30$ Ом м.

Расчет 1. Определяем поверхность трубопроводов, расположенных на территории района.

Площадь поверхности всех газопроводов:

$$S_{r} = (\pi \sum_{i=1}^{n} d_{i}) \cdot 10^{-3} = 3,14(200 \cdot 732 + 150 \cdot 642 + 100 \cdot 323 + 89 \cdot 70) \cdot 10^{-3} = 874.6 \text{ m}^{2}.$$

Аналогично определяется площадь поверхности всех водопроводов: $S_n = 513.9 \text{ м}^2$; теплопроводов: $S_{\text{теп}} = 1014.5 \text{ м}^2$.

Суммарная поверхность всех трубопроводов $\sum S = S_r + S_s + S_{ren} =$ $= 2403 \text{ m}^2$.

2. Средняя защитная плотность тока определяется по формуле (4.9) (гл. 4.2).

Определим коэффициенты b, c, d, e и f:

$$b = (S_{\text{n}}/\Sigma S) \cdot 10^2 = (513.9/2403) \cdot 10^2 = 21.4\%;$$

$$c = (S_{\text{ren}}/\Sigma S) \cdot 10^2 = (1014.5/2403) \cdot 10^2 = 42.2\%;$$

$$d = S_{\text{r}}/S_{\text{rep}} = 874.6/10 = 87.5 \text{ m}^2/\text{ra};$$

$$e = S_{\text{n}}/S_{\text{rep}} = 513.9/10 = 51.4 \text{ m}^2/\text{ra};$$

$$f = S_{\text{ren}}/S_{\text{rep}} = 1014.5/10 = 101.5 \text{ m}^2/\text{ra}.$$

Подставив найденные значения коэффициентов в значение р в формулу (4.9), получаем

$$j=30-(100\cdot21,4+128\cdot42,2+34\cdot87,5+3\cdot51,4+0.6\cdot101,5+5\cdot30) \times 10^{-3}=30-10.88=19.12 \text{ mA/m}^2.$$

3. Суммарный защитный ток, необходимый для обеспечения катодной поляризации подземных трубопроводов, расположенных в районе,

$$I = 1.3i\Sigma S = 1.3 \cdot 0.0191 \cdot 2403 = 59.7 \text{ A}.$$

Принимая суммарный ток катодной защиты 60 А, устанавливаем две катодные станции с током 30 А.

4. По плану района находим места расположения катодных станций и анодных заземлений. Зона действия катодной станции определяется по формуле (4.15) (гл. 4.2).

Определим удельную плотность сооружения:

$$K = \Sigma S/S_{\text{rep}} = 2403/10 = 240,3.$$

Подставив значения $I_{\kappa c}$, j и K в формулу (4.15), получаем

$$R = 60\sqrt{30/(0.0191 \cdot 240.3)} = 153.6 \text{ m}.$$

Полученные радиусы действия каждой катодной станции охватывают всю территорию района защиты.

5. По таблицам прил. 2 для тока $I_{\rm K,c}$ =30 A и ρ =30 Ом · м выбираем анодное заземление из чугунных труб d =150 мм, l =15 м с сопротивлением растеканию $R_{\rm a,s}$ =0,53 Ом.

Рассчитываем сопротивление дренажного кабеля. Для кабеля ABPБ-3×16 длиной 100 м сопротивление $R_{\rm ka6}$ = 0,0646 Ом·м.

6. Узнаем выходное напряжение катодной станции

$$U_{\text{BMX}} = I_{\text{K.C}}(R_{\text{a.3}} + R_{\text{Ka6}}) = 30(0.53 + 0.0646) = 18 \text{ B.}$$

С учетом 30% запаса на развитие сети выбираем катодные станции ОПС-50-24-14 с параметрами: $U=24~\mathrm{B};\ I=50~\mathrm{A}.$