МИНИСТЕРСТВО НЕФТЯНОЙ ПРОМЫШЛЕННОСТИ ВНИИСПТнефть

РУКОВОДЯЩИЙ ДОКУМЕНТ

ИНСТРУКЦИЯ
ПО ОБРАБОТКЕ ОБВОДНЕННЫХ
СКВАЖИН ДЕЭМУЛЬГАТОРОМ НА
ПРЕДПРИЯТИЯХ ПРОИЗВОДСТВЕННОГО
ОБЪЕДИНЕНИЯ "Башнефть"
РД 39-1-1118-84

Министерство нефтяной промышленности ВНИИСПТнефть

YTREPMIEH

начальником Технического управления О.Н.Байдиковим II игля 1984 года

РУКОВОДИЩИЙ ДОКУМЕНТ

ИНСТРУНЛИЯ

ПО ОБРАВОТИЕ ОБВОДНЕННЫХ СКВАВИН ДЕЭМУЛЬГАТОРОМ НА ПРЕДПРИЯТИЯХ ПРОИЗВОДСТВЕННОГО ОБЪЕДИНЕНИИ "БАШНЕФТЪ"

РД 39-І-ІІІ8-84

Инструкция содержят практические рекомендации по применению метода внутрискважинной деэмульсации на предприятиях производственного объединения "Башнефть".

В окончательной редакции инструкции учтени замечания ряда пресприятий и организации миннефтепрома, приславших свои отзыви.

Инструкция составлена Осуповим О.М., Велеевым М.Д., Гариповим Ф.А., Коваленко М.Ф., Зариповым А.Г., Хакимовим Р.С.

РУКОВОЛЯШИЙ ДОКУМЕНТ

Инструкция по обработке обводненных скважин деэмульгатором на предприятиях "Башнефти" РД 39-I-III8-84.

Вводится впервие

При	казом объединения	"Башнефть"	or "_5	" сентября	198	↓ Γ•	
% _	414						
		Coor no	anound D	AMATIAN TATE A	. AT	n 8	١,

Срок введения установлен с <u>01.10.84</u> Срок действия до <u>01.10.89</u>

В инструкции даются рекомендации по технологии проведения внутрискважинной деэмульсации нефти, выбору обводненных скважин и подготовке химреагента для их обработки.

В основу технологии заложен принцип насышения нефти в межтрубном пространстве раствором реагента с целью постепенного дозирования его в добиваемую жидкость. Разработанная технология прошла промишленные испытания на промыслах объединения "Баш мефть".

Применение инструкции способствует более рациональному и экономическому использованию маслорастворимых деэмульгаторов.

Принцип подготовки раствора реагента и обработки этим раствором скважини может быть использован также для дозирования ингибиторов коррозии в нефтесборные коллектора.

I. ОБШИЕ ПОЛОЖЕНИЯ

I.I. В условиях прогрессирующего обводнения продуктивных пластов достаточно эффективным методом профилактики образования эмульсий является внутрискважинная деэмульсация нефти. В отдельных случаях, в частности в зимнее время, этот метод ягляется со-

вершенно необходимым в связи с высокими давлениями нагнетания жидкости в сборные коллектора. Присутствие девмульгатора в пропукции предотвращает формирование стойких эмульсий в скважинах, снижает вязкость добиваемой жидкости и давление в системе сбора.

Ввод деэмульгатора на прием насосов позволяет в значительной мере улучшить условия эксплуатации скважин, транспорта и подготовки нефти. Уменьшается обрывность штанговых колони, растет
дебит электроцентробежных установок благодаря снижению вязкости
жидкости в стволе насосно-компрессорных труб (НКТ). Все это позволяет считать метод деэмульсации нефти в скважине одним из перспективных направлений в нефтедобыче. Технология деэмульсации тем
эффективнее, чем больше давление, необходимое для транспортировки
высоковязкой обводненной продукции скважин до конечных пунктов
нефтепромысловой системы сбора.

1.2. Применение способа деэмульсации в широких масштабах в настоящее время сдерживается рядом объективных причин. Прежде всего несовершенны техника и технология позирования реагента в скважину. В зимний период эксплуатации отридательная температура исключает возможность постоянного дозирования деэмульгатора в скважину вследствие его загущения. Кроме того, позаторные насосы обладают достаточно низкой эксплуатационной надежностью и требуют практически ежедневного обслуживания техническим персонадом. Все это заставило в подавляющем большинстве случаев отказаться от дозаторных установок. Поэтому в практике добычи обводненной нефти все более пирокое применение находит метод пермодической заливки реагента в межтрубное пространство. В зимний период частота обработки скважин составляет в среднем 3 раза в неделю. При этом количество заливаемой жидкости (как правило, неразбавленного деэмульгатора) составляет 0.005-0.01 м⁸. Для практического руководства операцией обработки на сегодняшний день нет никаких расчетов и инструкций.

это приводит к непроизводительному расходу дорогостоящих реагентов импортного производства. Однако главная причина непроизводительных расходов заключается в следующем. Высокая плотность заливаемого реагента приводит к быстрому поладанию его на прием насоса и откачке в линию. Период между образотками, таким образом, резко сокращается, а трудоемкость процесса увеличивается. В первые сутки после обработки в жидкость вводится чрезмерно большое количество реагента, а в последующее время образуется его резкий дефицит.

- 1.3. В инструкции для обработки скважин предлагается композиция из неионогенных деэмульгаторов сепарола 5014, сепарола и растворителей малой плотности низших спиртов (изопропиловий, метиловий, этиловий), допущенных "Перечнем химреагентов, применение которых согласовано с Миннефтехимпромом СССР" (Письмо "Союзнефтехимпромом" № 18-4520 от 8.09.80 г.).
- І.4. С помощью растворителя плотность раствора доводится до плотности нефти и снижается визкость реагента-дезмульгатора, что облегчает его доставку на межфазную поверхность.

2. ТРЕБОВАНИЯ, ПРЕДЪЯВЛНЕМЫЕ К ТЕХНОЛОГИЧЕСКОМУ ПРОЛЕССУ

- 2.1. Обработка скважин, дебитом от 3 до 200 м³/сут, спиртовыми растворами неионогенных реагентов-деэмультаторов типа блоксополимеров делжна производиться при добиче обводненных нефтей, вяз костью на выкиде скважины не менее 150 мПа·с. Вязкость нефти
 150 мПа·с и выше начинает оказывать заметное влияние на работу
 насосной установки.
- 2.2. Полученные растворы должны обеспечить снижение вязкости обводненной нефти и стойкости эмульсии в насосно-компрессорних тру-

- бах. Отбираемая на устье скважины продукция, должна в течение 30 мин расслаиваться на нефть и воду с остаточным содержанием воды в нефти не более 10%.
- 2.3. Обводненность продукции обрабатываемых скважин должна составлять 45-75%. В случае применения ингибиторов коррозии обводненность продукции не ограничивается.
- 2.4. Скважина может быть оборудована насосным оборудованием типа УШТ или УЭШН.
- 2.5. Дезмульсация не должна приводить к увеличению скорости коррозии трубопроводов сборных систем из-за полного или частичного расслоения в трубах водонефтяной омеси.

3. ТЕХНОЛОГИЯ ОБРАБОТКИ СКВАЖИН

- 3.I. Технология обработки скважин состоит из следующих операций.
 - 3.1.3. Получение раствора реагента.
 - 3. І.2. Подача раствора в межтрубное пространство скважини.
- 3.1.3. Контроль за свойствами продукции скважин, работой насосного оборудования и давлением нагнетания в нефтесборном коллекторе.
- 3.2. Раствор в объеме 0,04-0,06 м³ приготавливается смещением в соотношении I:I деамульгатора с органическим растворителем, выпускаемым отечественной промышленностью.
- 3.3. Смешение деэмультатора с растворителем производится в течение 15-20 мин. циркуляционным насосом установки БР-IO.
- 3.4. Подученный раствор доставляется к скважинам в автоцистернах и по схеме на рис. закачивается агрегатом НА-320 в затрубные пространства. Подсоединение к задвижке устьевой арматуры производится с помощью быстросъемных соединений.

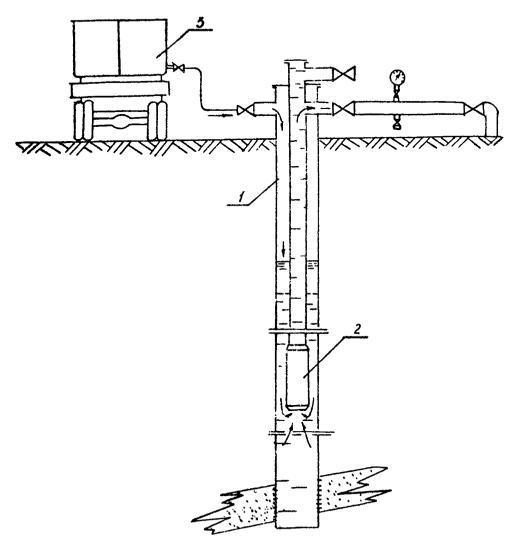


Рис. Схема подачи раствора деомультатора в скважину. I - скважина, 2 - насос, 3 - агрегат IIA-320.

3.5. Закачанний раствор в силу меньшей плотности располагается вначале в верхних участках столба нефти над насосом. Затем, в
связи с массообменсы жидкости в межтрубном пространстве, раствор
перемешивается с основным объемом нефти и насыщает её. Постепенная
смена объема межтрубной нефти конвективными токами жидкости, вызванными температурными градиентами по стволу скважины и радиальному изправлению её кольцевого сечения, приводит к дозированию слабоконцентрированного дезмультатора через насос в добиваемую жид кость.

4. ВЫБОР СКВАЖИН ЛЛЯ ОБРАЕОТКИ

- 4. І. Для выбора скважи производится анализ вязкости устьевых проб жидкости в их отстой. Вязкость проби, замеренная полевым вискозиметром СВП-5, в пересчете на динамическую величину должна быть не менее ISO мПа·с. Стойкость отобранной эмульсии согласно общепринятой методике, определенная как отношение свободно выделившейся в гечение 30 мин водной фазы к её общему объему в пробе, выраженному в процентах, не должна превышать 5 %.
- 4.2. Обработка применяется в скважинах с исправным оборудо ванием.
- 4.3. Устьевое осорудование не полжно осложнять закачку приготовленного раствора в межтрубное пространство.
- 4.4. Выбор скважним осуществляется виженерно-техническим персоналом промысла совместно с лабораторией ТТНД ШИЛГРа.

5. КОНТРОЛЬ ЗА ЭКСПЛУАТАЦИЕЙ СКВАЖИНЫ ПОСЛЕ ПРОВЕДЕНИЯ ОБРАБОТКИ

- 5.1. После проведения обработки осуществляется анализ вязкости и отстоя жидкости, отбираемой на устье скважины из пробоотборного крана с частотой раз в две недели. Отбор проб осуществляется сператором, анализ и обработка результатов производятся лабораторией техники и технологии добичи нефти ЦНИПРа НГДУ.
- 5.2. Для регистрации закачки и результатов анализа свойств продукции скважин в лаборатории ЦНИПРа заводится журнал учета (см. приложение).
- 5.3. Дозирование реагента-деэмультатора на прием насоса должно снизить в 5-10 раз вязкость жидкости и стойкость эмульсии. По мере истощения реагента в затрубном пространстве вязкость и стойкость эмульсии постепенно приближаются к исходним значениям. При достижении вязкости и стойкости эмульсий, отличающихся от исходних в I,05-I,I раза, производится повторная обработка скважини. Ориситировочный срок действия раствора приведен в табл. приложения.
 - 6. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ДЕЭМУЛЬГАТОРАМ
- 6.1. В тех случаях, когда коррозионная активность пластовой воды высока и расслоение потока водонефтяной смеси на составляющие компоненти будет способствовать коррозии и пормеам коллекторов, в качестве деэмультаторов должны использоваться только нещества, обладающие ингибирующим действием. К примеру, такими деэмультаторами являются реагенты Ное—1877—4, Виско 936,938, защитное действие которых для некоторых типов добываемых жидиостей достигает 80—95%.

7. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ВЛИЯНИЕ НА ОКРУЖАЮЩИЮ СРЕЩУ

- 7. І. Приготовление раствора деэмультатора и обработка скважин должны производиться в соответствии с "Правилами безопасности в нефтегазодобывающей промышленности", утвержденными Гостехнадзором СССР от 13.01.74 г., типовыми правилами пожарной безопасности для промышленных предприятий, утвержденными Главным управлением пожарной охраны МВД СССР от 21.08.1975 г.
- 7.2. При непосредственном обращении с химическими веществами необходимо руководствоваться "Типовой инструкцией по безопасности работ с применением повержностно-активных веществ" (РД 39-22-201-79), "Единой системой работ по созданию безопасных условий труда", утвержденной МНП и президиумом ЦК профсоюза рабочих нефтяной и газовой промышленности за % 559/8 от 21.10.1977 г. и "Отраслевой инструкцией по безопасности труда при обработке призабойной зоны скважин углеводородными растворителями (конденсат, сжиженный гази др.) и закачка их в пласт ИБТВ-007-77, разработанный ВНИИТБ, 1979 г.
- 7.3. Инженерно-технический персонал и операторы по добыче нефти должны пройти обучение и инструктаж, а также быть аттестованными согласно требованиям "Единой системы работ по созданию безопасных условий труда" и других существующих положений. Лица моложе 18 лет к работе с дезмультаторами не допускаются.
- 7.4. В подразделениях НТДУ должен бить налажен учет поступления и расхода деэмульгаторов и растворителей.
- 7.5. Хранение деэмульгаторов и растворителей производится на откритом воздухе в закрытой таре, установленной на эстакадах воливи установок БР-10.

- 7.6. Обслуживающий персонал, имеющий контакт с деэмультатором и растворителем, должен подвергаться периодическому медицинскому обследованию (приказ Минзлрава СССР № 400 от 30 мая 1969 г.).
- 7.7. Работи с реагентами должны производится в спецодежде оператором по добыче нефти.
- 7.8. При разливе деэмультатора и растворителя место разлива засыпается песком с последующим его удалением в сборную емкость.
 - 7.9. При загорании тушить песком, кошмой, огнетушителем.
- 7.10. Слив раствора в канализацию, ведущую на биологическую очистку, без предварительной физико-химической очистки не допускается.

ЛИТЕРАТУРА

- Правила безопасности в нефтегазопобывающей промышленности.
 М.: Недра. 1974.
- 2. Типовые правила пожарной безопасности для промышленных предприятий. М.: Стройнэдат, 1975.
- 3. Типовая инструкция по безопасности работ с применением поверхностно-активных вечести. РД-22-201-79. Уба: ВосНиИТБ, 1980.
- 4. Единая система работ по созданию безопасных условий труда.-М.: Недра, 1978.
- 5. Отраслевая инструкция по безопасности труда при обработке призабойной зоны скважин углеводородными растворителями и закачка их в пласт. ИБТВ-007-77. М.: МНП, 1979.

IIPMIOXEHME

Турнал учета работы глубиннонасосного оборудования при внутрискважинной деэмульсации нефти

Jejie je			:Первона-: :чальная	Свойства жидкости после обработки				
пп скв.	:реагента		: СТОЙ-	Дата анализа		Вязкость мПа•с		Стойкость эмульсии,
:	:	м∏а∙с	эмульсии:		:	MILA	:	%

Таблица Ориентировочный срок действия 50 л. раствора облегченного реагента, сутки

-дэндовоо	Дебит, м ³ /сут						
ность, %	3–6	3-6 6-10 10-15		15-20	20-25	25 и более	
40-45	65	50	45	40	35	30	
45-50	55	50	45	40	30	25	
50-55	50	4 5	40	35	30	25	
55-60	40	40	35	3 0	25	20	
65-70	45	35	30	25	20	20	
70-75	50	45	40	3 5	30	25	

COMEPRAHME

		CTp.
I.	Общие положения	3
2.	Требования, предъявляемие к технологическому	
	процессу	5
3.	Технология обработки скважин	6
4.	Выбор скважин для обработки	8
5.	Контроль за эксплуатацией скважини после проведения	
	обработки	9
6.	Требования, предъявляемые к деэмульгаторам	9
7.	Требования безопасности и влияние на окружающую	
	среду	
	Литература	13
	Приложение. Журнал учета работи глубиннонасосного	
	оборудования при внутрисквежинной	
	де эму льсации нефти	

РУКОВОДЯЩИЙ ДОКУМЕНТ

ИНСТРУКЦИЯ

ПО ОБРАБОТКЕ ОБВОДНЕННЫХ СКВАЖИН ДЕЭМУЛЬГАТОРОМ НА ПРЕДПРИЯТИЯХ ПРОИЗВОДСТВЕННОГО ОБЪЕДИНЕНИЯ "БАШНЕЙТЬ"

PJ 39-I-III8-84

Издание ВНИИСПТНЕФТЬ 450055, г./фа, пр.Октября, 144/3

> Редактор Л.В.Батурина Технический редактор Л.А.Кучерова

Подписано к печати 16.10.84 г. ПОЗТЗ4
Формат 60х90/16. Уч.-изг.л. 0,7. Тираж 140 экз.
Заказ /88