ТИПОВОЙ ПРОЕКТ А-П.Ш.ІУ-1200-361.87

Склад материалов в подвале инженерного корпуса (Вариант для сухих грунтов)

Альбом I ОВЦАЯ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

<u>С Ф 7 В 3 - О І</u>цена 1 - З 4

ТИПОВОЙ ПРОЕКТ А-П,Ш,ІУ-1200-361.87

Склад материалов в подвале инженерного корпуса (для сухих грунтов)

I мобакА АНДИТАЕ КАНДЕТИНОКОП КАДЕГО

Разработан Волжским отделением института "Госхимпроект" Утвержден штабом ГО СССР протокол от 24.03,87-

Главный инженер Главный инженер проекта Haw

А.Ф.Талызов Г.И.Шелудько

Введен в действие приказом Волжского отделения Госхимпроект от 25.03,87 м²/10

© ЦИТП Госстроя СССР, 1988

ТИПОВОЙ ПРОЕКТ А-П,Ш,1У-1200-361.87

состав проекта

Альбом I	Общая пояснительная записка
Альбом 2	Архитектурные решения
Альбом З	Конструкции железобетонные
Альбом 4	Конструкции железобетонные
Альбом 5	Рабочие чертежи изделий
Альбом б	Отопление и вентиляция. Внутренний водопровод и канализация Электростанция дизельная Механизация складского хозяйства Установка автоматического водяного пожаротушения
Альбом 7 Часть I	Силовое электрооборудование Автоматизация, электроосвещение. Связь и сигнализация
Альбом 7 часть 2	Задания заводам-изготовителям
Альбом 8 часть I	Спецификация оборудования АР,ОВ,ВК,ЭД,ТХ,А пж
Альбом 8 часть 2	Спецификация оборудования ЭМ, ЭО, СС, АОВ
Альбом Э	Ведомости потребности в материалах
Альбом IO книга I,2	Сметы
Альбом II	Пояснительная записка (Распространяет Волжское отделение института Госхимпроект)

ОГЛАВЛЕНИЕ

		Стр.
I	Общая часть	45
2	Архитектурно-строительная часть	58
3	Отопление и вентиляция	812
4	Водоснабжение и канализация	1214
5	Электротехническая часть	1416
6	Электростанция дизельная	16 21
7	Механизация складского хозяйства	21 27
8	Установка автоматического водяного пожаротушения	27 30
Э	Основные данные и технико- экономические показатели	3133

Альбом

I. ОВШАЯ ЧАСТЬ

Типовой проект разработан на основании задания на проектирование, утвержденного начальником Отдела типового проектирования и организации проектно-изыскательских работ Госстроя СССР товарищем Спиридоновым В.М. 29.03.1985г. и согласованного начальником II Управления ГО СССР тов. Афанасьевым D.И.

Типовой проект разработан в соответствии со CHuII II—II—77

"Защитные сооружения гражданской обороны", "Руководством по проектированию строительных конструкций убежищ гражданской обороны"

НИИПромзданий Госстроя СССР, Москва, 1982г. и инструкцией по типовому проектированию CH 227—82 Госстроя СССР.

Проект разработан для строительства на территории СССР (для 4 климатических зон), кроме зон вечной мерэлоты, горных выработок, просадочных грунтов и сейсмических районов более 6 баллов. В качестве основного варианта принята 2 климатическая зона.

При привязке проекта особое внимание обратить на защиту сооружений от затопления ливневыми водами, а также водами и другими жидкостями при разрушении коллекторов, магистральных трубопроводов и емкостей.

Сооружение оборудуется:

- системой вентиляции для 4 климатических зон для работы по трем режимам (чистая вентиляция, фильтровентиляция и регенерация)
- центральным водяным отоплением от узла управления теплового пункта надземного здания с параметрами теплоносителя T_1 = $I50^{\circ}$ C и T_2 = 70° C;
- силовым и осветительным электрооборудованием от внешней сети (ТП и фидерного пункта предприятия) и аварийным электроснабжением от встроенной дизельной электростанции мощностью 25 квт;
- водоснабжением от внутриплощадочных сетей, объединенный козяйственно-противопожарный водопровод с установкой баков для запаса питьевой воды и пожаротушения;
 - канализацией во внешнюю сеть предприятия;
 - средствами связи телефоном и радиотрансляцией.

Проект выполнен применительно к двум вариантам гидрогеологичес-ких условий:

а) грунтовые воды отсутствуют (уровень грунтовых вод ниже отметок основания сооружения не менее, чем на 0,5 м), грунты не просядочные, естественной влажности, непучинистые со следующими нормативными характеристиками ψ =28°, Ch=0,02 krc/cm2, E=150krc/cm2, χ =1,8 τ /м3 Kr=1;

б) грунты водонасыщенные, неагрессивные, уровень грунтовых вод превышает отметку пола подвала не более, чем на 2 м.

При водонасьщенных грунтах с Кф 3м/сут. при привязке проекта предусмотреть дренаж с учетом конкретных гидрогеологических условий и генерального плана промплощадки в соответствии с постановлением Госстроя СССР от 14 июля 1980г. № 103.

2. APXITEKTYPHO-CTPONTEJIHAR YACTH

Подвал инженерного корпуса запроектирован одноэтажным, прямоугольной формы, высотой помещения 3 м с наклонными входами и с грузовым выжимным лифтом, грузоподъемностью 3,2 т, с шахтой подъемника и машинным залом.

Забор воздуха осуществляется через железобетонные оголовки и предтамбур наклонного входа. Для выброса воздуха из здания и помешения пизельной электростанции также предусмотрены оголовки.

Строительные конструкции

Наименование конструкций	В сухих грунтах	В водонасьщенных грунтах
Наружные стены здания,балки и покрытие	Из сборных элементов серии У-01-01/30 выпуски I,2	Из сборных элементов серии У-01-01/80 выпуски 1,2
Фундаменты и колон- ны здания	Колонны-монолитные серии У-01-01/80 Фундаменты под стены-ленточные, монолитные, ж/бетоные отдельно стоящие монолитные ж/бетонные ступенчатого типа	Колонны-монолитные серии У-01-01/80 Фундаменты — сплошна монолитная плита с продольными балками серии У-01-01/80

Входы, тамбуры запроектированы из сборных железобетонных элементов серии 03.005-6 и частично монолитными.

Камеры фильтров, оголовки воздухозабора, вытяжные оголовки и резервуар запроектированы из монолитного железобетона марки 200 и 300.

Внутренние стены и перегородки монолитные железобетонные и армокирпичные.

Н

Альбом

Полы - бетонные и из керамической плитки.

Гидроизоляция — при размещении сооружения в грунтах естественной влажности — обмазочная для стен — битумно-наиритовой композицией БНК-4 (5 слоев) и оклеечная для покрытия — из листового полизтилена на мастике БКС — I слой.

В водонасыщенных грунтах изоляция принята оклеечного типа из листового полиэтилена ВД 6=2 мм на мастике БКС.

Работы по гидроизоляции выполнять в соответствии с серией 03.005-I.

Стыки панелей заделываются раствором на расширяющемся цементе. Схема герметизации сооружения выполнена в альбоме 3. Работы по герметизации выполнять в соответствии с серией 03.005-3.

Отделочные работы

Швы между стеновыми панелями и плитами покрытия расшиваются. Перегородки и внутренние стены затираются цементным раствором. Ведомость отделки помещений приведена в альбоме 2. Вытяжные и воздухозаборные оголовки окрашиваются с наружной стороны, выше уровня земли, силикатными красками серого цвета.

Надземная часть входов

Надземная часть входов запроектирована в виде павильона. Стены - из профильного стекла по металлическому каркасу. Покрытие металлическое. Кровля - из асбестоцементных листов. Поверхности железобетона наклонных входов выше уровня земли, окрашиваются силикатными красками серого цвета. Металлический каркас витражей покрывается алюминиевой краской.

Организация и производство строительных работ

Строительство сооружения предусмотрено на свободных от застройки участках. Вопрос о строительстве подъездной временной автодороги, временных зданий и складских помещений решается при привязке проекта.

Обеспечение строительства материальными ресурсами

Сборные бетонные и железобетонные изделия, бетонная смесь и растворы доставляются к месту строительства с ближайших заводов железобетонных изделий. Арматура и инвентарная опалубка доставля—

ются к месту строительства в готовом виде. Приготовление бетонной смеси на строительной площадке не предусматривается. Снабжение строительства электроэнергией и водой решается при привязке проекта от ближайших источников.

Транспортные и погрузочно-разгрузочные средства — выбираются при привязке проекта в зависимости от годового объема строительно-монтажных работ. Календарный план строительства разрабатывается при привязке проекта и увязывается со сроком строительства, мощностью строительной организации и наличием у нее механизмов.

Подготовительный период — включает выполнение работ по устройству линий электроснабжения, водопровода, разбивке и закреплению осей здания и водопонижения грунтовых вод для варианта в водонасыщенных грунтах.

Основной период строительства начинается с разработки котлована. Одновременно выполняются работы по прокладке подземных коммуникаций к зданию (водопровод, канализация, теплотрасса, кабели связи, электроснабжение).

Земляные работы.

Разработка грунтов из котлована производится экскаватором с обратной лопатой с ковшом емкостью 0,65 м3. Грунт из котлована вывозится в отвал, а частично отсыпается в резерв на свободной площадке строительства.

Котлован роется с откосами, заложение которых решается при привязке проекта в зависимости от разрабатываемых грунтов. В проекте откосы приняты для песчаных грунтов. Траншеи под ленточные фундаменты и котлованы под отдельно стоящие фундаменты выполняются с вертикальными стенками без крепления.

Обратная засыпка грунтом пазух котлована производится после окончания строительных работ по монтажу и замоноличивание стыков между сборными конструкциями стен и покрытия и обязательного устрой ства гидроизоляции и конструкции пола.

При производстве земляных работ руководствоваться СНиП \mathbb{L} -8-76. Засыпку следует производить равномерно по всему периметру здания. Разность уровня засыпки по периметру у стен не должна превышать \mathbb{I} метр. Засыпку производить слоями высотой 30-40 см с уплотнением.

Монтаж сборных бетонных и железобетонных элементов выполняется автокраном на автомобильном и пневмоколесном ходу, расположенном на бровке или на дне котлована. При монтаже сборных конструкций руководствоваться указаниями СНиП III-I6-80.

Альбом

Бетонные и железобетонные работы

Поверхность сборных железобетонных элементов стеновых панелей и плит покрытия, соприкасающиеся с монолитным бетоном, полжна быть перед бетонированием обязательно очищена и промыта, а оставшаяся на поверхности элементов вода должна быть удалена. Бетонная смесь к месту укладки доставляется в автосамосвалах или в бадьях на бортовых автомовилях. В конструкциях бетонная смесь подается с помошью автокранов. До начала бетонирования должны быть установлены по соответствующим опалубочным чертежам все закладные детали (металлические рамы ворот, дверей, решеток, УЗС и МЗС, сальники, анкера для крепления технологических коммуникаций, деревянные пробки для крепления коробок дверей и т.п.). Уложенная бетонная смесь тшательно уплотняется с помощью вибраторов. Бетонирование необходимо вести непрерывно с полным перекрытием одного слоя другим. В случае необходимости рабочие швы в покрытии располагать в направлении короткой стороны. Бетонные и железобетонные работы выполнять в соответствии со СНиП Ш-15-76.

При строительстве здания в водонасьщенных грунтах заполнение вертикальных швов между стеновыми панелями и заделка их в паз фундаментной плиты должны производиться бетоном на водонепроницаемом безусадочном или расширяющемся, либо на портландцементе с уплотняющими добавками (жидкое стекло, алюминат натрия или сульфатно-спиртовая барда).

Бетонные и железобетонные монолитные конструкции в зимних условиях осуществлять в строгом соответствии со СНиП II-15-76.

3. ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ Отспление

Проект отопления разработан для применения в районах с расчетной зимней температурой для проектирования отопления – 40° C, – 30° C, – 20° C, – 10° C.

Внутренняя температура складских помещений для всех расчетных наружных температур принята равной $+10^{\circ}\text{C}.$

В качестве теплоносителей для системы отопления принята высокотемпературная вода с параметрами 110-70 °C, получаемая в узле управления теплового пункта надземного здания.

В качестве нагревательных приборов приняты гладкие трубы, проложенные по стенам на высоте 300 мм от пола, на вводе в подвал на подающем и обратном трубопроводе установлены вентили.

Система отопления эксплуатируется в мирное время. При заполнении убежища система отопления отключается.

Расходы тепла приведены в таблице основных показателей проекта на листе OB2 (альбом 6).

Вентиляция

Проект вентиляции выполнен для 4 климатических зон 1,2,3 и 4. Предусмотренные проектом вентиляционные системы и устройства обеепечивают работу при трех режимах:

первый режим — чистая вентиляция второй режим — фильтровентиляция третий режим — подпора и регенерации

Первый режим обеспечивает подачу требуемого количества наружного воздуха на одного человека, согласно табл. 34 СНиП П-II-77

Кли: пар	матические зоны, ра аметрам А наружного	ізличаемые по воздуха	количество подаваемого воздужа, м3/ч чел.
Номер зоны	Температура ^о С	Теплосодержание н ҚДЖ/кг(ккал/кг)	
I	до 20	до 44,0 (10,5)	8
2	более 20 до 25	более 44,0 до 52,5 (10,5 до 12,5)	10
3	более 25 до 30	более 52,5 до 58,6 (12,5 до 14)	II
4	более 30	более 58,6 (І4)	13

По второму режиму количество наружного воздуха для всех климатических зон подается в объеме 2 м3/час на одного укрываемого.

В третьем режиме вентиляции наружный воздух для укрываемых не подается, осуществляется подпор наружным воздухом и регенерация внутреннего воздуха.

Очистка наружного воздуха по первому режиму предусматривается по одноступенчатой схеме в сдвоенных противопыльных масляных фильтрах типа ФЯР и вентиляторами системы ПІ подается в помещение укрываемых. Масляные фильтры установлены вне зоны гершетизации и обслуживаются через герметические ставни.

Альбом І

По режиму фильтровентиляции наружный воздух очищается в сдвоенных противопыльных фильтрах типа Φ ПР и в фильтрах—поглотителях типа Φ П—300 от газообразных средств массового поражения. Масляные фильтры установлены вне зоны герметизации, а фильтры—поглотителив фильтровентиляционной камере.

Приток наружного воздуха осуществляется вентилятором системы П2, система П1 для I и 2 климатической зоны, П1,ВI для 3 и 4 климатической зоны работают как рециркуляционные.

В третьем режиме вентиляции наружный воздух для подпора, предварительно нагретый до 60° С в электрокалорифере типа СФО, очищается от окиси углерода в гопкалитовых фильтрах ФГ-70.

Регенерация рециркуляционного воздуха осуществляется в регенеративным установках РУ-I50/6 (из расчета I установка на I50 человек).

Воздух, выходящий из фильтров $\Phi\Gamma$ -70 и регенеративных установках РУ-I50/6, охлаждается в гравийных охладителях, смешивается с рециркуляционным и системами ПІ и П2 подается в помещение укрываемых.

Воздухозабор для режима чистой вентиляции совмещен с аварийным выходом из убежища; воздухозабор для режима фильтровентиляции и подпора осуществляется через вентиляционную шахту. Воздухозаборы чистой вентиляции и фильтровентиляции соединены между собой воздуховодом сечением, рассчитанным из условия работы фильтровентиляции.

На воздухозаборах и вытяжных каналах предусмотрена установка противовзрывных устройств, имеющих расширительные камеры.

Воздухозаборы чистой вентиляции и фильтровентиляции должны быть расположены на расстоянии не ближе 10 м от выбросов вытяжных систем вентиляции убежища, помещения ДЭС и выхлопа от дизеля.

Раздача приточного воздуха в помещении предусматривается регулируемыми решетками типа PP. Воздушные потоки направляются под углом 45° к потолку.

При режиме фильтровентиляции, подпора и регенерации предусмотрена рециркуляция воздужа в объеме, обеспечивающем сохранение в приточной системе количества воздуха, подаваемого при чистой вентиляции.

В 3 и 4 климатической зоне во втором и третьем режимах вентиляции предусматривается охлаждение рециркуляционного воздуха системами ПІ и ВІ. В качестве охлаждающих установок применяются поверхностные воздухоохладители типа КСК. Источником холода для воздухоохладителей служит вода, хранящаяся в заглубленном резервуаре. Температура воды равна средней температуре грунта в пределах внутренней высоты резервуара и не выше 20°С. (Тепловлажностный расчет приведен в разделе ОВ на листе 7, альбом 6).

Вытяжная вентиляция в режиме чистой вентиляции обеспечивается системами ВІ,В2,В3.

В режиме фильтровентиляции для обеспечения эксплуатационного подпора в помещениях для укрываемых 50 Па (5 кгс/м2) количество удаляемого воздуха меньше количества приточного на величину, определяемую по формуле 486 СНиП П-II-77

В мирное время система ВІ во всех климатических зонах используется для удаления дыма при пожаре и для периодического проветривания помещения склада и обеспечивает 4-кратный воздухообмен.

На вытяжном воздуховоде системы ВІ установлен гермоклапан с электроприврдом, автоматически открывающийся с пуском вентилятора системы.

В дизельной установлен дизель-генератор ДГМА25МІ-3 - в I,2 климатической зоне и ДГМА50 МІ-3 в 3,4 климатической зоне, оборудованный высокоэффективной комбинированной системой охлаждения, м выносным узлом охлаждения в изолированном помещении.

Вентиляция машинного зала ДЭС в I режиме вентиляции осуществляется воздухом, поступающим из помещения для укрываемых. Забор воздуха к дизелю на горение предусмотрен из машинного зала.

Вентиляция помещения узла охлаждения осуществляется наружным воздухом и воздухом, поступающим из машинного зала. Воздухообмен помещения узла охлаждения определен из условия ассимиляции тепловыделений от дизель-генератора. Для вентиляции машзала предусмотрена система ВЗ, помещения узла охлаждения — система В4.

Во втором и третьем режиме вентиляции в I и 2 климатической зоне тепловыделения машинного зала поглощаются ограждающими конструкциями, в 3 и 4 климатической зоне для охлаждения воздуха устанавливаются поверхностные воздухоохладители типа КСК. Воздухоохлаждающая установка ДЭС работаер на воде, поступающей от воздухоохлаждающих установок убежища с $t=25^{\circ}\mathrm{C}$.

Вентиляция помещения узла охлаждения во втором режиме вентиляции предусматривается наружным воздухом системой ПЕІ и вытяжной установкой В4.

В третьем режиме вентиляции дизель переводится на водяную систему охлаждения, тепловыделения от узла охлаждения отсутствуют,

системы ПЕІ и В4 не работают.

В мирное время система В4 используется для удаления дыма при пожаре в машинном зале ДЭС.

Вентиляция тамбура между помещением для укрываемых и машзалом ДЭС осуществляется воздухом, поступающим из убежища через клапаны избыточного давления КИД-I50, установленные на внутренней и наружной стенах тамбура.

Для обеспечения отдельных выходов укрываемых из убежища на поверхность и входов обратно при режиме фильтровентиляции предусмотрена вентиляция тамбура аварийного выхода, производимая за счет воздуха, подаваемого системой фильтровентиляции без увеличения ее производительности.

Контрольно-измерительные приборы

Предусмотрены следующие виды местного контроля:

- а) зараженность воздуха отравляющими веществами на приточных системах контролируется войсковым прибором химической разведки ВПХР, укомплектованным дополнительно индикаторными трубками для определения бактериальных средств БС и трубками на окись углерода;
- б) концентрация углекислоты (СО₂) внутри убежища определяется переносным газоанализатором типа ПГА-Ау или ГМ4 со шкалой 0+3%;
- в) измерение относительной влажности воздуха производится психрометром аспирационным механическим типа МВ-4М;
- г) измерение радиоактивного заражения измеряется радиометромрентгенометром.

Для контроля за подпором воздуха в убежище в венткамера установлен жидкостный тягонапоромер типа ШНЖ-Н со шкалой от 0 до 400 Па (40 кгс/см2).

Для контроля за разрежением воздуха в помещении ДЭС установлен жидкостный тягонапоромер типа ТНЖ-Н со шкалой от 250 до 600 Па (60 кгс/м2). Штуцера подпоромеров при помощи резинового шланга присоединяются к газовой трубе диаметром I5 мм, выведенной за линию герметизации.

4. ВОДОСНАЕЖЕНИЕ И КАНАЛИЗАЦИЯ

Проект разработан в соответствии со строительными нормами и правилами 2.04.0I-85, Π -II-77 $\stackrel{*}{\sim}$.

За условную отметку 0.000 принята отметка уровня чистого пола ${\bf I}$ этажа инженерного корпуса, что соответствует абсолютной отметке

Алъбом І

по генплану.

В здании запроектированы следующие сети водопровода и канализации:

- хозяйственно-питьевой противопожарный водопровод BI;
- производственный водопровод ВЗ;
- оборотной воды, подающей B4, обратной B5,
- бытовая канализация KI.
- производственная канализация КЗН,
- пренажная канализация КІЗН.

Хозяйственное-питьевой противопожарный водопровод BI

В мирное время сеть хозяйственно-питьевого противопожарного водопровода предназначена для тушения пожара. Санузлы не работают. Проектируется один ввод водопровода. Расход воды на внутреннее пожаротушение – 2 струи по 2,6 л/с.

Производственный водопровод ВЗ

В мирное время сеть не работает.

Эта сеть предусмотрена для I,2 климатических зон при Ш режиме вентиляции. Предусмотрен бак для воды емкостью 3 м3, из которого вода насосом ICUB-I,5М подается к узлу охлаждения дизель-электрического агрегата. Наполнение бака осуществляется из сети хозяйственно-питьевого противопожарного водопровода в подготовительный период с помощью шланга.

Водопровод оборотной воды В4,В5

В мирное время сеть не работает.

Для охлаждения оборудования в 3,4 климатических зонах при Π , \square режимах вентиляции предусмотрена система оборотного водоснабжения B4,B5.

Рекомендуется привязать отдельно стоящий резервуар емкостью 400 м3 по т.п.СР-П,Ш-400-77/152. Заполнение резервуара осуществляется от наружных сетей водопровода.

При П режиме вентиляции вода подается из резервуара насосом. К20/30-У2 к воздухоохлаждающим установкам ПІ и ВІ, а после них частично сбрасывается в резервуар, а частично идет к воздухоохлаждающей установке дизельной ВЗ.

При Ш режиме вентиляции вода подается из резервуара насосом К2О/3О-У2 к воздухоохлаждающим установкам ПІ и ВІ. После них час-

тично сбрасывается в резервуар, а частично идет к воздухоохлаждающей установке дизельной ВЗ и на охлаждение дизель-электрического агрегата.

Производственная канализация КЗН

В мирное время сеть не работает. В сеть поступают стоки под остаточным напором от дизель-электрического агрегата и воздухо-охлаждающей установки дизельной ВЗ и направляются в наружную сеть канализации.

Бытовая канализация КІ

В мирное время сеть не работает. Проектом предусмотрено самотечное подключение к наружной сети бытовой канализации.

В случае невозможности самотечного подключения к наружным сетям необходимо привязать канализационную насосную станцию по т.п.902-I-53, расположенную вне здания.

Дренажная канализация КІЗН

Для отвода случайных стоков внутри убежища при варианте водонасыщенных грунтов предусмотрена сеть дренажной канализации с установкой насоса ВКС I/I6. Включение насоса местное при уровне воды в приямке на отм. – 4,900 (-4,800), отключение автоматическое при уровне воды – 5,150 (-5,050).

При достижении в приямке уровня -4,800 (-4,700) подается световой сигнал в помещение санпоста.

Для отвода случайных стоков из аварийного выхода в помещении убежища предусмотрен ручной насос ЕКФ-4. При достижении уровня стоков -4,200 в приямке аварийного выхода подается световой сигнал в санпост.

5. ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ

По надежности электроснабжения электроприемники складских помещений относятся к Π категории.

Электроснабжение осуществляется на напряжении 380/220 в от вводного устройства инженерного корпуса. Кабель электроснабжения присоединяется до вводного коммутационного аппарата. В качестве резервного источника питания предусматривается дизельная электростанция мощностью 25 квт для климатических зон 1,2 50 квт — для климатических зон 3,4.

Переключение питания основного ввода на ДЭС осуществляется вручную переключателем, установленным на вводно-распределительном устройстве.

Основными потребителями электроэнергии являются электродвигатели вентсистем, насоса и электроосвещения.

В проекте схемами управления и автоматизации предусматривает-

- Для вытяжных вентсистем, предназначенных для удаления дыма при пожаре и обслуживающих складские помещения и дизельную:
- дистанционное управление из помещения ФВК и у основного входа в убежище;
 - автоматическое от срабатывания дымовых извещателей;
- блокировка соответствующих электроприводом вытяжных систем с приводом гермоклана и заслонки.
 - 2. Для приточного вентилятора:
- блокировка с электронагревателем, обеспечивающая работу электрокалорифера только при включенном вентиляторе (в Ш режиме).
- 3. Для насоса перекачки воды в бак ручное включение и автоматическое отключение.
- 4. Сигнализация верхнего и аварийного уровней воды в дренажных приямках.

В проекте приняты 3 вида электроосвещения: рабочее, аварийное и ремонтное.

Рабочее электроосвещение предусмотрено на напряжение 380/220в. Аварийное электроосвещение предусмотрено переносными аккумулятор ными фонарями.

В момент перевода на режим питания от ДЭС автоматически включается аварийное электроосвещение от стартерных аккумуляторных батарей в помещениях ДЭС и над щитом управления ДВК. Напряжение в сети аварийного электроосвещения 24 в.

Ремонтное электроосвещение предусмотрено на напряжении 36в от ящиков с понижающими трансформаторами типа ЯТП-0,25.

Освещение помещений предусмотрено светильниками с лампами накаливания.

При переходе на режим убежища предусмотрено отключение части светильников, запроектированных для мирного времени.

Питание нагрузок рабочего освещения предусмотрено от осветительного щитка, подключенного отдельным фидером от ВРУ.

Питание указателей "Вход" предусматривается отдельной группой

Альбом І

со щитка. Электропроводки силового оборудования и освещения выпол-) няются кабелями АВВГ, АКВВГ, КВВГ, проложенными открыто по стенам и перекрытиям и проводами АПВ- в трубах, проложенными скрыто. Электропроводки в дизельной выполняются в канале.

Заземлению подлежат корпуса электрооборудования, которые могут оказаться под напряжением в случае пробоя изоляции. В качестве заземляющих проводников используются естественные заземлители, а также нулевые жилы кабелей, специально проложенные провода и внутренний контур заземления ДЭС из стальной полосы 40х4.

Расчет заземления производится при привязке проекта к конкретным условиям с учетом удельного сопротивления грунтов.

Проектом предусмотрены следующие виды сигнализации и связи:

- Телефонизация
- 2. Рапиобикация
- 3. Вызывная сигнализация

Для включения абонентских устройств в сеть телефонизации предусмотрена установка телефонной распределительной коробки, подключаемой кабелем емкостью IOx2 к сети телефонизации инженерного корпуса. Абонентские сети телефонизации предусмотрены проводом ТРП, прокладываемым открыто.

Радиофикация предусмотрена от радиотрансляционных сетей инженерного корпуса. Вызывные кнопки устанавливаются со стороны входов. Приборы световой и звуковой сигнализации устанавливаются в помещении пункта управления. Проводка предусмотрена открыто по стенам кабелем АВВГ.

6. ЭЛЕКТРОСТАНЦИЯ ДИЗЕЛЬНАЯ

В качестве силового дизель-электрического агрегата в настоящем проекте применены агрегат специального назначения ДГМА25МІ-З в для I,2 климатической зоны и агрегат специального назначения ДГМА5СМІ-З для 3,4 климатической зоны, изготовляемые предприятием п/я M-5ЮЗЮ по технической документации СКБ этого предприятия TV 24-06-385-84 и TV 24.06.386-84.

Характеристика дизель-электрических агрегатов

1111 1111	Наименование параметров	Числовое ДГМА25—3	значение ДГМА50МІЗ
I	2	3	4
I	Номинальная мощность на выходных клеммах дизель-электрического агрегата, включая мощность, потребляемую электровентилятором системы охлаждения, квт	25	50
2	Максимальная мощность при нормаль- ньх атмосферных условиях (ГОСТ 10150-75), квт	27	55
	Примечания:		
	I. Суммарная наработка на режиме максимальной мощности не должна превышать 10% от общей наработки дизель-электрического агрегата		
	2. Повторение режимов максимальной мощности не менее через 5 часов		
3	Номинальная частота вращения по генератору, об/мин (_С - ¹)		I500(25)
4	Род тока		перемен.
5	Частота, Гц		50
6	Напряжение,В		400
7	Сила тока, А	45	90
8	Способ соединения дизеля с генератором	не	посредственны
9	Назначенный ресурс непрерывной работы агрегата (до первого тех- нического обслуживания, требующе- го остановки дизеля),ч	IO	0
10	Назначенный ресурс дизель— электрического агрегата до пер- вой переборки (с выемкой дета- лей поршневой группы,)ч	350	00
II	Топливо дизельное для тепловоз- ных и судовых дизелей и газовых турбин	Л-0,2-61ГОО	T305-82

I	2	3	4
12	Удельный эффективный расход топлива, поиведенный к теплоте сгорания 10200 ккал/кгна на номинальной мощности при условиях, указанных в п.І,г/втч.ч	272+13,6	262+13
13	Часоовой расход топлива на номинальной мощности при условиях п.1, кг	6,8	13,3
I 4	Наработка дизель-электрическог агрегата до замены масла,ч	o 500	1000
15	Масло основное дублирующее	M-IOB2 по M-I2By по	o Ty38.IOI-278-72 FOCT 858I-78 Ty38.OOI248-76 no Ty38.IOI548-75
16	Тип эластичной муфты соедине- ния дизеля с генератором	эластичная,	пашечная
17	Габаритные размеры: длина, мм ширина, мм высота, мм	2025 780 1340	2515 800 1515
18		или 6СТК-135МС или 6СТК-180М г	no FOCT959.17-79 no TV16-529.356-75 no TV16-529.356-75 no FOCT959.23-79
	Дизель-электрические агрегаты	укомплектованы	электрораспреде-

Дизель-электрические агрегаты укомплектованы электрораспределительным щитом ДГМА25МІ-3 щитом ЩУП82—4—П ДГМА50 МІ-3 щитом ЩУП9І—4—П.

Система пуска дизель-электрического агрегата

Пуск дизель-электрического агрегата осуществляется электрическим стартером от двух аккумуляторных батарей 6СТК-I35МС. При законсервированном дизель-электрическом агрегате аккумуляторные батареи должны храниться в сухозаряженном виде на складе в соответствии с инструкцией завода-изготовителя батарей. В систему пуска также входят: зарядный генератор типа ГСК-I500.002.0I9ТУ мощностью I00 вт при 27,5 в, пусковая аппаратура. Надежный пуск дизеля обеспечивается при температуре окружающего воздуха, воды и

и масла в дизеле не ниже 8° С. При более низкой температуре пуск должен производиться прсле предварительного прогрева дизеля. Пуску предшествует прокачка его маслом с давлением не ниже I кгс/см2.

Система охлаждения дизель-электрического агрегата

Система охлаждения предназначена для отвода тепла от деталей дизеля, подверженных действию горячих газов. Дизель—электрический агрегат оборудован высокоэффективной комбинированной системой охлаждения дизеля.

В I и П режимах вентиляции для всех климатических зон принята воздушно-радиаторная система охлаждения.

Охлаждение воды замкнутого контура осуществляется в радиаторе, расположенном в отдельном помещении, изолированном от помещения дизель-электрического агрегата. Охлаждение воды в радиаторе осуществляется потоком воздуха, создаваемым вентилятором осевым ОВО6-320 № 6,3, поставляемым в комплекте с дизель-электрическим агрегатом. Тем же потоком воздуха, соответственно в масялном радиаторе, охлаждается нагретое в замкнутой циркуляционной системе смазки масло.

В Ш режиме вентиляции охлаждение дизеля переводится на водяной режим для всех климатических зон. При переходы на работу водяной системы охлаждения отключается радиатор воды и масла, вместо них включается водяной охладитель масла с подпиткой водопроводной воды. Вода в I,2 климатической зоне поступает из бака, расположенного в дизельной, в 3,4 климатической зоне из резервуара после воздухоохлаждающих установок убежища.

Система воздухозабора

Забор воздуха к дизелю (на горение топлива) осуществляется в количестве I75 м3/час для ДГМА25МI-3 и 300 м3/час для ДГМА50МI-3 в I и П режимах вентиляции из помещения машинного зала на воздухо-заборном коллекторе дизеля.

В II режиме вентиляции — наружным воздухом через гравийный фильтр-охладитель и трубопровод, подведенный к патрубку воздухозаборного коллектора дизеля.

Система выхлопа

Система удаления выхлопных газов дизеля состоит из трубопровода выпуска отработанных газов. Трубопровод выхлопных газов в пределах помещения ДЭС теплоизолируется. Во избежание снижения мощности дизеля выпускная магистраль не должна создавать противодавления более 4.9 К Паскалей (500 мм.вод.ст).

Пропуск выхлопного трубопровода через охлаждающие конструкции выполнен в закладных деталях в чертежах марки КЖ, в грунте трубопровод проложен в закладной трубе.

Топливно-масляная система ДЭС

Хранение запаса дизельного топлива на расчетный срок работы дизель-электрического агрегата предусмотрено в баке

$$y = \frac{99 \cdot N_3 \cdot n_2 \cdot m_2}{r_1 \cdot r_2} = \frac{(0,272+13,6) \times 25 \times 48 \times I}{0,875 \times 0,9 \times 1000} \times I, I5=0,5 \text{ M}$$

для ДГМА5ОМІ-3

$$y = \frac{93.N3.12.772}{7...7.1000} = (\frac{0.262+13)x50x48x1}{0.875x0.9x1000} x1,15=0.96 \text{ m3}$$

где:
$$g_{\theta} = 0,272+13,6$$
 - удельный расход топлива, кг/квт.ч

$$N_3 = 25$$
 — эффективная номинальная мощность дизеля, квт — 248 — расчетный срок работы ДЭС, ч — удельный вес топлива, т/мЗ

$$r = 0.875$$
 — удельный вес топлива, $r = 0.875$

К установке принят соответствующий бак У=0,5 м3 и У=I м3. Хранение масла предусмотрено в переносной таре - бидоне У=20 л по ГОСТ 5105-76.

$$y = \frac{\cancel{J} = \cancel{N} = \cancel$$

Остальные значения изложены выше.

Альбом І

Залив топлива в бак осуществляется ручным поршневым насосом БКФ-4 ТУ26-06-693-79 из переносной тары. Из топливного бака топливо самотеком поступает к топливоподкачивающему насосу дизеля. Масло в приемнуб горловину системы смазки дизеля заливается из бидона по мере необходимости.

Техника безопасности

В соответствии с ДНГО № 07-1984 запас топлива для дизельэлектрических агрегатов хранится в расходных баках постоянно.
Температура вспышки паров применяемого топлива +61°С. В связи с
этим и согласно СНиП П-II-77 "Руководству по проектированию строительных конструкций убежищ ГО" помещение машинного зала ДЭС отнесено по вэрывопожарной опасности к категории "В", по ПУЭ помещение нормальное.

Помещение ДЭС оборудовано средствами пожаротушения:

- а) огнетущители углекислотные типа ОУ-8П 2 шт.
- б) огнетушитемл порошковые типа ОП-5 2 шт.
- в) ящик с песком 0,2 м3,
- г) войлок асбестовое полотно размером 2x2 м

Технический персонал, обслуживающий агрегаты ДЭС, обеспечивается средствами индивидуальной защиты от поражающих средств согласно СНиП 3.01.09-84.

Монтаж дизель-электрических агрегатов производить в соответствии с инструкцией завода-изготовителя.

7. МЕХАНИЗАЦИЯ СКЛАДСКОГО ХОЗЯЙСТВА

Технологическая часть типового проекта А-П,Ш, IУ-I200- 361.87 "Склад материалов в подвале инженерного корпуса" разработана ос основании наряд-заказа 66/І в соответствии с планом типового проектирования на I985-86г.г., тема XI.I.2.6.

При разработке были использованы:

- I. Инструкция по типовому проектированию СН 227-82, Москва, Стройиздат, I983г.
- 2. Справочные материалы по методике расчетов потребности в оборудовании и механизмах при составлении проектов механизации погрузочно-разгрузочных, складских и транспортных работ. Москва, Стройиздат, 1967г.
 - 3. Строительные нормы и правила СНиП П-104-76.

Альбом І

- 4. Справочник проектировщика промышленных, жилых и гражданских зданий и сооружений, Москва, 1972г.
- 5. В.А.Фролова, А.Г.Усов. Складское хозяйство и транспортноэкспедиционное дело. Москва, Транспорт, 1981г.
 - 6. Строительные нормы и правила СНиП П-II-77.
 - 7. Строительные нормы и правила СНиП 2.04.09-84.

Исходные данные

Таблица І

пп	Наименование складируемых материалов	Грузовой грузо- оборот, т	Суточный грузообо рот,т	Хранимый запас, т	Габаритные размеры, мм	Вес едини- цы, кг
	Несгораемые материалы в сго- раемой упаковке и твердые сгора- емые материалы		37,6	282,3	800x600x750	до 500

Вид транспортировки - автотранспорт.

Технология и организация погрузочно-разгрузочных работ

Складируемые материалы поступают с автотранспорта в пакетах на ребристо-стоечных поддонах (тара 5-80-60-75-0,5 ГОСТІ486І-74) через грузовой лифт в хранилище.

Хранение поступающих материалов — штабельное, в два яруса. Средства механизации перегрузки пакетов от автотранспорта в хранилище и обратно— лифт грузовой выжимной г/п 3200 кг ГОСТІЗ415—67 и два электропогрузчика ЭП—1201 г/п 1250 кг, которые по мере производственной необходимости привлекаются из основного производства, обслуживаемого настоящим складом. Один из электропогрузчиков лифтом подают в складское помещение для внутрискладской грузопереработки.

Поступившие материалы снимают с автотранспорта электропогрузчиком и укладывают на грузовую платформу лифта, которым груз подабт вниз на отм. — 4.700. Электропогрузчиком, предназначенным для внутрискладской грузопереработки, снимают груз и транспортируют к месту штабелирования. Отгрузка грузов из склада осуществляется в обратной последовательности. Схема склала и размещение материалов приведены на листе 2, А-П,Ш, IУ-I200

Расчет емкости склада

Потребность в складских площадях получена путем расчетов,исходя из технологии грузопереработки в соответствии со СНиП П-192--72 и приведена в таблице 2.

Таблица 2

пп	Каименование склада	Хранимый запас., т	Нагрузка т/м2	Полезная площадь, м2	Коэфф. использ. площади	Общая площадь, м2
I	Склад материа- лов в подвале инженерного корпуса	282,3	I,7	165,4	0,35	468

Расчет потребности в подъемно-транспортном оборудсвании

Расчет необходимого количества подъемно-транспортного оборудования выполнен по наибольшему совпадающему объемы работы каждого вида оборудования и его производительности.

Расчет наибольшего совпадающего объема работ по видам оборудования приведен в таблице 3.

Таблица З

пп	Наименование оборудования	Ед. изм.	Наименование оборудования по видам		
			ЭП-1201 г/п 1,25 т	Лифр г/п 3,2 т	ЭП_1201 г/п 1,25 т
I	2	3	4	5	6
I	Разгрузка авто- транспорта и подача лифт	T/ U	2,35	-	_
2	Подача груза в гале- рею	т/ч	-	2,35	-
3	Оъем груза с лифта и транспортировка к месту штабелиро- вания и укладка в штабель	т/ч	_	-	2,35
4	Оъем груза со шта- беля, транспортировка и загрузка в лифт	T/ U	-	-	2,35

I	2	3	4	5	6	
5	Подача груза наверх	т/ ч	-	2,35	~	
6	Оъем груза с лифта и загрузка в авто- транспорт	T/ 4	2 ,3 5	_	_	
	Итого	т/ч	4,7	4,7	4,7	

Расчет производительности электропогрузчиков произведен согласно "Справочным материалам по методике расчетов потребности в оборудовании и механизмах при составлении проектов механизации погрузочно-разгрузочных, складских и транспортных работ", Москва, Стройиздат, 1967г.

Производительность электропогрузчиков определена по формуле:

 а) производительность электропогрузчика на погрузке-разгрузке автотранспорта;

$$Q = \frac{60 \cdot \text{W} \cdot \text{P. r.o}}{\text{\pm}} = \frac{60 \times 0, 8 \times 1, 25 \times 0, 85}{2.42} = 21,07 \text{ T/y}$$

где: 2 - производительность, т/ч

₩ - грузоподъемность погрузчика, I,26 т

коэффициент использования времени, 0,85

– коэффициент использования грузоподъемности 0,8

 \neq - длительность щикла, мин.

$$\pm = \frac{211}{16} + \frac{2L_1}{16} + 4L_1 + L_0 = \frac{2.1 \text{x} 1.8}{8} + \frac{2 \text{x} 6}{60} + 4 \text{x} 0,25 + 0,8 = 2,42 \text{ мин}$$

где: # - средняя высота подъема груза, I,8 м

Сл - средняя длина пути,6 м

±, - время наклона рамы в транспортное положение, 0,25 мин

 сумма времени на захват груза, освобождения от захвата, 0,8 мин

 средняя скорость передвижения электропогрузчика, 60 м/мин

б) производительность электропогрузчика на внутрискладской шрузопереработке:

$$Q = \frac{60 \cdot W \cdot V \cdot k_0}{\angle} = \frac{60 \times 0.8 \times 1.25 \times 0.85}{2.43} = 20.99 \text{ T/y}$$

где: Q - производительность, т-ч

коэффициент использования грузоподъемности, 0,8

у - коэффициент использования времени, 0,85

— длительность шикла. мин.

где: // - средняя высота подъема груза, I,0 м

С - средняя длина пути, 4,0 м

скорость подъема груза, 8 м/мин

∠, - время наклона рамы, 0,25 мин

 - сумма времени на захват груза, освобождение от захвата 0,8 мин

- средняя скорость передвижения электропогрузчика, 200 м/мин

в) производительность лифта:

$$Q = \frac{3.6 \cdot W \cdot 4}{2 \frac{H}{V \cdot D.25}}, T/4$$

где: *Q* - производительность лифта, т/ч

грузоподъемность лифта, 3,2 т

коэффициент использования грузоподъемности 0,8

— высота подъема лифта, 4,7 м

- время на дополнительные операции, сек.

– скорость лифта, 0,5 м/с

0,25- ускорение движения лифта

$$g = \frac{3.6 \times 3200 \times 0.8}{2 \times 0.5 \times 0.25} = 74.8 \text{ T/y}$$

Необходимое количество подъемно-транспортного оборудования приведено в таблице 4.

Таблица 4

№	Наименование	Ед.	Наименование оборудования
ПП	показателей	изм.	по видам
			ЭП-I20I на разгруз-ЭП-I20I на ке автотранспорта внутрисклад- ских работах

I Наибольший совпадающий объем работы т/ч 4,7 4,7

Продолжение таблицы 4

Ī	2	3	4	5
2	Производительность оборудования	т/ч	21,07	20,99
3	Количество единиц: - рабочих - резервных	ш т	0,23	0,23
	Принятое количество оборудования	шт	1,0	I , 0

Режим работы склада и штат обслуживающего персонала

Режим работы склада -односменный, продолжительность смены 8 часов, число рабочих дней в году - 252. Количество обслуживающего персонала расчитано, исходя из заданного грузооборота, и в соответствии с принятой технологической схемой работы, путем расстановки по рабочим местам.

Результаты расчетов приведены в таблице 5.

Таблица 5

M9K IIII	Наименование, профессий должностей	Численность персонала чел.		, Приме- чание
		в смену	в сутки	
I	Зав. складом-лифтер	I	I	
2	Водитель эл.погрузчика	2	2	
	Итого:	3	3	

Ведомость установленных электродвигателей

Таблица 6

пп		Показатели обору тип двига- теля	пования	Ч исло	Кол-во оборуд. шт.	Общая установ. мощн. квт
I	Лифт грузовой вы- жимной, г/п 3,2 т ГОСТІЗАІ5-67	AC-IOI- -6/24ШЛ	25	I	I	25

8. УСТАНОВКА АВТОМАТИЧЕСКОГО ВОДЯНОГО ПОЖАРОТУШЕНИЯ Общая часть

Установки автоматического пожаротушения и пожарной сигнализации склада материалов в подвале инженерного корпуса разработаны в соответствии с действующими нормативно-техническими документами:

- I) CHиП П-II-77 "Защитные сооружения гражданской обороны"
- 2) СНиП 2.04.09-84 "Пожарная автоматика здания и сооружений",
- 3) "Рекомендациями по проектированию и применению автоматических установок порошкового пожаротушения модульного типа" ВНИИПО МВД СССР, 1983;
 - 4) "Правилами устройства электроустановок", -ПУЭ

Условные обозначения приняты в соответствии с ОСТ 25329-8I "Установки пожаротушения автоматические и установки пожарной, охранной т пожарно-охранной сигнализации, обозначения условные графические элементов установки".

ПРИНЯТЫЕ ПРОЕКТНЫЕ РЕШЕНИЯ

В складском помещении предусматривается автоматическая спринклерная установка пожаротушения, предназначенная для обнаружения, тушения пожара и подачи сигнала пожарной тревоги, как наиболее экомичная и эффективная при защите от пожара несгоранмых материалов в сгораемой упаковке и твердых сгораемых материалов. Интенсивность орошения принята 0,32 л/с м2.

Спринклерная установка включает в себя:

- водосигнальный клапан (ВС), установленный в помещении узла управления на отм. - 4,700 в осях 7-6 по ряду Г. Слив воды из узла управления осуществляется с помощью гибких рукавов в ближайший трап канализации склада;
- 2) сеть подводящих, питательных и распределительных трубопроводов с установленными на них спринклерными оросителями $\text{СП}30\text{--}15(72^{\circ})$ по ГОСТ 14630--80;
- 3) водопитатель спринкдерной установки противопожарный водопровод промышленного предприятия, обеспечивающий напор не менее 0,5 МПа (5 кгс/см2) и расход 57,6 л/с (уточняется при привязке проекта) на вводе в узле управления трубопровода Ду I50 на отм. 2.830:
- 4) технические средства для сигнализации и управления установкой пожаротушения.

Разводка трубопроводов выполнена открыто по потолкам перекрытия.

Основные сведения по спринклерным установкам приведены на листе "Общие данные" в таблице "Основные показатели автоматической установки водяного пожаротушения". Крепления трубопроводов установки предусмотрено на подвесках к закладным деталям в железобетонных плитах перекрытия и колоннах.

Для защить помещения машинного зала дизельной предусматривается установка порошкового объемного пожаротушения модульная с автономным источником рабочего газа, предназначенная для тушения пожара, подачи сигнала пожарной тревоги и включает в себя:

- огнетущители порошковые автоматические ОПА-IOO с тросовой системой пуска;
 - 2) рабочий газ двускись углерода жидкая ГОСТ 8050-76;
 - 3) насапки распылительные типа БК-9.10.00.00;
 - 4) огнетушащий порошок ПФ ТУ 6-18-155-79.
- В случае неполучения порошка ПФ можно приобрести порошок ПСБ-3 ТУ6-I8-I39-78 в количестве I96 кг или Пирант-А ТУ6-08-530-85 в количестве I40 кг;
- 5) побудительную сеть с установленными на ней извещателямилегкоплавкими замками - 2-3T;
- технические средства для сигнализации и управления установкой пожаротушения.
 - В установкепорошкового пожаротушения принято:
 - 1) концентрация подачи порошка по объему 0,5 кг/м3;
 - 2) расчетное время тушения 20 сек;
- 3) виды пуска: автоматический и ручной основного запаса отнетушащего порошка.

ПРИНЦИП РАБОТЫ УСТАНОВОК

В режиме контроля, до пожара трубопроводы установки пожаротушения заполнены водой и находятся под давлением, создаваемым противопожарным водопроводом 0,5 МПа (5 кгс/см2э.

При возникновении пожара в защищаемом помещении вскрывается один или несколько спринклерных оросителей, давление в трубопроводах над клапаном падает, открывается контрольно— сигнальный клапан и вода через вскрышиеся оросители поступает на очаг пожара.

Одновременно вода через открытый клапан поступает к сигнализаторам давления (СДУ), при срабатывании которых формируются импульсы на отключение вентиляции, включение пожарных насосов, а Альбом

также сигнала о пожаре на станцию пожарной сигнализации.

Принцип действия огнетушителя основан на псевдоожижении слоя порошка при поступлении рабочего газа в полость корпуса с последующим выбросом огнетушащего порошка через распылители распределительной сети в виде газопорошковых струй в защищаемый объем (помещение).

Автоматический пуск.

Автоматическая система пуска огнетушителя срабатывает при повышении температуры до 72°. При возникновении пожара происходит расплавление или выжигание из вставок замков цепи тросовой системы, натянутой грузом. Груз при падении в направляющей трубе ударом вскрывает запорно-пусковое устройство баллона с рабочим газом, откуда рабочий газ поступает в придонную полость корпуса огнетушителя При повышении давления в корпусе огнетушителя до 0,8 МПа срабатывает клапан пневматический, после чего порошок из корпуса поступает по распредедительному трубопроводу к распылителям и далее в защищаемое помещение.

При прохождении огнетушащего порошка давление в распределительном трубопроводе повышается и срабатывает СДУ. При этом формируются импульсы на отключение вентиляции и сигнала по пожаре на станцию пожарной сигнализации.

Дистанционный (ручной) пуск

Дистанционный пуск осуществляется при визуальном обнаружении воспламенения, убедившись в отсутствии людей в помещении, где возник пожар.

Огнетушитель оборудован устройством дистанционного ручного пуска, которое включает в себя: рычаг, трос, ролик и ручку пуска, зафиксированную чекой. Для приведения огнетушителя в действие необходимо выдернуть чеку и опустить ручку в нижнее положение. При этом трос поднимает нижнюю тягу рычага в верхнее положение, что приводит к сбросу груза. Далее огнетушитель работает как при автоматическом пуске.

пожарная сигнализация

В соответствии с требованиями СНиП П-II-77 в помещениях склада и дизельной кроме установки пожаротушения дополнительно предусматривается пожарная сигнализация с установкой дымовых пожарных извещателей типа ИДФ-IM с ППКУ-IM для включения систем дымоудаления. Приемо-контрольные устройства ППКУ-IM установлены в помещении узла управления. Альбом

Вся пожарная сигнализация в складе и в дизельной как от сигнализаторов давления СДУ, так и от дымовых извещателей ИДФ-ІМ выдается на пульт пожарной сигнализации ППС-І. Место установки пульта опредедяется при привязке проекта.

Для отличия пожарных сигналов от сигналов о неипсравности в инженерном корпусе установлено устройство сигнальное УС. На лампе УС выполнить надпись "Звонок отключен".

УСЛОВИЯ ПРИВЯЗКИ ПРОЕКТА

Нормальная работа спринклерной установки обеспечивается при следующих условиях водоснабжения: давление в противопожарном водопроводе условно принято 0,5 МПа (5 кгс/см2), расход должен обеспечиваться не менее 57,6 л/с.

При изменении указанного давления на вводе необходимо произвести гидравлический расчет трубопроводов, учитывая что минимально допустимый напор у самого удаленного и высокорасположенного спринклера типа СР30—15(72) — 16,57 м.

Выполнить подвод электропитания по I категории напряжением 220В переменного тока по двум кабельным линиям к шкафу управления в узле управления.

Выполнить прокладку контрольных кабелей от соединительной коробки СКІ в уэле управления к пульту пожарной сигнализации ППС-I и соединительной коробке СКЗ в помещение сигнализационной, определяемой при привязке типового проекта.

Выполнить подвод электропитания по I категории напряжением 220В переменного тока по двум кабельным линиям к автоматам AI,A2, устанавливаемым в помещении сигнализационной, определяемом при привязке типового проекта.

Альбом І

9. ОСНОВНЫЕ ДАННЫЕ И ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

Технико-экономические показатели определены для П класса защить сооружений, для 2 климатической зоны, для сухих и водонасыщенных грунтов и приведены в нижеследующих таблицах.

Стоимость строительных работ по сметам определена для І-го территориального района в ценах 1984 года.

Склад материалов в подвале инженерного корпуса убежище на I200 человек

1111 16)%	Наименование показателей	Ед. изм.	Показатели для сухих грунтов
I I	2	3	4
I	Вместимость	I укр.	1200
2	Общая площадь здания	м2	953,8
3	Площадь основных помещений	м2	474,7
4	То же, на I-го укрываемого	m	0,396
			0,5
5	Площадь вспомогательных помещений	n	278,2
	То же, на I укрываемого	n	0,232
	Строительный объем	мЗ	4687,7
6	Объем зоны герметизации	***	2268,0
7	Сметная стоимость строи- тельства - всего	тыс. руб.	<u>341,8</u> 350,0
	в т.ч. строительно-монтаж- ных работ	-"-	255,6 319,5
8	Сметная стоимость строи- тельства на I укрываемого (от СМР)	руб	213,0
	на I м3 строительного объема	11	<u>54,53</u> 73,9
	на I м2 общей площади здания	11	<u>267,9</u> 8 305,0
9	Трудозатраты на строитель- ство - всего	ч.дн	<u>5740</u> 5900 , 0
	на І-го укрываемого	11	4 <u>,78</u> 4,9

I	2	3	4	
IO	Расход основных строитель- ных материалов в натуральной массе - всего			
	металла	T	145,9	
	цемента	T	<u>551,6</u> 580,5	
II	Удельный расход основных строительных материалов на I укрываемого			
	металла	T	0,165 0,21	
	цемента	T	0,460 0,480	
12	Расход бетона и железо- бетона	мЗ	<u>1612,4</u> [694,8	
13	Расход железобетона	*	1322,0 1500,0	
I 4	Расход сборного железобетона	мЗ	<u>343,0</u> 370,0	
15	Коэффициент сборности		0,259	
		Показа донасы тов	Показатели для во- донасыщенных грун- тов	
I	Вместимость	I укр	1200	
2	Общая площадь здания	м2	958,9	
3	Площадь основных помещений	м2	474,7	
	То же, на I укрываемого	м2	0 <u>,396</u> 0,5	
4	Площадь вспомогательных помешений	м2	278,2	
	То же, на I укрываемого	м2	0,232	
5	Строительный объем	мЗ	4707,8	
6	Объем зоны герметизации	км	2268,0	
7	Сметная стоимость строительства -		<u>394,5</u>	
	- BCEFO	тыс. руб.	423,I	
	в т.ч.строительно-монтажных работ	11	308,9 320,0	
8	Сметная стоимость строительства на I укрываемого (от СМР)	руб	257,42	

I	2	3	4
	на I м3 строительного объема	руб	65,6I 92,5
	на I м2 общей площади здания	Ħ	321,8 386,5
9	Трудозатраты на строительство- - всего	ч.дн	7566,0 7700,0
	на I укрываемого	**	6,3I 6,42
IO	Расход основных строительных материалов в натуральной массе- всего		
	металла	T	160,I 243,4
	цемента	T	729,7 760,0
II	Удельный расход основных строительных материалов на I укрываемого		
	металла	т	0,189 0,270
	цемента	T	0,604 0,630
12	Расход бетона и железобетона	Км	2043,2 2417,0
13	Расход железобетона	мЗ	1706,8 1850,0
14	Расход сборного железобетона	мЗ	336,4
I 5	Коэффициент сборности		0,202

Примечание: В знаменателе указяны значения утвержденных базисных технико-экономических показателей.