КОМБИКОРМА, ЗЕРНО, ПРОДУКТЫ ЕГО ПЕРЕРАБОТКИ

Метод определения содержания дезоксиниваленола (вомитоксина)

КАМБІКАРМЫ, ЗЕРНЕ, ПРАДУКТЫ ЯГО ПЕРАПРАЦОЎКІ

Метад вызначэння змяшчэння дэзаксініваленолу (вамітаксіну)

(FOCT P 51116-97, IDT)

Издание официальное

УДК 636.086.001.4: 006.354

MKC 65 120 19

(KFC C19)

IDT

Ключевые слова: зерно, продукты переработки зерна, комбикорма, метод, дезоксиниваленол (вомитоксин), хроматография жидкостная высокоэффективная, экстракция, очистка, раствор градуировочный

ОКП 92 99600 ОКП РБ 15.71.10

Предисловие

- 1 ПОДГОТОВЛЕН научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации (БелГИСС)» ВНЕСЕН Управлением стандартизации Госстандарта Республики Беларусь
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 27 декабря 2002 г. № 56
- 3 Настоящий стандарт идентичен государственному стандарту Российской Федерации ГОСТ Р 51116-97 «Комбикорма, зерно, продукты его переработки. Метод определения содержания дезоксиниваленола (вомитоксина)»

Государственный стандарт Российской Федерации разработан Техническим комитетом по стандартизации ТК 4 «Комбикорма, БВД, премиксы», АООТ «Всероссийский научно-исследовательский институт комбикормовой промышленности» (АООТ «ВНИИКП»)

Степень соответствия - идентичная (IDT)

4 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть тиражирован и распространен без разрешения Госстандарта Республики Беларусь

СТБ ГОСТ Р 51116-2002

Содержание

1 Область применения	
2 Нормативные ссылки	
3 Аппаратура, материалы и реактивы	٠
4 Подготовка к испытанию	
5 Проведение испытания	4
6 Обработка результатов	
7 Контроль точности анализов	
Приложение А Библиография	

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

КОМБИКОРМА, ЗЕРНО, ПРОДУКТЫ ЕГО ПЕРЕРАБОТКИ Метод определения содержания дезоксиниваленола (вомитоксина)

КАМБІКАРМЫ, ЗЕРНЕ, ПРАДУКТЫ ЯГО ПЕРАПРАЦОЎКІ Метад вызначэння змяшчэння дэзаксініваленолу (вамітаксіну)

COMPOUND FEEDS, GRAIN AND GRAIN BY-PRODUCTS
Method for determination of desoxinivalenol (vomitoxin) content

Дата введения 2003-01-01

1 Область применения

Настоящий стандарт распространяется на зерно (пшеницу, кукурузу, ячмень, овес), продукты его переработки (муку, крупу, отруби и др.), комбикорма и устанавливает метод определения содержания дезоксиниваленола (вомитоксина) с использованием жидкостного хроматографа «Милихром».

Сущность метода заключается в экстракции дезоксиниваленола (вомитоксина) из испытуемой пробы смесью ацетонитрила с водой, очистке экстракта на двух последовательных колонках с активированным углем и количественном определении дезоксиниваленола (вомитоксина) с помощью жидкостного хроматографа «Милихром» со спектрофотометрическим детектором на ультрафиолетовую область (далее — с УФ-детектором) в двухволновом режиме.

Пределы определения в пробе -0.2 - 4.0 мг/кг, в растворе -1 - 20 нг/мкдм³.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770-74 (ИСО 1042-83, ИСО 4788-80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 5556-81 Вата медицинская гигроскопическая. Технические условия

ГОСТ 6995-77 Реактивы. Метанол-яд. Технические условия

ГОСТ 13496.0-80 Комбикорма, сырье. Методы отбора проб

ГОСТ 13586.3-83 Зерно. Правила приемки и методы отбора проб

ГОСТ 24104-2001 Весы лабораторные. Общие технические требования

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 26312.1-84 Крупа. Правила приемки и методы отбора проб

ГОСТ 27668-88 Мука и отруби. Приемка и методы отбора проб

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

3 Аппаратура, материалы и реактивы

Весы лабораторные общего назначения 3-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104.

Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвешивания 20 г по ГОСТ 24104.

Мельница лабораторная электрическая типа ЭМ-3A, обеспечивающая измельчение пробы до прохода без остатка через сито с отверстиями диаметром 1 мм.

Аппарат для встряхивания проб типа АВУ-6С, обеспечивающий частоту встряхивания 200 колебаний в минуту.

СТБ ГОСТ Р 51116-2002

Хроматограф жидкостный «Милихром» с УФ-детектором со спектральным диапазоном 190 – 360 нм, обеспечивающий одновременное измерение на не менее двух длинах волн, уровень шумов не более 10^{-4} единиц оптической плотности (е. о. п.).

Спектрофотометр типа СФ-26, СФ-46 со спектральным диапазоном 186 – 1100 нм, основная погрешность измерений коэффициента пропускания не более 1 %, градуировки длин волн в УФ области – не более 0.1 нм.

Колонка аналитическая хроматографическая для высокоэффективной жидкостной хроматографии (ВЭЖХ) размером 80×2 мм, заполненная сорбентом диабонд С 16 с эффективностью не ниже 5000 теоретических тарелок (далее – т. т.).

Колонки хроматографические для жидкостной хроматографии (ЖХ) размером 100 \times 5 мм с оттянутым концом и шарообразной верхней частью вместимостью 25 см³.

Баллон с азотом.

Сито с отверстиями диаметром 1 мм.

Испаритель ротационный марки ИР-2М или насос водоструйный.

Колбы мерные 1 (2)-25 (50, 100) - 2 по ГОСТ 1770.

Цилиндры мерные 1 (3)-25 (100, 250) по ГОСТ 1770.

Колбы 0-25 (50)-14/23 ТС по ГОСТ 25336.

Пробирки типа П1 по ГОСТ 25336.

Пипетки 1-1-2-0,5 (1, 2, 5, 10) по ГОСТ 29227.

Колбы плоскодонные конические с притертыми стеклянными или полиэтиленовыми пробками вместимостью 500 см^3 .

Склянки из темного стекла с притертыми пробками.

Уголь активированный марки ФАС размером частиц от 0,08 до 0,10 мм по [1].

Фильтры бумажные обеззоленные марки ФОМ по [2].

Вата медицинская гигроскопическая по ГОСТ 5556.

Метанол - яд по ГОСТ 6995.

Ацетонитрил для хроматографии с содержанием основного вещества не менее 99,5 % (оптическая плотность ацетонитрила при длине волны 210 нм относительно воды должна быть не более 0,3 е. о. п.)

Дезоксиниваленол (вомитоксин) кристаллический массовой долей основного вещества не менее 90 %.

Вода бидистиллированная электрическим сопротивлением не менее 12 МОм.

Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками, а также материалов и реактивов по качеству не ниже вышеуказанных.

4 Подготовка к испытанию

4.1 Отбор проб – по ГОСТ 13496.0. ГОСТ 13586.3. ГОСТ 26312.1. ГОСТ 27668.

Масса средней пробы исследуемого продукта должна быть не менее 2 кг.

4.2 Подготовка пробы к испытанию

Из средней пробы исследуемого продукта методом квартования выделяют часть пробы массой не менее 100 г и измельчают на лабораторной мельнице до такого состояния, чтобы она проходила без остатка через сито с отверстиями диаметром 1 мм. Выделенную часть размолотой пробы тщательно перемешивают.

Выделенную часть пробы муки используют для анализа без предварительного размалывания.

4.3 Приготовление элюирующих растворов

Приготавливают смеси ацетонитрила и воды в объемных соотношениях: 0,05:1; 0,125:1; 0,5:1; 1:1.

4.4 Приготовление исходного раствора дезоксиниваленола (вомитоксина)

Навеску кристаллического дезоксиниваленола (вомитоксина) массой (10 ± 0,01) мг помещают в мерную колбу вместимостью 100 см³, растворяют в бидистиллированной воде и доводят объем раствора бидистиллированной водой до метки.

Для определения массовой концентрации дезоксиниваленола (вомитоксина) в исходном растворе 3 см³ исходного раствора переносят в пробирку. Растворитель испаряют в токе азота или при вакууме с помощью водоструйного насоса при нагревании не выше 60 °C досуха. К остатку добавляют 3 см³ метилового спирта и измеряют оптическую плотность полученного раствора на спектрофотометре при длине волны 218 нм в кюветах толщиной просвечиваемого слоя 10 мм относительно метилового спирта.

Массовую концентрацию дезоксиниваленола (вомитоксина) в исходном растворе $c_{\text{и}}$, нг/мкдм³, вычисляют по формуле

$$c_{\rm M} = \frac{D \cdot 296 \cdot 10^9}{4500 \cdot 10^6} \,, \tag{1}$$

D – оптическая плотность исходного раствора дезоксиниваленола (вомитоксина), е. о. п.:

296 – молекулярная масса дезоксиниваленола (вомитоксина), г;

4500 – коэффициент молярной экстинкции дезоксиниваленола (вомитоксина), дм³/моль · см;

10⁹ – коэффициент пересчета г в нг; 10⁶ – коэффициент пересчета дм³ в мкдм³.

4.5 Приготовление градуировочных растворов дезоксиниваленола (вомитоксина)

В мерные колбы вместимостью 100 см³ переносят исходный раствор дезоксиниваленола (вомитоксина) в объемах, указанных в таблице 1. Объем жидкости в колбах доводят до метки дистиллированной водой.

Градуировочные растворы хранят в стеклянной посуде с притертой пробкой в темном месте при температуре около 0 °C не более года.

Таблица 1

Номер колбы	Объем исходного раствора дезоксиниваленола (вомитоксина), см ³	Массовая концентрация дезоксиниваленола (вомитоксина) в градуировочном растворе, $c_i(i=1,2,3)$, нг/мкдм 3 Масса дезоксиниваленола (вом сина), вводимая в хроматогр с градуировочным растворо $m_i(i=1,2,3)$, нг	
1	5	$c_{_1} = \frac{c_{_{N}} \cdot 5}{100}$	4 c ₁
2	10	$c_2 = \frac{c_{\scriptscriptstyle \rm M} \cdot 10}{100}$	4 c ₂
3	25	$c_{_3} = \frac{c_{_{\rm N}} \cdot 25}{100}$	4 c ₃

4.6 Подготовка колонок для ЖХ для очистки экстракта

На дно двух хроматографических колонок ЖХ помещают промытые ацетонитрилом ватные тампоны. В одну колонку вносят (0.2 ± 0.05) г (далее – колонка 1), в другую – (0.1 ± 0.05) г (далее – колонка 2) активированного угля. Уплотняют при осторожном постукивании до высоты слоя, не изменяющейся при дальнейшем постукивании.

4.7 Кондиционирование ВЭЖХ колонки

Перед первыми анализами колонку кондиционируют, проводя 3 – 4 холостых опыта, т. е. проводят градиентное элюирование по 5.3 без введения в колонку пробы.

4.8 Градуировка прибора

Для градуировки прибора в колонку ВЭЖХ вводят по 4 мкдм³ градуировочных растворов и проводят хроматографирование по 5.3. Каждый градуировочный раствор вводят 3 раза. Для каждого пика определяют время удерживания t_i , мин, измеряют высоту пика h_i , мм или е. о. п.

CTF FOCT P 51116-2002

По полученным результатам устанавливают время удерживания дезоксиниваленола (вомитоксина) и погрешность времени удерживания. Среднее время удерживания \bar{t} , мин, вычисляют по формуле

$$\bar{t} = \frac{\sum_{i=1}^{n} t_i}{n}, \tag{2}$$

где t_i – время удерживания для i-го градуировочного раствора, мин;

n – количество введенных в хроматограф градуировочных растворов, n = 9.

Среднее квадратическое отклонение значения времени удерживания S, мин, вычисляют по формуле

$$S = \sqrt{\sum_{j=1}^{n} (t_{j} - \bar{t})^{2} / n - 1} .$$
 (3)

Границы абсолютной погрешности значения времени удерживания, $\pm \, I_t$, мин, вычисляют по формуле $I_t = S \cdot t$. (4)

где t – критерий Стьюдента для числа степеней свободы f = n – 1 (P = 0,95). Записывают интервал, в котором могут находиться с вероятностью P = 0,95 значения времени удерживания дезоксиниваленола (вомитоксина) от (\bar{t} – D) до (\bar{t} + D).

По результатам хроматографирования градуировочных растворов определяют значение градуировочного коэффициента. Для этого сначала вычисляют для каждого градуировочного раствора значение градуировочного коэффициента K_h нг/мм или нг/е. о. п., по формуле

$$K_i = \frac{m_i}{h_i} \,, \tag{5}$$

где m_i – масса дезоксиниваленола (вомитоксина), введенная в хроматограф с i-м градуировочным раствором, нг (по данным таблицы 1);

 h_i – высота пика *i*-го градуировочного раствора, мм или е. о. п.

Среднее арифметическое значение градуировочного коэффициента \overline{K} , нг/мм или нг/е. о. п., вычисляют по формуле

$$\overline{K} = \frac{\sum_{i=1}^{n} K_{i}}{n}, \tag{6}$$

где n – количество градуировочных растворов, введенных в хроматограф, n = 9.

Значение градуировочного коэффициента контролируют не реже одного раза в месяц. Для этого вводят в хроматограф один из градуировочных растворов и вычисляют для него градуировочный коэффициент K_i . Если при этом $|K_i - \overline{K}| \le 0,1$ \overline{K} , прибор не подлежит переградуировке. В противном случае прибор должен быть отградуирован заново согласно 4.8.

5 Проведение испытания

5.1 Экстракция дезоксиниваленола (вомитоксина) из исследуемого продукта

Навеску исследуемого продукта массой (25 ± 0.05) г помещают в колбу с притертой пробкой вместимостью 500 см³, приливают 20 см³ бидистиллированной воды и затем 105 см³ ацетонитрила. Колбу закрывают пробкой и встряхивают на аппарате для встряхивания проб в течение 30 мин. После этого содержимое колбы фильтруют через бумажный складчатый фильтр в колбу с притертой пробкой.

5.2 Очистка экстракта

5 см³ фильтрата (5.1) переносят в колонку 1 ЖХ (4.6) и элюируют в остродонную колбу вместимостью 50 см³ со скоростью не более 0,5 см³/мин. С целью ускорения элюирование можно проводить с помощью вакуума водоструйного насоса. Не допуская осушения сорбента, через колонку пропус-кают 15 см³ ацетонитрила, собирая элюат в ту же остродонную колбу.

По окончании элюирования из колбы с помощью ротационного вакуумного испарителя при температуре не более 60 °C полностью отгоняют растворитель. К сухому остатку добавляют 1 см³ бидистиллированной воды. Колбу закрывают пробкой и ее стенки осторожно споласкивают находящейся в ней жидкостью. Содержимое колбы с помощью пипетки переносят в колонку 2 (4.6). Стенки

колбы повторно обмывают 1 см³ бидистиллированной воды, которую также переносят в колонку 2. Колонку 2 промывают 2 см³ бидистиллированной воды и элюат отбрасывают.

Из колонки 2 дезоксиниваленол элюируют 7,5 см³ ацетонитрила в остродонную колбу вместимостью 25 см³. Собранный элюат упаривают досуха с помощью ротационного вакуумного испарителя. Остаток растворяют в 0,2 см³ метилового спирта. Полученный раствор используют для хроматографического анализа (далее – испытуемый раствор).

5.3 Выполнение измерений

5.3.1 Условия проведения измерений

Измерения проводят в следующих условиях:

- а) разделение компонентов проводят на колонке размером 80 × 2 мм;
- б) сорбент диабонд С 16 с эффективностью не менее 5000 т. т.;
- в) рабочие длины волн УФ-детектора 230 и 276 нм (230 нм опорная длина волны, 276 нм длина волны для контроля чистоты экстракта);
 - г) скорость элюирования 100 мкдм³/мин.
- Элюирование проводят в градиентном режиме. Для этого в шприце насоса готовят элюент с перформированным градиентом. Насос устанавливают в перевернутое положение и набирают последовательно:

```
600 мкдм<sup>3</sup> воды;
```

```
500 мкдм<sup>3</sup> раствора ацетонитрил-вода (0,05 : 1);
```

600 мкдм³ раствора ацетонитрил-вода (0,125 : 1);

100 мкдм³ раствора ацетонитрил-вода (0,5 : 1);

100 мкдм³ раствора ацетонитрил-вода (1 : 1); 700 мкдм³ ацетонитрила;

д) объем анализируемого раствора – 4 мкдм³;

е) чувствительность – 0.1 е. о. п. при 100 милливольтах шкалы самописца.

На приборе устанавливают следующие параметры:

количество образцов - 3;

объем ступеней, мкдм 3 : 1 – 600, 2 – 500, 3 – 600, 4 – 100, 5 – 100, 6 – 700:

объем регенерации, мкдм 3 – 200, буфера – 15, пробы – 4, буфера – 10;

расход элюента – 100 мкдм³/мин; скорость набора – 800 мкдм³/мин.

5.3.2 Проведение измерений испытуемого раствора

Допускается проведение анализа методом внешнего стандарта.

Если прибор предварительно отградуирован по 4.8, в колонку хроматографа вводят три раза по 4 мкдм³ испытуемого раствора, полученного по 5.2. По показаниям прибора при двух длинах волны – 230 и 276 нм оценивают чистоту испытуемого раствора согласно инструкции к прибору. Идентификацию пика дезоксиниваленола (вомитоксина) проводят по времени удерживания t, которое должно находиться в интервале, установленном при градуировке: $(\bar{t} - \mathbf{L}) \le t \le (\bar{t} + \mathbf{L})$. Измеряют высоту пиков дезоксиниваленола (вомитоксина).

Если прибор предварительно не градуировали, в колонку хроматографа вводят три раза по 4 мкдм³ испытуемого раствора и градуировочных растворов. Измеряют высоту пиков дезоксиниваленола (вомитоксина) испытуемого раствора и того градуировочного раствора, высота пиков которого наименее отличается от высоты пиков испытуемого раствора.

6 Обработка результатов

6.1 В том случае, когда одновременно с испытуемыми растворами хроматографируют и градуировочные растворы, массовую долю дезоксиниваленола (вомитоксина) Х, нг/г, в испытуемой пробе вычисляют по формуле

$$X = \frac{m_i \cdot h_{\text{obp.}} \cdot 0,2 \cdot 125 \cdot 1000}{h_i \cdot 4 \cdot 25 \cdot 5 \cdot 87},$$
(7)

где *т*_і масса дезоксиниваленола (вомитоксина), введенная в хроматограф с i-м градуировочным раствором, высота пика которого наименее отличается от высоты пика испытуемого раствора, нг (определяется по данным таблицы 1);

CTF FOCT P 51116-2002

 $h_{\text{обр.}}$ – среднее арифметическое значение трех измерений высоты пиков испытуемого раствора, мм или е. о. п.;

 h_i – среднее арифметическое значение трех измерений высоты пиков *i*-го градуировочного раствора, мм или е. о. п.;

0,2 – объем испытуемого раствора дезоксиниваленола (вомитоксина) из образца, см³;

4 – объем испытуемого раствора, введенный в хроматограф, мкдм³;

125 – объем экстракта испытуемой пробы, см³;

5 – объем экстракта испытуемой пробы, взятый для очистки, см³;

25 - масса навески испытуемой пробы, г;

87 - степень извлечения дезоксиниваленола (вомитоксина) из пробы, %;

1000 - коэффициент пересчета см³ в мкдм³.

6.2 Массовую долю дезоксиниваленола (вомитоксина) X, нг/г, в испытуемой пробе с использованием градуировочного коэффициента вычисляют по формуле

$$X = \frac{K \cdot h_{\text{obp.}} \cdot 0.2 \cdot 125 \cdot 1000}{4 \cdot 25 \cdot 5 \cdot 87},$$
(8)

где К - градуировочный коэффициент, нг/мм или нг/е. о. п.

6.3 При анализе каждой испытуемой пробы выполняют два параллельных определения, начиная со взятия навески испытуемой пробы по 5.1.

Если расхождение между результатами параллельных определений не превышает $|X_1 - X_2| \le 0,01 \ d^{-}X$, где X_1 , X_2 и $X_1 - X_2$ результаты первого и второго параллельных определений и их среднее арифметическое, соответственно, то среднее арифметическое X принимают за результат анализа. В противном случае анализ повторяют. Значение норматива (d) приведено в таблице 2.

По полученному результату анализа и значению относительной погрешности (у, таблица 2) рассчитывают абсолютную погрешность Д, нг/г, по формуле

Результат анализа представляют в виде: $(X \pm Д)$ нг/г при P = 0.95. Числовое значение результата анализа и его погрешность должны оканчиваться цифрой одного и того же разряда.

Таблица 2 – Значение нормативов внутреннего оперативного контроля (ВОК) и характеристики погрешности анализа (для вероятности *P* = 0,95)

Диапазон массовой	Границы относительной погрешности ± <i>у</i>	Значение норматива ВОК, %		
концентрации дезоксини- валенола (вомитоксина), нг/г		сходимости <i>d</i> n = 2	воспроизводимости <i>D m</i> = 2	точности К
0,2 – 2,0 Св. 2,0 – 4,0	25 21	24 20	36 30	36 30

7 Контроль точности анализов

Внутренний оперативный контроль ВОК точности анализов включает контроль сходимости, воспроизводимости и точности результатов анализов. При превышении нормативов ВОК точности проводят повторные анализы. При повторном превышении указанных нормативов анализы приостанавливают, выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

7.1 Сходимость параллельных определений контролируют для каждой анализируемой пробы согласно 6.3.

7.2 Для проведения ВОК воспроизводимости используют рабочие пробы. Пробу делят на две равные части и анализируют в соответствии с методикой, получая два результата анализа в разных лабораториях или в одной, причем в этом случае максимально варьируют условия проведения анализа, т. е. используют разные наборы мерной посуды, анализы выполняют в разные дни или два различных аналитика.

Воспроизводимость контрольных анализов, а также воспроизводимость результатов анализа рабочих проб, выполненных за период, в течение которого условия проведения анализа принимают за стабильные и соответствующие условиям проведения контрольных анализов, признают удовлетворительной, если $|\overline{X}_1 - \overline{X}_2| \le 0.01D \ \overline{X}$, где \overline{X}_1 , \overline{X}_2 и \overline{X}_2 — результаты анализа одной и той же пробы, полученные при варьирующих условиях в одной лаборатории или разных лабораториях, и их среднее арифметическое значение, соответственно; D — значение норматива ВОК воспроизводимости (таблица 2).

Периодичность проведения ВОК воспроизводимости не реже одного раза в две недели.

7.3 Для проведения ВОК точности используют рабочие пробы с известной добавкой дезоксиниваленола (вомитоксина). Пробу делят на две равные части, первую из которых анализируют в соответствии с методикой, а во вторую вводят известную добавку дезоксиниваленола (вомитоксина), а затем анализируют в соответствии с методикой. Добавка должна составлять 50 – 150 % содержания дезоксиниваленола (вомитоксина) в анализируемой пробе. Результаты получают по возможности в одинаковых условиях, т. е. их получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т. д.

Точность контрольных анализов признают удовлетворительной, если $|\overline{X}^1 - \overline{x} - C| \le 0,01 \cdot K \cdot \overline{X}$, где \overline{X}^1 , \overline{X} и C – результаты контрольных анализов пробы с известной добавкой, без добавки и значение добавки, соответственно; K – значение норматива ВОК точности при использовании метода добавок (таблица 2).

Контроль точности анализа проводят не реже одного раза в месяц, а также при смене реактивов и после длительного перерыва в работе.

7.4 Результаты ВОК заносят в специальный журнал контроля.

СТБ ГОСТ Р 51116-2002

Приложение А (информационное)

Библиография

- [1] ТУ 6-16-3096-89 Уголь активированный
- [2] ТУ 6-09-1678-86 Фильтры обеззоленные (белая, красная, синяя ленты)

Ответственный за выпуск И.А.Воробей

Сдано в набор 21.01.2003 Подписано в печать 06.02.2003 Формат бумаги А4 Бумага офсетная. Гарнитура Ариал. Печать офсетная. Усл. печ. л. 1,39 Усл. кр.- отт. 1,39 Уч.- изд. л. 0,76 Тираж экз. Заказ

Издатель и полиграфическое исполнение
НП РУП «Белорусский государственный институт стандартизации и сертификации (БелГИСС)»
Лицензия ЛВ № 231 от 04.03.98. Лицензия ЛП № 408 от 25.07.2000
220113, г. Минск, ул. Мележа, 3.