министерство сельского хозяйства ссср

ВСЕСОЮЭНОЕ ПРОИЭВОДСТВЕННО-НАУЧНОЕ ОБЪЕДИНЕНИЕ ПО АГРОХИМИЧЕСКОМУ ОБСЛУЖИВАНИЮ СЕЛЬСКОГО ХОЗЯЙСТВА "ССЮЗСЕЛЬХОЗУМИИЯ"

ЦЕНТРАЛЬНИЙ ИНСТИТУТ АГРОХИМИЧЕСКОГО ОБСЛУЖИВАНИЯ СЕЛЬСКОГО ХОЗЯЙСТВА (ЦИНАО)

методические указания по определению подвижных форм микроэлементов в тепличных грунтах

министерство сельского хозяйства ссср

ВСЕСОТЭНОЕ ПРОИЗВОДСТВЕННО-НАУЧНОЕ ОБЪЕДИНЕНИЕ ПО АГРОХИМИЧЕСКОМУ ОБСЛУЖИВАНИЮ СЕЛЬСКОГО ХОЗЯЙСТВА "СОЮЗСЕЛЬХОЗХИМИЯ"

ЦЕПТРАЛЬНИЙ ИНСТИТУТ АГРОХИМИЧЕСКОГО ОБСЛУМИВАНИЯ СЕЛЬСКОГО ХОЗЯЙСТВА (ЦИНАС)

утверждаю:

Заместитель Министра сельского коэмиства СССР, Председатель объединения "Союзселькозхимия"

н.Ф.Татарчук

"29" апреля 1985 г.

Срои действиа до 01.01.1990 г.

методические указания по определению подвижных форм микроэлементов в тепличных грунтах Методические указания разработани канд. с.-ж.наук С.Г.Са-мохваловим, канд. биол.наук Н.А.Чебэтаревой, канд.бисл.наук А.А.Титовой, канд.с.-ж.наук Н.В.Василевской, О.В.Соболевой, А.А.Пановой, М.В.Тюховой, Т.О.Марченко (ПИНЛО), канд.с.-ж. наук А.А.Кветилной, К.А.Денгэльбаевой (Алма-Атинская областная проектно-изыскательская станция химизации).

Методические указания предназначены для специалистов лабораторий агрохимической олужби и ласораторий тепличных комбинатов.

Редакционная коллегия:

Л.М.Доржавин (главный редактор), С.Г.Самокеалов (зам.главного редактора), Н.М.Глунгов, Р.И.Ежов, Д.И.Марнов, А.Ф.Хлистова, И.С.Шумилин.

[©] Центральный институт агрохимического обслуживания сельского хозяйства МСХ СССР (ЦИНАО), 1985 г.

RNHEROLOU ENTREO

Интенсивное овощевсдство защищенного грунта характеризуется применением высоких доз минеральных и органических удобрений. Для правильного и эффективного использования удобрений иеобходим систематический контроль за уровнем обеспеченности грунтов элементами питания, в частности, микроэлементами. Такой контроль предполагает проведение большого числа анализов в сжатие сроки, что возможно лишь при использовании высокопроизводительных методов анализа грунта на содержание подвижных форм микроэлементов.

В настоящее время аналив тепличных почрогрунтов на содержание подвижных форм меди, пинка, марганца и бора рекомендовапо проводить с использованием индивидуальных экстратентов и фотометрических методов конечного определения [1]. Методики сложни, трудоемки и малспроизводительни. Раствор соляней кислоти, применяемой в качестве группового экстратента для извлсчения подвижных форм микроэлементов [2], не может бить использован на карбонатных субстратах, так как кислота частично нейтрализуется при взакмодействии с карбонатами.

В настоящих методических указаниях предлагается для извлечения подвижных форм меди, цинка, маргания и железа использовать в качестве группового экстрагента нейтральный раствор трилона Б, забуференный ацетатом аммония, а для конечного определения — метод атомно-абсорбционной спектроскопии.

Количества микроэлементов, извлекаемиепрациатаемым экстратентом, тесно коррелируют с концентрациями их в растениях, ко-личествами микроэлементов, переходящими в индивидуальние экстрагенти, а также в солянокислую витяжку [2] из некарбонатных грунтов.

Экстрагент пригоден для внализа как некарбонатних, так и карбонатних груптов, извлекаемые им количества меди, цинка, марганца и железа достаточно велики и могут быть определены прямым атомис-абсорбционным методем, что обеспечивает высокую производительность анализа.

Использование группового экстрагента и экспрессного атомно-абсорбционного метода конечного определения в 6 раз повищают производительность аналитических работ по сравнению с ранее рекомендованными методами $[\ I\]$.

Предложенный для определения меди, цинка, марганца и железа метод не пригоден для определения бора. Атомно-абсорбционное определение его невозможно из-за низкой чувствительности
метода, а фотометрическому определению мещает трилон Б, содержашийся в экстрагенте. Поэтому извлечение подвижного бора из
тепличных грунтов рекомендуется проводить с жепользованием общепринятого экстрагента — горячей воды. Для определения водорастверимого бора предлагается массовий вармант фотометрического
метода с азометином Аш, позволнющий повисить производительность
в 2 раза по сравнению с жинализариновым методом.

В предлагаемых методических указаниях, по аналогии с методами определения макроэлементов, приведено два способа приготовления витяжим из груптов: объемно-весовой (обычно называемый весовим) и объемный. При объемно-весовсм способе аналитическую пребу групта отбирают по массе из воздужно-сухого образва, при объемном способе - по объему из сирого образца 3 . Экстрагирующий раствор в обоих случаях добавляют по объему. Оба способа близки по точности. Тем не менее, каждый из ных имеет свои предмущества и недостатки. При использовании объемно-весового способа приготовления витяжки возможно проведение контроля качества аналитических работ. Однако этот способ менее производителен. так как требуется много времени на предварительную подготовку образца (сушку, размол), а также на пересчет результатов анализа на единицу объема грунта с учетом его илотности. Объемини способ приготовления вытяжки проще и прсизводительнее за счет исключения операций сушки, размома образцов и пересчета разультатов анализов. Однако при использовании объемного способа невозможен контроль правильности результатов анализов из-за того. что сприе образци тепличного грунта не подлежат длительному хранению.

Приведенные способы приготовления вытяжек из грунтов дают несопоставимие результать. Поэтому оценку обечпеченности грунтов подвижными формами микроэлементов следует проводить с использованием градаций, разработанных применительно к конкретному способу приготовления вытяжки.

І. ПОШТОТОВКА ПОЧВОГРУНТА К АНАЛИЗУ

I.1. Подготовка почвогрунта для приготовления витяжки объемно-весовым способом

Поступающий на анализ образец почвогрунта доводят до воздушно-сухого состояния. Для этого сирой образец висинают в кювету, разравнивают слоем толщиной I-I,5 см, помещают в сушильцую камеру, в которой поддерживается температура 40°С и выдерживают там до тех пор, пока почвогрунт станет на ощунь сухим.

Высушенный образец размадывают на размольной установке типа "ШІ-І", "Бр.Эмлих" (ГДР), "ИШ-І,2" или другой аналогичной. Измельченный и просеянный через сито с диаметром отверстий 2 ми грунт номещают в коробку или пакет.

При хранении возможно расслоение образца, поэтому перед отбором проби для анализа его тщательно перемешивают. Образец, хранящийся в коробке, перемешивают ложкой или шпателем на вск глубину коробки и затем отбирают пробу для анализа не менее, чем из пяти разных мест, равномерно распределенных по площади коробки. Если почвогрунт хранят в пакете, его высыпают на ровную поверхность, хорошо перемешивают и распределяют слоем толичной не более I см. Пробу для анализа отбирают ложкой или шпателем не менее, чем из пяти разных мест, равномерно распределенных по всей поверхности. Масса проби почвогрунта для анализа IO г.

1.2. Подготовка почвогрупта для приготовления вытяжки объемным способом

Образец почвогрунта в состоянии естественного увлажнения помещают на полиэтиленовую пленку или в кювету. Камни, стекло, щепу удаляют, солому измельчают ножницами, крупные комки разминают. Если образец сухой, его увлажняют дистиллированной водой до тех пор, пока он станет влажным на ощупь.

Почвогрунт тщательно перемешивают, распределяют олоем толщиной I-I,5 см и отбирают ложкой или шпателем пробу для анализа не менее, чем из пяти разных мест, равножерно распределенных по всей поверхности. Объем проби для анализа 50 мл.

ОПРЕДЕЛЕНИЕ ПОДВИЖНЫХ ФОРМ МЕДИ, ЦИНКА, МАРГАНИА И ЖЕЛЕЗА В ПОЧВОТРУНТЕ

Метод основан на извлечении подвижных форм меди, цинка. марганца и железа из тепличного почвогрунта раствором I М по ацетату аммония и 0.02 М по трилону Б с рН 7.0. Отношение почвогрунта к растьору I:10 при приготовлении витяжки объемновесовым способом и 1:2 при приготовлении витяжки объемным способом. Время взаимодействия - І ч при взбалтывании на ротаторе. Медь, цинк, марганец и железо в вытяжке спределяют атомно-абсорбщионным методом, основаниим на измерении поглощения резонаноного изуучения свобожными атомами определяемого элемента. об~ разующимися в пламени при введении в него анализируемого раствора. В качестве атомизатора используют воздушно-ацетиленовое или воздушно-пропан-сутановое пламя, в качестве источника сезонансного излучения - лампы с полым катодом, содержащим определиемый элемент. Медь определяют по аналитической линки 324.7 им. цинк - 213.9 нм, марганец - 279.5 нм, железо - 248.3 нм. При определении марганца с использованием воздушно-пропан-бутанового пламени для устранения помех. обусловленных образованием труднодиссоциирующих на атомы соединений марганца, в анализируемые растворы гводят стронций.

2.1. Аппаратура, материаль, реактивы

Веси лабораторние 2-го класса точности с наибольшим пределом взвешивания 200 г и 4-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24I04-80.

Ротатор типа Р-120 или встряхиватель для почвенных суспенвий типа БЭ-Т, или другой аналогичный.

Кассети IO-позыционные с технологическими емкостями вместимостью 200 мл, выполненными из материала, устойчивого к действию используемых реактивов и не загрязняющего раствори определяемыми элементами.

Установки фильтровальние 10-позиционние.

Устройство для отбора пробы грунта по объему. Применяют специальное устройство, используемое для отбора проб по объему при приготовлении водной витижки из тепличных грунтов для оп-

ределения макроэлементов [3]. Оно состоит из основного и вспомогательного цялиндров, изготопленных из пластмасси, и груза массой 2 кг для уплотнения грунта. Диаметр цилиндров — 46 мм. Высота основного цилиндра — 45 мм, вспомогательного — 30 мм, вместимость соответственно — 75 и 50 мл. При использовании данного устройства для определения микроэлементов ссловной и вспомогательный цилиндры меняют местами. Дозирующим является вспомогательный пилиндр вместимостью 50 мл.

ря-метр с погрешностью измерения не более ± 0,1 рн.

Атомно-ассорбционный спектрофотометр C-II2, AAS-I или другой аналогичный.

Ламии с полим катодом для спределения меди, цинка, марганца, железа ЛСП-I или другие аналогичние.

Ацетилен растворенний технический по ТОСТ 5457-75 или пропан-бутан (битовой в баллоне).

Воздух для приборов по ГОСТ 11882-75.

Фильтры обеззоление, белая лента по ТУ 5-09-1678-77 диаметром 15 см или бумага фильтровальная лабораторная средней фильтрации по ГССТ 12026-76. Фильтры, загрязненные микроэломентами, промывают горячей соляной кислотой, разбавленной водой 1:100, дважди заполняя ем фильтры, вложенные в воронки. Затем фильтри отмывают от кислоти дистиллированной водой до нейтральней реакции по универсальной индикаторной бумаге и писушивают на воздухе или в сушильном шкаду при температуре не выше 95°С.

Циминдр мерний по ГОСТ 1770-74 вместимостью 100 мл или дозатор ДАЖ-115-3, или другой аналогичний с погрешностью дозированил не более 1%, виполненный из материалов, устойчивих к действию используемого реактива и не загрязняющих раствори определяемыми элементами.

Колом мерные с пришлефованными пробками по ГОСТ 1770-74 нместимостью IGO и ICCO мл.

Еюретка с краном 2-го класса точности по ГОСТ 20292-74 вместиместью IO мл для дозирования раствора A.

Пинетки 2-го илаоса точности по ГОСТ 20292-74 вместимостью \mathbf{I}_* 5, $\mathbf{I0}_*$ 20 и 50 мл.

Пробирки градуированные со шлифом по ICCT 25336-82 вместимостью IO ил или белее или другие тахислегические емпости, виполненные из материала, устойчивого к действив используемых реактивов и не загрязняющего растворы определяемыми элементами.

Штатив для пробирок.

Вода дистиллированная по ГОСТ 6709-72.

Аммоний уксусновислый по ГОСТ 3II7-78, ж.ч.

Аммиан водний по ГССТ 3760-79, x.ч.

Соль динатриевая этиленциамин-N, N, N', N' - тетрауксусной кислоти, 2-водная (трилон Б) по ГССТ IC652-73, х.ч.

медь сернокислая 5-водная по IVCT 4165-78, к.ч.

Цинк гранулированный по ГОСТ 989-75, х.ч.

Марганец сернокислый 5-водный по ГОСТ 435-77, ч.д.а.

железо-аммонийные квасцы I2-водные по ГОСТ 4205-77, ж.ч.

Аммоный авотнокислый по ГССТ 22867-77, х.ч. или ч.д.а. Сереоро авотнокислов по ГОСТ 1277-75, х.ч. или ч.д.а.

Стренций хлористий 6-водний по 10СТ 4140-74, ч.д.а.

Стренции слористии 6-водный по 1001 4140-74, ч. Кислота сервая по 1001 4204-77, х.ч.

EVENOTE CONSUMS TO TOOK 4204-77, I.4.

Кислота соляная по ГССТ ЗПЗ-77, х.ч., концентрированная и разбавленная дистилихрованной водой I:I.

Кислота азотная по ГОСТ 446I-77, х.ч. или ч.д.а., концентрированная.

Индикатор унаверсальный.

- 2.2. Подготовка к анализу
- 2.2.1. Приготовление экстрагирующего раствора I M по эцетату аммония и 0,02 M по трилону Б с рН 7.0
- 77.0 г аммония уксуснокислого растворяют примерно в 900 мл дистиллированной всди, добавляют 7.4 г трилона Б и растворяют его при энергичном пережешивении раствора. Приливая по каплям концептрированный раствор аммиака, доводят рН раствора до 7.0, доливают дистиллированной подой до I л, тщательно перемешивают и проверяют рН раствора на рН-метре.
 - 2,2.2. Приготовление раствора, содержащего I мг меди в I мл
- 3,929 г сернокислой меди (СиSO₄ · 5H₂O) растворяют в дистиллированной воде, содержащей I мл концентрированной серной кислоти, и доводят объем раствора дистиллированной всдой до I л в мерной колое. Раствор хранят до I года, если не наблю-

дается помутнения, образования клопьев, осадков. В противном случае раствор заменяют свежеприготовлениям.

- 2.2.3. Приготовление растьора, содержащего I ыт цинка в I мл
- I,000 г гранулированного цинка растворяют в 7 мл соляной кислоти, разбавленной дистиллированной водой I:I, и доводят объем раствора дистиллированной водой до I л в мерной колбе. Раствор хранят до I года, если не наблюдается помутиения, образования хлопьев, осадков. В противном случае раствор заменяют свежеприготовленным.
 - 2.2.4. Приготовление раствора, содержащего I мг марганца в I мл
- 4,388 г марганца сернокислого 5-водного (MuSO₄ 5H₂O) растворяют в дистиллированной воде и доводят объем раствора дистиллированной водой до I л в мерной колбе. Раствор хранят до I года, если не наблюдается помутнения, образования хлопьев, осадков. В противном случае раствор заменяют свежеприготовлен—ним.
 - 2.2.5. Приготовление раствора, содержащего 4 мг железа в Т мл
- 34,540 г железо-аммонийних квасцов I2-водных (Ге $^{80}_{4}$)2-124,0) растворяют при нагревания примерно в 500 мл дистиллированной води, содержащей 100 мл солячой кислоти, разбавиенной Т:1. и доводят объем раствора дистилларованной водой до I л в мерной комбе. Так как железо-аммонийные квасик выветриваются при хранении и состав соли может отличаться от теоретического. содержание железа в приготовненном растворе необходимс проверить весовым методом. Для этого в кимический станан вместимостью 100 мл помещают с помощью пипетки 50 мм раствора, прибавляют несколько капель концентрированной авотной кислоти. нагревают почти до кинения и осаждают железо в виде гидреокиси, прибаглая аммиак до слабого запака. Дают оседку осесть и фильтрукт горячий раствор через беззольний фильтр с красной или белой лектой, слизая сначала презрачный растьор, Осадок на дие стакана премирают 2-3 раза декинтацией горячим 2%-ими раствором азстионислого аммония, поичелочениям нескольными каплями аммиака, количе-

ственно переносят осадок на фильтр и промновот его тем же раствором до отсутствия иснов хлорида в фильтрате (проса с I%-ним раствором азотнокислого сересра, подкисленным азотной кислотой). Затем осодок на фильтре промывают 2-3 раза горячой дистиллированной водой, фильтр с осадком помещают в деведенный до пестоянной масси фарфоровый тиголь и ставят в холодный муфель. Постененно понишая температуру, озоляют фильтр и прокаливают остаток при температуре 800-900°С до постоянной масси.

Концентрацию железа в анализируемом растворе (С) в ыг в I мл вичисляют по формуле:

$$C = \frac{A \cdot 0.6994}{50}$$
,

где A - масса осадка Fe₂O₃, мг; 0,6994 - коэффициент пересчета масси Fe₂O₃ на массу Fe; 50 - ссъем раствора взятий для анализа, мл.

Раствор хранят до одного года, если не наблюдается помутнения, образования хлопьев, осадков. В противном случае раствор заменяют свежеприготовлением.

- 2.2.6. Приготовление 2%-ного раствора азотнокислого аммония
- 2 г азотнекислого аммония растворяют в 100 мл дистиллированной води.
 - 2.2.7. Приготовление I%-ного раствора азотножислого серебра
- I г азотнокислого серебра растворяют в IOO мл дистиллированной води.
 - 2.2.8. Приготовление раствора, содержащего 50 мкг меда, 200 мкг цинка, 200 мкг марганца и 2 мг железа в 1 мл (раствор A)

В мерную колбу вместимостью 100 мл помещают 5 мл раствора, содержащего I мг меди в I мл; 20 мл раствора, содержащего I мг марганца в I мл; 50 мл раствора, содержащего I мг марганца в I мл; 50 мл раствора, содержащего 4 мг железа в I мл или тахой объем, в котором содержится 200 мг железа, доводят объем раст-

вора до метки дистиллированной водой и тщательно перемешивают.

Раствор кранят до 3 мес. если не наблюдается помутнения, образования хлопьев, осадков. В противном случае рествор заменняют свежеппитотовлениям.

- 2.2.9. Приготовление растворов сравнения
- В шесть мерных коло вместимостью 100 мл помещают с помощью бюретки указанние в таблице I объеми раствора А, приготовленного по п. 2.2.8., доводят объеми до меток экстрагирующим раствором и тщательно перемешивают. Растворы сравнения готовят в день проведения анализа и используют для градучровки атомно-абсороционного спектрофотометра.
 - 2.2.IO. Приготовление раствора, содержащего 22 мг стронция в I мл
- 66,9 г 6-водного хлористого стронция растворяют примерно в 600 мл дистиллированной воды, приливают I60 мл концентрированной соляной кислоты и доводят объем раствора дистиллированной водой до I л. Раствор хранят до I года.
 - 2.3. Проведение анализа
 - 2.3.1. Приготовление вытяжки
- 2.3.I.I. Приготевление витяжки объемно-весовым способом пробы почвогрунта массой ТО г взвещивают с погрешностью не белее 0,I г и номещают в технологические емкости вместиместью 200 мл, установление в ТС-позиционные кассеты. К пробам приливают по 100 мл экстрагирующего раствора и взбалтивают суспензии на ротаторе или встряживателе в течение І ч. Для предупреждения контакта с резиной под крышку кассет подкладквают полоску полизтиленовой пленки. Вытяжки фильтруют на десятилозиционных фильтровальных установках, стараясь перенести на фильтры поэкожно большее количество почвогрунта. Первые порции фильтратов оторасных, последующие порции собирают в чистые технологические емкости, установленизе в десятинозиционные кассети. Если фильтраты мутные, их возгращают на фильтры.

Одновременно ставят контрольный опыт, проводя его чераз все стадии анализа, исключоя взятие пробы почеогрунта.

Таблица I Приготовление растворов сравнения

Номер раство-	Объем раствора Å	Концонтрация элемента в растьоре сравнения				Концентрация элемента в растворе срав- нения в пересчете ча содержание элемен- та в грунте							
ра сравне- ния					CHO	ира объемно-ресовом способе приготов- ления витяжи		при объеменом спосо- бе поиготовления витяжки					
		CM	Z	ME	Fe	Cm	Źn	Mil	Fe	См	ZI	Mπ	Fe
	МД			мкт/мл			MIT/1	кг гр	унта		мг/л 1	рунта	
I	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0,5	0,25	I	I	10	2,5	IO	IO	100	0,5	2	2	20
3	I	0,5	2	2	20	5	20	20	200	1,0	4	4	40
4	2	1,0	4	4	40	IO	40	40	400	2,0	8	8	80
5	5	2,5	10	10	100	2 5	100	100	I000	5,0	20	20	200
6	IO	5,0	20	20	200	50	200	200	2000	10,0	40	40	400

2.3.1.2. Приготовление витяжки объемным способом

Пробу для анализа объемом 50 мл берут с помощью специального устройства. Для этого пилиндр вместимостью 50 мл ставят в кювету, на него устанавливают цилиндр вместимостью 75 мл. Оба цилиндра заполняют доверху грунтом и вставляют в верхний цилиндр груз, не прилагая дополнительных усилий. Затем верхний цилиндр сдвигают в сторону для удаления содержащегося в нем излишка грунта. Из нижнего цилиндра пробу грунта переносят в технологическую емкость вместимостью 200 мл, установленную в десятипозиционную кассету и приливают 100 мл экстрагирующего раствора. Дальнейший ход анализа по п.2.3.1.1.

2.3.2. Определение меди в вытяжке из почвогрунта

Определение меди проводят в вытяжке, приготовленной по п.2.3.1., непосредственно вводя ее в пламя ацетилен-воздух или пропан-бутан-воздух, по аналитической линии 324,7 нм. Иламя окислительное (прозрачное, голубое). Ширину щели монохроматора, расход газов, ток, питающий лампу с полым катодом, устанавливают в соответствии с инструкциями, прилагаемыми к прибору и лампе. Наконечник горелки устанавливают параллельно просвечивающему лучу. При установке горелки относительно просвечивающего луча, регулировке распылителя добиваются максимальных значений поглощения для растворов сравнения.

При стабилизированшемся режиме работи прибора в пламя вводят первий раствор сравнения, не содержащий меди, и устанавливают начало отсчета (нулевое значение оптической плотности или концентрации). Затем вводят в пламя остальные раствори сравнения, в порядке возрастания в них концентрации меди, и вытяжки из почвогрунтов, записивая соответствующие им показания измерительного прибора.

Чорез каждые десять измерений в пламя вводят первый и местой растворы сравнения для пронерки градуировочной характеристики прибора. Если при проверке получентся пожазания, отличающиеся от ислученных ранее или данных растворов более чем на 3% (относительных), корректируют настройку приборя и последние десять внтяжек анализируют снова.

Если показание прибора для анализируемой вытяжки превишает показание для шестого раствора органения, вытяжку разбавляют экстрагирующим раствором и повторяют измерение.

2.3.3. Определение цинка в витяжке из почвогрунта Определение динка проводят в витяжке, приготовленной из п.2.3.1., непосредственно вводи ее в плама ацетилен-воздух ала пропам-бутан-воздух, по аналитической линии 213,9 нм. Пламя окислительное (прозрачное, голубое). Ширину цели монохроматора, расход газов, ток, питающий ламиу с полым катодом, устанавливают в соответствии з инструкциями, прилагаемыми к прибору и ламее. Для полученля оптимальных для измерения значений оптической плотности наконечник горелки устанавливают под углом 60° относительно просвечивающего луча.

При стабилизиоовавшемся режиме работи прибора в пламя ввсдят первый расгвор оравнения, не сожержащий цинка, и устанавливают начало отсчета (нулевое значение оптической плотности или концентрации). Затем вводят в пламя остальные растверы сравнения, в порядке возрастания в них концентрации цинка, и вытяжки из почвогрунтов, записывая соответствующие им показания измерительного прибора.

Через каждые десять измерений в пламя вводят первый и пятий растворы сравнения для проверки градуировочной карактеристики прибора.

Если при проверке получаются показания, отличающиеся от получениих ранее иля данных растворов более, чем на 3% (относительных), корректируют настройку присора и последние десять витяжек анализируют снова.

Если показание прибора для акализируемой вытяжки превижает показание для шестого раствора сравнения, вытяжку разбавляют экстрагирующим раствором и повторяют измерение.

2.3.4. Определение марганца в витяжке из почвогрунта Определение марганца проводят по аналитической линии 279,5 нм в пламени апетилен-воздух или пропан-бутан-воздух, Пламя окислительное (проврачное, голубое). При использовании воздушно-ацетиленового пламени маргалец определяют непосредственно в витяжке, приготовленной по п.2.3.1. При использования воздушно-пропан-бутанового пламени для подавления химических помех в витяжку предварительно добавляют строиций до концентрации 2 мг в I мл. В обоих случаях наконечник горелки устанавливают параллельно просвечивающему дучу.

Ширину щели монохроматора, расход газов, ток, питарщий лампу с полны катодом устанавливают в соответствия с инструкциями, прилагаемными к прибору и лампе.

При использовании воздушно-ацетиленового пламени после стабилизации работи прибора в пламя вводят первый раствор сравненил, не содержащий марганца, и устанавливают начало отсчета (нулевое значение оптической плотности или концентрации). Затем вводят в пламя остальные растворы сравнения, в горядке возрастания в них концентрации марганца, и вытяжки из почвогрунтов, записывая соответствующие им показания измерительного прибора.

Через каждые десять измерений в плами вводят первый и гретий раствори сравнения для проверки градуировочной характеристики прибора.

Если при проверке получентся показания отличающиеся от показаний, полученных ранее для данных растворов более, чем на 3% (относительных), корректируют наотройку приборы и последние десять вытяжек анализируют снова.

Если показание присора для анализируемой витяжки превншает показание для шестого раствора сравнения, витяжку разбанляют экстрагирующим раствором и поэторяют измерение.

При использовании всядушно-пропан-бутанового иламени из растворов сравнении и вытяжек берут аликвоти по 10 мл, помещают в пробирки или другие технологические емкости, приливают к ним по 1 мл раствора хлористого стронции и перемешквают. Первий и третий растворы сравнения, необходимие для нериодической проверки градукровочной характеристики прибора, берут каждый в 2-3 пробирки. Градупровку прибора по растворам сравнения, разбавленным раствором клористого отронция, и анализ вытижек, также разбавленных этим раствором, проводят аналогично определению марганца в воздушно-ацетиленовым пламенем.

2.3.5. Определение железа в витяжие из почвогрупта Определение железа проводят в витяжие, приготовленной по п.2.3.1., непосредственно вводя ее в иламя ацетилем-воздух или пропан-бутан-воздух по аналитической линии 248,3 нм. Пламя окислительное (прозрачное, голубое). Ширкну щели монохроматора, расход газов, ток, питающий лампу с полым катодом, устанавливают в соответствии с инструкциями, прилагаемыми к прибору и лампе. Для получения оптимальных для измерений значений оптической плотности наконечких горелки устанавливают под углом 60° относительно просвечивающего луча.

При стабилизированиемся режиме работи прибора в пламя вводят первий раствор сравнения, не содержащий железа, и устанавливают начало отсчета (нулевое значение оптической плотности или
концентрации). Затем вводят в пламя остальние раствори сравнения
в порядке возрастания в них концентрации железа и витяжки из
почвогрунтов, записивая соответствущие им показания измерительного прибора. Через каждие десять измерений в пламя вводят первий и чотвертий раствори сравнения для проверки градуировочной
характеристики прибора. Если при проверке получаются показания,
отличающиеся от показаний, полученник ранее для данних растворов,
более, чем на 3% (относительных), корректируют настройку прибора
и последние десять вытяжек анализируют снова.

Если показание прибора для анализируемой вытяжки превышает показание для шестого раствора сравнения, вытяжку разбавляют экстрагирующим раствором и повторяют измерение.

2.4. Обработка результатов

По данним, полученным для растворов сравнения, строят градуировочный график, откладивая по оси ординат показания прибора в единицах оптической плотности или концентрации, а по оси абсцисс — концентрацию определяемого элемента в растворе сравнения в пересчете на содержание элемента в почвогрунте: в мг на I кг почвогрунта при объемно-весовом способе или в мг на I л почвогрунта при объемном способе приготовления вытяжки.

Для мади зависимость показаний прибора от концентрации елемента в растворе сравнения линейна во всем расочем диапазоне концентраций, для остальных элементов сна линейна только в начале диапазона измерения.

По показанью прибора, полученному для витяжки, и градупровочному графику находят жонцентрацию элемента в витяжко в переочете на содержание элемента в почвогрунте: в мг на I кг почвогрунта при объемно-весовом слособе или в мг на I л почвогрунта при объемном способе приготовления витяжки.

Содержание элемента в почвогрунте (X) в мг на I кг мли в мг на I л грунта (в зависимости от способа приготовления вытажки) вычисляют по формуле:

$X = a \cdot M - R$.

- где M концентрация элемента в вытижке в пересчете на ссдержание элемента в почвогрунте, найденная по градуировочному графику, мг/кг или мг/л грунта;
 - к коэффициент, учитивающий резбавление вытяжки экстратирующим раствором перед измерением;
 - к концентрация элемента в растворе контрольного ошта в пересчете на содержание элемента в почвогрунте, найденная по градумровочному градику, мт/кг или мт/л грунта.

Эначение результатов контрольного опыта не должно превышать при определении меди 0,5 мг/кг или 0,1 мг/л грунта, цинка и мар-ганца — 5 мг/кг или I мг/л грунта, железа — 25 мг/кг или 5 мг/л грунта.

2.5. Контроль точности анализа

Допускаемие при вероятности P = 0.95 отклонения от среднего арифметического при повторных анализах в одной ласоратории с мо-пользованием объемно-весового способа приготовления витяжки и при двух парадледьных анализах с использованием объемного способа приготовления вытяжки приведени в таблице 2.

3. ОПРЕДЕЛЕНИЕ ПОДВИЖНОГО БОРА В ПОЧВОГРУНТЕ

метод основан на извлечении подвижного бора из тепличного почвогрунта горячей водой, содержащей сернокислый магний для коагуляции почвенных коллондов. Отношение почвогрунта к экстратенту I:10 при приготовлении витяжки объемно-весовым способом и I:2 при приготовлении витяжки объемным способом. Бор в витяжке

Таблица 2

Объемно-весон приготовлени		отидп боропр йниматоО Тужктив кинэквот			
соцержание эле- мента, мг/кг грунта	допускаемые откло- нения от среднего, % отн.	олемента.	допускаемие отклонения от среднего,% отн.		
	а д, е М				
0т I до 5	30	0т 0,4 до 5	10		
Св. 5 до 1 0	17	CB. 5	IO		
Св. 10 до 20	10				
Св. 20	6				
	Цинк				
С т 5 до 2 0	I 5	0т 2 до 5	15		
Св. 20 до 50	10	Св. 5 до 10	IO		
Св. 50	8	CB. IO	7		
	Марган	е ц			
От IO до 50	30	От I до З	37		
Св. 50 до 100	1 5	Св. 3 до IO	I5		
Св. 100	10	Cr. IO	I3		
	Железо	ı			
0т 20 до 300	20	От 5 до 30	17		
Св. 300	I 5	Cr. 30	IO		

определяют фотометрическим мотодом с азометином Ан при длине воли 420 км. Органические соединения, переходящие в вытяжку и мешающие определению бера, окисляют перманганатом калия в сернокислой среде. Влияние меди, железа и алиминия устраняют трилоном Е.

3.1. Аппаратура, материаль, реактивы

веси лабораторине 2-го класса точности с наибольшим пределом вывешивании 200 г и 4-го класса точности с наибольшим пре-

делом взвешивания 500 г по ГОСТ 24I04-80.

Спектроколориметр или фотовлектроколориметр.

рн-метр с погрешностью измерения не более + 0.1 рн.

Плитка электрическая с закрытой спирелью.

Баня водяная для пробирок.

Штативы метадлические для пробирок.

Колон конические из химико-лабораторного стекла группы ХС

(№ 23, 29, ДТ-2, С-90) по ГОСТ 25336-82 вместимостью 250 и 500 мл. Устройство для отбора проби почвогрунта по объему (n.2.I.).

Кассэти десятипозиционие с технологический емкостами вместимостью 200 мл из материала, устойчиого и нействик попользуемых реактивов и не загрязияниего раствори бором.

Установки фильтрогальние десятипозицисниве.

Воронки стеклянные по ГОСТ 25336-82 диаметром 36 и 100 мм или пробки полые стеклянные.

Цилиндры мерямено ГОСТ 1770-74 эместимостью 50 и 100 мл или дозатор с погрешностью дозирования не более 1%, выполненный из материалов, устойчивих к действию используемого реактива и не загрязникцих раствор бором.

Колон мерние с привлафованиями пробизми по ГОСТ 1770-74 вместимостью 50, ICO и IOOO мл.

Прооирки стекляние с пришлифованними пробками из стекла группи XC (# 23, 29, ДГ-2, С-90) по ГОСТ 25336-82 вместимостью IO-I5 мл.

Пипетка 2-го класса точности по ГОСТ 20292-74 вместимостью 5 мл кли шприц-дозатор с погрежностью дозирования не более ІХ для отбора витяжки и растворов сравнения, виполненный из материалов, устойчивых к действик используемых реактивов и не загрязняющих раствор бором.

Пипетка 2-го класса точности по ГОСТ 20292-74 вместимостью ПО мл.

Пипетка градуированияя 2-го класса течности по ГОСТ 20292-74 вместимостью I мл или дозатор с погрешностью дозирования не более I%, виполненний из материалов, устойчивых к действир используемого реактива и не загрязняющих растворы бором.

Бюретка с краном 2-го класса точности по ГОСТ 20292-74 вместимостью IO мл для догирования раствора В. Боретка с краном 2-го класса точности вместимостью 50 кл мли дозатср с погрешностью дезирования не более 1% для дозарования окращивающего раствора, виполненный из материалов, устойчивих к дейстнию используемого реактива и не загрязняющих раствор бором.

Фильтри соеззоленные, сичяя лента по ТУ 6-09-1678-77 диаметром I5 см или бумаге фильтрогальная масораторная медленной или средней фильтрации по ГОСТ 12026-76.

Универсальная индикаторная бумага.

Вона пистиллированная по ГОСТ 6709-72.

магний сернокислый 7-водний по ГОСТ 4523-77, х.ч. или ч.д.а.

Кислота серная по ГССТ 4204-77, х.ч. или ч.ц.а.

Кислота соляная по ГОСТ ЗІІ8-77, к.ч. или ч.д.а.

Кислота борная по ГОСТ 9656-75, х.ч.

Кислота аскорбиновая по ГОСТ 4815-76, ч.д.а.

Калий марганцопокислий (калия перманганат) по ГОСТ 20490-75, х.ч. или ч.д.а.

Аммоний уксуснокислый по ГОСТ ЗІІ7-78, х.ч. или ч.д.а. Соль динатриевая этилендиамин— N, N, N', N', - тетраук-сусной хислоти, 2-водная (трилон Б) по ГОСТ 10652-73, ч.д.а.

Аш-кислоти мононатриевая соль (І-амино-8-нафтол-3,6-дисуль-фокислоти мононатриевая соль, І,5-водная) по ТУ 6-09-05-620-77,

Салициловий альдегид по ГОСТ 9866-74, ч.д.а.

Кылил гицроокись по ГОСТ 24363-80, х.ч. или ч.д.а. Спирт этиловый ректификованный технический по ГОСТ 18300-

3.2. Подготовка к анализу

72.

- 3.2.1. Приготовление 0,1%-ного растнора сернокислого магния
- I,0 г сернокислого магная раствориот в дистиллированной воде, докодит объем до I л и перемешлелот.
 - 3.2.2. Приготовление раствора серной кислоты, разбавленной I:2

ТОО МЯ КОНЦЕНТРИРОВЕННОЙ СЕРНОЙ КИСЛОТИ ОСТОРОЖНО ПРИЛИВА-ВТ и 200 МЛ ДИСТЕЛЛИРОВАННОЙ ВОДИ ПРИ ПОСТОЯВНОМ ПЕРЕМЕЙВЕНИИ

и охлаждают.

- 3.2.3. Приготовление 10%-ного раствора гидроокиси калия 10 г гидроокиси калия растворяют в дистиллированной воде, доводят объем до 100 мл и перемешивают,
 - 3.2.4. Приготовление 3%-ного раствора марганцовокислого налия

15 г марганцсвохислого калия растворяют в дистиллированной воде при сласом нагревании. После охлаждения доводят объем дистиллированной водой до 500 мл и перемешивают. Раствор хранят в склянке из темного стекла в холодильнике в течение 2-5 мес.

3.2.5. Приготовление окисляющего раствора

Смешивают 3%-кый раствор марганцовокислого калил м раствор серной кислоти, разбавленной I:2 в отношении 7:3. Раствор готовят в день проведения анализа.

3.2.6. Приготовление 10%-ного раствора аскорбичовой кислоти

10 г аскоронновой кислоти растворяют в дистиллированной воде, доводят объем до ICO мл и перемекивают. Раствор хранят в холодильнике не более недели.

3.2.7. Приготовление буферного маскирующего раствора

500 г уксуснокислого эммония и 10 г трилона Б растворяют в дистиллированной воде и доводят объем дистиллированной водой до I л. К полученному раствору приливают разбавленний 1:2 раствор серной кислоти до рН 6,0+0,2. Проверяют рН раствора на гН-метре.

3.2.8. Получение азометина Аш

Растворяют І8 г монснатряевой соли Ам-кислоти в І и дистиллированной воды при осторожном нагревании (45-50°C) и фильтруют раствор в коническую колбу вместимостью 2-3 и. Раствор в колбе нейтрализуют раствором гидроокиои калвя до рН 7 по универсальной индикаторной бумаге. При постоянном перемешивании прибавляют по каплям соляную кислоту до рН 2 и 20 мл салицилового альдегида. Колбу с раствором помещеют на водяную баню с температурой 45-65°C и выдерживают І ч при постоянном перемещывании. Затем колбу с раствором сставляют на 16 ч при комнатной температуре для полного выделения азометина Аш. Осядок отфильтровивают на ворон- ке Бюхнера, примывают 5 раз этиловым спиртом порциями по 10-15 мл и высумивают при температуре 100° С в течение 3-х ч. Виход азометина Аш ~ 18 г. Полученный продукт хранят в склянке с притертой пробкой.

- 3.2.9. Приготовление 0,9%-ного раствора азометина Аш 0,9 г азометина Аш и 2,0 г аскорбиновой кислоти растворяют в 20-30 мл дистиплированной воды при осторожном нагревании на водяной бане. Полученный раствор переносят в мерную колбу вместимостью 100 мл, охлаждают, доводят объем до метки дистиплированной водой, перемешивают и фильтруют. Хранят раствор в холодильнике не более двух недель. Если при хранении раствор мутнеет, то перед авализом это подогревают на водяной бане до просветления.
- 3.2.10. Приготовление смещанного окрашивающего раствора Смещивают растворы азометина Аш и буферного маскирующего раствора в отношении I:I. Смесь готовят в день проведения анализа.
 - 3.2.II. Приготовление раствора, содержащего I мг сора в I мл (раствор A)
- 5,730 г борной кислоты растворяют в дистиллированной воде, доводят соъем до I и в мерной колбе и тщательно перемешивают. Раствор хранят до I года.
 - 3.2.12. Приготовление раствора, содержащего IOO мкг бора в I мл (раствор Б)

В мерную колбу вместимостию 100 мл помещают 10 мл раствора A, доводят объем до метки дистиллированной водой и перемешивают. Раствор хранят до 3-х мес.

3.2.13. Приготовление раствора, содержащего IC мкг бора в I мл (раствор В)

В мерную колбу вместимостью 100 мл помещают 10 мл раствора Е, доводят объем до метки 0.1%-ним раствором сернокиолого магныя и перемешивыют. Раствор готорят в день проведении анализа.

3.2.14. Приготовление растворов сравнения

В шесть мерных коло вместимостью 50 мл номещают с помощью биретки указанные в таблице 3 объемы раствора В, приготовленного

по п.З.2.13., доводят объеми до метки 0,1-или растворои сврнокислого магния и тщательно перемешивают. Растворы готоват в день проведения анализа. Растворы сравнения используют для градуировки фотоэлектроколориметра или спектроколориметра.

Таблица З Приготовление растворов среднения для определения бора

Номер раст- пора	Объем раст- вора	ция бора в растворе	Концентрация бора в растворе сравне- иия в пересчете на сопержание элэмен- та в ночьогрунте			
грав- нения	В, ил	инг/мл Сравненин,	при объемно-весоном способе приготовле- имя витяжи, мг/кг грунта	сссе приготовле-		
I	0	0	0	0		
2	0,5	0,1	I	0,2		
3	I	0,2	2	0,4		
4	2	0,4	4	0,6		
5	4	0,8	8	1,6		
6	6	1,2	13	2,4		

^{3.3.} Пропедение анализа

3.3.1.1. Приготовление витажим объемно-весовым способом Пробу исчвогрунта мессой 5 г вовешивают с погрешностью не более 0.1 г и номещают в коническую колбу вместимостью 250 мл. К пробе приливают 50 мл 0.1%-ного раствора сернокислого метимя, закрывают колбу полой стеклянной пробисй или лабораторной воронкой и кипитят суспензию в течение 5 мин с момента закипания, не допуская бурного инпения. Суспензию перемешивают и фильтруют в горичем состоянии через бумажинй фильтр. Суспензию пеобходимо перенести на фильтр за один прием. Для фильтрования используют фильтровальние устеновки и десятинозиционные кассети или лабора-

^{3.3.1.} Притотовление вытяжки

торние воронки и колон. Мутние фильтраты центрифугируют.

Одновременно ставят контрольний опит, проводи его через все стадии анализа, исключая взятие проби почвогрунта. Для каждой нартии образцов контрольний опит проводит в 3-кратной повторности.

3.3.1.2. Приготорление вытяжки объемным способом

Пробу почвогрунта для анализа объемом 50 мл берут с помошью специального устройства. Для этого пилинир вместимостью 50 мл ставят в ковету, на него устанавливают цилиндр вместимостью 75 мл. Оба пилиндра заполняют доверку грунтом и вставляют в верхний цилиндр груз. не придагая дополнительных усилий. Затем верхний цилиндр сдвигают в сторопу для удаления содержащегося в нем излишка грунта. Из нижнего цалиндра пробу грунта переносят в коническую колбу вместимостью 500 мл. К пробе примивают ICO мл О.I%-ного раствора сернокислого матния. закривают чолоў полой стеклянной пробкой или лабораторной воронкой и киинтл. суспензию в течение 5 мин с момента закипанил, не допуская бурного кипения. Суспензию перемешивают и фильтруют в горячем состоянии через бумажный фильтр, стараясь перенести на фильтр возможно большее количество грунта. Для фильтрования используют фильтровальные установки и десятипозиционные кассеты или лабораторные воронки и колбы. Мутные фильтраты пентрифуги-DYDT.

3.3.2. Определение бора в витлжке из почвогрунта Отбирают дозатором или пипеткой по 5 мл витлжи, приготов-ленной по п.3.3.1, и растворов сравнения, приготовленных по п.3.2.14., в сухие прибирки вместимостью 10-15 мл, установленние в штатив. Приливают к пробам дозатором или пипеткой по 1 мл окисляющего раствора и содержимое перемешивают. Штатив с пробиржами погружают в киплиую водяную баню на 15 мин. Уровень води в бане должен бить вние уровия жидкости в пробирках. По истечении указанного времени штатив с пробирками винимают из горячей водяной бапи оклаждают растворы при комнатной температуре или в холодной воде. Затем в пробирки гриливают по 0.5 мл 10%-ного раствора аскорбиновой кислоти в перемешивают растворы. Растворы в пробирках должни бить бесцветными. Если витлжка полностью не обесцвечивается, необходимо исходную вытлжку предварительно раз-

бавить 0,1%-ным раствором сернокислого магиля и повторить анализ, взяв 5 мл разбавленной витляки. К окисленным витлякам приливают по 4 мл смещанного окрашивающего раствора, переменивают и оставляют на 2 ч,

Окраженные раствори фотометркруют в выветах с толщаной простечиваемого слоя I-2 см относительно первого раствора сравнения, не ссдержащего бора, при длине волин 420 нм или, используя светофильтр с максымумом пропускания в области 400-440 км.

3.4. Обработка результатов

По результатам фотометрирования растворов сравнения строят градуировочний график, откладывая по оси ординат злачение онтической плотности, а по оси абсцисс - концентрацию зора в растворе сравнения в пересчете на содержание элемента в почтогрунте: в мг на I кг почвогрунта при объемно-весовом опособе или в мг на I л почвогрунта при объемном способе приготовления витяжев. По значению оптической плотности акализируемого раствора и гредуировочному графику находит концентрацию бора в вытяжке в пересчете на оодержание элемента в почвогрунте: в мг на I кг или в мг на I л почвогрунта,

Если результат измерений виходит за предели градупровочного графии, определение повторяют, предварительно разбавыв вытижку 0,1%-ным раствором сернокислого магния.

Содержание подвижного бора в почвогрунте (X) в ыт на I кг или в ыт на I и грунта (в зависимости от способа приготовления витики) вичисляют по боржуле:

- где 11 концентрация обра в витыжие в пересчете на содержание элемента в почвогрунте, найдениал по градуировочному графику, мужг или муж групта;
 - коэффициент, учитизавший резбаимение витики перед анализом;
 - к конпентрация бора в растноре контрольного опита в пересчете на содержание бора в почвогрунте, найденная по градуировочному графику, мг/кг или мг/л.

Значение результата контрольного опыта не должно превищать $0.5~{\rm Mr/kr}$ или $0.1~{\rm Mr/x}$ грунга.

3.5. Контроль точности анализа

Допускаемие при вероятности P = 0.95 отклонения от среднего арифметического при повторных анализах в одной лаборатории с использованием объемно-весового способа приготовления выятими и при друх параллельных анализах с использованием объемного способа приготовления витяжки приведени в таблице 4.

Таблипа 4

йскооон-симолоо тин пинэл	опособ приготов- рики	Объемный способ приготов- леная вытяжки		
содержание бора, мг/гг грунта	допускаемые от- клочения от оред- него, % отн.	содержание бо- ра, мі/л грун- та	допускаемие отклочения от среднего, лоти.	
0т 0,5 до 2,0	35 (От 0, I до 0,5	35	
Св. 2,0 до 5,0	20	Св. 0,4 до 1,0	15	
Св. 5,0	I5	CB. I,0	IO	

4. ОЦЕНКА ОБЕСПЕЧЕННОСТИ ПОЧВОГРУПТОВ ПОДВИЖНЫМИ ФОРМАМИ МИКРОЭЛЕМЕНТОВ

По результатам анализов тепличных почвогруптов проводит оценку обеспеченности их подвижними формами микроэлементов на основе градаций, учитывающих способ приготовления вытяжки (табл. 5-7). При использовании объемно-весового опособа приготовления вытяжки результати енализа должни быть пересчитани на единипу объема. Для этого содержание элемента, вираженное в мг на I кг групта, умножают на плотность групта.

Таблипа б

Урсвни обеспеченности микроалементами тепличных органо-минеральных почвогрунтов на основе торфа и некарбонатных почв при использовании обычновесового способа приготовления вытижки

Vn a reserve	Содержание микроэлементов, мг/л грунга					
Уровни обеспеченности	вытяжк и ацет	водная Вытажке				
	ITNRIC	медъ	мартанец	dop		
Низкий	До 20	До 5	До 20	До I		
Нормальний	Св.20 до 40	Св.5 до IO	Св. 20 до 40	Св. Т до 2		
Высокий	CB. 40	CB. IO	Св. 40	CB. 2		

Таблица 6

Уровни обеспеченности микроэлементами тепличных сргано-минеральных псчвогрунтов на основе торфа и некарбонатных почр при использовании объемного способа приготовления вытяжки

Уровни	Содержание микровлементов, мг/л грунта				
итооннереповоо метооннереповоо	витяжка расты и ацетата ами	водная Вытяжка			
	Пичк	медь	бор		
Низкий	До 10	До 2	До 0,5		
Нормальный Высокий	Св. 10 до 20 Св. 20	Св. 2 до 4 Св. 4	Св. 0,5 до I,0 Св. I,0		

Уровни обеспеченности микроэлементами тепличных

Таблица ?

органо-иннеральных почвогрунтов на основе карбо-натичх почв рпри использовании объежно-несового способа приготовления вытужки

3/	Содержание микроэлементов, мг/л групта				
итоониечепоеро итоониечепоеро	витялка расти и ацетата ам	водная вижка			
	цинк	медь	бор		
Ниэкий	До 20	До 20	До I,5		
Нормальний	Св. 20 до 40	Св. 20 до 50	Св. 1,5 до 3,5		
Высокий	Cr. 40	Ca. 50	Св. 3,5		

ЛИТЕРАТУРА

- I. Методические рекоменцации по применению микроудобрений. М., BMYA. 1977, c. 30-32.
- 2. Ринькис Г.Я., Ноллендорф В.Ф. Оптимизация минерального питания полевых и тепличных культур. Рига. Изд-во "Зинатне", 1977. c. 22-72.
- 3. Организации работы агрохимической лаборатории тепличного хозяйства (рекомендации). М., 1979, с. 8-10.

СОДЕРЖАНИЕ

		Стр.
Oduca enjudo	٠.	. з
І. Подготовка почвогрунта к аналкзу	• •	, 5
2. Определение подвижных форм меди, динка, мартанца железа в почвогрупте		6
3. Определение подвижного бора в почвогрунте		17
4. Оценка обеспеченности почвогрунтов подражними формикроэлементов		
Литература		. 28

Ответственный за выпуск Н.А. Чеботарева Редактор Е.А. Красавина

		Contractive or the Party of the
Подписано к печати	22/XI-65 r. II64996	3ar. 325
Объем 2,0 печ.л	Тирак 1000 экв.	Цена 20 коп.
		-

КМУ НИПТИК, г. Клин, пос. Майдановс, д. 8 б.