4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение химических соединений и элементов в биологических средах, молочной продукции и объектах окружающей среды

Сборник методических указаний МУК 4.1.3474—4.1.3482—17

Выпуск 2

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение химических соединений и элементов в биологических средах, молочной продукции и объектах окружающей среды

Сборник методических указаний МУК 4.1.3474—4.1.3482—17

Выпуск 2

ББК 28.072 Об2

Об2 Определение химических соединений и элементов в биологических средах, молочной продукции и объектах окружающей среды: Сборник методических указаний. Вып. 2.—М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. 2018.—144 с.

ISBN 978-5-7508-1631-6

- 1. Подготовлены коллективом авторов ФГБНУ «Восточно-Сибирский институт медико-экологических исследований», Федеральным бюджетным учреждением науки ФНЦ «Федеральный научный центр медикопрофилактических технологий управления рисками здоровью населения», ФБУН «Нижегородский НИИ гигиены и профилатологии» Роспотребнадзора, ФБУЗ «Федеральный центр гигиены и эпидемиологии» Роспотребнадзора.
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 22 декабря 2016 г. № 2).
- 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации А. Ю. Поповой 15 июня 2017 г.
 - 4. Введены впервые.

ББК 28.072

Редактор Л. С. Кучурова Компьютерная верстка Е. В. Ломановой

Полписано в печать 29.05.18

Формат 60х84/16

Тираж 100 экз.

Печ. л. 9,0 Заказ 30

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован Федеральным центром гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а

Реализация печатных изданий, тел./факс: 8 (495) 952-50-89

Содержание

Введение
Измерение массовой концентрации тиодигликолевой кислоты в моче методом капиллярной газожидкостной хроматографии: МУК 4.1.3474—17
Измерение массовой концентрации тиодиуксусной кислоты в моче методом газовой хромато-масс-спектрометрии: МУК 4.1.3475—17
Измерение массовой концентрации фторид-ионов в пробах волос потенциометрическим методом с применением ионоселективного электрода: МУК 4.1.3476—17
Измерение массовой концентрации монохлоруксусной кислоты в пробах мочи методом капиллярной газовой хроматографии: МУК 4.1.3477—17 43
Измерение содержания летучих N-нитрозоаминов (N-нитрозодиметиламин, N-нитрозодиэтиламин) в молочной продукции (детские каппи) хроматомасс-спектрометрическим методом: МУК 4.1.3478—17
Измерение массовых концентраций N-нитрозоаминов (N-нитрозодиметиламин, N-нитрозодиугиламин) в крови методом капиллярной газовой хроматографии: МУК 4.1.3479—1771
Измерение массовых концентраций химических элементов (кадмий, свинец, мышьяк, ртуть) в молоке и молочных продуктах методом масс-спектрометрии с индуктивно связанной плазмой: МУК 4.1.3480—17 84
Измерение массовых концентраций химических элементов в атмосферном воздухе методом масс-спектрометрии с индуктивно связанной плазмой: МУК 4.1.3481—17
Измерение массовой концентрации витамина К1 в сыворотке крови методом высокоэффективной жидкостной хроматографии (ВЭЖХ):
МУК 4.1.3482—17

Введение

Включенные в сборник 9 методических указаний по определению химических соединений в биологических средах, объектах окружающей среды и молочной продукции предназначены для использования в химико-аналитических исследованиях при проведении биомониторинга состояния здоровья населения, для практического использования в рамках социально-гигиенического мониторинга на территориях с высокой антропогенной нагрузкой, а также могут быть использованы для диагностических целей в рамках осуществления государственного санитарного надзора, контроля, экспертизы, расследований. Методические указания предназначены для специалистов химико-аналитических лабораторий системы Роспотребнадзора, научно-исследовательских институтов, работающих в области экологии человека, гигиены окружающей среды и защиты прав потребителей.

Методические указания, включенные в сборник, разработаны и подготовлены в соответствии с требованиями ГОСТ Р 8.563—96 «Государственная система обеспечения единства измерений. Методики выполнения измерений», ГОСТ Р 1.5—92 «ГСС. Общие требования к построению, изложению, оформлению и содержанию стандартов», МИ 2335—95 «Внутренний контроль качества результатов количественного химического анализа», МИ 2336—95 «Характеристики погрешности результатов количественного химического анализа. Алгоритм оценивания».

Все методики измерения прошли метрологическую аттестацию в соответствии с правилами ПР 50.2.002—94 «ГСИ. Порядок осуществления государственного метрологического надзора за выпуском, состоянием и применением средств измерений, аттестованными методиками выполнения измерений, эталонами и соблюдением метрологических правил и норм».

В методических указаниях, включенных в сборник, приведены методы определения 6 органических соединений в биологических средах (моча, кровь) и молочной продукции, 4 тяжелых металлов в молочной продукции и 20 тяжелых металлов и элементов в атмосферном воздухе. Определение токсичных веществ и элементов основано на использовании современных высокочувствительных методов физико-химического анализа — капиллярной газожидкостной хроматографии, хромато-массспектрометрии, масс-спектрометрии с индуктивно связанной плазмой, высокоэффективной жидкостной хроматографии, потенциометрии с применением ионселективного электрода.

Методические указания рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А. Ю. Попова

15 июня 2017 г.

4.1. МЕТОЛЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовой концентрации витамина K_1 в сыворотке крови методом высокоэффективной жидкостной хроматографии (ВЭЖХ)

Методические указания МУК 4.1.3482—17

Свидетельство о метрологической аттестации № РОСС RU.0001. 310430/0200.10.07.14 от 10.07.2014.

Настоящие методические указания устанавливают порядок применения метода высокоэффективной жидкостной хроматографии для измерения массовой концентрации витамина K_1 в сыворотке крови в диапазоне 2,5—44,0 нг/см³.

Методические указания носят рекомендательный характер.

Витамин K_1 — витамин коагуляции, антигеморрагический витамин, 2-метил-3-фитил-1.4-нафтохинон.

Структурная формула:

Эмпирическая формула: $C_{31}H_{46}O_2$.

Молекулярная масса: 450,7.

Регистрационный номер CAS: 84-80-0.

Физико-химические свойства. Светло-желтое маслянистое вещество, липофильно (жирорастворимо), гидрофобно, растворимо в хлороформе, диэтиловом эфире, этиловом спирте и других органических растворителях. $T_{\rm nn} = -20$ °C, $T_{\rm кип} = 115 - 145$ °C (в вакууме). Растворы поглощают УФ-лучи.

Метаболическая роль витамина К. Витамин К необходим, прежде всего, для механизмов свертывания и регуляции крови. Также витамин К играет важную роль в формировании и восстановлении костей, обеспечивает синтез белка костной ткани (остеокальцина), на котором кристаллизуется кальций. Он способствует предупреждению остеопороза, участвует в регуляции окислительно-восстановительных процессов в организме. Дефицит витамина К в организме приводит к развитию геморрагического синдрома, который проявляется внутрикожными и подкожными кровоизлияниями, кровоточивостью десен, носовыми и желудочно-кишечными кровотечениями.

Витамин К представлен в природе двумя формами: растительным филлохиноном (K_1) и менахиноном (K_2), синтезируемым бактериями и образующимся из формы K_1 . Биомаркерами витамина К являются концентрация филлохинона (витамина K_1) в плазме крови и процент некарбоксилированного остеокальцина в плазме крови.

Физиологическая функция витамина К заключается в образовании дополнительных карбоксильных групп в протромбине, проконвертине и других белковых факторов, которые вместе с ионами кальция инициируют процесс образования тромбина. Ферментативное действие тромбина на первом этапе способствует превращению растворимого в плазме белка фибриногена в мономерную форму белка фибрина, на следующем этапе образованию регулярной структуры растворимого фибрин-полимера. Образованный рыхлый сгусток под воздействием фибринстабилизирующего фактора свертывания крови, тромбина и ионов кальция превращается в нерастворимый фибрин, стабилизирующий структуру сгустка, необходимого для прекращения кровотечения.

Нормальный уровень содержания витамина K_1 в сыворотке крови составляет 5,0—30,0 нг/см³.

Содержание в продуктах питания. Витамин K_1 содержится в большом перечне пищевых источников растительной природы, включая зеленые овощи (брокколи, шпинат, капуста белокочанная, фасоль и др.), в которых он находиться в комплексе с хлорофиллом, и некоторые растительные масла (соевое, хлопковое, оливковое, рапсовое). Гидрогенизация масел приводит к снижению биодоступности и биоэффективности витамина. В молоке, яйцах, рыбе, мясе и зерновых продуктах его содер-

жание не превышает 7 мкг в 100 г съедобной части. Кулинарные потери при тепловой обработке продуктов незначительны.

Нормы потребления. Установленный уровень потребления витамина К в разных странах варьируется от 55 до 120 мкг/сутки, а физиологическая потребность для взрослых — 120 мкг/сутки, для детей — от 30 до 75 мкг/сутки.

1. Погрешность измерений

1.1. Нормы погрешности измерений

Нормы погрешности измерений массовой концентрации витамина K_1 в сыворотке крови в нормативной документации не регламентированы.

1.2. Приписанные характеристики погрешности измерений и ее составляющих

При соблюдении всех регламентируемых условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерения при доверительной вероятности P=0,95 не превышает значений, приведенных в табл. 1 для соответствующего диапазона массовых концентраций витамина K_1 в сыворотке крови.

Таблица 1 Приписанные характеристики погрешности МВИ и ее составляющих при доверительной вероятности 0,95

Диапазон опреде- ляемых концен- траций, нг/см ³	(границы относи- тельной погреш- ности, $p=0.95$), $\pm \delta$, %	Показа- тель пов- торяемо- сти (средне- квадра- тичное отклоне- ние пов- торяемо- сти), σ_r , нг/см	Показатель воспроизводимости (среднеквадратичное отклонение воспроизводимости), σ_R , $\mu\Gamma/cm^3$	Предел повторяемости (значение допустимого расхождения между двумя результатами параллельных определений), г, нг/см	Предел воспроизводимости (значение допустимого расхождения между двумя результатами измерений, полученных в одной лаборатории), R , Hr/cm ($p = 0.95$)	Сред- няя степень извле- чения, %
От 2,5 до 44,0 вкл.	19	$0,018 \cdot \bar{X}$	$0,036 \cdot \overline{X}$	$0,051\cdot \overline{X}$	$0,101\cdot \overline{X}$	81,69

Значения показателя точности используют:

при оформлении результатов измерений, выдаваемых лабораторией;

при оценке деятельности лабораторий по вопросу качества проведения измерений;

 при оценке возможности использования результатов измерений при реализации методики измерений в конкретной лаборатории.

2. Метод измерений

Выполнение измерений массовой концентрации витамина K_1 в сыворотке крови проводят методом высокоэффективной жидкостной хроматографии с использованием спектрофотометрического детектора и предварительным проведением экстракции витамина из сыворотки гексаном, высушивания гексанового экстракта, растворения высушенного остатка в элюенте. Идентификация витамина осуществляется по времени удерживания. Количественное определение витамина K_1 проводится методом абсолютной градуировки.

Измерению не мешают другие компоненты матрицы сыворотки, в частности, витамины А и Е.

3. Средства измерений, вспомогательные устройства, материалы и реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

3.1. Средства измерений

Хроматограф жидкостный: ОСКО выходных сигналов не более 3 %; относительное отклонение выходного сигнала от первоначального значения через 8 часов работы не более 6 %; время выхода на режим не более 1 часа Спектрофотометрический детектор: диапазон длин волн 190—600 нм; точность установки \pm 1 нм; воспроизводимость \pm 0,5 нм; источник света — дейтеривая лампа Насос для ВЭЖХ изократический; диапазон производительности 0,01—10 см³/мин, максимальное рабочее давление 40 МПа, точность поддерживаемой скорости подачи растворителя 1 см³/мин \pm 1 % Аналитический инжекторный клапан: макси-

Аналитический инжекторный клапан: максимальное операционное давление — 35 МПа; управление — ручное; инжекторная петля объемом 100 мм³; материал — нержавеющая сталь; игла 22/51/3

MYK 4.1.3482-17

Весы лабораторные электронные специального класса точности: дискретностью не более 0,1 мг; наименьший предел взвещивания - 0,01 г; наибольший предел взвещивания – 200 г ГОСТ Р 53228---08 Одноканальные дозаторы пипеточные TY 9452-002-33189998---06 переменного объема 5—50, 20—200, TY 9446-005-33189998---07 $500-5000 \text{ mm}^3$ ТУ 9443-008-33189998—09 Цилиндры 3-50-1, 3-100-1, 3-250-1 ГОСТ 1770-74 Пробирки со шлифом П-2-5-0,1; П-1-10-0,1 ГОСТ 1770-74 Колбы мерные, 2-10-2, 2-25-2, 2-500-2 ΓΟCT 1770---74 Микропробирки полиэтиленовые конические с колпачком типа Эппендорф, объем 1.5 см³

Примечание. Допускается использование средств измерений с аналогичными или лучшими характеристиками.

3.2. Реактивы

Вода дистиллированная ГОСТ 6709—72 Метанол, осч, для хроматографии ТУ 6-09-2192-85 Ацетонитрил, осч. для жидкостной хроматографии ТУ 6-09-14-2167-84 Метилен хлористый, осч ТУ 6-09-14-2149---83 Гексан, хч, для хроматографии ТУ 6-00-4521 Спирт этиловый ректификованный ГОСТ Р 55878—13 Витамин К, (количественное содержание, включая Z и E изомеры, - 97,69 %) Подвижная фаза (элюент) для хроматографии метанол : ацетонитрил : хлористый метилен (45:50:506.%)

Примечание. Допускается использование других реактивов с аналогичной, или более высокой квалификацией, не требующих дополнительной очистки растворителей.

3.3. Вспомогательные устройства, материалы

Аналитическая хроматографическая колонка из нержавеющей стали C18, 250 × 4,60 mm × 5 µм Картриджная защитная система C18 4 × 3,0 mm Вакуумный насос ГОСТ Р 52615—06 Колба Бунзена 1-1000-45 ГОСТ 23932—90 Воронка фильтрующая Шотта, пористость — S4, диаметр – 60 мм, высота — 191 мм ГОСТ 25336—82

Центрифуга лабораторная: Скорость центрифигурирования – от 100 до 3 000 об./мин; максимальная центрифугальная сила – до 1 900 g

ГОСТ 12.2.091---02

Перемешивающее устройство:

регулируемая частота колебаний платформы 0—250 кол./мин; максимальное перемещение платформы — 25 мм; максимальная регулируемая температура нагрева платформы — 80 °C

ТУ 64-1-1081--73

Встряхиватель: скорость вращения гнезда — 50—4000 об./мин; орбитальное вращение Шкаф сушильный: диапазон рабочих температур — от 50 до 320 °C; точность измерения температуры — \pm 0,5 °C Микрошприц объемом 500 мкл Азот газообразный

ГОСТ 9293---74

Примечание. Допускается применение оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования к безопасности

- 4.1. При выполнении измерений соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88 и по ГОСТ 12.1.007—76.
- 4.2. При работе с легковоспламеняющимися веществами необходимо соблюдать меры противопожарной безопасности по ГОСТ 12.1.004—91. Должны быть в наличии средства пожаротушения по ГОСТ 12.4.009—83.
- 4.3. При выполнении измерений на жидкостном хроматографе необходимо соблюдать правила электробезопасности в соответствии с ГОСТ Р 12.1.019—09 и инструкцией по эксплуатации прибора.
- 4.4. При работе со сжатыми газами необходимо соблюдать Федеральные нормы и правила в области промышленной безопасности «Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением» (утв. Ростехнадзором приказом от 25.03.2014 № 116) и ГОСТ 12.2.085—02. Запрещается открывать вентиль баллона, не установив на нем понижающий редуктор.
- 4.5. Помещение лаборатории должно быть оборудовано приточновытяжной вентиляцией. Содержание вредных веществ в воздухе рабочей зоны не должно превышать ПДК (ОБУВ), установленных ГН 2.2.5.1313—03 (ГН 2.2.5.2308—07).

4.6. Необходимо провести обучение работающих безопасности труда согласно ГОСТ 12.0.004—90.

5. Требования к квалификации оператора

Измерения в соответствии с настоящей методикой может выполнять специалист, имеющий опыт работы на жидкостном хроматографе, освоивший данную методику и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений.

6. Требования к условиям измерений

- 6.1. При выполнении измерений в лаборатории должны быть выполнены следующие условия:
 - температура воздуха: (20 ± 5) °C;
 - атмосферное давление: 84—106 кПа (630—800 мм рт. ст.);
 - относительная влажность воздуха: не более 80 %.
- 6.2. Выполнение измерений на жидкостном хроматографе проводят при следующих условиях:
 - напряжение питания: (220 ± 10) В;
 - частота переменного тока: (50 ± 10) Γ ц.
- 6.3. Выполнение измерений на жидкостном хроматографе проводят в соответствии с руководством по эксплуатации используемого оборулования.
- 6.4. Для предотвращения разрушения витамина К₁ анализ сыворотки и стандартов проводят, предохраняя пробы от попадания прямого солнечного света и воздействия повышенных температур. Анализ сыворотки крови необходимо проводить в течение 2—6 часов после забора крови.

7. Подготовка к выполнению измерений

При подготовке к выполнению измерений проводят следующие работы: подготовка хроматографических колонок, приготовление растворов, установление градуировочной характеристики, отбор и подготовку крови для анализа.

7.1. Подготовка хроматографических колонок

На хроматограф последовательно устанавливают предколонку, колонку.

Перед проведением измерения необходимо установить скорость подачи элюента 1 см³/мин до установления равновесия в колонке, которое определяется по стабильности нулевой линии детектора.

7.2. Приготовление растворов

Элюент для хроматографии — метанол: ацетонитрил: хлористый метилен (45:50:5). В мерную колбу вместимостью 500 см³ помещают 250 см³ ацетонитрила, 25 см³ хлористого метилена и доводят объем смеси до метки метанолом. Раствор тщательно перемешивают, дегазируют фильтрованием через воронку Шотта в колбу Бунзена, присоединенную к вакуумному насосу (или дегазируют с помощью блока автоматической дегазации и фильтрации растворителя). Срок хранения полученного раствора в холодильнике при температуре 2—8 °С в темной посуде 1 год.

Растворы витамина К₁.

Раствор А — основной раствор с массовой концентрацией витамина K_1 220 мкг/см³. В мерную колбу вместимостью 25 см³ вносят около ½ объема этилового спирта, закрывают пробкой и взвешивают, затем иглой вносят каплю (0,0038 г) витамина K_1 и снова взвешивают. Тщательно перемешивают до полного растворения витамина, доводят до метки этиловым спиртом, затем содержимое вновь перемешивают. Полученный раствор хранят в холодильнике при температуре 2—8 °С в темной посуде не более 6 месяцев.

Раствор Б с массовой концентрацией витамина K_1 0,22 мкг/см³. В мерную колбу вместимостью 25 см³ с помощью дозатора вносят 0,025 см³ раствора А, доводят этиловым спиртом до метки и содержимое тщательно перемешивают. Полученный раствор хранят в холодильнике при температуре 2—8 °C не более 2 месяцев.

Рабочие градуировочные растворы. В мерные колбы вместимостью 10 см³ сначала вносят 2—3 см³ этилового спирта, затем с помощью дозатора вносят определенный объем раствора Б, в соответствии с табл. 2, и добавляют этиловый спирт до метки, содержимое тщательно перемешивают. Срок хранения в холодильнике при температуре 2—8 °С не более 2 недель.

Таблица 2 Приготовление градуировочных растворов витамина К₁

№ градуировочного раствора	Объем раствора Б (V), см ³	Концентрация витамина K_1 в градуировочном растворе (С), нг/см ³
1	2,000	44,0
2	1,000	22,0
3	0,500	11,0
4	0,200	4,4
5	0,057	2,5

ляемых концентраций.

7.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость величины аналитического сигнала от массовой концентрации витамина K_1 (нг/см³), устанавливают путем измерения высот пиков витамина K_1 в градуировочных растворах, приготовленных по п. 7.2.

Каждый из градуировочных растворов в количестве 0,5 см³ шприцем вводят в хроматографическую систему, с помощью петлевого дозатора отсекается по 0,1 см³, которые анализируются без термостатирования колонки в следующих условиях:

- скорость движения элюента

время удерживания витамина К₁

1 см³/мин

– длина волны спектрофотометрического детектора

248 нм 17—18 мин

Для каждого анализируемого раствора проводят 5 параплельных измерений. По средним арифметическим значениям из пяти результатов измерения высот пиков в программе сбора и обработки хроматографических данных строится градуировочный график в координатах: «концентрация витамина (C_{np}) , нг/см³» — «высота пика витамина (H), мВ». Различие между измеренными значениями аналитических сигналов и времен удерживания не должно превышать 5 % от средних значений.

Линейная зависимость должна соблюдаться во всем дианазоне опреде-

7.4. Отбор и подготовка проб крови для анализа

Венозную кровь отбирают в количестве 5 см³ угром натощак. Для получения сыворотки кровь термостатируют в течение 30 мин при 37 °С, затем аккуратно обводят по всему радиусу пробирки стеклянной палочкой и центрифугируют в течение 15 мин со скоростью 3 000 об./мин. Далее сыворотку (верхний слой) отделяют в пробирки типа Эппендорф и используют для анализа.

В центрифужные стеклянные пробирки с притертой пробкой помещают по 0,8 см³ сыворотки, добавляют равное количество этилового спирта (для осаждения белка), встряхивают в течение 2—3 с на встряхивателе со скоростью вращения гнезда 2 000 об./мин. Затем к смеси добавляют 0,8 см³ гексана, пробирки плотно закрывают пробкой и перемешивают в течение 15 мин на перемешивающем устройстве, при этом пробирки закрывают черной бумагой для предотвращения прямого воздействия света. Далее пробы центрифугируют в течение 10 мин со скоростью 3 000 об./мин. Аликвоты гексановых экстрактов в количестве 0,5 см³ переносят в пробирки типа Эппендорф и упаривают в токе азота досуха. Остатки растворяют в 0,5 см³ элюента. Для каждой пробы выполняют два параллельных измерения.

Примечание. Процедуры перемешивания и центрифугирования необходимо проводить в темноте, при охлаждении.

8. Выполнение измерений

После выхода хроматографа на режим в дозирующее устройство прибора микрошприцем вводят $0.5~{\rm cm}^3$ одного из градуировочных растворов (обычно с концентрацией, лежащей в середине рабочего диапазона) и анализируют в условиях, указанных в п. 7.3. По окончании хроматографического анализа определяют время удерживания витамина ${\rm K}_1$ и высоту пика. Далее величина высоты полученного пика наносится на градуировочный график (с целью корректировки градуировочной характеристики).

Затем в дозирующее устройство вводят $0.5 \, \mathrm{cm}^3$ анализируемого раствора и так же анализируют в условиях, указанных в п. 7.3. По окончании хроматографического анализа проводят ручную разметку пиков и идентификацию обнаруженных пиков. Витамин K_1 идентифицируют по времени удерживания: совпадение времени удерживания витамина K_1 в пробе с временем удерживания витамина K_1 в градуировочном растворе (с ошибкой не более 5 %) свидетельствует о правильной идентификации.

9. Обработка результатов измерения

Количественный расчет массовой концентрации витамина K_1 осуществляют с помощью программы сбора и обработки хроматографических данных. Используют метод абсолютной градуировки. При этом концентрация витамина K_1 в пробе $(C_{nup}, \text{нг/cm}^3)$ считается автоматически.

Вычисляют среднее арифметическое двух параллельных измерений C_{np1} , C_{np2} , расхождение между которыми не должно превышать 5 % от среднего значения:

$$C_{np} = \frac{C_{np1} + C_{np2}}{2}$$
, где

 C_{np} — массовая концентрация витамина K_1 в сыворотке крови, ${
m Hr/cm}^3$.

Результат считают удовлетворительным, если выполняется следующее неравенство:

$$C_{max} - C_{mn} \le \frac{C_{max} + C_{mun}}{200} \cdot r \text{, fige} \tag{4}$$

 C_{max} и C_{min} – максимальный и минимальный результат единичных измерений;

r — предел повторяемости (допускаемое расхождение между результатами единичных измерений), %.

Значения предела повторяемости r представлены в табл. 1.

При превышении предела повторяемости определение повторяют. При повторном превышении норматива повторяемости выясняют причины, приводящие к получению неудовлетворительных результатов, и устраняют их.

10. Оформление результатов анализа

Результат количественного анализа «С», нг/см³ представляют в виде:

$$C \pm \Delta$$
 (p = 0,95), где $\Delta = \frac{\delta}{100} \cdot C$

C — среднее арифметическое результатов параллельных определений, признанных приемлемыми, нг/см³;

 δ — относительная погрешность определения массовой концентрации витамина K_1 , %, приведенная в табл. 1.

Примечание. Числовые значения результата измерений оканчиваются цифрой того же разряда, что и значение показателя точности методики измерений (абсолютной погрешности измерений массовой доли определяемого компонента).

11. Контроль качества результатов измерений

11.1. Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводится каждый раз перед началом анализа и через каждые пять проб по раствору стандартного образца. Рекомендуется, чтобы концентрация уточняющего стандарта находилась примерно в середине диапазона концентраций, в котором предполагается проводить измерения, в случае же если он заранее неизвестен, то в середине диапазона градуировочного графика.

Контроль стабильности градуировочной характеристики осуществляется путем сравнения данных о содержании витамина K_1 , полученных с помощью градуировочной характеристики, с реальным содержанием витамина K_1 в контрольном растворе.

Стабильность градуировочной характеристики считают удовлетворительной, если для контрольной точки выполняется следующее условие:

$$\left| \frac{C_{o} - C_{z}}{C_{o}} \right| \cdot 100 \le K_{z}$$
, где

 $C_o - C_\varepsilon$ — расхождение между аттестованным значением массовой концентрации раствора стандартного образца и концентрацией, определенной с помощью градуировочной характеристики, нг/см³;

 C_o – концентрация раствора, приготовленного из ГСО, нг/см³;

 C_{z} — массовая концентрация витамина K_{1} , определенная по градуировочной характеристике, Hr/cm^{3} ;

 K_{e} — норматив контроля стабильности градуировочной характеристики: $K_{e} = 1.96 \cdot \sigma_{R}$, где

 σ_R – показатель воспроизводимости, приведен в табл. 1.

Градуировочная характеристика считается стабильной, если отклонение не превышает $\pm K_2$. Если условие не выполняется, эксперимент повторяют. Если результат повторного сравнения неудовлетворителен, то выясняют причины, приводящие к получению неудовлетворительных результатов контроля, и устраняют их. В случае невозможности устранения причин, приводящих к превышению норматива контроля стабильности градуировочной характеристики, градуировку проводят заново.

11.2. Контроль внутрилабораторной прецизионности

Для контроля внутрилабораторной прецизионности используют рабочие пробы. Две параллельные пробы анализируют в соответствии с прописью методики, максимально варьируя условия проведения анализа, т. е. в разное время, разными исполнителями, с использованием разных наборов посуды.

Внутрилабораторную прецизионность результатов измерений считают удовлетворительной, если расхождение между результатами анализа, полученными в одной лаборатории (в разное время, разными исполнителями, с использованием разных партий средств измерений) не превышает предела внутрилабораторной прецизионности $R_n = 0.84 R$:

$$C_{\max} - C_{\min} \leq \frac{C_{\max} + C_{\min}}{200} \cdot R$$
, где

 C_{max} , C_{min} — максимальный и минимальный результаты анализа при контроле внутрилабораторной прецизионности, нг/см³;

 C_{max} — C_{min} — фактическое расхождение между результатами анализа, $\mathrm{Hr/cm}^3$;

R – предел прецизионности, приведенный в табл. 1.

При удовлетворительных результатах контроля внутрилабораторной прецизионности приемлемы оба результата анализа, а в качестве окончательного может быть использовано их среднее арифметическое значение. При превышении предела внутрилабораторной прецизионности R_{π} могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

11.3. Оперативный контроль точности

Контроль точности результатов измерений проводят методом добавок в рабочие сыворотки крови.

Отобранную сыворотку крови делят на две части, первую из которых анализируют в точном соответствии с прописью методики и получают результат определения витамина K_1 в пробе (C), нг/см³. Во вторую часть вносят добавку (C_0) определяемого элемента, используя стандартные растворы. Содержание добавки должно составлять 50—150 % от содержания витамина K_1 в пробе.

Результат контроля считается удовлетворительным при выполнении условия:

$$K_{\kappa} = |(C' - C) - C_{\delta}| \le K_{\delta}$$
, где

C' – результат определения массовой концентрации витамина K_1 в пробе с добавкой, $\operatorname{Hr/cm}^3$;

C — результат определения массовой концентрации витамина K_1 в рабочей пробе без добавки, нг/см³;

 C_o – действительное содержание элемента в добавке к пробе, рассчитанное исходя из значения его содержания в стандартном образце, ${\rm Hr/cm}^3$.

 K_{∂} – норматив оперативного контроля точности.

Норматив оперативного контроля точности рассчитывают по формуле:

$$K_o = 0.84 \cdot \sqrt{(\Delta_{\rm I})^2 + (\Delta_{\rm 2})^2}$$
, где

 Δ_1 и Δ_2 — абсолютные погрешности определения массовой концентрации витамина K_1 в пробе (*C*) и в пробе с добавкой (*C'*) соответственно. Значения Δ_1 и Δ_2 рассчитывают по формулам:

$$\Delta_1 = 0.01 \cdot \delta \cdot C$$
; $\Delta_2 = 0.01 \cdot \delta \cdot C'$, где

 δ — относительная погрешность определения массовой концентрации витамина K_1 , приведенная в табл. 1.

Методические указания разработаны ФБУН «Нижегородский НИИ гигиены и профпатологии» Роспотребнадзора (Соколова О. В., Потапова И. А.).