Минтяжстрой СССР

Проектный и научно-исследовательский институт "КРАСНОЯРСКИЙ ПРОМСТРОЙНИИПРОЕКТ"

РЕКОМЕНДАЦИИ ПО ОЦЕНКЕ ХЛАДОСТОЙКОСТИ И АБРАЗИВНОЙ ИЗНОСОСТОЙКОСТИ МЕТАЛЛОВ

> Красноярск 1971

Минтяжстрой СССР

Проектный и научно-исследовательский институт "КРАСНОЯРСКИЙ ПРОМСТРОЙНИИПРОЕКТ"

РЕКОМЕНДАЦИИ ПО ОЦЕНКЕ ХЛАДОСТОЙКОСТИ И АБРАЗИВНОЙ ИЗНОСОСТОЙКОСТИ МЕТАЛЛОВ

> Красноярск 1971

На. гоящие Рекомендации содержат данные по химическому составу и основным механическим свойствам некоторых технически чистых металлов и сталей. Кроме этого, в Рекомендациях приводится изменение твердости, ударной вязкости, относительной износостойкости при трении и относительной износостойкости при трении и относительной износостойкости при ударе об абразивную поверхность техже материалов, испытанных в диапазоне температур от плю с 20 до минус 70°С. Приведенные материалы получены по данным лабораторных исследований, результаты которых частично проверены в условиях эксплуатации.

Рекомендации могут быть полезны конструкто - рам и изготовителям машин, предназначенных для эксплуатации в условиях Сибири и Севера. Ими мо - гут пользоваться работники эксплуатационных орга - низаций и ремонтных предприятий, которые модерни - зируют машины, чтобы повысить их работоспособность при низких температурах. Рекомендации будут полезны также для работников научно-исследовательских организаций, изучающих проблемы хрупкого разруше - ния и износостойкости деталей машин и машиностроительных материалов.

Редакционная коллегия:

В.А. Орлов (отв. редактор), Н.В. Хребтов, Г.В. Шумский.

В процессе эксплуатации строительных машин и механизмов наблюдаются повышенная аварийность и интенсивный износ их деталей. При этом установлено, что их работоспособность главным образом зависит от правильного выбора материала и вида его термической обработки. Меж ду тем сведений о поведении материалов при понижении температуры в обобщенном виде явно недостаточно. При этом если данные по ударной вязкости в какой-то мере известны, то показатели износостойкости металлов при низких температурах практически отсутствуют.

Настоящие Рекомендации представляют первую попытку обобщить основные свойства, некоторых металлов и сталей в диапазоне температур от плюс 20 до минус 70°С. Испытания по определению относительной износостойкости и твердости металлов проведены в институте "Красноярский промстройнинпроект". Ударная вязкость частично исследовалась в институте, а частично представлена поставшика - ми сталей или выбрана по литературным источни - кам.

Образцы для испытаний, сведения по химсос - таву и механическим свойствам некоторых сталей представлены институту следующими организациями:

- Красноярским заводом "Сибэлектросталь" опытные легированные конструкционные (кроме 40X) и нержавеющие стали:
 - Запор эж ским машиностроительным институ-

том им. Чубаря - сталь 110Г13Л с различными моди-фицирующими добавками;

- СФТИ им. В.Д. Кузнецова - стали 110Г13Л с ниобием и Г13Х2БЛ.

Остальные материалы полностью испытаны в институте. Определение относительной износостойкости при трении (\mathcal{E}_{i}) и при ударе (\mathcal{E}_{2}) об абразивную шкурку проводилось на установке типа УАМ [18].

Методические особенности проведения таких испытаний подробно изложены в работе [8]. Данная методика испытаний разработана в институте "Красно ярский промстройниипроект".

Испытания на ударную вязкость проводились по ГОСТам 9454-60, 9455-60. Измерение твердости при плюс 20°С проводилось по ГОСТам 9012-59 и 9018-59, а при проведении этих же измерений при отридательных температурах учитывались их основ - ные положения.

Основная особенность данных Рекомендаций состоит в том, что по приведенным графикам можно выбрать материал, обеспечивающий оптимальную работоспособность многих разрушающихся или изнашивающихся деталей машин. В общем виде выбор ма териала производится по тем свойствам, которые для данной детали определяют ее функциональное назначение.

При выборе сталей для деталей машин следу - ет рассматривать совместно показатели их ударной вязкости и абразивной износостойкости. При значи-тельном динамическом нагружении изнашиваемых деталей за критерий для выбора материалов берет - ся их ударная вязкость. При трении деталей о аб - разив без динамических нагрузок критерием для выбора материалов должна служить их абразивная износостойкость. Для промежуточных величин на - грузок следует руководствоваться принципом: чем

меньше величина динамической нагрузки на изнаши - ваемую деталь, тем ниже долж на быть температура отпуска закаленной стали.

Рекомендации составлены инженерами В.А. Ко-вальчуком и В.И. Гурьяновой.

Раздел 1

ХИМИЧЕСКИЙ СОСТАВ И МЕХАНИЧЕСКИЕ СВОЙСТВА ИССЛЕДОВАННЫХ МАТЕРИАЛОВ

 $\frac{{\tt _{\it Таблица} \ 1}}{{\tt _{\it Kлассификация} \ Mатериалов}} \ {\tt _{\it по}} \ {\tt _{\it ГОСТ}}$

Материал	гост
Опово	860-60
Магний	804-62
Алюминий	11069-64
Цинк	3640-65
Медъ	859-66
Никель	849-56
Армко-железо	_
Кобальт	123-67
Титан АМТУ	475-1 A-63
Молибден	4759-49
Сплав АМг-2	_
Сталь углеродистая обыкновенного качест-	
ва Ст. Зкп.	380–60
Сталь углеродистая литая 35Π	977-65

1	2
Сталь углеродистая качественная конструк- ционная 45	105060
Сталь легированная конструкционная 35X, 40X, 40XH, 12XH3A, 18X2H4BA, 12X2H4A, 20XH4ФA	4543-61
Сталь качественная рессорно-пружинная го- рячекатанная 60C2A	2052-53
Сталь инструментальная углеродистая У10А	1435-54
Сталь сортовая коррозионно-стойкая и же - ростойкая 1X17H2, 4X10C2M	5949-61
Сталь высоколегированная коррозионно- стойкая и жаростойкая и жаропрочная 2X13	5632-61
Высоколегированная сталь со специальными свойствами 110Г13Л	2176-67
Высоколегированная сталь со специальными свойствами 110Г13Л, модифицированная различными добавками	_
Экспериментальная хромомарганцовистая сталь X13Г19ТЛ	_
Сталь фирмы "Пенго"	-

Химический состав цветных металлов и сплавов

п.	i Mn Apyrne anamount	0,001 0,001 0,001-S. P.	0,008 0,0043 0,006-C; 0,003-S;	ı	0:10-0;0,05-C. (0:001-3:39 98-C)	ca.	0,04 0,01-Na: 0.005-K	1	$-$ 0,0005-PB, $S_{\rm h}$:	0,0002-Bi; 0,0006- S _b - 0,015-As; 0,093-Pa;	
1	Si	(0,006	0,08	0,001	corble corble	0,01	ı	í	ı	
e c H	Cu	0,001 0,001 0,001 0,001	ſ	ı	0,001	corble	1	G.	66,66	0,008	
и римеси, проц.	Zn	0,001	ı	j	•	ı	ı	99,99	0,0007	- <0,002	
11	Mg	0,001	1	ŧ	0,001	99,99 corbie	666	сл.	1	1	
	AR	0,001	0,018	i	0,001 0,001	66,66	0,02	CH.	i	> 0,002	
	끧	1	ı	99,97	1	í	•	ı	ı	1	
	Fe	99,99 0,002	oct.	0,12	0,003	corbie	0,04	си.	0,0005	0,005	•
	ij.	99,99	0,015	ı	0,005		0,001	1	9000,0	ı	
Металл,	сплав	Никель	Армко- железо	Титан	Кобальт 0,005 0,003	Алюминий	Магний	Цинк	Медь (Олово	,

Химический состав сталей

Марка			Соде	ржание	Содержание элементов, проц.	в, проц.			
сталя	e)	S _i	£	న	۵	ئ	ت	N.	Другие элементы
	2	က	4	5	9	7	80	6	
Ст. Зкп	0,15	сл.	0,15	0,024	0,019	0,10	ı	1	
35.11	0,33	0,32	0,68	0,024	0,018	0,05	1	ı	
45	0,49	0,22	0,68	0,029	0,031	0,10	j	ı	
35.X	0,33	0,23	09'0	0,009	0,016	0,90	90,0	0,14	
40X	0,47	0,23	0,62	0,023	0,026	1,00	i	ı	
40XH	0,39	0,22	0,64	0,008	0,015	0,64	0,10	1,12	
12XH3A	0,15	0,28	0,49	0,005	0,018	0,75	0,10	3,04	
18X2H4BA 0,16	A 0,16	0,35	0,40	900'0	0,017	1,52	0,13	4,05	0,11-Mo; 0,62-W
12X2H4A	0,12	0,25	0,48	0,007	0,014	1,37	0,10	3,29	
20XH4ФA	0,21	0,23	0,42	0,008	0,014	0,88	0,11	3,89	0,20- V

- 9 -

-	2		3	4	: S		9	7	∞	6 i	1 10	1
60C2A	0,61		1,70	0,70	0,012	8	0,017	0,27	1	0,35		1
y10A	1,10	_	0,19	0,22	0,016	9	0,018	0,10	•	1		
1X17H2	0,14		0,44	0,56	0,004	4	0,024	16,58	0,20	2,20		
4X10C2M	0,43	~	2,22	0,34	0,025	ເດ	0,026	9,74	0,10	0,13	0,85-Mo	
2X13	0,18		0,33	0,42	0,008	ø	0,024	12,92	0,17	0,24		
110万3月	1,09	_	0,42	12,20	0,011	_	0,068	ı	ı	•		
110F13J1 ^{x)}	1,42		0,70	13,90	0,010	0	0,10	,	ı	ı		
110113Л	1,21		0,64	12,80	0,050	0	0,090 до 0,5	до 0,5	ł	до 0,5	0,35-N\$	
гізхавл	1,20	_	ao 0,6	13,00	до 0,05		по 0,06	2,15	ŧ	f	0,10- NB	-
ХІЗГІ9ТЛ	0,39	_	0,30	16,51	0,003	က	0,058	1,54	!	,	0,07 - Ti	10
"Пенго"	0,42		0,28	0,90	0,017	7	0,012	0,55	ł	0,56	0,28-Mo	-
x)	1011											l
0,3-Al ; 0,3-Al + 0,003- \$ica; 0,15-T; 0,5-Mo; 1,0-W; 0,15-T; + 0,15- \$ica; 0,15- \$ica;	, 0,	3 - 7	46 + C	,003 – 15 – Ti	\$ 00 cm \$iCa; + 0,15	ецу 0,1	ющими 5-Тi Si Ca.	модиф; ; 0,15.	napy 10	шими до(a; 0,15.	Сталь пользы испытывалась со следующими модифирующими добавками, прод: 0,3-Al ; 0,3-Al + 0,003- SiCa; 0,15-Ti ; 0,15- SiCa; 0,15- FeCe; 0,3-V	

Таблица 4

Механические свойства цветных металлов и сплавов

			Механи	ческие	Механические свойства		TBeb-	1
Металл, сплав	Состояние	Q.	2400	vo	3	ан при + 20°С		/lurepa- rypa
	·	KPC,	$\kappa_{\Gamma c/MM}^2$	ďu	проц. к	Krc. M/cm	-	
Никель	отожжениое	28-30	i	35-40	1	4,3	65-70	[9,17]
Армко- железо	то же	35	ı	40	65-70	3,4	06	[10, 17]
Титан	TO We	45-60	38-50	25	50	7,0	207	
Кобальт	то же	50	ı	ය, ය	ı	í	154	0
Молибден	то же	47,5	44,6	46	26	f	187	permang gan d Basserd
Алю миний	то же	ശ	1,5	49	5,5	14	17	[4,11]
Магний	то же	19	ල	16	9	ı	40	[1] . IS
Цинк	ì	6,4	1,0	20	20	ì	20	gering gerid gering gerings
Медь	отожженное	20-24	7,5-15 ^x)	45-55	65-75	10-12	40-50	e serge The E serge
AMr-2	1	32	1	19	31	5,1	75	i
Олово	1	2,5	$1,2^{N}$	40-70	75-100	t	7-10	

Твблица 5

Механические свойства сталей

ı	1		1		1				12	2	-						
	Литера-	Ty pa		တ		[0]	3 3	<u>v</u>	_	2	[8]	To 1	[3]		[2]	[c1]	[9]
	Твер		4	∞		137	120	0 4 1	1	2	170	197	101		435	3	202 - 234
eri	дн при +20°С	XTC : NO CO.	TO MAN CIM	_	1	15	11	!	о О	7.	5,9	4.3-4.8			1.0		5-7 2
свойства	→	проп	Œ		ti C	0°,0	62,9		56.0	2	38,1	45-60			6,0		46-50
Механические свойства	6		ני		ر بر	2,03	24,8		22,0		22,6	19~20			3,0		52-59 12-14
Механ	ঠ	Rrc/mm2	4		9.8 A	2	27,2		37,0		27,2	39,0			120		52-59
	Ø.	KF	60		38.9		2 40,0		52,0		55,4	64-67			140	Ŷ	73-84
Термическая	обработка		2		Состояние поставки		Нормализация 920 _° С 40,0	Закалка с 860°С в	масло	0000	Orwar 950 C	Отжиг 800°С	Закалка с 830°С	в воду, отпуск	250°C	Закалка с 840°С в во-	ду, отпуск 400°С
Марка	стали		,		Ст. Зки						35/1	45					

1	ı				-	13 -			
2	9		口	<u> </u>	[8]	[6]			
- С	61-64 12-19 168-190	28 ^x)	20 x)	49-51 ^x)	345	220	32 ^x)	38 ^x)	37'X)
8	12-19	12,5	Ø	3,9	8,3	14	12,6	12,81	14,6
7	61–64	62,0	1		47	65	57,3	61,2	62,5
; e	18-20	14,4	25	,	7,5	14,5	14,4	15,0	14,5
5	41-44	06	30	178	105,6	58	105	114,7 15,0	114,7 14,5
4 !	61-68	99,7	09	194	119	78	114	127,2	129,2
; 3	Закапка с 840°С в во- ду, отпуск 600°С	Закалка с 860°С в масло, отпу <i>с</i> к 460°С	Состояние поставки	3 акалка с 850° С в масло, отпуск 200° С	Закалка с 850°С _в масло, отпуск 400°С	3 акалка с 850° С в масло, отлуск 600° С	Закалка с 820°C в масло, отпуск 470°C	Закалка с 860°C в масло, отпуск 150-170°C	18Х2Н4ВА Закалка с 950°C (ох лажценте на возцуке) отпуск 180°C
2		35X	40X				40XH	12XH3A	18X2H4BA

-	1	2	3 i 4	4		5	60		7	8	-	
									İ			
2X2H4A	Закалка масло, от	12X2H4A Закалка с 780-800°С в масло, отпуск 180-200°С 128,5 115,7	128,5	115,7		13,2	65,2 14,8	÷	8.	38x)		
20XH4ΦA		Закапка с 850°C в мас- по, отпуск 630°C	94,8	87,0		17,3	59,0	2	21,3	28 ^x)		
60C2A	Закапка по, отпус	Закалка с 850°C в мас- ло, отпуск 400°C	140	105		ນ	25,0		ı	387	[15]	
Y10A	Отжиг 780°С	30°C	0'09	1	U	23,0	60,0	•	j	197		
1X17H2	Закалка масло, о	Закалка с 1100°С в масло, отпуск 350°С	130,7 125,5	125,5	-	16,7	63,7 11,1	=	1,1	40x)		-
4X10C2M		Закалка с $1040-1100^{\circ}$ С в масло, отпуск $750-850^{\circ}$ С $109,7$ 87,2	2 109,7	87,2		16,5	47,5		4,57	27 ^x)		- 14 -
2X13	Закалка масло,от	Закалка с 1000–1100 $^{\rm O}$ С в масло, отпуск 700–775 $^{\rm O}$ С	74,8	63,8		23,5	67,5 19,0	18	0,0	100**)	(-
110113Л	Закалка	Закалка с 1100°С в воду 60-90	06-09	39,0	g	36-42	15-35 20-35	8	35	180-22	180-220 [7 , 12]	
110Г13Л с добавка- ми, проц.:		Закалка с 1050°C в воду										
	То же	χœ	57,3	t	Š	23,2		-	16,0	90xx)	~	

1	. 2	. 3	4	 	1 6 1 7	7	80	6
A l - 0,3	То же	57,7	ı	18,0	1	18,0	90 _{xx})	
Al - 0,3 + SiCa-0,003	3 To же	56,0	ı	14,4	i	9,4	90 ^{xx})	
Ti - 0,15	Тоже	61,5	J	24,4		18,6	91 ^{xx})	
SiCa-0,15	Тоже	57,0	ſ	24.0	ı	13,9	92 ^{xx})	
FeCe - 0,15	Тоже	56,6	ı	20,2	i	18,3	93 ^{xx})	
V - 0,3	Закапка с 1050°С в воду 59,7	воду 59,7	i	26,9	ı	17,0	96 xx	
Mo-0,5	Тоже	0,09	ı	29,0	i	22,7	98 _{xx})	
W - 1,0	Тоже	62,0	ŀ	27,2	ı	19,0	96	
Si Ca-0,15+ Ti - 0,15	+ To же	0'69	ı	33,6	1	16,1	95 xx)	
N8 - 0,35	Закалка с 1100°С в воду 86,0	воду 86,0	61,0	20-22	30 - 34	14,5	170-193	[13]
ХІЗГІВТЛ	Тоже	71,0	i	41,0	39,0	27,0	170-220	

TBepacers no Pokeenny HRC хх) Твердость по Роквеллу

HR3

Раздел. П

ТВЕРДОСТЬ, УДАРНАЯ ВЯЗКОСТЬ И ОТНОСИТЕЛЬНАЯ ИЗНОСОСТОЙКОСТЬ ИВЕТНЫХ МЕТАЛЛОВ И СПЛАВОВ

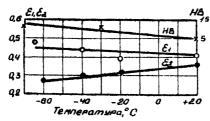


Рис. 1. Олово, отжиг 100°C.

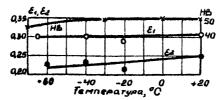
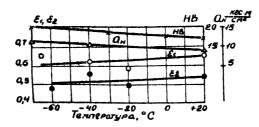



Рис. 2. Магний, отжиг 340 ± 10°C.

Рис. 3. Алюминий, отжиг 380°C.

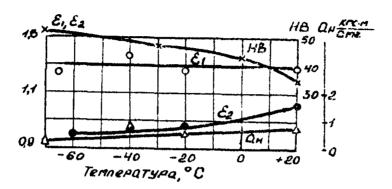


Рис. 4. Цинк, отжиг 200°С.

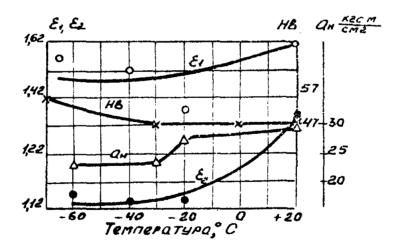


Рис. 5. Медь, отжиг 650°C.

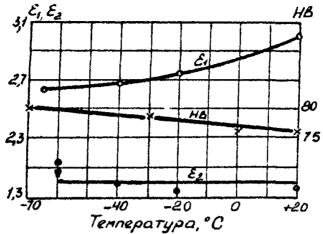


Рис. 6. Никель, отжиг 800°C.

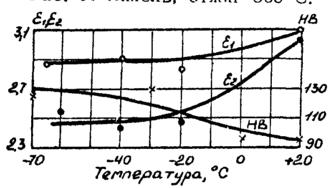


Рис. 7. Армко-железо, отжиг 800° С.

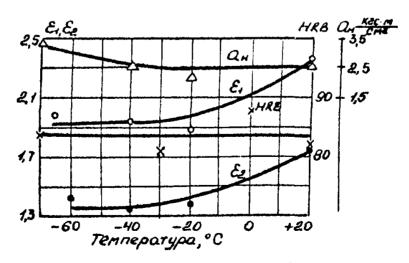


Рис. 8. Кобальт, отжиг 650°C.

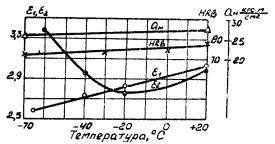


Рис. 9. Титан, отжиг 680 ± 10°C.

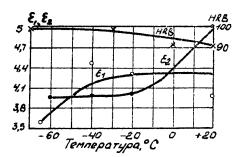


Рис. 10. Молибден, отжиг 1050°C.

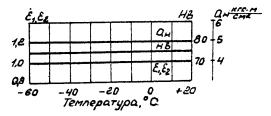


Рис. 11. Сплав АМг-2.

Раздел Ш

ТВЕРДОСТЬ, УДАРНАЯ ВЯЗКОСТЬ И ОТНОСИТЕЛЬНАЯ ИЗНОСОСТОЙКОСТЬ СТАЛЕЙ

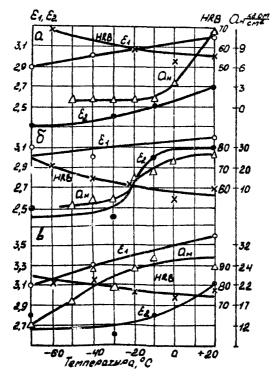


Рис. 12. Сталь Ст. 3кп: а — состояние поставки; 6 — нормализация 920°C; 6 — закалка с 920°C. в масло.

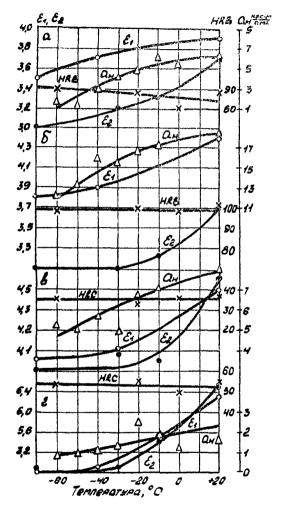


Рис. 13. Сталь 45: а — отжиг 830° С; б — закалка с 830° С в воду, отпуск 600° С; в — то же, отпуск 400° С; г — то же, отпуск 200° С.

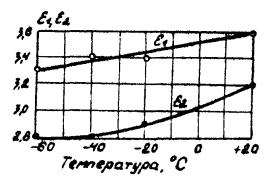


Рис. 14. Сталь 35Л, отжиг 820°C.



Рис. 15. Сталь 35X, закалка с 860° С в масло, отпуск 460° С.

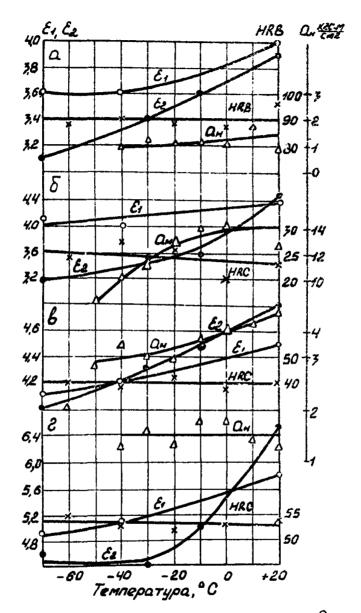


Рис. 16. Сталь 40X: а — отжиг 850° C; б — зекалка с 850° C в масло отпуск 600° C; в — то же, отпуск 400° C; г — то же, отпуск 200° C.

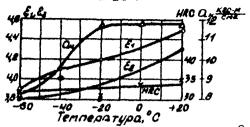


Рис. 17. Сталь 40XH, закалка с 820° С в масло, отпуск 470° С.

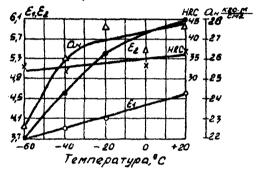
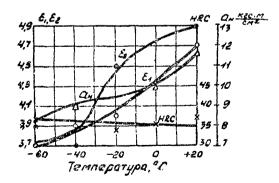



Рис. 18. Сталь 12ХНЗА, закалка т 860°C в масло, отпуск 150-170°C.

P_{нс.} 19. Сталь 18Х2Н4ВА, закалка с 950°С с охлаждением на воздухе, отпуск 180°С.

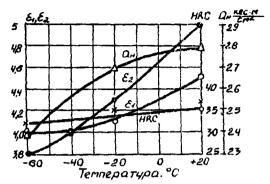


Рис. 20. Сталь 12X2144A, закалка с 780-800 °C в масло, отпуск 180-200 °C.

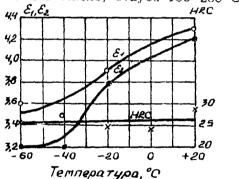


Рис. 21. Сталь 20ХН4ФА, закалка с 850°C в масло, отпуск 620°C.

Рис. 22. Сталь 60С2A, закалка с 870°C в масло, отпуск 200°C.

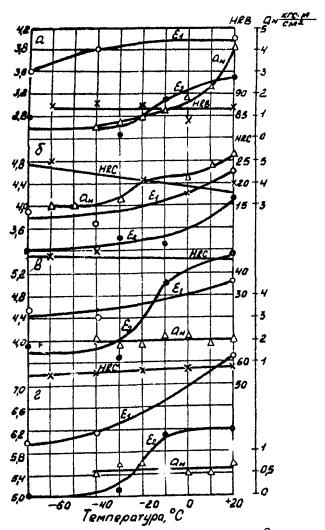


Рис. 23. Сталь У10А: а — отжиг 780°С; б — закалка, отпуск 600°С; в — закалка, отпуск 200°С.

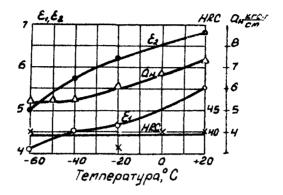


Рис. 24. Сталь 1X17H2, закалка с 1100°C в масло, отпуск 350°C.

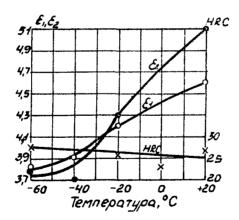


Рис. 25. Сталь 4X10C2M, закалка 1040-1100°C в масло, отпуск 750-850°C.

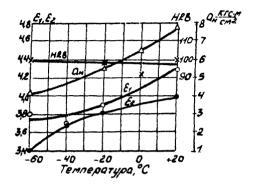
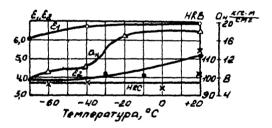



Рис. 26. Сталь 2X13, закалка 1000-1100°C в масло, отпуск 700-775°C.

27. Сталь 110Г13Л, эакалка с 1100°С в воду.

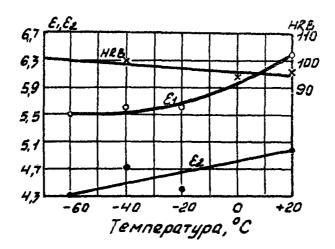


Рис. 28. Сталь Г13Х2БЛ, отжиг 820°С.

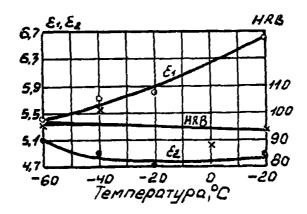


Рис. 29. Сталь Г13Х2БЛ, закалка с 1100°С в воду.

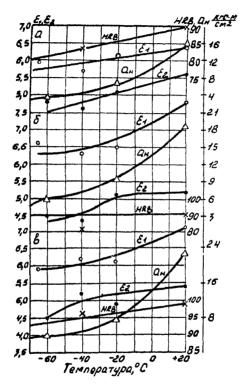


Рис. 30. Сталь 110Г13Л, закалка с 1050° С в воду, с модифицирующими добавками (в проц.): а — без добавок; б — 0,15 Ті; в — 0,5 Мо.

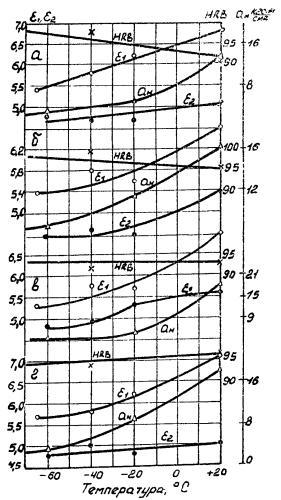


Рис. 31. Сталь 110Г13Л, закалка с 1050°С в воду, с модифицирующими добавками (в проц.): а - 0,15 StCa; б - 0,15 Tt + 0,15 StCa; в -0,15 FeCl г - 0,3 V.

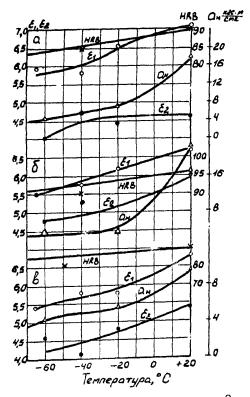


Рис. 32. Сталь 110Г13Л, закалка с 1050°С. в воду, с модифицирующими добавками (в проц.): а – 0,3 Al; б – 1,0W; в – 0,3 Al+ 0,003 SiCl.

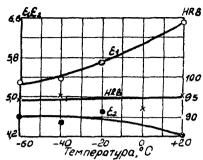


Рис. 33. Сталь 110Г13Л с 0,35 закалка с 1100°С в воду.

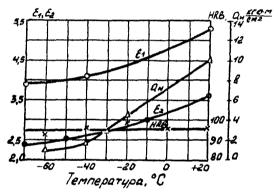


Рис. 34. Сталь X13Г19Т/I, закалка с 1100° С в воду.

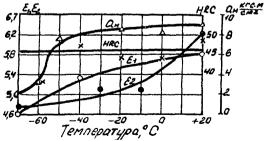


Рис. 35. Сталь американская "Пенго".

Литература

- 1. Андреев Н.Х. и др. Новые материалы в технике, "Высшая школа", 1968.
- 2. Григорь ев Р.С. и др. Хладноломкость металлоконструкций и деталей машин. "Наука", 1969.
- 3. Гудков С.И. Механические свойства стали при низких температурах. "Металлургия", 1967.
- 4. Гудков С.И. Механические свойства промышленных цветных металлов при низких температурах. "Металлургия", 1971.
- 5. Гуляев А.П. Ударная вязкость и хладно ломкость металлов. Сб. "Проблемы хладостойкости конструкционных сталей". Иркутск , 1971.
- 6. Журавлев В.Н., Николаева О.И. Машиностроительные стали. "Машиностроение", 1968.
- 7. Каменичный И.С. Спутник термиста. "Техника", Киев, 1969.
- 8. Ковальчук В.А. и др. Методика испытаний материалов на изнашивание о закрепленный абразив при отрицательных температурах. Сб. "Строительство в районах Восточной Сибири и Крайнего Севера", № 18, Красноярск, 1971.
- 9. Лахтин Ю.М. Метапловедение и терми ческая обработка метаплов. "Метаплургия", 1969.
- 10. Лившиц Б.Г. Металлография. "Металлургия", 1971.
- 11. Материалы в машиностроении. Цветные металлы и сплавы. Справочник. Т. 1, "Машиностроение", 1967.

- 12. Материалы в машиностроении. Специальные стали и сплавы. Справочник. Т. 3, "Машиностроение", 1968.
- 13. Новомейский Ю.Д. и др. Свойства и применение комплекснолегированных высокомарганцовистых сталей. НИИИНФОРМТЯЖМАШ, 1970.
- 14. Новомейский Ю.Д. и др. Высокомарганцевая аустенитная сталь Г13Л. "Металлургия". 1969.
- 15. Паисов И.В. Термическая обработка стали и чугуна. "Металлургия", 1970.
- 18. Ткачев В.Н. и др. Методы повышения долговечности деталей машин. "Машиностроение", 1971.
- 17. Химушин Ф.Ф. Жаропрочные стали и сплавы. "Металлургия", 1969.
- 18. Хрущов М.М., Бабичев М.А. Абразив ное изнашивание. "Наука". 1970.

Рекомендации

по оценке хладостойкости и абразивной износостойкости металлов.

Редактор К.В. Богданович
Подписано к печати 31/XП-71.

АЛ 11331 Объем 2,25 печ. л., 1,11 уч.-изд.л. Цена 12 коп. Заказ № 598

Печатно-графический дех института "Красноярский промстройнинпроект" пр. Свободный, 75