ПРОДУКТЫ ПЕРЕРАБОТКИ ЗЕРНА

Определение кислотного числа жира

ПРАДУКТЫ ПЕРАПРАЦОЎКІ ЗЕРНЯ

Вызначэнне кіслотнага ліку тлушчу

Издание официальное

УДК 664.696:543.06:006.354(476)

MKC 67.060

(KCC H39)

Ключевые слова: сельскохозяйственные продукты, продукты растениеводства, продовольственные продукты, мука (продовольственная), мука пшеничная, манная крупа, химический анализ, определение содержания, кислотное число жира

Предисловие

- 1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом зерна и продуктов его переработки (ВНИИЗ)
- 2 ПОДГОТОВЛЕН к введению в качестве государственного стандарта научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации (БелГИСС)»

ВНЕСЕН Госстандартом Республики Беларусь

- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 25 июня 2001 г. № 23
- 4 Настоящий стандарт представляет собой аутентичный текст ISO 7305:1988 «Продукты помола зерновых. Определение содержания жирных кислот», кроме разделов 2, 5, 6
 - 5 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть тиражирован и распространен без разрешения Госстандарта Республики Беларусь

Содержание

Введение	. IV
1 Область применения	
2 Нормативные ссылки	1
3 Термины и определения	1
4 Сущность метода	1
5 Реактивы	2
6 Аппаратура	2
7 Отбор проб	2
8 Подготовка пробы	2
9 Определение влажности пробы	2
10 Проведение анализа	3
11 Обработка результатов	3
12 Допустимая погрешность	4
13 Отчет об анализе	4
Приложение А Результаты межлабораторных испытаний	5
Приложение Б Библиография	6

Введение

Настоящий стандарт распространяется на метод определения количества жирных кислот с длинной цепью неэфирной природы (свободных жирных кислот), которые освобождаются под действием липазы во время хранения продуктов переработки зерна, что обеспечивает качественную и количественную характеристики, отражающие состояние свежести и направления использования этих продуктов.

Используемый для растворения 95 %-ный этиловый спирт разрушает все слабоэнергетические связи, по которым присоединяются жирные кислоты, растворяет последние быстро и количественно, за исключением большей части аминокислот и минеральных солей.

Установление изменения цвета в конечной точке титрования упрощено отсутствием помутнения в растворе благодаря использованию фильтра, который устраняет желтый цвет экстракта.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

ПРОДУКТЫ ПЕРЕРАБОТКИ ЗЕРНА Определение кислотного числа жира

ПРАДУКТЫ ПЕРАПРАЦОЎКІ ЗЕРНЯ Вызначэнне кіслотнага ліку тлушчу

MILLED CEREAL PRODUCTS Determination of fat acidity

Дата введения 2002-11-01

1 Область применения

Настоящий стандарт устанавливает метод определения кислотного числа жира в продуктах переработки зерна: муке, манных крупах, полученных из мягкой и твердой пшеницы, а также в макаронах.

Метод применим также к зерну кукурузы, муке и крупам, полученным из нее, муке из ржи и овсяным хлопьям.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ ИСО 2170-97 Зерновые и бобовые. Отбор проб молотых продуктов

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 4919.1-77 Реактивы и особо чистые вещества. Методы приготовления растворов индикаторов

ГОСТ 6613-86 Сетки проволочные и тканые с квадратными ячейками. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 17299-78 Спирт этиловый технический. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29143-91 (ИСО 712-85) Зерно и зернопродукты. Определение влажности (рабочий контрольный метод)

ГОСТ 29227-91 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29228-91 (ИСО 835-2–81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 2. Пипетки градуированные без установления времени ожидания

ГОСТ 29251-91 (ИСО 385-1-84) Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

ГОСТ 29252-91 (ИСО 385-2-84) Посуда лабораторная стеклянная. Бюретки. Часть 2. Бюретки без установленного времени ожидания

3 Термины и определения

В настоящем стандарте применяют следующий термин с соответствующим определением:

Кислотное число жира – показатель, характеризующий количество свободных жирных кислот, извлеченных по методу, описанному в настоящем стандарте, и выраженный в миллиграммах гидроксида калия (КОН) или гидроксида натрия (NaOH) на 100 г сухого вещества (раздел 11).

4 Сущность метода

Метод состоит в извлечении жирных кислот этиловым спиртом при комнатной температуре с последующим центрифугированием и титрованием части экстракта гидроксидом натрия.

Допускается результаты пересчитывать относительно гидроксида калия.

СТБ ГОСТ Р 51413-2001

5 Реактивы

Все реактивы должны быть квалификации чистый для анализа (ч.д.а.). Используют дистиллированную по ГОСТ 6709 деминерализованную воду или воду эквивалентной чистоты.

5.1 Этиловый спирт 95 %-ный (по объему) по ГОСТ 17299.

5.2 Гидроксид натрия (NaOH) по ГОСТ 4328, стандартный объемный раствор концентрации NaOH = 0,05 моль/дм³ в 95 %-ном (по объему) этиловом спирте, свободном от карбонатов.

Точную концентрацию проверяют непосредственно перед каждой серией определений кислотного числа жира.

Применяют раствор, приготовленный не менее чем за 5 дней до использования, и сохраняют в посуде из темного стекла с резиновой пробкой.

Раствор NaOH должен быть бесцветным или соломенного цвета.

При отсутствии стандартного раствора NaOH его необходимо приготовить. Для этого этиловый спирт очищают следующим образом. Растворяют 5 – 10 г гидроксида натрия в 1 дм³ этилового спирта и добавляют 0,5 г алюминиевых стружек. Смесь кипятят с применением обратного холодильника в течение 1 ч, затем этиловый спирт дистиллируют. В полученном таким образом 1 дм³ этилового спирта растворяют 2 г гидроксида натрия. Приготовленный раствор оставляют в течение 5 сут для выпадения в осадок нерастворенного углекислого натрия, после чего раствор можно использовать.

5.3 Фенолфталеин по ГОСТ 4919.1. Раствор индикатора: 1 г фенолфталеина растворяют в 100 см³ 95 %-ного (по объему) этилового спирта (5.1).

6 Аппаратура

- 6.1 Сетки проволочные тканые № 1, № 016, № 05 по ГОСТ 6613 для муки, манной крупы и макарон.
- **6.2** Стаканы для центрифуги из боросиликата или стекла вместимостью 45 см³, герметично закрывающиеся.
 - 6.3 Центрифуга с фактором разделения 3000, обеспечивающая ускорение в 2000 д.
 - **6.4** Пипетки вместимостью 20 и 30 см³ по ГОСТ 29227, ГОСТ 29228.
 - **6.5** Конические колбы вместимостью 250 см³ по ГОСТ 25336.
 - **6.6** Микробюретка с ценой деления 0,01 см³ по ГОСТ 29251 и ГОСТ 29252.
 - **6.7** Роторная мешалка со скоростью вращения от 30 до 60 об/мин⁻¹.
 - 6.8 Весы лабораторные общего назначения с допускаемой погрешностью взвешивания ± 0,01 г.
 - 6.9 Лабораторная мельница для размола манной крупы и макарон (8.1).
- 6.10 Оранжевый фильтр, типовой фотографический фильтр из ацетата целлюлозы, синее поглощение (длина волны 440 нм).

7 Отбор проб

Отбор проб - по ГОСТ ИСО 2170.

Если анализ отобранных проб проводят не сразу, то пробы хранят в герметической таре при температуре 4 °C.

Перед взятием навесок для анализа проба должна иметь температуру лаборатории.

8 Подготовка пробы

- **8.1** В случае, если мука полностью проходит через сито № 05 (6.1) и не менее 80 % муки (по массе) проходит через сито № 016 (6.1), берут около 50 г муки и просеивают ее через сито № 1 (6.1) для того, чтобы разрушить имеющиеся комочки. До взятия навески пробу тщательно перемешивают.
- **8.2** Для муки, не отвечающей требованиям (8.1), а также для манной крупы и макарон размалывают навеску около 50 г на лабораторной мельнице (6.9), пока крупность частиц не достигнет размеров, указанных в 8.1. Перед взятием навески для анализа пробу тщательно перемешивают.

9 Определение влажности пробы

Определение влажности пробы - по ГОСТ 29143.

10 Проведение анализа

10.1 Подготовка навески

Из пробы (раздел 8) берут навеску массой 5 г с точностью до 0,01 г и помещают в стакан для центрифуги (6.2).

10.2 Определение кислотного числа жира

- **10.2.1** В стакан для центрифуги (6.2) при помощи пипетки (6.4) добавляют 30 см 3 этилового спирта (5.1). Стакан герметично закрывают и содержимое перемешивают в течение 1 ч на роторной мешалке (6.7) при температуре (20 \pm 5) °C. Затем стакан переносят в центрифугу (6.3) и центрифугируют 5 мин с ускорением 2000 α .
- **10.2.2** Пипеткой отбирают 20 см³ экстракта в коническую колбу (6.5), прибавляют 5 капель фенолфталеина (5.3) и титруют раствором гидроксида натрия, используя бюретку (6.6), до появления (приблизительно через 3 с) бледно-розового цвета. При этом следует использовать оранжевый фильтр (6.10), который устранит желтую окраску в момент изменения цвета раствора.

Использование оператором оранжевого фильтра в виде окуляра позволит определить изменение цвета раствора с большей точностью благодаря поглощению желтой окраски этилового спирта.

Примечание – Если требуется проверить сходимость, проводят два последовательных определения в соответствии с 10.1 и 10.2.

10.3 Контроль реактивов

Одновременно с основным анализом проводят испытание реактивов, начиная с 10.2.2, заменив 20 см³ экстракта на 20 см³ этилового спирта (5.1).

11 Обработка результатов

11.1 Расчет кислотного числа жира по гидроксиду калия

Кислотное число жира A_{κ} , мг КОН на 100 г сухого вещества, вычисляют по формуле

$$A_{K} = \frac{8415(V_{1} - V_{0})c}{m} \cdot \frac{100}{100 - w},$$
(1)

где c — точная концентрация используемого стандартного объемного раствора гидроксида натрия, моль/дм 3 :

т – масса навески, г (10.1);

 V_1 – объем раствора гидроксида натрия, израсходованного на титрование, см³ (10.2);

 V_0 – объем раствора гидроксида натрия, израсходованного на контрольное титрование, см 3 (10.3);

w – влажность пробы, % (по массе) (раздел 9);

8415 – коэффициент, применяемый для гидроксида калия, (т. е. 56,1 · 1,5 · 100).

Полученный результат округляют с точностью до миллиграмма.

11.2 Расчет кислотного числа жира по гидроксиду натрия

Кислотное число жира A_{Na} , мг NaOH на 100 г сухого вещества, вычисляют по формуле

$$A_{Na} = \frac{6000 (V_1 - V_0) c}{m} \cdot \frac{100}{100 - w},$$
 (2)

где c — точная концентрация используемого стандартного объемного раствора гидроксида натрия, моль/дм 3 :

т – масса навески, г (10.1);

 V_1 – объем раствора гидроксида натрия, израсходованного на титрование, см³ (10.2);

 V_0 – объем раствора гидроксида натрия, израсходованного на контрольное титрование, см 3 (10.3);

w – влажность пробы, % (по массе) (раздел 9);

6000 – коэффициент, применяемый для гидроксида натрия, (т. е. 40 · 1,5 · 100).

Полученный результат округляют с точностью до миллиграмма.

СТБ ГОСТ Р 51413-2001

11.3 Пересчет результатов

- **11.3.1** Для того, чтобы перевести результаты, полученные в миллиграммах гидроксида калия, в результаты, выраженные в миллиграммах гидроксида натрия, результат, полученный в 11.1, умножают на 0.7130
- **11.3.2** Для того, чтобы перевести результаты, полученные в миллиграммах гидроксида натрия, в результаты, выраженные в миллиграммах гидроксида калия, результат, полученный в 11.2, умножают на 1,4025.

12 Допустимая погрешность

Результаты межлабораторных испытаний по точности метода приведены в приложении А. Значения, полученные на этих межлабораторных испытаниях, могут не совпадать с результатами, полученными при использовании других растворителей и других концентраций.

12.1 Сходимость

Абсолютная разница между двумя независимыми определениями, выполненными одним оператором в одной лаборатории с использованием данного метода, идентичного материала и того же оборудования в течение короткого времени, превышающая 4 мг гидроксида калия или 3 мг гидроксида натрия, допускается не более чем в 5 % случаев.

12.2 Воспроизводимость

Абсолютная разница между двумя независимыми результатами определений, полученными различными операторами в разных лабораториях с использованием данного метода, идентичного материала, но разного оборудования, превышающая 17 мг гидроксида калия или 12 мг гидроксида натрия, допускается не более чем в 5 % случаев.

13 Отчет об анализе

Отчет об анализе должен содержать:

- информацию, необходимую для подтверждения достоверности пробы;
- метод отбора проб (если он известен);
- метод испытаний со ссылкой на настоящий стандарт;
- рабочие детали, не указанные в настоящем стандарте или рассматриваемые как необязательные, но способные повлиять на результат испытаний;
 - результаты испытаний;
 - сходимость (если она проверялась).

Приложение А (справочное)

Результаты межлабораторных испытаний

Были проведены две серии межлабораторных испытаний, организованных BIREA на международном уровне с участием 24 лабораторий (испытание № 1) и с участием 21 лаборатории (испытание № 2), при этом каждая лаборатория выполняла два определения. Статистические результаты, оцененные в соответствии с [1], приведены в таблице А.1.

Таблица А.1 – Статистические результаты оценки межлабораторных испытаний по определению кислотного числа жира

Показатель	Манная крупа	Мука пшеничная А	Мука пшеничная	Мука пшеничная В	Манная крупа из пшеницы «Дурум»
	Испытание № 1	Испытание № 1	Испытание № 2	Испытание № 1	Испытание №2
Число лабораторий, остав- шихся после удаления ано- мальных значений	19	20	21	20	21
Средняя величина кислот- ного числа жира, мг КОН	17,2	29,4	44,7	73,3	45,8
Среднее квадратическое отклонение сходимости <i>s,</i> мг КОН	0,80	1,49	1,15	1,49	1,72
Коэффициент изменения сходимости, %	4,7	5,0	2,6	2,0	3,7
Предел сходимости <i>r</i> (2,83 s _r), мг КОН	2, 2 6	4,22	3,25	4,22	4,87
Среднее квадратическое отклонение воспроизводимости $S_{\mathcal{R}_{r}}$ иг КОН	4,81	4,24	6,76	7,33	5,73
Коэффициент вариации воспроизводимости, %	28,0	14,0	15,0	10,0	14,0
Предел воспроизводимости R (2,83 s _R), мг КОН	13,61	11,99	19,12	20,74	16,22

Приложение Б (информационное)

Библиография

ИСО 5725-86 Точность методов анализа. Определение сходимости и воспроизводимости [1] для стандартного метода анализа путем межлабораторной проверки