

Ордена Онтябрьской Революции и ордена Трудового Красного Знамени

ИНСТИТУТ ГОРНОГО ДЕЛА

HMOHH

А. А. Скочинского

МЕТОДИКА
РАСЧЕТА НАПРЯЖЕНИЯ И ДЕФОРМАЦИЯ
УГОЛЬНОГО ПЛАСТА ПРИ РАЗЛИЧНЫХ
СПОСОБАХ УПРАВЛЕНИЯ КРОВЛЕЯ

Министерство угольной промышленности СССР Академия наук СССР Ордена Октябрьской Революции и ордена Трудового Красного Знамени Институт горного дела им. А. А. Скочинского

Лаборатория горного давления УТВЕРЖДЕНА заместителем директора института проф. докт техн. наук А С. КУЗЬМИЧОМ 5 марта 1980 г.

МЕТОДИКА РАСЧЕТА НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ УГОЛЬНОГО ПЛАСТА ПРИ РАЗЛИЧНЫХ СПОСОБАХ УПРАВЛЕНИЯ КРОВЛЕЙ

Приведени методика определения напряжения и деформации в угольном пласте, залегавшем под любым углом, при разработке его закладкой выработанного пространства или с полным обрушением, а также закономерности изменения напряженно-деформированного состояния в пласте в зависимости от коэффициента бокового распора, компрессионных характеристик закладочных материалов и обрушенных пород, глубины разработки и наличия неоднородностей в угольном пласте.

Методика предназначена для работников научно-исследовательских и проектных организаций, занимающихся проектированием систем разработки.

> С Институт горного дела им. А. А. Скочинского (ИГД им. А. А. Скочинского), 1980

введение

С переходом горных работ на более глубокие горизонты резко возрастает горное давление и увеличивается возможность возникновения внезапных выбросов угля и газа, поэтому важное значение приобретает задача изучения напряженно-деформированного состояния краевой части угольного массива, особенно при внемке выбросоопасных пластов.

Основными параметрами, от которых зависит напряженно-деформированное состояние разрабативаемого угольного пласта, являются глубина разработки, коэффициент бокового распора нетронутого массива, способ управления кровлей, компрессионные характеристики закладочных материалов и структурные свойства угольного пласта. Учесть наиболее полно все эти параметры и вывести закономерности изменения горного давления возможно лишь при применении аналитических методов расчета, поэтому возникла необходимость создания методики расчета напряженно-деформированного состояния угольного пласта с учетом всех перечисленных параметров.

СВОЙСТВА И СОСТОЯНИЕ МАССИВА ГОРНЫХ ПОРОД, УТОЛЬНОГО ПЛАСТА И ЗАКЛАЛОЧНЫХ МАТЕРИАЛОВ

Угольный пласт и вмещающие его горные породы находятся в напряженно-деформированном состоянии, вызванном весом вишедежаших пород.

При определении напряженного состояния угольного пласта необходимо ввести две системы координат (рис. I): одну, ориентированную по гравитационным силам, и другую, ориентированную по залеганию пласта.

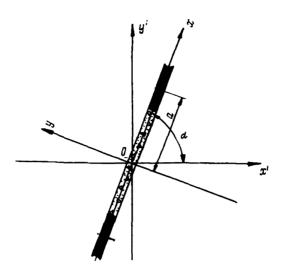


Рис. І. Скема расположения очистной выработки

Напряженное состояние нетронутого массива относительно первой из них $\mathbf{x}'\mathbf{y}'$ определяется компонентами напряжений

$$\begin{aligned} & \mathcal{G}_{y'}^{0} = \mathcal{T} \left(H - y' \right) ; \\ & \mathcal{G}_{x'}^{0} = \mathcal{B} \mathcal{T} \left(H - y' \right) ; \\ & \mathcal{T}_{x'y'}^{0} = 0 , \end{aligned} \tag{I}$$

где H - глубина залегания пласта в центре очистной выработки; β - коэффициент бокового распора.

Компоненти напряжений θ_y^0 , θ_x^0 и τ_{xy}^0 относительной наклонной системы координат xy определяются из выражений

$$\delta_y^0 = p \, T \left(H - x \sin \alpha - y \cos \alpha \right);$$

$$\delta_x^0 = q \, T \left(H - x \sin \alpha - y \cos \alpha \right);$$

$$\tau_{xy}^0 = t \, T \left(H - x \sin \alpha - y \cos \alpha \right),$$
(2)

где с - угол падения пласта;

$$\rho = \frac{1+\beta}{2} + \frac{1-\beta}{2}\cos 2\alpha \; ;$$

$$q = \frac{1+B}{2} + \frac{1-B}{2} \cos 2 a;$$

$$t = \frac{1-B}{2} \sin 2 a.$$
(3)

Таким образом, основными характеристиками, влияющими на напряженное состояние нетронутого горного массива, являются вес вышележащих пород и коэффициент бокового распора.

Величина коэффициента бокового распора зависит от горногеологических условий и наличия тектонических нарушений. Ввиду малого количества экспериментальных данных о величине коэффициента бокового распора его иногда определяют через коэффициент Пуассона $\mathcal{N}[1]$ по формуле

$$\beta = \frac{\nu}{1 - \nu} \quad . \tag{4}$$

Основиваясь на данных натурных измерений, некоторые исследователи [2, 3, 4] считают, что в основном можно ограничиться применением двух значений коэффициента бокового распора: для прочных хрупких пород принимать его равным 0,5, а для глинистых, особенно обводленных и слабых, — равным единице.

Особое место занимают районы, подверженные действию тектонических сил. Коэффициент бокового распора для этих условий может быть больше единицы, а вертикальная составляющая может отличаться от величины ТН[5].

Поэтому в настоящее время большое внимание уделяется экспериментальному определению в натурных условиях коэффициентов бокового распора. Проведение таких работ связано со значительными трудностями, поэтому их мало и не составлена карта полей напряжений нетронутого массива для всех месторождений.

Большие работы в этом направлении проведены для условий Кузнецкого бассейна, который характеризуется крупными тектоническими нарушениями. Основные тектонические структуры бассейна представляют складки, ориентированные вдоль длинной оси синклинория с юго-востока на северо-запад и осложненные крупными разрывными нарушениями.

Тщательные исследования напряженного состояния нетронутого массива проведены для Араличевского и Прокопьевско-Киселевского районов Кузбасса [5], опасных по внезапным выбросам. Величины компонент напряжений нетронутого массива определялись методом разгрузки вне зоны влияния очистных работ.

В результате проведенных экспериментов установлено, что для условий Араличевского района (шахта им.Орилоникидзе) горизонтальная составляющая нормальных напряжений нетронутого массива больше вертикальной в 2-3 раза, т.е. $\beta = 2 \div 3$. Для условий Прокопьевско-Киселевского района (шахты "Ноградская" и "Коксовая") получено, что вертикальная составляющая больше горизонтальной в среднем в 2 раза, т.е. $\beta = 0.5$. Следовательно, различные районы Кузбасса характеризуются разной величиной коэффициента бокового распора. Поэтому для таких районов необходимо знать конкретные значения коэффициентов бокового распора.

В некотором приближении можно принять, что слоистий горный массив со сцеплением по контактам слоев до начала расслоения является гвазмоднородным, причем слои предполагаются тонкими и с одинаковыми или близкими модулями упругости.

Горний массив принимается также квазиизотропным, т.е. отношение модулей упругости, измеренных вдоль и псперек напластования, близко к единице. Существует большое количество экспериментов, подтверждающих это положение [6, 7].

Так как большинство горных пород обладает свойстьами ползучести, трещиноватости, то массив принимается не упругим, а линейно-деформируемым. Это означает, что связь между напряжениями и деформациями принимается линейной, но вместо кубикового модуля упругости берется величина модуля деформации всего массива с учетом трещиноватости, слоистости и ползучести пород. При длительной ползучести деформация пород возрастает, а следовательно, модуль деформации уменьщается.

Из экспериментальных кривых ползучести можно получить зависимость модуля деформации массива от времени в виде

$$E(t) = E_0 + \left(E_{\infty} - E_{0}\right) \left(1 - e^{-\frac{t}{t_0}}\right), \tag{5}$$

где E_0 — модуль деформации в массиве в начальный момент воемени при t=0;

 $E_{\infty}-$ модуль деформации массива при $t=\infty$, т.е. в установив-шемся состоянии;

t. - параметр скорости изменения модуля деформации.

Анализируя данные работы \mathbb{Z} .С. Ержанова [8], можно заключить, что отношение \mathbb{E}_q : \mathbb{E}_∞ для песчаника приблизительно равно \mathbb{I} ,5-2,6, для алевролита - 3,0 для аргиллита - 3,7, т.е. колеблется в диапазоне \mathbb{I} ,5-3,7.

Трещиноватость и различные ослабления тоже снижают модуль деформации массива, не меняя линейного характера его деформирования. Это положение достаточно хорошо подтверждено экспериментальными замерами миновенного модуля деформации в массиве с помощью прессиометра [9]. Эти замеры показали, что коэффициент уменьшения модуля равен 2,5-3,5. Для интерпретации этих явлений К.В.Руппенейтом и И.В.Тарасовой предложена механическая модель трещиноватого массива [10]. Согласно этой модели, трещиноватость и различные ослабления в массиве снижают пропорционально их размерам модуль деформации массива, а сощий характер деформирования массива в модели остается линейным.

Так как уравнения теории упругости для определения напряженно-деформированного состояния тела основани только на предпсложении о линейной связи между напряжениями и деформациями независимо от величини параметров, то к массиву можно применить методы теории упругости, а модуль упругости массива Е упр в расчетах можно заменить модулем деформации массива Е, уменьшенным за счет ползучести, трещиноватости и слоистости пород:

$$E = E_{unp} / K. (6)$$

Общий коэффициент уменьшения модуля упругости К, согласно вышеприведенным данным, можно взять как произведение крайних значений коэффициентов 4-I3 в зависимости от свойств пород. Для приближенных расчетов общий коэффициент обычно принимается равным IO.

При разработке угольных пластов с закладкой выработанного пространства необходимо изучить свойства и состояние углей и закладочных материалов. Обично закладочные материалы обладают нелинейной характеристикой уплотнения [II], а для углей характерны как линейные, так и нелинейные деформации.

Поэтому при учете свойств угольного пласта и закладки в решении задачи о напряженно-деформированном состоянии краевой части угольного пласта вводятся аналитические зависимости, характеризующие деформационные свойства этих материалов. Нами предложены несколько типов аналитических зависимостей $\mathcal{E} = f(6)$ между напряжением \mathcal{E} и деформацией \mathcal{E} при одноосном сжатии:

I THE

$$\varepsilon = \varepsilon_0 \left(1 - e^{-\frac{d}{G_0}} \right) = \varepsilon_1(G) ; \qquad (7)$$

П тип

$$\varepsilon = \varepsilon_0 \ln \frac{\epsilon_0}{\epsilon_0 - \epsilon} = \varepsilon_2(\epsilon); \qquad (8)$$

Ш тип

$$\varepsilon = \varepsilon_0 \left(\frac{6}{6n} \right)^m = \varepsilon_3 \left(6 \right), \tag{9}$$

где & - относительная деформация;

б - напряжение;

 \mathbf{E}_{q} , \mathbf{G}_{q} , m - характеристики материала.

Зависимость I типа (рис. 2) характерна для материалов, нелинейно уплотняющихся. Параметр \mathcal{E}_0 представляет собой максимальную усадку, а \mathcal{E}_0 характеризует крутизну компрессионной кривой. Эта зависимость особенно хорошо отражает свойства закладочных материалов.

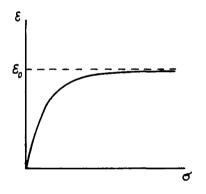
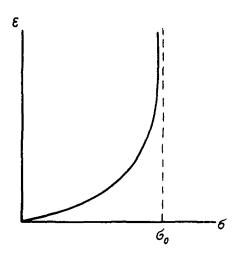



Рис. 2. График зависимости деформации от напряжения для материалов 1 типа

Зависимость II типа (рис. 3) напоолее характерна для углей, обнаруживающих при одноосном сжатии псевдопластические деформации. Параметр G_0 приближенно равен пределу пластичности, а $\mathbf{\epsilon}_0$ характеризует крутизну кривой.

Зависимость Ш типа (рис. 4) является наиболее гибкой, позво- ляя аппроксимировать свойства как уплотняющихся (m < 1), так и псевдопластических (m > 1) материалов. Кроме того, этой зависимостью можно характеризовать упругие материалы при m = I с модулем упругости $E = \frac{60}{E_0}$.

Рыс. 3. График зависимости деформации от напряжения для материалов II типа

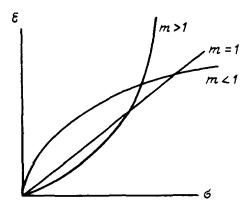


Рис. 4. График зависимости деформации от наприжения для материалов Ш типа

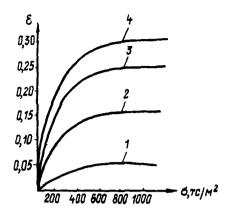


Рис. 5. Компрессионные кривые реальных закладочных материалов с различными характеристиками:

I — пески реки 00ь ($\xi_0 = 0.051$, $\theta_0 = 345$ то/м²); 2 — кузовеские породи с Толуоевского карьера ($\xi_0 = 0.155$, $\theta_0 = 244$ тс/м²); 3 — породи вокрыти угольных карьеров Прокопьерско-Киселевского района ($\xi_0 = 0.25$; $\theta_0 = 200$ тс/м²); 4 — породи Кузникой свити ($\xi_0 = 0.31$; $\theta_0 = 180$ тс/м²)

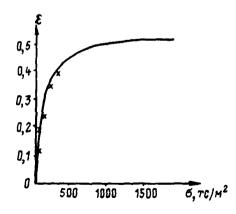


Рис. 6. Компрессионная кривая обрушенных пород

Типичные компрессионные кривые закладочных материалов [II], построенные по экспериментальным данным, хорошо аппроксимируются экспенентой вида (7). На рис. 5 представлены семейства компрессионных кривых для закладочных материалов, применяемых в Кузнецком бассейне.

В случае полного обрушения зависимость ϵ от ϵ для слоя обрушених пород принимается, как и для закладки, но величина ϵ_{o} определяется по формуле

$$\varepsilon_0^{o\delta\rho} = 1 - \frac{n_1}{n} \left(K_\rho \cdot K_y - 1 \right), \tag{10}$$

где К, - коэффициент разрыхления обрушенных пород;

Ку — максимальный коэффициент уплотнения обрушенных пород под девлением вышёлежащей толщи;

h - мощность пласта;

 h_4 - мощность непосредственной кровли.

Крутизну компрессионной кривой обрушенных пород можно принять по аналогии с крутизной компрессионных кривых бутовых полос, натурные данные о которых представлены на рис.6 крестиками [12]. Построенная здесь по уравнению (5) кривая соответствует $\epsilon_0 = 0.5$ и $\epsilon_0 = 200$ тс/м².

Применительно к обрушенным породам в расчете приняты некоторые типичные значения: $h_{\gamma}/h=6$; $K_{\rho}=1,2$; $K_{y}=0,9$, подставив которые в формулу (IO) получим $\epsilon_{0}^{\sigma\delta}=0,5$.

METOJI M CXEMA PACTETA

Рассматривается одиночний угольный пласт под любым углом падения. Разработка пласта осуществляется с закладкой выработанного пространства или с полным обрушением.

Для определения напряженно-деформированного состояния краевой части угольного пласта решается плоская задача теории упругости на основе метода Мусхелишвили [13]. Плоскость сечения выработки проводится вкрест престирания пласта или по простиранию при выполнении условий плоской деформации.

Задача заключается в том, чтобы найти нормальные напряжения и вертикальные смещения в угольном пласте.

В основу метода решения задачи положен принцип совместности перемещения кровли – почвы, с одной стороны, и закладки или угля, с другой, состоящий в том, что конвергенция кровли – почвы

должна бить равна обжатию заклапки или угля на соответствующих участках.

Уравнение, выражающее этот принцип, имеет вид

$$v_{\pi_H}(x) - v_{\sigma}(x) = \delta_{\sigma}(x) \| - \delta_{\pi_H}(x), \qquad (II)$$

где $v_{TH}(x)$ — конвергенция кровли — почви от действия только объемного веса пород;

 $v_6\left(\mathbf{x}\right)$ — расхождение кровли — почвы под действием реакции закладки или угля;

 $\delta_{G}(x)$ — обжатие закладки или угля под действием искомого напряжения G(x); $\delta_{\chi_H}(x)$ — первоначальное обжатие угля под действием веса пород;

(член за пвойной чертой учитывается только пля угля).

Уравнение (II) справедливо для всей линии пласта - ∞ < x < ∞. Опнако иля упрощения окончательных результатов и возможности применения численных метолов на линии пласта выбирается участок $-a \leq X \leq a$ c takum pacyetom. Ytooh ero kohiin haxoiminch b macсиве угля, там, где возмущение, вызванное выработкой, практически затухает. Все пальнейшие соотношения получены именно пля такого рабочего участка.

Решение уравнения (II) включает в себя решение нескольких задач: в результате полного решения будут определены нормальные по отношению к пласту напряжения 6(x) и смещения v(x).

Величину смещений $v_{YH}(x)$ определяем, исходя из формул теории VIDVIOCTM [13]:

$$\frac{E}{1+\sqrt{(u+iv)}} = (\bar{z}-4v) \, \varphi(z) - \varphi(\bar{z}) - (z-\bar{z}) \, \overline{\varphi(z)}, \quad (12)$$

FIRE Z = X + i Y; $\overline{Z} = X - i Y$;

у - смещение по направлению оси у;

и - смещение по направлению оси х :

Е - молуль деформации массива:

коэффициент Пуассона массива.

 $\Phi_{VHKIIMS} \Psi(z)$ определяется из соотношения

$$\varphi(z) = \int \varphi(z) dz, \qquad (I3)$$

гле ϕ (z) - функция напряжений.

Выражение для этой функции получено нами ранее [14] в виде

$$\Phi(z) = \frac{\partial H}{\partial z} \left(\rho - it \right) \left[\left(\frac{z}{\sqrt{z^2 - a^2}} - 1 \right) \left(1 - z \frac{\sin \alpha}{H} \right) + \frac{a^2 \sin \alpha}{2H \sqrt{z^2 - a^2}} \right]$$
 (I4)

Вичисляя интеграл (13), получаем

$$\varphi(z) = \frac{\delta H}{2} (p - it) \left(\sqrt{z^2 - a^2} - z \right) \left(1 - \frac{z}{2H} \sin a \right) . \tag{15}$$

Конвергенцию $v_{TH}(x)$ по линии угольного пласта, т.е. при g=0, и, следовательно, при $z=\overline{z}$, можно определить по формуле (12). В результате подстановки формулы (15) получим в пределах $|x| \le a$

$$v_{yH}(x) = \frac{4(1-y^2)\rho \, \delta H}{E} \left(1 - \frac{x}{2H} \sin a\right) \, \sqrt{a^2 - x^2} \,, \tag{16}$$

причем р в этом уравнении определяется по формуле (3).

Для определения вида второго члена левой части уравнения (II), т.е. $v_{6}(x)$, решается задача о смещениях при условии, что к площадкам кровли и почвы щелевидной выработки приложено искомое нормальное давление $\delta(x)$. Сначала считаем, что оно приложено на бесконечно малой длине $d\xi$ с координатой середины площадки $x = \xi$. Расхождение кровли – почвы dv будет тогда пропорционально величине $\delta(\xi)d\xi$ и будет зависеть как от положения ξ площадки, к которой приложено давление, так и от положения х точки, в которой определяется расхождение. Следовательно, оно запишется в виде

$$d = K(x, \xi) \delta(\xi) d \xi, \qquad (17)$$

где $K(x,\xi)$ - некоторая функция влияния, подлежащая вычислению.

Если теперь считать, что к кровле и почве на всем участке $-a \ne x \ne +a$ приложено распределенное давление $\mathscr{G}(x)$, то на основе принципа суперпозиции и теоремы о среднем можно записать

$$v_{\delta}(x) = \int_{-a}^{+a} K(x, \xi) \delta(\xi) d\xi \approx$$

$$\approx \sum_{k=1}^{n} G_{k} \int_{\xi_{k}}^{\xi_{k+1}} K(x, \xi) d \xi =$$

$$= \sum_{k=1}^{n} G_{k} D_{k} (x) . \tag{18}$$

Здесь n — количество равних интервалов разбиения участка; — координати соответственно левого и правого концов K—го интервала;

 среднее значение искомого давления на к-м интервале. Эта расчетная схема изображена на рис. 7.

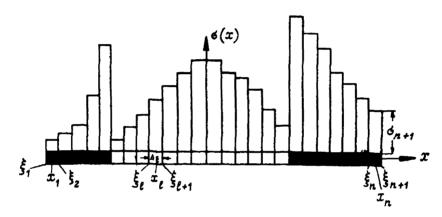


Рис. 7. Расчетная схема к определению давлений на уголь и закладку

Интеграл D_k (x), представляющий собой эпору расхождения краев щели под действием единичного давления, приложенного к верхнему и нижнему краям на участке $\xi \leq x \leq \xi_{k+1}$, получен нами [14] в виде

$$\begin{split} D_{k}(x) &= \frac{2(1-\sqrt{2})}{\pi E} \bigg[2 \bigg(arc \cos \frac{\xi_{k}}{a} - arc \cos \frac{\xi_{k+1}}{a} \bigg) \sqrt{a^{2}-x^{2}} + \\ &+ \Big(\xi_{k}^{-} x \Big) \ln \frac{a^{2} - \xi_{k}x - \sqrt{(a^{2} - \xi_{k}^{2})(a^{2} - x^{2})}}{a^{2} - \xi_{k}x + \sqrt{(a^{2} - \xi_{k}^{2})(a^{2} - x^{2})}} - \end{split}$$

$$-\left(\xi_{k+1}-x\right)\ln\frac{a^2-\xi_{k+1}x-\sqrt{\left(a^2-\xi_{k+1}^2\right)\left(a^2-x^2\right)}}{a^2-\xi_{k+1}x+\sqrt{\left(a^2-\xi_{k+1}^2\right)\left(a^2-x^2\right)}}.$$
 (19)

Для вычисления обжатия закладки и угля, т.е. правых частей уравнения (II), применим обобщенную гипотезу Винклера [I4], согласно которой обжатие зависит только от давления, действующего в той же точке. Математически это выражается в виле

$$\delta_{6}(x) = \delta_{i}(6) \cdot h; (i = 1, 2, 3),$$
 (20)

где \mathcal{E}_i (6) — деформация, уравнение которой выбирается для заклад-ки и угля из выражений (7)-(9);

h - мощность пласта.

Второй член правой части уравнения (II) $\delta_{\gamma H}(x)$, выражающий первоначальное обжатие угля от действия веса вышележащих пород, запишется в виде

$$\delta_{gH}(x) = \varepsilon_i \left[p \, g \, H \left(1 - \frac{x}{H} \sin d \right) \right] \cdot h , \qquad (2I)$$

где \mathcal{E}_i — деформация угля, уравнение которой выбирается для угля из выражений (7)—(9); i — номер, соответствующий уравнению, — причем вместо б туда подставляется $\rho_T \mathcal{H}$ (1— $-\frac{\chi}{\mathcal{H}} \sin \alpha$).

Таким образом, получив все члены уравнения (II), запишем

$$\frac{4(1-\sqrt{2})\rho rH}{E} \left(1-\frac{x}{2H}\sin d\right) \sqrt{a^2-x^2} - \sum_{k=1}^{n} \mathbb{I}_{k}(x) e_{k} =$$

$$= h \varepsilon_{i}(e) \left\|-h \varepsilon_{i} \left[\rho rH\left(1-\frac{x}{H}\sin d\right)\right]. \tag{22}$$

Требуя выполнения уравнения (22) в дискретном множестве точек

$$x_{\ell} = \frac{1}{2} \left(\xi_{\ell} + \xi_{\ell+1} \right),$$

; элучим дискретный аналог этого уравнения в виде системы

$$\sum_{k=1}^{n} \mathcal{D}_{k} \left(x_{\ell} \right) \delta_{k} + h \, \varepsilon_{i} \left(\xi \right) =$$

$$= \frac{4 \left(1 - \sqrt{2} \right) p \, \delta_{H}}{E} \left(1 - \frac{x_{\ell}}{2H} \, \text{sind} \right) \sqrt{a^{2} - x^{2}} \, \left\| + h \, \varepsilon_{i} \left[p \, T \, H \left(1 - \frac{x_{\ell}}{H} \, \text{sind} \right) \right]$$

$$\left(\ell = 1, 2, ..., n \right). \tag{23}$$

Уравнение (23) в развернутом виде представляет собой систему из n уравнений с n неизвестными. В левой части этой системы ε входит как линейно, так и нелинейно — через члени с $\varepsilon_i(\varepsilon)$. Поэтому решение данной системы уравнений следует производить методом Ньютона-Рафсона [15]. На (m+1)—м шаге итерационного процесса этого метода решается линейная алгебраическая система уравнений относительно неизвестных $\Delta \varepsilon_k^{(m+1)}$:

$$\sum_{k=1}^{n} \left[\mathcal{D}_{k}(x_{\ell}) + h \, \varepsilon_{i}'(\zeta_{\ell}) \, \delta_{k\ell} \right] \Delta \cdot \delta_{k}^{(m+1)} =$$

$$= v_{jH}(x_{\ell}) - h \, \varepsilon_{i}(\zeta_{\ell}) - \sum_{k=1}^{n} \mathcal{D}_{k}(x_{\ell}) \, \delta_{k}^{(m)} +$$

$$+ h \, \varepsilon_{i} \left[\rho \, \mathcal{T} H \left(1 - \frac{x_{\ell}}{H} \sin \alpha \right) \right]$$

$$\left(\ell = 1, 2, \dots, n \right),$$
(24)

где
$$\delta_{k\ell} = \begin{cases} I & \text{при } k = \ell \\ 0 & \text{при } k \neq \ell \end{cases}$$

Решение этой системы уравнений проведено нами на ЭВМ для различных значений параметров, входящих в эти уравнения.

В результате вычислений получени нормальные напряжения 6_g , направленные перпендикулярно линии угольного пласта, и конвер-генция пород кровли и почви $v = \epsilon h$ на участках угольного пласта и закладки.

SAKOHOMEPHOCTU USMEHEHUS

НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КРАЕВОЙ ЧАСТИ РАЗРАБАТЫВАЕМОГО УГОЛЬНОГО ПЛАСТА В ЗАВИСИМОСТИ ОТ РАЗЛИЧНЫХ-ГОРНО-ГЕОЛОГИЧЕСКИХ И ГОРНОТЕХНИЧЕСКИХ ПАРАМЕТРОВ

Основными параметрами, влияющими на напряженно-деформированное состояние разрабативаемого угольного пласта, являются коэффициент бокового распора, глубина разработки, компрессионные характеристики закладочного массива и его отставание от забоя, свойства угольного пласта и наличие в нем неоднородностей.

Влияние напряженного состояния нетронутого массива

Коэфициент бокового распора β , характеризующий напряженное состояние нетронутого массива, как следует из формул (2), (3) и (22), является параметром, от которого зависит напряженно-деформированное состояние угольного пласта при его разработке.

Для примера рассмотрим крутой угольный пласт мощностью 3 м с углом падения 70° , разрабатываемый на глубине 400 м с закладкой выработанного пространства, компрессионные характеристики которой приняты близкими к аналогичным характеристикам гидрозакладки, а именно: $\varepsilon_g = 0.15$ и $\varepsilon_g = 200$ тс/м². Модули деформации вмещающих пород и угля взяты соответственно 200000 и 20000 тс/м². Для приведенных условий рассматриваются три случая, отличающихся коэффициентами бокового распора:

$$\beta = 0.5$$
; I,0 m 2,0.

На рис. 8 приведени элюри опорного давления на угольный пласт и кривие, характеризующие полуобжатие угольного пласта. Из представленных графических данных следует, что опорное давление в краевой части угольного пласта наибольшее при $\beta=2,0$; оно достигает в этом случае $3100~\text{тс/m}^2$, в то время как при $\beta=0,5$ б $\frac{max}{y}=1250~\text{тс/m}^2$, т.е. в 2,5 раза меньше. Обжатие крутого угольного пласта также интенсивнее при больших значениях коэффициента бокового распора. Так, при $\beta=0,5$ полуобжатие v=55~мм, а при $\beta=2,0$ оно увеличивается до 100~мм.

Большое опорное давление при $\beta = 2,3$ формируется под действием начального напряженного состояния нетронутого массива, и оно проявляется при разработке пласта.

Влеяние коэффициента бокового распора на величини \mathcal{L}_y и \mathcal{V} в угольном пласте при его разработке особенно сказывается на крутих и наклонных пластах. При разработке горизонтальных пластов напряженно-деформированное состояние не зависит от коэффициента бокового распора, что слепует из формул (2) и (3) при $\mathcal{L} = 0$.

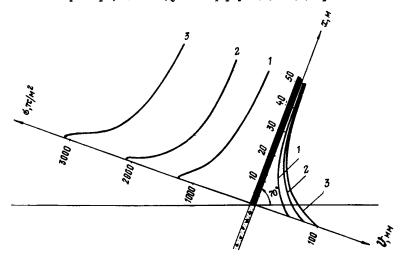


Рис. 8. Эпоры опорного давления 6_y и смещений y в угольном пласте при различных коэффициентах бокового распора β :

Таким образом, при разработке крутых угольных пластов, особенно опасных по внезапным выбросам угля и газа, необходимо изучать начальное напряженное состояние нетронутого массива, чтобы знать величину опорного давления в краевой части угольного пласта.

Для вывода различных закономерностей горного давления в краевой части угольного пласта в дальнейшем анализе примем $\beta=1$, учтя, что при $\beta=2$ опорное давление увеличивается, а при $\beta=0.5$ уменьшается по сравнению с $\beta=1$. Остальные параметры, входящие в расчет, примем следующими: H=400 м; $d=70^\circ$; h=3 м, $E_{nepod}=200000$ тс/ m^2 , $E_{yz}=20000$ тс/ m^2 ; $\gamma=2.5$, $\alpha=100$ м, $E_{z}=0.15$; $\theta_{z}=200$ тс/ m^2 , $\gamma=2.5$ тс/ m^3 .

Влияние гдубини разработки на напряженно-деформированное состояние краевой части крутого угольного пласта при разработке с закладкой виработанного пространства

Для выявления закономерностей горного давления на разных глубинах разработки рассмотрен крутой угольный пласт, разрабатываемый с закладкой выработанного пространства на глубине 400, 800 и 1200 м.

На рис. 9 приведены эпиры напряжений и полуобжатия краевой части угольного пласта.

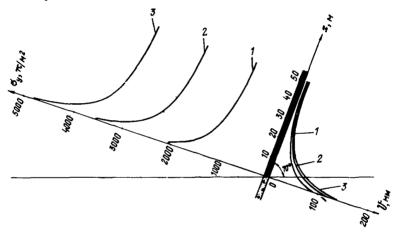


Рис. 9. Эпоры напряжений б $_{q}$ и смещений $_{r}$ на различных глубинах разработки:

I - 400; 2 - 800; 3 - I200 m

В результате анализа этих графиков можно заключить, что с увеличением глубины разработки от 400 до 1200 м опорное давление у кромки угольного пласта возрастает от 2000 до 4800 тс/ M^2 , хотя коэффициент концентрации напряжений G_y /g уменьшается от 2 до I,6. Обжатие краевой части угольного пласта меняется незначительно от 95 до I35 мм. На большой глубине высокое опорное давление обусловлено в основном напряженным состоянием нетронутого массива; так, при H = 400 м g H = 1000 тс/ M^2 , а при H = 1200 м оно увеличивается до 3000 тс/ M^2 . Поэтому уголь до разработки, т.е. в нетронутом массиве. нахолится в условиях высокого давления

и сильного обжатия. Такие проявления горного давления характерны при управлении кровлей закладкой с усадкой в 15%, а при управлении кровлей полным обрушением напряжение \mathcal{C}_y и обжатие угольного пласта значительно возрастают.

Влияние способа управления кровлей на напряженно-деформированное состояние краевой части крутого угольного пласта

При разработке угольных пластов с закладкой выработанного пространства необходимо выявить влияние свойств закладочных материалов, а при способе управления полным обрушением — свойств обрушенных пород на напряжения 6_g и смещения \mathfrak{D} в краевой части угольного пласта.

Основным компрессионным параметром, влияющим на напряженнодеформированное состояние угля, является ϵ_0 , т.е. максимальная усадка закладочных материалов или обрушенных пород.

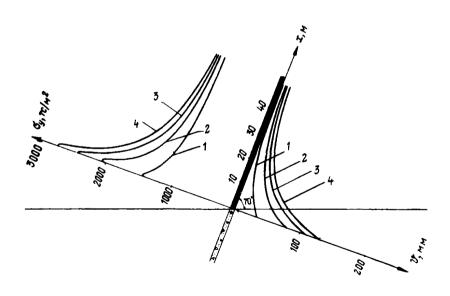


Рис. IO. Эперы напряжений \mathcal{G}_{g} и смещений \mathcal{D} в угольном пласте в зависимости от максимального уплотнения \mathcal{E}_{g} закладочных материалов и оорушенных пород при $\mathcal{G}_{g}=200$ тс/м 2 :

Для вывода закономерностей влияния компрессионного параметра \mathcal{E}_0 рассмотрим закладочные материалы с усадкой 5; 15; 25% и обрушенные породы с усадкой 50%. На рис. 10 представлены эпиры опорного давления и смещений для этих случаев. Самая большая концентрация напряжений \mathcal{E}_g у кромки угольного пласта будет при способе управления кровлей полным обрушением; она достигнет величины 2,8 TH , в то время как закладка с усадкой в 5% уменьшает опорное давление до I ,4 TH . Аналогичная закономерность наблюдается и для обжатия угольного пласта. Из рисунка следует, что самое интенсивное обжатие угольного пласта происходит в случае управления кровлей полным обрушением. Величина полуобжатия кромки пласта достигает 130 мм, в то время как при закладке с усадкой в 5% эта величина значительно ниже и равна 35 мм.

Из рисунка также следует, что применение закладки с большой усадкой, примерно 25%, тоже дает значительные величины опорного давления $6_y = 2.5$ % и обжатия кромки угольного пласта $\vartheta = 115$ мм.

На глубине разработки I200 м при способе управления кровлей полным обрушением опорное давление у кромки угольного пласта увеличивается до 7200 тс/м², а полуобжатие достигает 230 мм (рис. II). Даже на столь большой глубине применение закладки резко снижает опорное давление и обжатие кромки угольного пласта. Так, на рис. II показаны эпюры 6_y и кривые v при применении закладки с усадкой 5% на глубине разработки I200 м. В этом случае опорное давление у кромки снижается до 3400 тс/м², а полуобжатие до 37 мм. Коэффициент концентрации напряжений у кромки пласта будет составлять I,I3, т.е. будет ниже чем при полном обрушении, где 6_y / τ H = 2,4.

Высокое опорное давление и сильное обжатие кромки угольного пласта потенциально опасны не только сами по себе, но и по газовому фактору, так как вызывают у кромки угольного пласта образование "пробки", препятствующей фильтрации газа к забою. Поэтому закладка выработанного пространства, особенно на больших глубинах, может явиться очень важным фактором борьбы с внезапными выбросами угля и газа.

Анализируя приведенные данные, можно заключить, что для рассмотренных условий благоприятным является применение способа управления кровлей закладкой с усадкой примерно 5%. Значительное снижение выброссопасности угольных пластов при управлении кровлей путем закладки выработанного пространства наблюдалось на крутых пластах Э.И.Гайко и Г.Н.Фейтом [16].

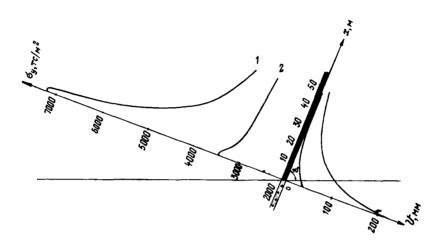


Рис. II. Эпоры напряжений би и кривые смещений 🖰 в краевой части угольного пласта на глубине разработки I200 м:

I - полное обрущение: 2 - заклядка с усацкой 5⊈

Каким бы дорогостоящим и нетехнологичным ни казалось в ряде случаев применение закладки, оно может стать одним из немногих эффективных средств безопасной разработки выбросоопасных пластов.

Влияние неоднородностей в структуре угольного пласта на напряженно-деформированное состояние его краевой части

Представленная выше методика расчета позволяет учесть некоторое количество неоднородностей различных по протяженности пласта размеров и усредненных по мощности пласта. Свойства неоднородностей могут задаваться по любым зависимостям (7)-(9) с различными входящими туда параметрами, так что двапазон свойств может быть большим.

Для примера нами выбраны неоднородности, расположенные в краевой части крутого угольного пласта на различных расстояниях от забоя и обладающие различными модулями упругости.

На рис. 12 представлены эпоры напряжений G_y и полуобжатий пласта v с неоднородностью протяженностью в I м в краевой части пласта. Неоднородность сласее, чем угольный пласт, и модуль упругости ее E=2000 тс/м², т.е. в I0 раз меньше, чем угля. Этот случай как бы имитирует разрушенную зону угля у засоя. Максимум опорного давления отодвигается в глубь угольного пласта на ширину этой неоднородности и по величине почти не меняется по сравнению с однородным углем (I600 тс/м²).

Теперь рассмотрим случай, когда неоднородность с теми же свойствами, что и в предыдущем случае, расположена на расстоянии I м в глубь пласта, а по зарине занимает 0.5 м (рис. I3). В этом случае, как показано на рисунке, в месте расположения слабой неоднородности происходит спад напряжений до 1050 тс/м², а у края пласта подъем 6, до 1700 тс/м².

Кривые смещений в обоих случаях одизки между собой и к кривой смещений однородного угольного пласта.

Рассмотрен также случай, когда угольный пласт у кромки ослаб лен (E=2000 тс/ M^2) на протяжении I м, затем имеется геологическое нарушение – пустота (0,5 м), а далее проходит угольный пласт с E=20000 тс/ M^2 (рмс. I4). В этом случае в месте нарушения происходит резкий спад напряжений до нуля, а затем подъем до 1650 тс/ M^2 , т.е. больной градиент изменения напряжений, что может оказаться опасным с точки зрения внезапных выбросов угля и газа.

На рис. 15 представлен случай о жесткой неоднородностью, расположенной на расстоянии I м от забоя, с модулем упругости E=200000 тс/ m^2 , т.е. в 10 раз большим, чем у угля. В этом случае в краевой части угольного пласта, в месте расположения жесткой неоднородности, опорное пласта, в месте расположения до 4000 тс/ m^2 и затем так же резко падает. Обжатие пласта, как следует из рисунка, происходит неравномерно с небольной вогнутостью под неоднородностью.

С увеличением жесткости неоднородности градиент изменения напряжений резко увеличивается, а при наличии в краевой части угольного пласта двух жестких неоднородностей появляются еще большие скачки напряжений 6_y , что очень нежелательно пля выбрососпасных угольных пластов (рис. 16).

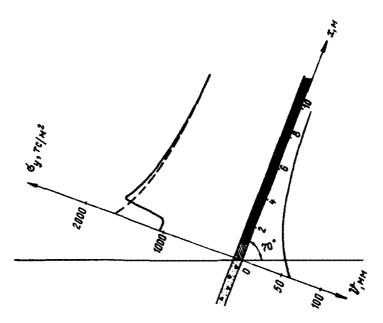
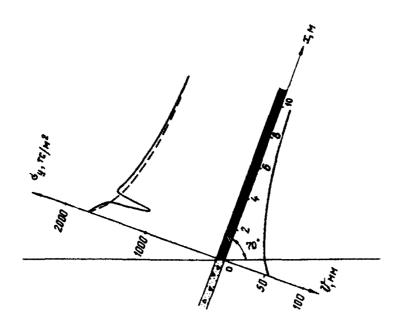



Рис. 12. Эпоры напрямений θ_y и смещений Φ в угольном пласте при наличии у кромки пласта слабого угля

Рмс. I3. Эпъры напряжений \mathfrak{G}_{μ} и смещений \mathfrak{P} в угольном пласте при наличии слабой неоднородности на расстоянии I м от забоя

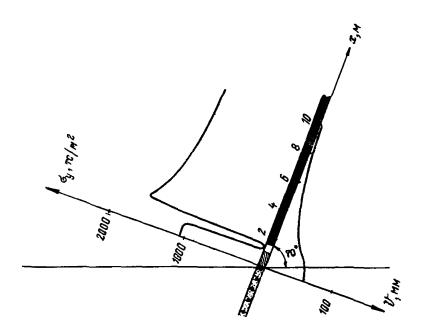
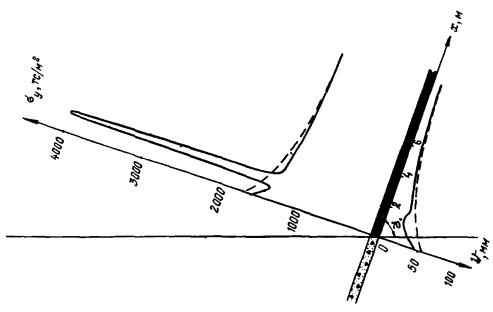



Рис. 14. Эпора напряжений бу и кривая смещений в в случае геологического нарушения в краевой части угольного пласта

Рыс. IS. Эпоры напряжений бу и смещений в в угольном пласте при наличии в нем жесткого включения:

сплошвая линия - пласт с включением, пунктирная - однородный пласт

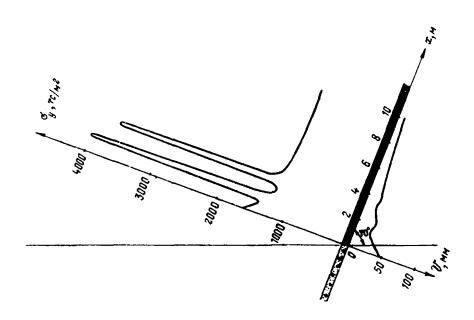


Рис. 16. Эпира напряжений f_y и смещений v в краевой чести угольного пласта с двумя жесткими неоднородностями

Следовательно, появление жестких неоднородностей в угольных пластах, опасных с точки зрения внезапных выбросов угля и газа, требует особых мер предосторожности и разработки способов разгрузки таких пластов.

Влияние отставания закладочного массива от забоя на напряженно-деформированное состояние краевой части угольного пласта

Закладочный массив обично возводится не непосредственно за забоем, а с некоторым отставанием от него. Влияние этого отставания на напряженно-деформированное состояние краевой части угольного пласта было исследовано нами для нескольких случаев. Рассматривался угольный пласт мощностью 3 м на глубине 400 м при разработке с закладкой выработанного пространства. При применении закладочных материалов с компрессмонными характеристиками $\xi_0 = 0.15$, $\xi_0 = 200$ тс/м 2 исследовались три случая с отставанием 2,5; 5 и 7,5 м, а также без отставания закладочного массива

от забоя. Влияние этого отставания на ϵ_y и полуобжатие пласта v несколько сказалось лишь у кромки пласта. Результаты исследований приведены в таблице.

Y	Отставание	ОТОНГОДВЕЛЬ	массива	OT	забоя,	M
Характеристики	0	2,5	5,0	T	7,5	
$\overline{\delta_y}$, $\operatorname{TC/M}^2$	1581	1731	1763	T	1794	
v, mom	145	149	153		155	

Из таблицы следует, что отставание закладочного массива от забоя на 7,5 м увеличивает концентрацию напряжений ϵ_y от 1,58 до 1,79, т.е. всего на 13%, а обжатие пласта увеличивается на 7%. Таким образом, отставание закладочного массива до 7,5 м с максимальной усадкой 15% практически мало влияет на напряженно-деформированное состояние краевой части угольного пласта.

Было исследовано также влияние отставания закладочного массива при применении закладки с усадкой в 5%. В результате получено, что отставание закладочного массива (с усадкой 5%) на 5 м не влияет на напряженно-деформированное состояние краевой части угольного пласта.

Следовательно, влияние отставания закладочного массива от забоя сказывается лишь при применении закладочных материалов с большой усадкой; применение же плотной закладки с небольшим процентом усадки снижает или вообще уничтожает влияние отставания закладки на напряженно-деформированное состояние краевой части угольного пласта.

JUTEPATYPA

- І. Дкник А. Н. О давлении горных пород и расчет крепи круглой шахты. "Инженерный работнык", 1925. № 7, с. 26-31.
- 2. Матвеев Б. В. Руководство по проведению испытаний слабых боковых пород на боковой распор. Л., ВНИИ горной геомеханики и маркшейдерского дела, 1961.
- 3. Ильштейн А.М.,Либерман Ю.М.,Мельников Е.А. и др. Методы расчета целиков и потолочин камер рудных месторождений. М., "Наука", 1964.
- 4. Гусельня ков Л. М., Мыльников А.А., Фурлетов И. А. Определение коэффициента бокового распора в натурных условяях. В сб. "Измерение напряжений в массиве горных пород". Новосибирок, ИТД ОО АН СССР, 1974, с. 12—15.

- 5. Егоров П. В. Исследование напряженного состояния нетронутого массива осадочных пород в Кузбассе. В сб. "Измерение напряжений в массиве горных пород", ч.П. Новосибирск, ИГД СО АН СССР, 1974, с. 3-10.
- 6. Руппенейт К. В. Механические свойства горных пород. М., Углетехиздат, 1956.
- 7. Берон А.И. и др. Исследование прочности и деформируемости горных пород. М., "Наука", 1973.
- 8. Ержанов Ж. С. Теория ползучести горных пород и ее приложения. Алма-Ата, "Наука", 1964.
- 9. Перков Ю. Р., Долгих М. А. Опыт сравнительного определения модуля упругости горных пород в лабораторных и полевых условиях. -"Основания, фундаменты и механика грунтов", 1965. № 3, с. 21-23.
- ІО. Тарасова И. В., Руппенейт К. В. Механическая модель трещиноватого массива. "Гидротехническое строительство", 1970, № 1. с. 8-10.
- II. Леберман Ю. М., Ханмова-Малькова Р. И. Методика расчета напряженно-деформированного состояния пород при разработке угольных пластов с закладкой выработанного пространства. М., ИГД им. А.А.Скочинского, 1976.
- I2. Winkhaus G.P. Ergebnisse gebirgsdynamischer Forschung in Großbritannien. "Bergbau-Archiv", 1949, Bd. 10, S. 155-170.
- 13. М у с х е л и ш в и л и Н. И. Некоторые основные задачи математической теории упругости. М., Изд-во АН СССР, 1949.
- 14. Либерман D. М., Хаимова Малькова Р. И. Давление горних пород на закладочный массив с нелинейной характеристикой усадки. → "Физико-технические проблемы разработки полезных ископаемых", 1973. № 2, с. 3-7.
- IS. Демидович Б. П., Марон И. А. Основы вычислительной математики. М., "Наука", 1970.
- I6. Гайко Э. И., Фейт Г. Н. Исследование влияния способа управления кровлей гидравлической закладкой на выбросоопасность крутых угольных пластов. "Уголь", 1976, № 6, с. 27—31.

COLEPKAHNE

выедение	3
СВОЙСТВА И СОСТОЯНИЕ МАССИВА ГОРНЫХ ПОРОД, УГОЛЬНОГО ПЛАСТА И ЗАКЛАДОЧНЫХ МАТЕРИАЛОВ	3
METOR N CXEMA PACHETA	II
ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ НАПРЯЖЕННО-ЛЕФОРМИРОВАННОГО СОСТОЯНИЯ КРАВВОЙ ЧАСТИ РАЗРАБАТЫЗАЕМОГО УГОЛЬНОГО ПЛАСТА В ЗАВИСИМОСТИ ОТ РАЗЛИЧ-	
ных горно-геологических и горнотехнических параметров	17
Влияние напряженного состояния нетронутого массива	17
Влияние глубины разработки на напряженно-деформированное состоя- ние краевой части крутого угольного пласта при разработке с за- кладкой выработанного пространства	19
Влияние способа управления кровлей на напряженно-деформированное состояние краевой части крутого угольного пласта	20
Влияние неоднородностей в структуре угольного пласта на напря- женно-деформированное состояние его краевой части	22
Влияние отставания закладочного массива от забоя на напряженно- деформированное состояние краевой части угольного пласта	26
JINTEPATYPA	27

Юрий Михайлович Либерман, Рамса Ивановна Хаимова-Малъкова

мЕТОДИКА РАСЧЕТА НАПРЯЖЕНИЙ И ДЕФОРМАЦИЙ УГОЛЬНОГО ПЛАСТА ПРИ РАЗЛИЧНЫХ СПОСОБАХ УПРАВЛЕНИЯ КРОВЛЕЙ

Редактор И.А.Дружкова

T-14919	Тираж 500	Цена 14 коп.	Изд. № 8492	Заказ 11)/9
I,8 учиз	Типография Инс	гит ута горного дела Под	им.А.А.Скочинско писано к печати	ого 29/УЛ 1980 г.