ТИПОВОЙ ПРОЕКТ 407-3-386.86

ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ 110/10 КВ
БЕЗ ВЫКЛЮЧАТЕЛЕЙ НА СТОРОНЕ ВЫСШЕТО НАПРЯЖЕНИЯ
С ТРАНСФОРМАТОРАМИ МОЩНОСТЬЮ ОТ 25 ДО 40 МВ•А
ДЛЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

ПОДСТАНЦИЯ 110-4-2х40-10-2(А-20)

 $\begin{tabular}{ll} {\bf I} & {\bf MOSILLE} & {\bf RABILITATION I} \\ {\bf IOHCHUTETISHAS SAIIILES RABALISTUMOOII } \\ {\bf RABILITATION I} & {\bf RABILITATION I} \\ {\bf RABILITATION I} & {\bf RABILITATION II \\ {\bf RABILITATION I} \\ {$

CP 712-01

Госстрой СССР
ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВОГО ПРОЕНТИРОВАНИЯ
Свердловский филиал
620062, г.Свердловск-62, ул.Чебыпева,4
Заказ # 509 Инг. # СФ 712-04 тирал 560
Сдано в печать 26.11 1986г цена 0-5%

TMIOBON IIPOEKT 407-3- 386.86

ТРАНСФОРЛАТОРНЫЕ ПОДСТАНЦИИ 110/10 КВ

БЕЗ ВЫКЛЮЧАТЕЛЕЙ НА СТОРОНЕ ВЫСШЕГО НАПРИЖЕНИЯ

С ТРАНСФОРМАТОРАМИ МОЩНОСТЬЮ ОТ 25 ДО 40 МВ-А

ДЛЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

ПОДСТАНІМЯ 110-4-2х40-10-2(А-20)

АЛЬБОМ І ПОЯСНИТЕЛЬНАЯ ЗАПИСКА И УКАЗАНИЯ ПО ПРИМЕНЕНИЮ

РАЗРАБОТАН

Куйбышевским отделением

ГМИ Электропроект

Утвержден и введен в действие Минмонтажспецстроем СССР Протокол от 21 декабря 1984 г.

Управляющий отделением мальцев Главный инженер проекта Феф Н.Г.Сорочайкин

QP 742-01

СОДЕРЖАНИЕ

Jam IIII	Наименование	CTp.
I	2	3
	Титульный лист	I
	Содержание альбома	2
	Материалы для проектирования	
	I.OHIAN YACTЬ	4
	2. КРАТКОЕ СОДЕРЖАНИЕ ТИПОВОГО ПРОЕКТА	4
	з. электротехническая часть	
3.I.	Схема электрических соединений	6
3.2.	Основное электрооборудование	7
3.3.	Основные конструктивно-компоновочные решения	7
3.4.	Прокладка кабелей	10
3,5.	Заземление и молниезащита	IO
3.6.	Электрическое освещение	II
	4. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ И САНИТАРНО- ТЕХНИЧЕСКАЯ ЧАСТЬ	
4.I.	Условия строительства	II
4.2.	Схама генциана	12
4.3.	Конструкции открытого распределительного устройства IIO кВ	13
	СФ	712-01

1.4. 3	2 Здание закритого распределительного устройства IO кВ	I4
4.5. (Отопление и вентиляция	
		18
4.6.	Водоснабжение и канализация	19
4.7.	Обеспечение пожарной безопасности	I 9
4.8.	Охрана окружающей средн	19
:	5. OPTAHUSALIUS CTPONTENEHO-MOHTAKHUX PAEOT	20
(6. ИНДУСТРИАЛИЗАЦИЯ ЭЛЕКТРОМОНТАЖНЫХ РАБОТ	2I
1	7. МЕХАНИЗАЦИЯ ТРАНСПОРТИРОВКИ И УСТАНОВКИ ТЯЖЕЛОГО И КРУПНОГАБАРИТНОГО ЭЛЕКТРООБОРУ— ДОВАНИЯ	21
	8. YKASAHUR IIO IIPUMEHEHUKO TULIOBOITO IIPOEKTA	22
	9. ЭКОНОМИЧЕСКАЯ ЧАСТЬ	25

I. OHILAR YACTL

В работе приведени технические решения и указания по применению типового проекта "Траноформаторные подстанции IIO/IO кВ без выключаталей на стороне высшего напряжения с траноформаторами мощностью от 25 до 40 МВ·А для промышленных предприятий ПС IIO-4-2х40-IO-2(A-20)", разработанного Куйбышевским отделением ППИ Электропроект и ППИ Промстройпроект г.Москва.

Типовой проект подстанции IIO-4-2х40-IO-2(A-20) разработан на основании плана типового проектирования на I984 г. по INИ Электропроект Главэлектромонтажа Минмонтажспецстроя СССР в соответствии с Постановлением Госстроя СССР № 303 от I8 ноября I983г. по теме Ш.6.2.7 Трансформаторные подстанции IIO/IO кВ без выключателей на стороне высшего напряжения для промышленных предприятий (взамен типового проекта 407-3-29I).

2. KPATKOE COJEPRAHUE TUIIOBOTO IIPOEKTA

Типовой проект разработан для подстанций промышленных предприятий.

Область применения проекта — для подстанций, расположенных в районах с расчетной температурой минус 20° , 30° , 40° с обичными геологическими условиями (сейсмичность не выше 6 баллов)

Подстанция IIO-4-2x40-IO-2(A-20 с изоляцией аппаратуры

						TII 407-3- 586.86			II3	
	LMI	Сорочайк	AH Caly		и	Пояснительная записга указания по применению	Стадия Р	JMCT I	JINCTOB 23	
		Темкин Холодков Карон	Walan Mala				•	ГПИ ЭЛЕКТРОПРОЕКТ Куйбышев		
_										

ПО кВ категории А по ГОСТ 9920-75 предназначена для электроснаожения предприятий с атмосферой, не загрязненной промышленными уносами.

В проекте разработаны архитектурно-строительный, электромонтажный, сантехнический разделы и сметная документация.

Обозначение подстанции расший ровывается следующим образом

	IO-2(A-20)	
		распредели тельного
	•	ойства IIO кВ
		4 - схема два блока
		линия —
		трансформатор с
l l		отделителями и
		неавтоматической
1	J	перемычкой со стороны
		линии
L	Колж	Tectbo n Makcumalishaa
		ость трансформаторов
	1	распределительного
		ойства IO кВ
		- две одиночные
	10 %	секционированные
		виключателями
		CUCTOMN MUH
	A	— номинальный ток
	A	BBOIA
		А - I600 A
	20	- ток отключения в кA
		THC:
	TII 407-3-386.86	II3 2
		12

з. электротехническая часть

3.1. Скема электрических соединений.

Подстанция запроектирована двухтрансформаторной без выключателей на стороне высшего напряжения с установкой в цепи трансформаторов отделителей и короткозамыкателей.

На подстанции IIO-4-2х40-IO-2(A-2O) распределительное устройство IIO кВ выполняется по схеме IIO-4- два блока линиятрансформатор с неавтоматической перемычкой со стороны линии.

На подстанции могут быть установлены траноформаторы мощностью 25 MB·A или 40 MB·A.

Трансформаторы принимаются по ГОСТ I2965-74, с расщепленной обмоткой IO кВ. Для защиты нейтрали трансформатора принимаются разрядники РВС-35 + РВС-I5.

Для заземления нейтрали устанавливается заземлитель 30H--IIOM-IIVI.

Предусматривается возможность установки в нейтрали траноформатора короткозамикателя КЗ-IIO УI.

На напряжении IO кВ принята схема IO-2 - две одиночние, секционированные выключателями системы шин.

Проектом предусматривается установка на подстанции двух трансформаторов собственных нужд в шкафах КРУ серии КМ-I-УЗ без вылвижной части.

Трансформаторы собственных нужд подключаются через предохранители до выключателей вводов IO кВ. Напряжение сети собственных нужд — 380/220 В с заземленной нейтралью.

11 407-3-386.86

IIЗ

<u>10c</u>

3.2. Основное электрооборудование.

На подстанции аппаратура ОРУ-IIO кВ и силовые траноформатори приняти с внешней изоляцией категории "A" по ГОСТ 9920-75.

Распределительное устройство IO кВ комплектуется из шкафов КРУ серии КМ-IФ-IO-2O-УЗ с выключателями ВКЭ-IO на ток отключения 20 кА со встроенными электромагнитными приводами.

3.3. Основные конструктивно-компоновочные решения.

3.3.1. Компоновочене решения.

Подстанция состоит из трех основных конструктивных узлов: распределительного устройства IIO кВ;

силовых траноформаторов;

распределительного устройства IO кВ.

Оборудование распределительного устройства IIO кВ и силовие трансформаторы на подстанции устанавливаются открыто.

Связи траноформаторов с ОРУ-IIO кВ и ЗРУ-IO кВ выполняются тибкими.

Ремонт и ревизия трансформаторов на подстанции предусмотрени на месте их установки с помощью автокрана грузоподъемностью ПО т.

Распределительное устройство IO кВ сблокировано со щитом управления и вспомогательными помещениями в одном 2-х этажном здании.

Распределительное устройство IO кВ, щит управления и комната ремонтного персонала расположени на 2-ом этаже злания.

III 407-3-386.86

113

Открытое кабельное сооружение, тепловой узел и уборная расположены на первом этаже здания.

Компоновка ЗРУ-IO кВ предполагает выход кабелей IO кВ на кабельные эстакады и галерен.

Из объектов вспомогательного назначения предусмотрен закритий маслосоорник для аварийного слива масла из трансформатора, расположенный на территории подстанции.

3.3.2. Конструктивные решения ОРУ-IIO кВ.

Оборудование ОРУ-IIO кВ устанавливается на железобетонных опорах.

Ошиновка ОРУ выполняется сталеалюминиевым проводом марки АС.

Для соединения проводов в местах ответвлений применяются ответвительные прессуемые зажимы. При освоении монтажной организацией сварки проводов, соединение проводов в местах ответвлений может быть выполнено при помощи сварки.

Для присоединения проводов к аппаратам применяются аппаратнне прессуемые зажимы.

3.3.3. Установка силових трансформаторов.

Силовне трансформатори устанавливаются на столочатие фундаменти из монолитного бетона.

Для крепления ошиновки IIO кВ трансформаторов предусматриваются железобетонные порталы. Вводы от трансформаторов в ЗРУ--IO кВ выполняются гиской ошиновкой с алюминиевым проводом марки

TII 407-3-386.86

A500. Ошиновка IO кВ крепится на опорных изоляторах.

3.3.4. Конструктивные решения ЗРУ-10 кВ.

В проекте разработано ЗРУ-ІО кВ типа ІО-2(А-20) размером 6х42м для установки по 40 шкабов отхолящих линий.

Расшитровка обозначения типа ЗРУ-10 кВ приведена в разделе 2.

Расположение шкафов КРУ двухрядное, с двухсторонним обслуживанием каждого ряда.

Виход силових и контрольных кабелей из шкафов КРУ в откритое кабельное сооружение осуществляется через проемы в перекрытим, которие после проклапки кабелей запеливаются легкоупаляемым теплоизоляционным материалом (см. раздел 4.4).

Шкафи КРУ устанавливаются на специально предусмотренные в полу швеллеры.

Вводи от трансформаторов в ЗРУ-ІО кВ осуществляются через проходние изолятори, которие крепятся к асбестопементным поскам. устанавливаемым в стене злания.

Вводн от проходной доски до шкафов КРУ предусматриваются шкафами шинных вводов заводского изготовления, поставляемых комплектно с КРУ.

В помещении щита управления предусмотрена возможность установки 5 панелей шита собственных нужи. 24 панелей управления, зашиты и автоматики, 2-х блоков питания НПНС-2 и 2-х комплектных устройств питания электромагнитов включения типа УКII-380.

TII 407-3-386.86

Дис 6

Выход контрольных и силовых кабелей из помещения щита управления в открытое кабельное сооружение осуществляется аналогично выходам из шкафов КРУ.

3.4. Прокладка кабелей.

Прокладка кабелей, силовых и контрольных, по территории ОРУ-IIO кВ предусматривается в надземных железобетонных лотках. Выход кабелей из лотков к ящикам зажимов и приводам аппаратов выполняется в металлических лотках и коробах.

В открытом кабельном сооружении ЗРУ-IO кВ кабели прокладываются по кабельным конструкциям.

3.5. Заземление и молниезащита.

Заземление подстанции выполняется в соответствии с главой 1-7 ПУЭ-76 с соблюдением требований к сопротивлению заземляющего устройства и его конструктивному выполнению.

В типовом проекте приведен чертеж заземления подстанции, выполненный для удельного сопротивления грунта равного 100 Ом.м.

При устройстве заземления использованы естественные заземлители - водопроводные трубопроводы, железобетонные конструкции здания РУ-IO кВ, система трос-опора.

Защита подстанции от прямых ударов молнии осуществляется двумя стержневыми молниеотводами, установленными на приемных порталах IIO кВ и двумя отдельностоящими молниеотводами.

Молниезащита выполнена для подстанции с эквивалентным удельным сопротивлением грунта до 1000 0м.м.

III 407-3-386.86

ТИС! 7

ΠЗ

3.6. Электрическое освещение.

На подстанции предусматривается рабочее и ремонтное электроосвещение.

Рабочее освещение подстанции питается от сети переменного тока напряжением 380/220 В.

Ремонтное освещение осуществляется от переносных трансформаторов с вторичным напряжением 12 В, включаемых в сеть рабочего освещения.

Аварийное освещение на подстанции не предусматривается. При полном исчезновении питания следует использовать переносные аккумуляторные фонари.

4. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ И САНИТАРНО-ТЕХНИЧЕСКАЯ ЧАСТЬ

4.1. Условия строительства.

Рабочие чертежи типовых трансформаторных полстанций напряжением IIO/IO кВ мощностью 25...40 МВ·А для промышленных предприятий разработаны с учетом следующих условий строительства:

- расчетная зимняя температура наружного воздуха 30°C и варианты применительно к районам с расчетными температурами -20°C M -40°C:
 - скоростной напор ветра для I географического района;
 - вес снегового покрова для Ш географического района:
 - рельеф территории спокойный, грунтовые воды отсутствуют:

TII 407-3-386.86

113

Тис

— грунти непучинистие, непросадочные со следующими нормативными карактеристиками: нормативный угол внутреннего трения \mathcal{G}^{H} = 28° , нормативное удельное сцепление C^{H} =0,02 кг/см2, модуль деформации нескальных грунтов E=150 кгс/м2, плотность грунта \mathcal{F} = 1,8 г/м3, коэффициент безопасности по грунту Kr=1,0;

- сейсмичность не выше 6 баллов.

4.2. Схема генцлана.

Подстанция IIO/IO кВ размещается на территории промышленного предприятия.

При компоновке генплана рационально использована территория с соблюдением технологической взаимосьязи зданий и сооружений.

На территории подстанции предусмотрено устройство автодороги. Ремонтные площадки и автодорога должны иметь твердое, непылящее покрытие, определяемое при конкретной привязке. Въезди на территорию подстанции предусмотрены с двух сторон.

Для обеспечения подходов к аппаратуре в качестве пешеходных дорожек используются кабельные каналы.

Вертикальная планировка площадки подстанции решается поверхностным отводом дохдевых и талых вод с территории подстанции.

По автодороге принят уклон 0,018-0,020. Минимальный уклон поверхности принят 0,003.

Объемы земляных масс при вертикальной планировке, устройству автомобильной дороги и ремонтных площадок определяются при привязке типового проекта в конкретных условиях.

III 407-3-386.86

Гис

4.3. Конструкции открытого распредустройства IIO кВ

Фундаменти под трансформатори приняти столочатого типа из монолитного бетона с отм. заложения — I,4 м. По верху фундаментов укладываются сборние железобетонные плиты НСП—3 по серии 3.407——102 вып. І для установки и закрепления рельса. Отметка головок рельсов принята + 0,200 м.

Под силовыми трансформаторами предусмотрено устройство маслоприедника с использованием сформых фетонных блоков с заполнением промытым и просеянным щефнем (непористым) или гравием крупностыю 50-70 мм.

Отвод масла и атмосферной води из маслоприемника предусматривается в специальную канализацию.

Конструкции канализационных колодцев приняти по ГОСТу 8020-80.

Подземный маслосоорник принят по типовому проекту 901-4
-57.83 "Резервуар для воды прямоугольный железобетонный сфорный емкостых 50 м3".

Анкерные устройства, необходимые для перемещения трансформаторов при их установке, в проекте приняти из подножников типа АП серия 3.407—103 вып. 2.

Конструкции кабельных каналов приняты по серии 3.407—IO2 вып. I: лотки, УБК-2А железобетонные, корытного профиля, шириной 500 мм. Лотки устанавливаются на подкладки БК-IIa, ВК-I2a и перекрываются плитами УБК-5.

Перед устройством кабельных каналов территория должна быть спланирована в соответствии с проектом вертикальной планировки.

III 407-3-386.86

3 IO

Стены узлов пересечения кабельных каналов выполнять из глиняного кирпича марки 35 на растворе марки 25. В месте прохождения через автодорогу, кабели прокладываются в гильзах из стальных труб Ø 108 мм по ГОСТу 8732-78.

Однопролетние ячейковые порталы приняты по серии 3.407-97 вып. 2.

Отдельностоящие молниеотводы приняты по серии 3.407-I08, вып. 3.

Опорами под разъединители, отделители, короткозамикатели, разрядники и заземлители служат железобетонные стойки по серии 3.407-IO2, вып. 2.

Отраждение подстанции решено по серии 3.017-I. Отраждение высотой 2 м типа М5В из металлических сетчатых панелей с железобетонным поколем по железобетонным столбам с шагом 3.0 м.

Ворота и калитки огради , сетчатие распашние.

В соответствии с заданием института "Электропроект", в местах примыкания огради к зданию, выполняются вставки из силикатного кирпича.

4.4. Здание закрытого распределительного устройства

Здание закрытого распределительного устройства ЗРУ IO-2 (А-20) запроектировано двухэтажным из сфорных железобетонных изделий по серии I.020-I/83.

Размери здания в плане 42x6 м, сетка колони 6x6 м, высота первого этажа (открытого кабельного сооружения) 3,3 м (до низа

III 407-3-386.86

II3 INC

несущих конструкций 2,45 м), высота второго этажа 4,8 м (до низа несущих конструкций 3,95 м).

Первый этаж здания между осями I-7 неотапливаемый, предназначен для кабельных разводок, между осями 7-8 размещаются входная группа с отапливаемой лестничной клеткой, тепловой узел и уборная;

второй этах отапливаемый, там размещаются помещения распределительного устройства и щитов, а также комната ремонтного персонала. В связи с отсутствием постоянных рабочих мест, комната ремонтного персонала и уборная используются только в период ремонтно-профилактических работ на подстанции.

Степень огнестойкости здания - П.

Эвакуация ремонтного персонала со второго этажа осуществляется через отапливаемую лестничную клетку или через открытую стальную лестницу, расположенную с другой стороны здания.

Каркас здания запроектирован из сборных железобетонных конструкций. Колонны в опалубке колонн серии I.020-I/83, вып.2-II; ригели по серии I.020-I/83, вып. 3-I, 3-IO; плиты перекрытия и покрытия по серии I.042 вып. I.

Фундаменти под колонны сборно-монолитные по серии I.020-I/83 вып. I-I.

При привязке типового проекта конструкции фундаментов принимать в соответствии с местными условиями строительства - климатическими гипрогеологическими, грунтовыми.

Утепление перекрытия под помещениями РУ и щитовым помещением запроектировано из пеностекла Y = 300 кг/м3, толщиной до 50 мм

III 407-3-386.86

I2

П3

и из керамзитобетона Y = 1000 кг/м3; толщина керамзитобетона, единая для всех расчетных зимних температур наружного воздуха, приведена в экспликации полов на листе AP-7.

Кровля плоская, рулонная, с внутренним водостоком. Утеплитель покрытия — минераловатные плиты повышенной жесткости Y = 200 кг/м3, толщиной 50 мм для расчетной зимией температури наружного воздуха — 20° С; толщиной 60 мм для — 30° С, толщиной 80 мм для — 40° С.

Лестницы из соорных железобетонных маршей и площадок по се-рии I.050.I-2, вып. I,2, металлическая лестница по типу серии I.450.3-3 вып. I.

Наружные стены первого этажа приилты из железобетонных панелей толщиной 70 мм по серии I.432-I5, а также из стальных сетчатых панелей (по типу панелей ограждений серии 3.017-I) с поколем из сборных железобетонных панелей нулевого цикла по серии I.030.I-I вып.I-I. Стальные сетчатые панели запроектированы распашными (наружу). Стены лестничной клетки из керамзитобетонных панелей по серии I.030.I-I вып. 0-I.0-2 и из силикатного кирпича.

Наружные стеновые панели второго этака запроектированы из поризованного керамзитобетона толщиной 250 мм по серии I.030.I-I вып. 0-I,0-2 \rightarrow =IIO0 кг/м3 для расчетной зимней температуры наружного воздуха - 20°C; \rightarrow =IOO0 кг/м3 для - 30°C; \rightarrow = 900 кг/м3 для - 40°C.

Внутренние стены и перегородки кирпичные.

В перекрытиях (в зоне установки шкафов в помещениях щитов

TII 407-3-386.86

I3

и распределительного устройства) предусмотрены монолитные железобетонные участки с устройством проемов для пропуска кабелей из шкафов КРУ и панелей в открытое кабельное сооружение и пля анкеровки установочных профилей. После прокладки кабелей проемы заполняются сыпучим теплоизоляционным материалом с объемным весом не более 800 кг/м3 (по узлу на листе AP-IO).

Конструкции полов отвечают технологическим требованиям и приняти: в помещениях шитов. распределительного устройства бетонные с пропиткой флюатами: в открытом кабельном сооружении - асфальтобетонные: в остальных вспомогательных помещениях - из керамической плитки.

Участки примыкания полов к шкофам КРУ в местах выкатки тележек дополнительно армируются сеткой 12 5-1,20 ГОСТ 3826-82.

Двери из помещения распределительного устройства открываются наружу или в коридор; конструкции дверей приняти по ГОСТ 14624-84: противопожарные двери по серии 2.435-6 вып.І.

Внутренняя отделка помещений выполняется по подготовленным поверхностям водоэмульсионными красками Э-ВА-27 (ГОСТ 19214-80). перхлорвиниловыми эмалями ХВ-124 (ГОСТ 10144-74).

Заполнение оконных проемов в щитовом помещении и вспомогательных помещениях принято деревянными переплетами по серии I. I36-5-I6 вып. I. В шитовом помещении переплети с внутренней стороны обтянуть сеткой № IOxI, 2x0 ГОСТ 5336-80.

Наружная отделка здания ЗРУ назначается при привязке проекта в соответствии с архитектурными решениями, общими для всего

113

INCT 14

комплекса предприятия. в состав которого входит подстанция. Рекомендации по наружной отделке приведены на листах проекта.

4.5. Отопление и вентиляция.

Отопление и вентиляция здания закритого распредустройства разработаны для климатических районов с расчетными зимними температурами воздуха наиболее холодной пятидневки -20° C, -30° C, -40°C.

Теплоносителем для системы отопления и теплоснабжения служит перегретая вода с параметрами 1500-700С, поступающая из теплосети. В помещении распределительного устройства для поддержания температури +5°C система отопления решена с помощью регистров из гладких труб по оси "А". На время ремонтных работ и профилактического обслуживания в помещении распределительного устройства дополнительной веткой отопления по оси "В" поплерживается температура +I8°C.

В остальных помещениях регистрами и конвекторами "Прогресс" I5KI, I5K2 поддерживается температура +I8^OC; в лестничной клетке и тамбуре + 16^OC.

В помещении распределительного устройства предусмотрена аварийная пятикратная витяжная вентиляция. Применени осевые вентиляторы 06-300№ 4.

При остановке вентиляторов лепестковие клапаны закрываются, исключая потери тепла в отопительный период. Кнопки пуска систем аварийной вентиляции расположены у входа. Вентиляция санузла -

III 407-3-386.86

15

-естественная, через дефлектор BEI.

4.6. Волоснаожение и канализация.

На подстанции предусматриваются водопровод и канализация.

Источником водоснабления принимается наружная сеть хозяйственно-питьевого водопровода.

Потребный напор на вводе в здание — IO м.в.ст., расчетный расход води равен 0,I7 л/сек.

Для отвода сточных вод от санитарных приооров, талых и ливневых вод с кровли разраоотана, соответственно, онтовая и дожпевая системы канализации.

4.7. Обеспечение пожарной безопасности.

Помаротушение предусматривается от наружных сетей водоводов или спецпомаротушения.

4.8. Охрана окружающей среды.

Устройство маслоприемников, системи маслоотводов и маслосборника, предусмотренное проектом, предотвращает загрязнение окружающей территории при аварийном выбросе масла из трансформатора. Откачка масла из маслосборника производится в передвижные емкости.

Сброс дождевых вод из маслосборника (выпуск К2-I) присоединить к внутриплощадочной сети производственной канализации или местным очистным сооружениям.

Для санитарно-технического обслуживания персонала ремонтных бригад, на подстанции предусматривается ввод водопровода в

TII 407-3-386.86

ПЗ

16

здание закрытого распределительного устройства и устройство уборной.

5. OPTAHUBALIME CTPONTEJISHO-MOHTAEHUX PAROT

Строительно-монтажные работы по возведению траноформаторной поистании следует выполнять одним комплексным потоком.

До начала основных строительно-монтахных работ полжна быть выполнена полготовка строительной плошалки.

Возведение здания и сооружений следует производить в следующей очередности:

- здание ЗРУ:
- фундаменти под трансформатори, автомобильная дорога, маслоприемники, резервуар-маслосоорник ;
- открытое распределительное устройство (ОРУ). кабельные канали, огражление, благоустройство.

После возведения подземной части здания ЗРУ (фундаментов, приямков, подготовки под поли), выполняются работи по монтажу конструкций каркаса, стен, перегородок и покрытия.

Монтаж конструкций следует производить с помощью самоходных стреловых кранов (гусеничных или пневмоколесных), "с колес", в соответствии с проектом производства работ, обеспечивающим минимальную трудоемкость и продолжительность строительства.

Строительно-монтажние работи необходимо выполнять в соответствии с требованиями СНиП II-4-80.

TII 407-3-386.86

6. UHILYCTPUAJUSALINE SJEKTPOMOHTARHAX PAROT

Конструктивная часть поистании запроектирована с учетом максимальной инпустриализации электромонтажных работ.

Техническая покументация разработана с учетом веления алектро монтажных работ в две стадии.

Монтаж оборудования сволится в основном к установке в монтахной зоне комплектного оборудования заводского изготовления (шкафы КРУ, панели прита управления) и укрупненных комплектных узлов (КУ), представляющих собой металлоконструкции со смонтированным на них электрооборудованием, полностью подготовленных в мастерских электромонтажных заготовок (МЭЗ).

Предусматривается использование электромонтажных изделий и конструкций изготовляемых заводами ГЭМ Минэнерго СССР.

7. МЕХАНИЗАЦИЯ ТРАНСПОРТИРОВКИ И УСТАНОВКИ ТЯЖЕЛОГО И КРУПНОГАБАРИТНОГО ЭЛЕКТРО-**OFOPYHOBAHIA**

Транспортировка, выгрузка и монтаж силовых трансформаторов IIO кВ должны производиться в соответствии с инструкцией по транспортировке, выгрузке, хранению, монтажу и введению в эксплуатацию силовых трансформаторов общего назначения на напряжение IIO-500 кВ (РТМ I6687000-73 Минэнерго СССР).

Установка всех узлов, монтируемых на трансформаторе, предусматривается автокраном грузопольемностыю Зт.

III 407-3-386.86

ПЗ

INC 18

Hub.N'hodn. Modnyce v doma (dsam,uub.n

Перемещение трансформатора на фундаменте производится с помощью лебелки, для чего в строительной части подстанции предусмотрены анкерные устройства.

Монтаж шкафов КРУ должен вестись в соответствии с инструкцией по монтажу комплектных распределительных устройств на напряжение по IO кВ (ВСН 386-77 MMCC СССР).

Автокранами грузоподъемностью Зт шкафы КРУ и панели щита управления поднимаются на отметку 2-го этажа и устанавливаются на специально предусмотренную монтажную плошанку.

Монтажная площадка рассчитана на установку оборудования массой 2 тонны. При перемещении шкафов КРУ и панелей к месту их установки и при установке их на закладные конструкции рекоменпуется использовать приспособления и механизмы. Указанные в инструкции.

Для удобства транспортировки в помещении ЗРУ-IO кВ предусмотрено съемное анкерное устройство.

Оборудование и ошиновка ОРУ-IIO кВ монтируется с помошью автокранов и телескопических вышек.

8. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ТИПОВОГО ПРОЕКТА

- 8.1. Электротехнических чертежей.
- 8.І.І. При привязке проекта в спецификации на чертежах плана подстанции и установки силовых трансформаторов (альбом П) в бликах проставить принятое сечение провода и тип аппаратных и ответвительных зажимов в соответствии с таблицей.

III 407-3-386.86

113

INC. 19

Марка и сечение	AC95/16	ACI20/I9	ACI50/I9	ACI85/24	AC240/32
провода	ACK1195/16	ACKII2O/I9	ACKII50/I9	ACKII185/24	ACKII240/32
суемый аппарат- ный прес-	AIA-95-7	AIA-I20-7			
Зажим аппарат- ный прес-	A2A-95-7	A2A-120-7	A2A-150-7	A2A-185-7	A2A-240-7
Зажим анпарат- ный прес- суемый	- A4A-95-5	A4A-120-5	A4A-I50-5	A4A-I85-5	A4A-240-5
Зажим ответви— тельный прессуе— мый	0A-95-I	0A-I20-I	OA-150-I	OA-185-I	0A-240-I

8.1.2. Чертежи заземления, молниезащиты, схема электрических ссединений приведены в качестве образца при разработке соответствующих чертежей.

Чертеж заземления и молниезащиты может быть применен без изменения при совпадении условий, указанных в разделе 3.5 и на чертеже.

- 8.І.З. В альбоме Ш в чертеже плана на отм. 3.300, в альбомах ІУ, У в ведомостях изделий мЭЗ и в ведомостях изделий и материалов для изготовления изделий мЭЗ, в альбоме X в ведомостях потребности материалов заполнить блики.
 - 8.І.4. Остальные чертежи альбомов П.Ш.ІУ,У.Х могут быть

111 407-3-386.86

ПЗ

Лис 20 применени без изменений и дополнений.

8.I.5. Чертежи разработаны для напряжения IO кВ. Для напряжения 6 кВ изменения и дополнения вносятся при привязке.

8.2. Строительных чертежей.

При привязке проекта следует руководствоваться строительными нормами и правилами СНиЛ II-89-80, СНиЛ II-M.2-72 и СНиЛ III--4-80.

При несоответствии условий, принятых в типовом проекте от условий конкретного проекта (климатических, гидрогеологических, грунтовых) следует произвести проверочные расчеты и внести соответстнующие изменения.

Проект должен быть дополнен чертехами генциана подстанции, вертикальной планировки, подъездной автодороги и привязан к внешним сетям водопровода и канализации.

8.3. Составление спецификаций и заказ оборудования.

При привязке типового проекта для конкретной подстанции спецификация оборудования должна составляться на основании спецификации, приведенной в альбоме IX.

Ведомости потребности приведени в альбоме Х.

TII 407-3-386.86

M

113

9. ЭКОНОМИЧЕСКАЯ ЧАСТЬ

В разработанном типовом проекте применен передовой опытзакрытое распределительное устройство ІО кВ ІО-2(A-20) по шарине выполнено на 3 м меньше за счет применения комплектного распределительного устройства новой серии

В проекте выполнено сравнение показателей ОРУ IIO-4, ЗРУ-IO кВ IO-2(A-2O) подстанции IIO-4-2x40-IO-2(A-2O) с показателями
типового проекта-аналога IIO-4-2x40-IO-2(A-2O-2) 407-3-29I

Показатели изменения сметной стоимости строительно-монтажных работ, затрат труда и расхода основных строительных материалов приведени в таблице:

	Показатели	Проект- аналог	Рассмат- риваемый типовой проект	Изменение показате- лей (снижение (+),увели- чение(-)
Ī.		3 _ 2	4	225
I.	Общая сметная стоимость, тыс.руб.	432,9	412,98	+19,92
2.	Сметная стоимость строительно-			
	монтажных работ, тис.руб.	141,57	104,65	+36,92
3.	Общая площадь, м2	2775	2702	+73
4.	Площадь застройки, м2	1814	2734,6	-920,6
5.	Строительный объем здания, мЗ	3145	2331	+814
6.	Стоимость общая на расчетный			
	показатель, тис.руб.	5 ,4 II	5,162	+0,249
7.	Стоимость строительно-монтажных			
	работ Ім2 общей площади, руб.	51,02	38,73	+12,29
8.	Построечние трудовие затрати, чел.дн.	3124	1921	+1203
	TII 407-3-366			+1203

 Π_3

Ī	3 _ 3	4	5
9. То же, на расчетный показатель, чел. дн.	39,05	24,0I	+I5,04
IO. То же, на Імлн.руб.строительно- монтажных работ, чел.дн. Расход материалов	22067	I8356	+37II
II. Цемент (приведенный к M400), т	232,8	I44,75	+88,05
 То же, на Ім2 общей площеди, т 	0,08	0,054	+0,026
 То же, на Імян.руб.строительно- монтажных работ, т 	I644	1383	+26I
I4. Сталь (приведенная к классам AI и СЗ8/23), т	62 , I	63,82	-I,72
15. То же, на Ім2 общей площади, т	0,02	0,024	-0,004
16. То же, на расчетний показатель, т	0,77	0,8	-0,03
17. То же, на Імлн.руб.строительно- монтажных работ, т	438,65	609,84	-171,19
 Леооматериалы (приведенные к круглому лесу), м3 	21,3	14,33	+6,97
 То же, на Імлн.руб. строительно- монтажных работ, м3 	I50 ,4 6	136,93	+13,53
Количество расчетных единиц	80	80	
За расчетный показатель принят І MB·A установленной мощности			
Показатели приведены в нормах и ценах	1984 года	1	
Построечные трудовые затраты проекта-а приведены в нормах 1979 года	налога		

TII 407-3-386.86

ПЗ

Лист 23