CT PK 2432-2013 № 1

Утвержден и введен в действие Приказом и.о. Председателя Комитета технического регулирования и метрологии Министерства по инвестициям и развитию Республики Казахстан от 22 января 2016 года № 11-од

Дата введения 2016-02-01

- 1 Раздел 2 заменить ссылку на стандарт «ГОСТ 2.601-2006 Единая система конструкторской документации. Эксплуатационные документы» на «ГОСТ 2.601-2013 Единая система конструкторской документации. Эксплуатационные документы».
 - 2 Подпункт 5.2.1.1 изложить в новой редакции:
- «5.2.1.1 Форма и основные (контролируемые) размеры поперечного сечения рельсов должны соответствовать приведенным на рисунке 1 и в таблице 2.

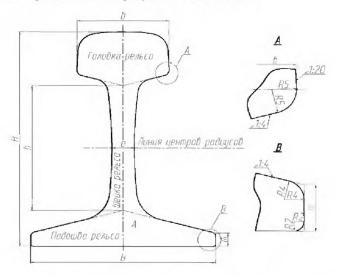


Рисунок 1 – Основные размеры поперечного сечения рельса

- 3 В таблице 2 строке 4 значения «ширины головки» заменить для рельс P50 «72» на «71,6», для рельс P65, P75 «75,0» заменить на «74,6»
- 4 В таблице 3 строке 7 «ширина подошвы» в последнем столбце «+1,5» заменить на «+1,0» и «1,0» заменить на «-1,5».
 - 5 В таблице 3 строке 9 в последнем столбце «+0,75» заменить на «+0,8»
 - 6 Подпункт 5.2.6 изложить в новой редакции:
 - «5.2.6 Скручивание рельсов

Скручивание рельсов:

- длиной менее 18,00 м не более 1,25 мм;
- длиной от 18,00 до 24,84 м включительно не более 2,0 мм;
- длиной свыше 24,84 м не более 2,5 мм.

Скручивание концов рельсов на длине 1 м не должно превышать: для рельсов типа P50-0.4 мм, для рельсов типов P65, P65K и P75-0.5 мм.

Шаблоны для контроля размеров и формы поперечного сечения рельсов, размеров и расположения болтовых отверстий приведены в приложении E.».

7 Пункт 5.4.3 изложить в новой редакции:

«5.4.3 Предельные отклонения химического состава рельсов, для элементов, не являющихся остаточными, указаны в таблице 7.

Таблица 7 – Предельные отклонения химического состава рельсов, не более.

В процентах

							~	роцения
Углерод	Марга- нец	Кремний	Ванадий	Хром	А30т	Фосфор	Cepa	Алюмини й
¥0,02	¥0,05	¥0,02	+0,02	¥0,02	¥0,005	+0,005	+0,005	+0,001

».

- 8 В пункте 5.4.5 после слов «оксидных включениях ..» добавить «для рельсов специального назначения» и далее по тексту
- 9 Подпункт 5.6.1 после слов «в соответствии с приложением Ж» дополнить словами «или методикой завода изготовителя».
 - 10 Пункт 5,8 исключить из таблицы 11 примечание 2.
 - 11 Подпункт 5.12.1 дополнить абзацем:
- «Идентификацию бейнитной составляющей проводят визуально на основе характерных морфологических признаков или методом сравнения с соответствующим атласом микроструктур завода изготовителя».
 - 12 Подпункт 5.13.2 добавить перечисление д):
- «д) расположение каждого участка рельса длиной, кратной 12,5 или 25 метров, в раскате латинскими буквами (A, B, -Y)».
 - 13 Подпункт 5.13.6 изложить в новой редакции:

«5.13.6 Маркировка знаком обращения продукции на рынке

Рельсы, соответствующие требованиям технических регламентов, дополнительно маркируют знаком обращения на рынке способами, исключающими образование концентраторов напряжений в рельсах».

14 Пункт 5.14 изложить в новой редакции:

«5.14 Магнитная индукция

Максимальное значение магнитной индукции на поверхности катания головки рельса не должно превышать 0,7 мТл. При превышении указанного нормативного значения магнитной индукции рельсы подлежат обязательному размагничиванию. По согласованию с потребителем допускается размагничивание рельсов до начала их эксплуатации. Данная норма начинает действовать через 2 года после даты введения данного изменения».

- 15 Подпункт 6 1 1 первый абзац изложить в новой редакции:
- «6.1.1 Испытания для проверки соответствия рельсов требованиям, установленным в 5.2.1.1, 5.2.1.2, 5.2.3 (при наличии отверстий), 5.2.4–5.2.6, 5.4.1–5.4.4, 5.5–5.13, 5.15 проводят на этапе освоения производства на рельсах опытной партии. По согласованию с владельцем инфраструктуры может производиться гамма-процентная наработка пропущенного тоннажа на подконтрольных участках магистральной сети или на полигоне. Объем наработки пропущенного тоннажа по рельсам определяет владелец инфраструктуры.»
 - 16 Подпункт 6.1.2 изложить в новой редакции:
- «6.1.2 Для проверки соответствия рельсов требованиям настоящего стандарта проводят приемо-сдаточные испытания по 6.2 и периодические испытания по 6.5».
- 17 Заменить нумерацию подпунктов «6.1.5» на «6.1.3», «6.1.3» на «6.1.4», «6.1.4» на «6.1.5».
 - 18 Подпункт 6.1.5 изложить в новой редакции:
- «6.1.5 Испытания для подтверждения требованиям технических регламентов, установленным в 5.2.1.1, 5.2.1.2, 5.2.5, 5.2.6, 5.3.6, 5.4.1 5.4.4, 5.5 5.15, проводят на рельсах Р65 классов прочности 300, 320, 350, 370 и результаты распространяют на рельсы других типов и категорий в рамках одного предприятия-изготовителя с учетом способа термоупрочнения».

19 Таблицу 15 изложить в новой редакции:

Таблица 15 – Приемо-сдаточные испытания рельсов

			_		
Показатель	Нетермоуп	Периодичнос рочненные	Термоупрочненные диффенцированно		Объем
качества	Рельсы	Рельсы	Рельсы	Рельсы	выборки
рельсов	специального	общего	специального	общ е го	
	назначения	назначения	назначения	назначения	
Химический состав стали (5.4.1, 5.4.2)		одн а ковшовая проба			
Массовая доля водорода в жидкой стали (5.3.6)		каждая	плавка		одно измерение*
Массовая доля общего	каждая	первая и последняя	каждая	первая и последняя плавка	один образец
кислорода** (5.4.4)	плавка	плавка из серии	плавка	из серии	ооразец
Массовая доля кислорода в высокоглиноземис тых оксидных включениях** (5.4.5)	последняя плавка из серии	-	последняя плавка из серии	_ _	один образец
Загрязненность неметаллическими включениями** (5.5)		два образца из одной пробы от каждого ручья			
Макроструктура* * (5.6)	первая плавка из серии				по одному темплету от каждого ручья
Механические свойства при растяжении (5.8)	последняя плавка из серии				один образ е ц
Ударная вязкость (5.8)			каждая і	тлавка	два образца из одной пробы

Окончание таблицы 15

Показатель	Нетермоупре	оч-ненные	Термоупро		
качества			дифференц	Объем	
рельсов	Рельсы	Рельсы	Рельсы	Рельсы	выборки
рельсов	специального	общего	специального	общ е го	
	назначения	назначения	назначения	назначения	
Копровая	Кожила	последняя	кажпаа	последняя	одна
прочность (5.10)	каждая плавка	плавка	каждая плавка	плавка	проба
прочность (э.то)	IIJIaBKa	из серии	Плавка	из серии	
Твердость на					
поверхности		каждая	ппариа		одна
катания головки		камдал	шавка		проба
(5.9.1)					
Твердость по				последняя	
поперечному	каждая	_	каждая	плавка	одна
сечению рельса	плавка		плавка	из серии	проба
(5.9.2)			_		
Разность					
значений	не реже		не реже	не реже	
твердости на	одного раза	_	одного раза	одного раза	в трех
поверхности	3a		3a	в сутки	местах
катания по длине	8 ч		8 प		
рельса (5.9.3)					
Остаточные	не реже		не реже	не реже	
напряжения в	одного раза		одного раза	одного раза	одна
шейке рельсов	3a		3a	в сутки	проба
(5.11)	8 ч		8ч		
Микроструктура	каждая		каждая	одна	ОДИН
(5.12.1)	плавка	одна плавка	плавка	плавка	образец
		из серии		из серии	
Глубина	каждая		каждая	одна	три образца
обезуглероженног	плавка	одна плавка	плавка	плавка	из одной
о слоя (5.12.2)**		из серии		из серии	пробы
Маркировка	каждая плавка каждый				
(5.13)					рельс

Примечание — Допускается для рельсов общего назначения нетермоупрочненных (за исключением поставляемых метрополитенам) проводить испытания на растяжение выборочно (для каждой 20-й плавки) с расчетной оценкой механических свойств остальных плавок регрессионным анализом. В европейской стандартизации [1] испытания проводят аналогично.

».

20 Подпункт 6.2.8 первый абзац после слов «маркировки (см. 5.13)» исключить слова «и индукции магнитного поля на поверхности катания головки рельса (см. 5.14) проводят на каждом рельсе».

21 Подпункт 6.3.1 первый абзац изложить в новой редакции:

«6.3.1 Отбор проб для определения химического состава стали (см. 5.3.6 5.4.4) по ГОСТ 7565. Пробы для определения химического состава стали (см. 5.4.1, 5.4.2) отбирают в середине разливки каждой плавки из промежуточного ковша (ковшовая проба)».

^{*} На первой плавке в серии проводят два нзмерения.

^{**} Результаты испытаний, полученные на нетермоупрочненных рельсах, распространяются на рельсы, подвергнутые в дальнейшем термоупрочнению.

- 22 Подпункт 6.3.4 изложить в новой редакции:
- «6.3.4 Пробы для контроля макроструктуры (см. 5.6.1) отбирают от передних концов рельсов с индексом «А», прокатанных из первой заготовки каждого ручья, или от прилегающей технологической обрези.

Для повторного контроля макроструктуры пробы отбирают от противоположных концов контрольного рельса, показавшего неудовлетворительные результаты, или от прилегающих концов смежных контрольному рельсов».

- 23 Подпункт 6.3.5 изложить в новой редакции:
- «6.3.5 Пробы для определения механических свойств при растяжении, ударной вязкости (см. 5.8), массовой доли общего кислорода (см. 5.4.4) и массовой доли кислорода в высокоглиноземистых оксидных включениях (см. 5.4.5) отбирают от любого конца контрольного рельса.

Допускается при изготовлении рельсов длиной 120 м отбор проб производить от любого контрольного рельса с переднего или заднего конца.

Допускается в качестве заготовок образцов для анализа кислорода (см. 5.4.4, 5.4.5) использовать части разрушенных образцов, испытанных на растяжение (см. 5.8).

Допускается проводить отбор заготовок проб для определения массовой доли общего кислорода и массовой доли кислорода в высокоглиноземистых оксидных включениях (см. 5.4.4, 5.4.5) при помощи пил горячей резки.»

- 24 Подпункт 6.3.6 первый абзац изложить в новой редакции:
- «6.3.6 Пробы для контроля копровой прочности (см. 5.10), остаточных напряжений в шейке (см. 5.11) отбирают от любого рельса плавки способом холодной механической резки после правки на роликоправильной машине».
 - 25 Подпункт 6.3.8 изложить в новой редакции:
- «6.3.8 Пробы для контроля загрязненности рельсов неметаллическими включениями (см. 5.5) отбирают от задних концов рельсов с индексом «Y», прокатанных из последней заготовки каждого ручья».
 - 26 Подпункт 6.3.10 изложить в новой редакции:
- «6.3.10 Пробы для контроля глубины обезуглероженного слоя (см.5.12.2) допускается отбирать на пилах горячей резки».
 - 27 Подпункт 6.3.11 изложить в новой редакции:
 - «6.3.11 Контроль маркировки (см. 5.13) выполняют на каждом рельсе каждой плавки».
 - 28 Подпункт 6.3.15 изложить в новой редакции:
- «6.3.15 Пробу для определения остаточных напряжений в шейке (см. 5.11) отбирают на расстоянии не менее 3 м от торца контрольного рельса».
 - 29 Подпункт 6.3.16 исключить.
 - 30 Подпункт 6.4.2 второй абзац дополнить предложением:
- «При отсутствии других несоответствий рельсы указанной плавки допускается переводить в категорию общего применения».
 - 31 Подпункт 6.4.4 изложить в новой редакции:
- «6.4.4 В случае отрицательных результатов первичного контроля макроструктуры контрольного рельса его признают не соответствующим требованиям настоящего стандарта и проводят повторный контроль макроструктуры на двух, следующих за контрольным, рельсах, разлитых по тому же ручью.
- В случае отрицательных результатов повторного контроля проводят поштучный контроль и рассортировку всех рельсов плавки, разлитых по тому же ручью, что и контрольный рельс, показавший неудовлетворительные результаты контроля макроструктуры. Последующий контроль макроструктуры рельсов проводят поплавочно до получения устойчивых положительных результатов, при которых у четырех подряд подвергнутых контролю плавок не обнаруживают недопустимые дефекты макроструктуры».
 - 32 Подпункт 6.4.6 первый абзац изложить в новой редакции:

«При отрицательных результатах определения твердости на поверхности катания или по поперечному сечению проводят повторное определение твердости на удвоенном количестве проб, отобранных от двух рельсов, следующих за контрольным, или на том же контрольном рельсе с удвоенным количеством измерений».

33 Подпункт 6.4.8 первый абзац изложить в новой редакции:

«В случае получения при приемо-сдаточных испытаниях на растяжение, ударный изгиб или копровых испытаниях отрицательного результата проводят повторные испытания того вида, по которому получен отрицательный результат, на удвоенном количестве образцов (проб), отобранных от двух рельсов, следующих за контрольным, или на том же рельсов.

34 Подпункт 6.4.9 изложить в новой редакции:

«6.4.9 При отрицательных результатах определения микроструктуры или глубины обезуглероженного слоя проводят повторные испытания на удвоенном количестве проб, отобранных от двух рельсов, следующих за контрольным, или на том же контрольном рельсе с удвоенным количеством испытаний.

При отрицательных результатах повторного контроля микроструктуры или глубины обезуглероженного слоя контролируемая плавка бракуется, а контроль рельсов проводят поплавочно до получения устойчивых положительных результатов, при которых у четырех подряд прокатанных или термически упрочненных и подвергнутых контролю плавок этот показатель удовлетворяет требованиям настоящего стандарта».

6.5 Периодические испытания

35 Пункт 6.5 изложить в новой редакции:

«Испытания по проверке выполнения требований п. 5.14—5.15 проводят не реже одного раза в три года. Для испытаний по 5.14—5.15 отбирают 2 рельса от плавок прошедших приемосдаточные испытания за период не более 10 суток.

Допускается проводить испытания по 5.14 непосредственно у потребителя, для чего отбирают 2 рельса от наличия не менее 10 рельсов от последней поставленной партии.

Пробы и образцы для испытаний согласно 5.15 следует отбирать:

- для оценки предела выносливости рельса (см. 5.15.1) не менее 6 проб;
- для оценки циклической трещиностойкости (см. 5.15.4) не менее 5 проб;
- для оценки скорости роста усталостной трещины (см. 5.15.3) по 2 образца (не менее);
- для испытания циклической долговечности (см. 5.15.2) и статической трещиностойкости (см. 5.15.5) – по 3 образца (не менее);
- -для оценки остаточных напряжений в средней части подошвы рельса (см. 5.15.6) по 1 пробе».

36 Пункт 6.6 изложить в новой редакции:

«6.6 Подтверждение соответствия требованиям технических регламентов

- 6.6.1 В целях подтверждения соответствия требованиям технических регламентов проводят испытания для проверки выполнения требований 5.2.1.1, 5.2.1.2, 5.2.3 (при наличии отверстий), 5.2.4–5.2.6, 5.4.1–5.4.4, 5.5, 5.6.1, 5.7–5.13, 5.15.
- 6.6.2 Отбор не менее 6 рельсов для испытаний проводят от плавок, прошедших приемосдаточные испытания за период не более 10 суток.
- 6.6.3 Испытания по проверке выполнения требований формы и основным размерам поперечного сечения рельсов (см. 5.2.1.1), вогнутости подошвы рельса (см. 5.2.1.2), болтовым отверстиями (см. 5.2.3 при наличии отверстий), перпендикулярности торцов рельса (см. 5.2.4), прямолинейности рельсов (см. 5.2.5), скручивания рельсов (см. 5.2.6), качеству поверхности (см. 5.7), маркировке (см. 5.13) проводят на не менее 6 рельсах.
- 6.6.4 Испытания по проверке выполнения требований обеспечения химического состава стали (см. 5.4.1), массовой доле остаточных элементов в стали (см. 5.4.2), предельным

отклонениями от химического состава стали (см. 5.4.3) и массовой доле общего кислорода в стали (см. 5.4.4) проводят на одном образце, вырезанном из одного случайно отобранного рельса от не менее 6 рельсов.

6.6.5 Испытания по проверке выполнения требований по обеспечению загрязненности стали неметаллическими включениями (см. 5.5), внутренним дефектам и дефектам макроструктуры (см. 5.6.1), механическим свойствам (см. 5.8), твердости по сечению и длине рельса (см. 5.9), микроструктуре (см. 5.12), циклической долговечности (см. 5.15.2), скорости роста усталостной трещины (см. 5.15.3), статической трещиностойкости (см. 5.15.5) проводят на образцах, изготовленных из одного рельса, случайно отобранного от не менее 6 рельсов. Для оценки неметаллических включений (см. 5.5) и испытания механических свойств (см. 5.8) изготавливают и испытывают по 6 образцов, для оценки внутренних дефектов и дефектов макроструктуры (см. 5.6.1) — по 2 образца, для оценки скорости роста усталостной трещины (см. 5.15.3) по 2 образца (не менее), для испытания на твердость по сечению и длине рельса (см. 5.9) и оценки микроструктуры (см. 5.12) — по 3 образца, для испытания циклической долговечности (см. 5.15.2) и статической трещиностойкости (см. 5.15.5) по 3 образца (не менее).

6.6.6 Испытания по проверке выполнения требований по копровой прочности рельса (см. 5.10), остаточным напряжениями в шейке рельса (см. 5.11), пределу выносливости рельса (см. 5.15.1), циклической трещиностойкости (см. 5.15.4), остаточным напряжениями в средней части подошвы рельса (см. 5.15.6) проводят на полнопрофильных пробах, вырезанных из одного рельса, случайно отобранного от не мене 6 рельсов, не ближе 3 м от торцов рельса Для копровых испытаний (см. 5.10) вырезают и испытывают 3 пробы, для оценки остаточных напряжений в шейке рельса (см. 5.11) и остаточных напряжений в средней части подошвы рельса (см. 5.15.6) по 1 пробе, для оценки предела выносливости рельса (см. 5.15.1) не менее 6 проб, для оценки циклической трещиностойкости (см. 5.15.4) не менее 5 проб..

37 Раздел 7 «Методы контроля» СТ РК 2432 – 2013 перед пунктом 7.1 дополнить абзацем следующего содержания:

«Применяемые средства измерений подлежат испытаниям с целью утверждения типа или метрологической аттестации и поверке, испытательное оборудование подлежит аттестации в соответствии с требованиями законодательства и нормативных документов области обеспечения единства измерений Республики Казахстан».

- 37.1 В пункте 7.6 «Контроль отклонения рельса от прямолинейности» первый абзац исключить.
- 38 Подпункт 7.11.2 после слов «в соответствии с Приложением Ж» дополнить словами «или по методике завода изготовителя».
 - 39 Пункт 7.15 ссылку на пункт «5.9» заменить на «5.10».
 - 40 Подпункт 7.20.1 1 изложить в новой редакции:
- «7.20.1.1 Определение предела выносливости (см. 5.15) рельсов проводят методом циклического нагружения путем испытаний полнопрофильных проб длиной (1200ұ10) мм, вырезанных из рельсов методами холодной механической резки. Схема нагружения плоский трехточечный симметричный изгиб. Расстояние между нижними опорами (1000ұ5) мм. Верхний пуансон устанавливают посередине между опорами (500ұ5) мм. Пробы испытывают при мягком нагружении (управление по усилию) в положении рельса «головкой вниз» при асимметрии цикла нагружения плюс 0,1 База испытаний 2 млн циклов.

От каждого рельса должно быть испытано не менее шести проб (образиов)».

- 41 Подпункт 7.20.1.3 изложить в новой редакции:
- «7.20.1.3 Испытания проб по определению предела выносливости проводят на испытательной машине (испытательном оборудовании), способной обеспечить максимальную нагрузку цикла нагружения, равную 1000 кН, при максимальной относительной погрешности у 2 % и частоту нагружения не более 20 Гц при максимальной относительной погрешности у 2 %.

Величина нагрузки, действующей на образец, во время его испытания должна циклически меняться от максимального значения, выбранного в соответствии с назначением испытуемых рельсов, до минимального при асимметрии цикла нагружения плюс 0,1. В течение испытаний каждого образца выбранный для него режим нагружения должен поддерживаться постоянным.

Испытания проводят на испытательном оборудовании с гидропульсаторной или электрогидравлической силонагружающей установкой, оборудованной силонзмерителем с ценой деления не более ү 1 кН и счетчиком числа циклов».

- 42 Подпункт 7.20.2.1 в примечанни «[1]» заменить на «[3]»
- 43 Рисунок 11 в примечании «[1]» заменить на «[3]»
- 44 Подпункт 7.20.5.1 в примечанни «[1]» заменить на «[3]»
- 45 Подпункт 7.20.6 в примечании «[2]» заменить на «[4]»
- 46 Абзац 10 пункта 8.3 изложить в новой редакции «максимальное значение магнитной индукции рельсов, определенное при периодических испытаниях":
- «8.3 Отгружаемая партия рельсов должна сопровождаться паспортом по ГОСТ 2.601, содержащим:
 - наименование или условное обозначение предприятия-изготовителя;
 - обозначение настоящего стандарта;
 - тип рельсов;
 - категорию рельсов;
 - класс точности изготовления профиля рельсов;
 - класс прямолинейности рельсов;
 - класс качества поверхности рельсов;
 - марку стали;
- максимальное значение магнитной индукции рельсов, определенное при периодических испытаниях;
 - описание маркировки рельсов красками;
 - количество рельсов с указанием длины, массы и номеров плавок;
 - результаты приемо-сдаточных испытаний;
 - дату оформления паспорта;
 - номер вагона или другого транспортного средства;
 - наименование и адрес покупателя;
 - номер заказа (договора);
 - сведения о подтверждении соответствия».
 - 47 Приложение А изложить в новой редакции:

«Приложение А (информационное)

Рекомендуемые сферы рационального применения рельсов различных категорий

Таблица А.1 - Рекомендуемые сферы применения рельсов различных категорий

Категории рельсов	Сферы применения
дтз70ик	С осевой нагрузкой до 27 тн/ось для тяжеловесного движения при грузонапряженности более 50 млн т км брутто/км в год без ограничений по плану пути. Кривые радиусом менее 1200 метров при любой грузонапряженности и осевой нагрузке до 27 т/ось. При скоростях движения до 140 км/ч.
ДТ350*	С осевой нагрузкой до 25 т/ось. Прямые и кривые радиусом 1200 метров и более при любой грузонапряженности. При скоростях движения до 140 км/ч.
дт350нн	В условиях холодного и умеренно холодного климата (по ГОСТ 16350). С осевой нагрузкой до 25 т/ось при любой грузонапряженности. При скоростях движения до 140 км/ч.
ДТ350СС	При скоростном совмещенном движении Скорость движения пассажирских поездов 141-250 км/ч и грузовое движение с осевой нагрузкой до 25 т/ось при любой грузонапряженности. Прямые и пологие кривые.
ДТ320ВС	При движении высокоскоростных пассажирских поездов и специальных контейнерных поездов. Скорость движения пассажирских поездов более 200 км/ч с осевой нагрузкой до 25 т/ось при любой грузонапряженности. Прямые и пологие кривые.
ДТ320ВС	При движении высокоскоростных пассажирских поездов. Скорость движения пассажирских поездов более 200 км/ч с осевой нагрузкой до 20т/ось при любой грузонапряженности. Прямые и пологие кривые.
H320	Метрополитены. Железнодорожные пути с грузонапряженность до 50 млн т км брутто/км в год. Прямые участки пути. Осевая нагрузка до 25 т/ось.
H300	Стрелочные переводы. Метрополитены
H260	Стрелочные переводы. Метрополитены
* Использованн	е рельсов прямолинейности класса С при скоростях движения не более 140 км/ч.

48 Приложение Е в таблицу Е.2 добавить номер рисунка Е.17 и заменить рисунки Е.1, Е2, Е.3, Е.4, Е.5, Е.11, Е.12, Е.13, Е.14, Е.16, Е.17 на новые.

«Приложение Е (обязательное)

Шаблоны для контроля размеров и формы поперечного сечения рельсов, размеров и расположения болтовых отверстий

- Е.1 Характерные точки и размеры поперечного сечения рельсов для построения шаблонов показаны на рисунках Е.1 и Е.2 и в таблице Е.1.
- E.2 Шаблоны для контроля размеров и формы рельсов и болтовых отверстий показаны на рисунках E.3-E.17. Перечень шаблонов приведен в таблице E.2.

Примечание - На рисунках буквой Z обозначен зазор между шаблоном и характерными точками.

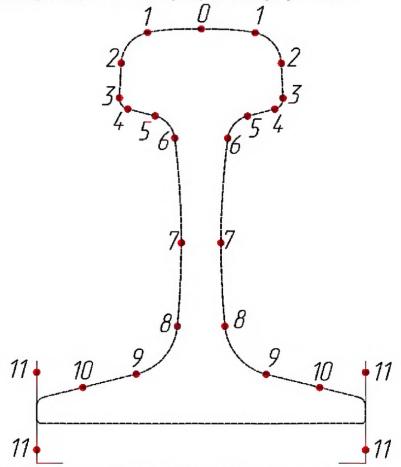


Рисунок Е.1 – Характерные точки контроля предельных отклонений поперечного сечения рельсов

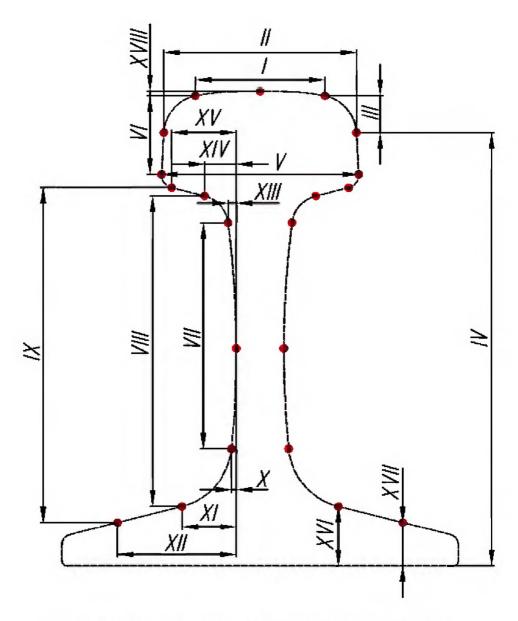


Рисунок E.2 – Характерные размеры поперечного сечения рельсов для построения шаблонов

Таблица Е.1 – Значения характерных размеров поперечного сечения рельсов для построения шаблонов

в миллиметрах

Обозначение				
размера по	P50	P65	P65K	P75
Рисунку Ж.2				
I	45,68	49,09	53,65	47,79
П	70,24	73,00	75,00	71,96
III	14,01	13,94	20,31	13,97
IV	136,60	164,33	156,69	176,44
V	71,59	74,59	75,00	74,59
VI	27,50	29,79	28,73	40,23
VII	67,26	85,71	85,52	85,55
VIII	93,50	117,68	117,62	117,21
IX	104,25	126,88	126,93	126,53
X	1,28	1,81	1,81	1,58
XI	16,36	20,64	20,64	20,43
XII	45,00	45,00	45,00	45,00
XIII	2,15	3,08	2,83	2,56
XIV	9,66	12,07	11,83	10,83
XV	24,01	24,51	24,71	23,51
XVI	20,91	22,59	22,59	24,69
XVII	13,75	16,50	16,50	18,55
XVIII	1,39	1,73	4,00	1,59

Таблица Е.2 – Перечень шаблонов

Номер Рисунка	Наименование шаблона
Рисунок Е.17	Шаблон контроля фаски по контуру рельса

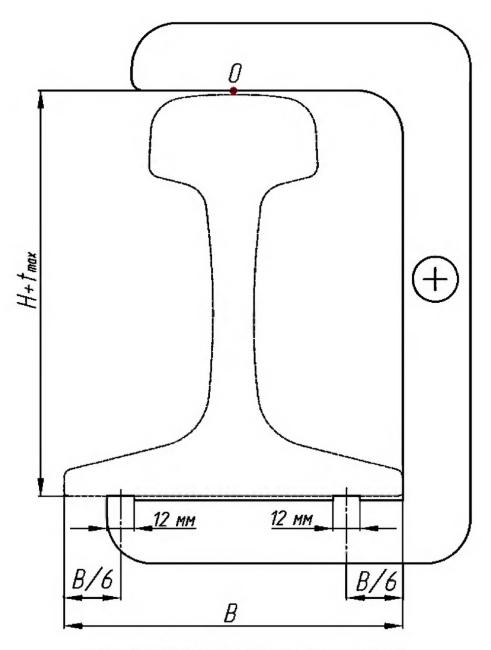
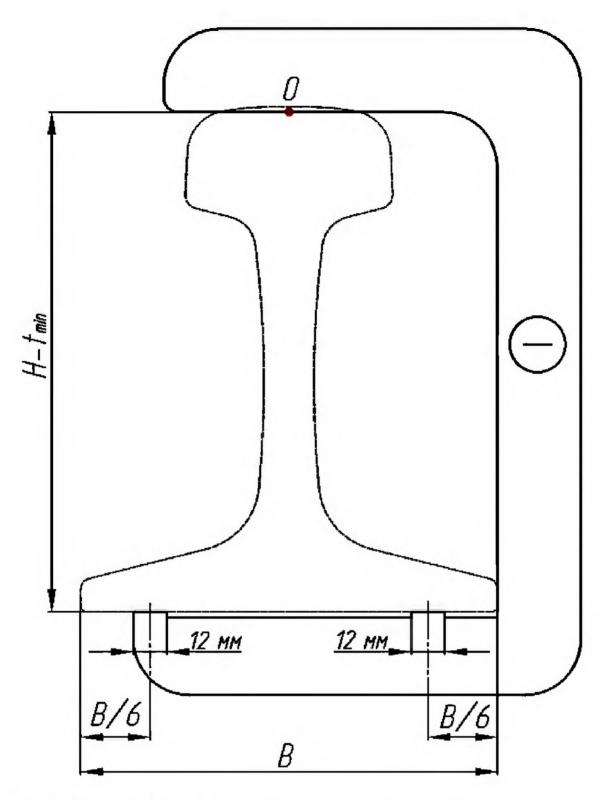



Рисунок Е.3 – Шаблоны контроля высоты рельса, Лист 1

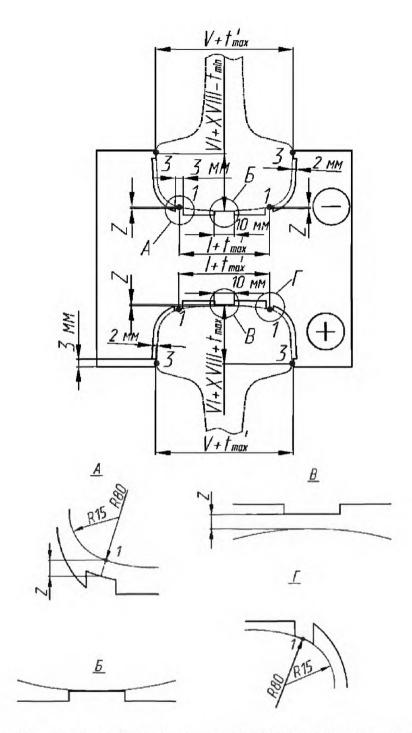
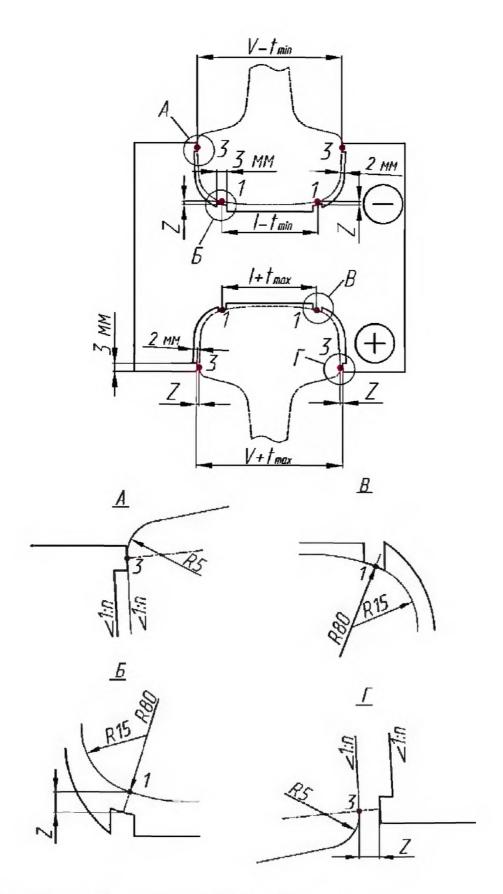

0 — точка на поверхности катания головки максимально удаленая от основания подошвы рельса;

Рисунок Е.З, лист 2

 $t_{\max},\,t_{\min}$ — максимальный и минимальный допуски высоты рельса;

Знак «+» обозначает, что шаблон должен проходить по высоте рельса:

Знак «-» обозначает, что шаблон должен проходить по высоте рельса, либо проходить без зазора.

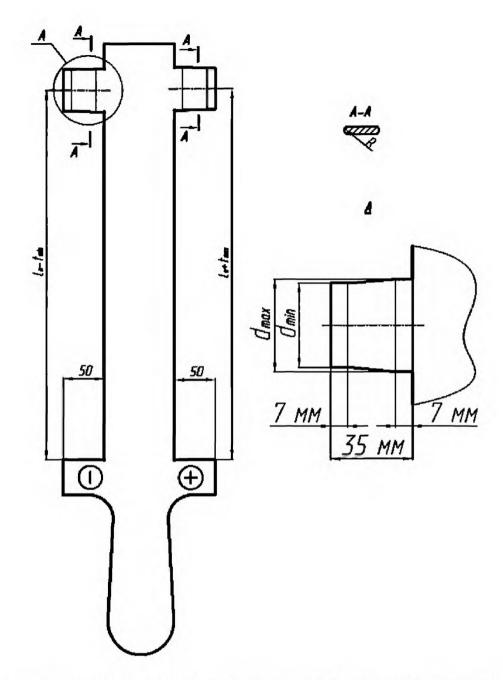


 t_{max} , t_{min} — максимальный и минимальный допуски отклонения формы поверхности катания головки; t_{3max} — максимальный допуск ширины головки рельса;

Знак «+» обозначает, что шаблон должен касаться верхними выступами поверхности катания головки и не касаться центральным выступом поверхности катания головки рельса, либо касаться:

Знак «—» обозначает, что шаблон должен касаться центральным выступом поверхности катания головки н не касаться верхними выступами поверхности катания головки рельса, либо касаться.

Рисунок Е.4 — Шаблон контроля отклонения профиля поверхности катания головки рельса от номинального расположения



 $t_{max}, \, t_{min}$ — максимальный и минимальный допуски ширины головки рельса;

Знак «+» обозначает, что шаблон должен касаться верхними выступами поверхности катания головки и не касаться нижними выступами поверхности головки рельса, либо касаться;

Знак «—» обозначает, что шаблон должен касаться нижними выступами поверхности головки и не касаться верхними выступами поверхности катания головки рельса, либо касаться.

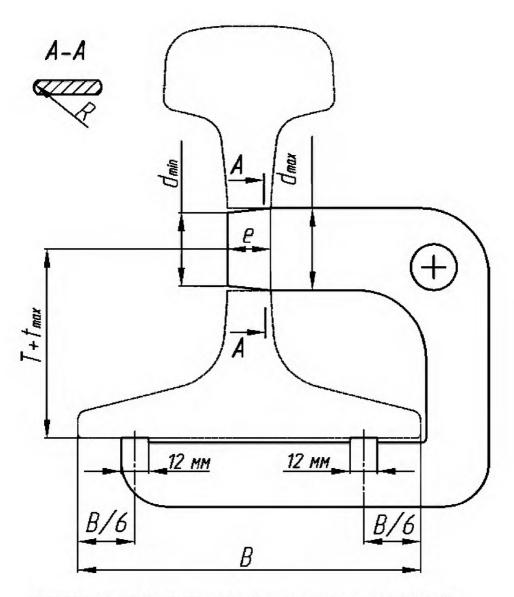
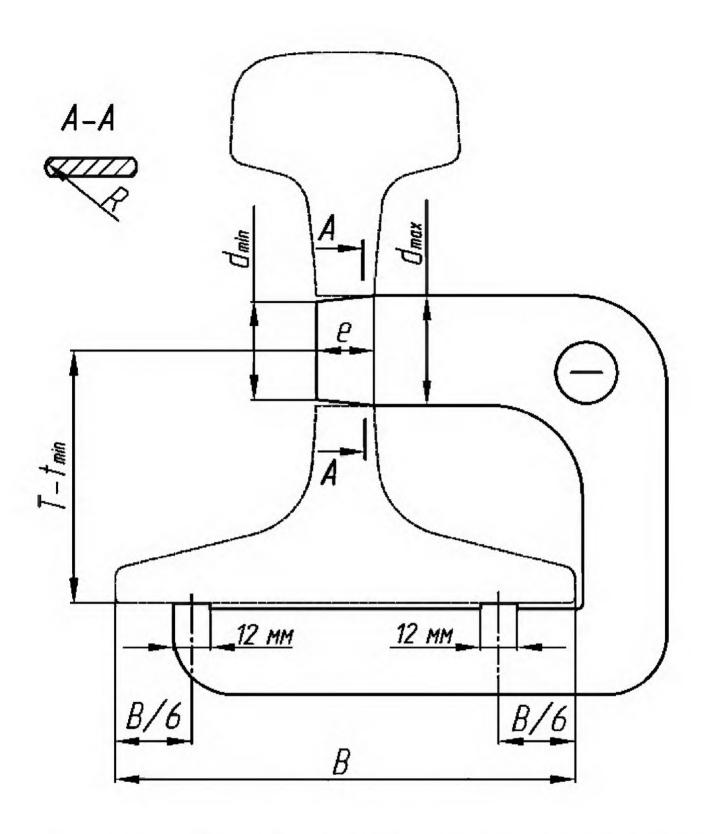
Рисунок Е.5 – Шаблон контроля ширины головки рельса

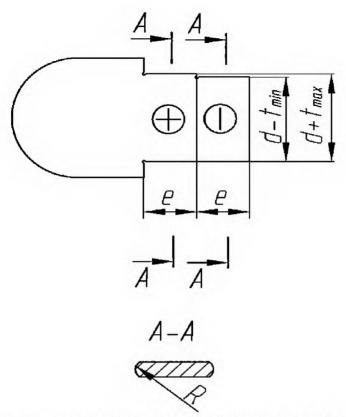
 $t_{max},\ t_{min}$ — максимальный и минимальный допуски расположения болтовых отверстий в горизонтальной плоскости;

n – соответствующее отверстие;

Знак «+» и «-» обозначает, что шаблон должен должен касаться торца рельса и проходить в отверстие или касаться внутреней части отверстия.

Рисунок Е.11 – Шаблоны контроля расположения болтовых отверстий в горизонтальной плоскости


Рисунок Е.12 – Шаблоны контроля расположения болтовых отверстий в вертикальной плоскости, Лист 1

 t_{max} , t_{min} — максимальный и минимальный допуски расположения болтовых отверстий в вертикальной плоскости;

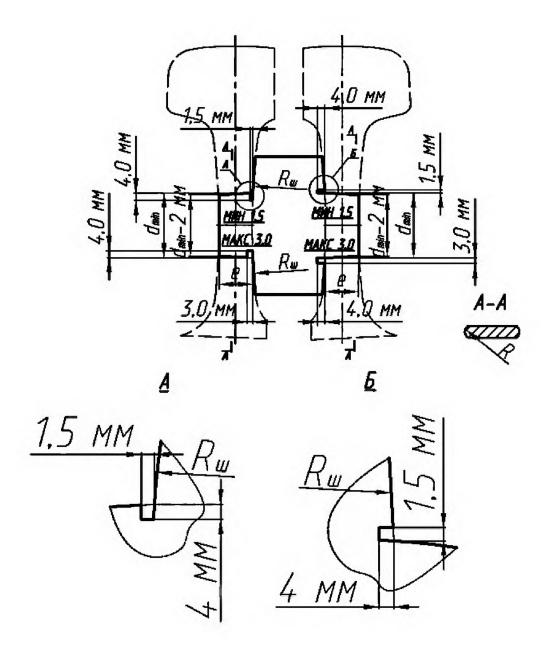

Знак «+» и «-» обозначает, что шаблон должен касаться основания подошвы рельса и проходить в отверстие или касаться внутреней частн отверстия.

Рисунок Е.12, лист 2

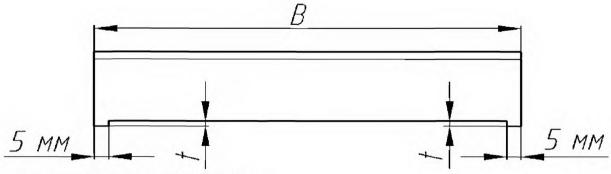
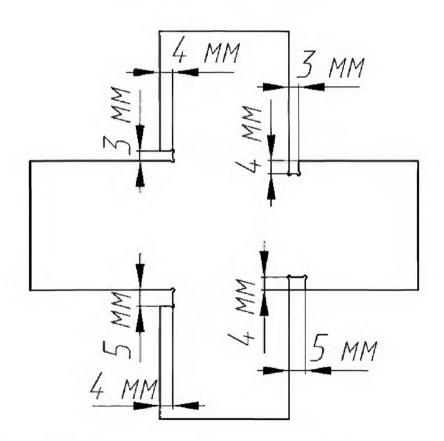

 t_{max} , t_{min} — максимальный и минимальный допуски диаметра болтового отверстия; Знак «+» обозначает, что шаблон не должен проходить по диаметру отверстия, либо проходить без зазора; Знак «-» обозначает, что шаблон должен проходить по диаметру отверстия.; Далее принимается следующее обозначение: $d_{max} = d + t_{max}$ и $d_{min} = d - t_{min}$.

Рисунок Е.13 – Шаблон контроля диаметра болтовых отверстий

Фаска болгового отверстия не должна выходить за пределы углублений шаблона.

Рисунок Е.14 – Шаблон контроля фасок болтовых отверстий



t – допуск выпуклости основания подошвы рельса;

Шаблон должен касаться выступами основания подошвы и не касаться внутренней частью основания подошвы рельса, либо касаться;

Шаблон должен прямой поверхностью касаться центральной части основания подошвы и не касаться ее крайними частями, либо касаться основания подошвы без зазора.

Рисунок E.16 – Шаблон контроля выпуклости и вогнутости основания подошвы рельса

Фаска по контуру рельса не должна выходить за пределы углублений шаблона.

Рисунок Е.17 - Шаблон контроля фаски по контуру рельса

49 Приложение И, подпункт И.5.2 дополнить предложением:

«Допускается по согласованию с потребителем использовать модели дефектов с другими размерами.»

УДК 656.143.52 МКС 45.080

Ключевые слова: железнодорожные рельсы широкой колеи, классификация, конструкция и размеры, технические требования, правила приемки, методы испытаний, транспортирование и хранение, гарантия изготовителя.

(ИУС №2-2016)

НАЦИОНАЛЬНЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН

РЕЛЬСЫ ЖЕЛЕЗНОДОРОЖНЫЕ ДИФФЕРЕНЦИРОВАННО УПРОЧНЕННЫЕ И НЕТЕРМОУПРОЧНЕННЫЕ

Общие технические условия

CT PK 2432-2013

Издание официальное

Комитет технического регулирования и метрологии Министерства индустрии и новых технологий Республики Казахстан (Госстандарт)

Астана

Предисловие

- 1 РАЗРАБОТАН И ВНЕСЕН Техническим комитетом по стандартизации ТК 40 «Железнодорожный транспорт» на базе Акционерного общества «Казахская академия транспорта и коммуникаций им. М.Тынышпаева»
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Комитета по техническому регулированию и метрологии Министерства индустрии и торговли Республики Казахстан от 12 декабря 2013 года № 556-од
- 3 В настоящем стандарте реализованы нормы Закона Республики Казахстан «О техническом регулировании» от 9 ноября 2004 года № 603-II, Закона Республики Казахстан «О железнодорожном транспорте» от 8 декабря 2001 года № 266-II, Технических регламентов Таможенного Союза «О безопасности инфраструктуры железнодорожного транспорта» и «О безопасности высокоскоростного железнодорожного транспорта», утвержденных решением Комиссии Таможенного Союза от 15 июля 2011 года № 710.

4 СРОК ПЕРВОЙ ПРОВЕРКИ ПЕРИОДИЧНОСТЬ ПРОВЕРКИ

2019 год 5 лет

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Нормативные документы по стандартизации», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты»

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Комитста технического регулирования и метрологии Министерства индустрии и новых технологий Республики Казахстан.

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения, обозначения и сокращения	2
4	Классификация и категории рельсов	4
5	Общие технические требования	5
5.1	Общие положения	5
5.2	Основные параметры и размеры рельсов	6
5.3	Требования к заготовкам и технологии производства	9
5.4	Требование к химическому составу стали	10
5.5	Загрязнённость стали неметаллическими включениями	12
5.6	Внутренние дефекты и дефекты макроструктуры	12
5.7	Качество поверхности	13
5.8	Механические свойства	14
5.9	Твёрдость по сечению и длине рельсов	15
5.10	Копровая прочность рельсов	16
5.11	Остаточные напряжения в шейке рельсов	16
5.12	Микроструктура	16
5.13	Маркировка	17
5.14	Магнитная индукция	18
5.15	Эксплуатационная надежность рельсов	18
6	Правила приемки	19
6.1	Общие положения	19
6.2	Приемо-сдаточные испытания	20
6.3	Οτδορ προδ	23
6.4	Порядок приемки рельсов при отрицательных результатах контроля	25
6.5	Периодические испытания	26
6.6	Сертификационные испытания	27
7	Методы контроля	27
7.1	Контроль размеров и форм поперечного сечения рельсов	27
7.2	Контроль длины рельсов	28
7.3	Контроль диаметра болтовых отверстий	28
7.4	Контроль перпендикулярности торцов рельсов	28
7.5	Контроль прямолинейности рельсов	28
7.6	Контроль отклонения рельсов от прямолинейности	28
7.7	Контроль скручивания рельсов	29
7.8	Контроль химического состава	29
7.9	Контроль рельсов на отсутствие флокенов	29
7.10	Контроль загрязнённостями неметаллическими включениями	29
7.11	Контроль внутренних дефектов и дефектов макроструктуры	30
7.12	Контроль качества поверхности рельсов	30
7.13	Контроль механических свойств	31
7.14	Контроль твердости рельсов	31
7.15	Контроль копровой прочности рельсов	31
7.16	Контроль остаточного напряжения в шейке рельсов	32
7.17	Контроль микроструктуры	32
7.18	Контроль маркировки рельсов	33
,.10	контроль маркировки рельсов	33

CT PK 2432-2013

Контроль м	лагнитной индукции	33
Контроль э	ксплуатационной надежности рельсов	34
Транспорти	ирование и хранение	43
Гарантии и	зготовителя	43
жение А	(Информационное) Рекомендуемые сферы рационального	
	применения рельсов различных категории	44
эжение Б	(Информационное) Схема и примеры обозначения рельсов	45
жение В	•	
		46
жение Г	(Информационное) Расчётные параметры конструкции	
	рельсов	50
жение Д	(Обязательное) Схема контроля отклонения рельсов от	
	прямолинейности	51
жение Е	(Информационное) Шаблоны для контроля размеров и	
	формы поперечного сечения рельсов, размеров и	
	•	53
жение Ж	(Обязательное) Шкала макроструктуры рельсов	71
жение И	(Обязательное) Неразрушающий контроль рельсов	89
жение К	(Рекомендуемое) Допустимые варианты достижения	
	соответствия методом повторной термической обработки и	
	видов последующего контроля и приемки рельсов	94
жение JI	(Обязательное) Методика металлографического анализа.	
	Сталь. Определение загрязнённости оксидными	
	включениями по эталонным изображениям	95
ография		102
	Контроль э Транспорти	применения рельсов различных категории (Информационное) Схема и примеры обозначения рельсов при заказе (Информационное) Размеры рельсов, используемые для построения прокатных калибров (Миформационное) Расчётные параметры конструкции рельсов (Обязательное) Схема контроля отклонения рельсов от прямолинейности (Информационное) Шаблоны для контроля размеров и формы поперечного сечения рельсов, размеров и расположения болтовых отверстий (Обязательное) Шкала макроструктуры рельсов ожение Ж (Обязательное) Неразрушающий контроль рельсов ожение К (Рекомендуемое) Допустимые варианты достижения соответствия методом повторной термической обработки и видов последующего контроля и приемки рельсов (Обязательное) Методика металлографического анализа. Сталь. Определение загрязнённости оксидными включениями по эталонным изображениям

НАЦИОНАЛЬНЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН

РЕЛЬСЫ ЖЕЛЕЗНОДОРОЖНЫЕ ДИФФЕРЕНЦИРОВАННО УПРОЧНЕННЫЕ И НЕТЕРМОУПРОЧНЕННЫЕ

Общие технические условия

Дата введения 2014-03-01

1 Область применения

Настоящий стандарт распространяется на железнодорожные рельсы типов Р50, Р65, Р65К (для наружных нитей кривых участков пути), Р75 дифференцированно упрочненные и нетермоупрочненные, предназначенные для укладки на железных дорогах широкой колеи.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные нормативные документы:

ГОСТ 2.601-2006 Единая система конструкторской документации. Эксплуатационные документы.

ГОСТ 15.001-88 Система разработки и постановки продукции на производство. Продукция производственно-технического назначения

ГОСТ 25.502–79 Расчеты и испытания на прочность в машиностроении. Методы механических испытаний металлов. Методы испытаний на усталость.

ГОСТ 25.506—85 Расчеты и испытания на прочность. Методы механических испытаний металлов. Определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении.

ГОСТ 166-89 Штангенциркули. Технические условия.

ГОСТ 427-75 Линейки измерительные металлические. Технические условия.

ГОСТ 1497-84 Металлы. Методы испытаний на растяжение.

ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики.

ГОСТ 3749-77 Угольники поверочные 90°. Технические условия.

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия.

ГОСТ 7565-81 Чугун, сталь и сплавы. Метод отбора проб для определения химического состава.

ГОСТ 8233-56 Сталь. Эталоны микроструктуры.

ГОСТ 8925-68 Щупы плоские для станочных приспособлений. Конструкция.

ГОСТ 9012- 59 Металлы. Метод измерения твердости по Бринеллю.

ГОСТ 9454–78 Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах.

ГОСТ 10243-75 Сталь. Методы испытаний и оценки макроструктуры

ГОСТ 16350–80 Климат СССР. Районирование и статистические параметры климатических факторов для технических целей.

ГОСТ 16504–81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения.

ГОСТ 17745-90 Стали и сплавы. Методы определения газов.

CT PK 2432-2013

ГОСТ 18895-97 Сталь. Метод фотоэлектрического спектрального анализа.

ГОСТ 21014—88 Прокат черных металлов. Термины и определения дефектов поверхности.

ГОСТ 22536.1–88 Сталь углеродистая и чугун нелегированный. Методы определения общего углерода и графита

ГОСТ 22536.2–87 Сталь углеродистая и чугун нелегированный. Методы определения серы.

ГОСТ 22536.3 88 Сталь углеродистая и чугун нелегированный. Методы определения фосфора.

ГОСТ 22536.4—88 Сталь углеродистая и чугун нелегированный. Методы определения кремния.

ГОСТ 22536.5–87 Сталь углеродистая и чугун нелегированный. Методы определения марганца.

ГОСТ 22536.7–88 Сталь углеродистая и чугун нелегированный. Методы определения хрома.

ГОСТ 22536.8–87 Сталь углеродистая и чугун нелегированный. Методы определения меди.

ГОСТ 22536.9–88 Сталь углеродистая и чугун нелегированный. Методы определения никеля.

ГОСТ 22536.10–88 Сталь углеродистая и чугун нелегированный. Методы определения алюминия.

ГОСТ 22536.11–87 Сталь углеродистая и чугун нелегированный. Методы определения титана.

ГОСТ 22536.12–88 Сталь углеродистая и чугун нелегированный. Методы определения ванадия

ГОСТ 28033-89 Сталь. Метод рентгенофлюоресцентного анализа.

ISO 14284—1996 Сталь и чугун. Отбор и приготовление образцов для определения химического состава.

ISO/IEC 17025-2005 Общие требования к компетентности испытательных и калибровочных лабораторий.

ГОСТ Р 50542–1993 Изделия из черных металлов для верхнего строения рельсовых путей. Термины и определения.

ГОСТ Р 54153-2010 Сталь. Метод атомно-эмиссионного спектрального анализа.

ГОСТ 380-2005 Сталь углеродистая обыкновенного качества. Марки.

ПРИМЕЧАНИЕ При пользовании настоящим Стандартом целесообразно проверить действие ссылочных стандартов по ежегодно издаваемому информационному указатель «Указатель нормативных документов по стандартизации» по состоянию на текущий год и соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим Стандартом следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него. применяется в части, не затрагивающей эту ссылку.

3 Термины и определения, обозначения и сокращения

- 3.1 В настоящем стандарте применяются термины по ГОСТ Р 50542, ГОСТ 16504, а также следующие термины с соответствующими определениями:
- 3.1.1 Плавка: Масса стали, выплавляемая единовременно в сталеплавильном агрегате.
- 3.1.2 Серия плавок: Ряд плавок стали одной марки, разливаемых в режиме непрерывной плавки через один промежуточный ковш.

- 3.1.3 Смежные плавки: Плавки, смежные в серии.
- 3.1.4 **Рельсы общего применения:** Рельсы, предназначенные для прямых и пологих кривых участков звеньевого и бесстыкового железнодорожного пути общего пользования и производства стрелочных переводов.
- 3.1.5 **Рельсы специального применения:** Рельсы, предназначенные для применения в особых условиях эксплуатации (при высокой грузонапряженности, в кривых участках железнодорожного пути общего пользования, при низких температурах, для скоростного совмещенного и высокоскоростного пассажирского движения и др.).
- 3.1.6 **Контрольный рельс**. Рельс, от которого отбирают пробы для приемослаточных испытаний.
 - 3.1.7 Смежные рельсы: Рельсы из одного раската, расположенные последовательно.
- 3.1.8 Дифференцированное упрочнение: Различное упрочнение по сечению рельса за счет технологии нагрева и (или) охлаждения по элементам сечения рельса.

ПРИМЕЧАНИЕ Элементами сечения рельса являются: головка рельса, шейка рельса, подошва рельса в соответствии с Рисунком 1.

- 3.1.9 Сканирование: Процесс регламентированного перемещения преобразователя по поверхности (или над поверхностью) контролируемого объекта или (и) перемещения контролируемого объекта относительно преобразователя.
- 3.1 10 Условный размер несплошности: Расстояние по длине рельса между крайними положениями преобразователя, в которых фиксируют сигнал от несплошности при заданном значении условной чувствительности.
- 3.1.11 Условно-дефектный рельс: Рельс, содержащий один или более участков, на которых при первичном контроле информативный параметр неразрушающего метода контроля, принятый в качестве признака дефекта, выходит за пределы, установленные настоящим стандартом.
- 3.1.12 Опорный отражатель: Искусственный отражатель в образце объекта контроля или на поверхности объекта контроля, используемые для настройки чувствительности прибора.
- 3.1.13 **Полнопрофильная проба:** Отрезок рельса полного сечения заданной длины, предназначенный для испытаний.
- 3.1.14 Скоростное совмещенное движение: Способ организации движения железнодорожного подвижного состава, при котором по одним и тем же железнодорожным путям осуществляются грузовое и пассажирское движение со скоростями до 140 км/ч и скоростное пассажирское движение со скоростями более 140 км/ч.
- 3.1.15 Эталонные изображение Структурное изображение образца метала или сплава без примесей загрязнения.
- 3.2 В настоящем стандарте применяются следующие обозначения групп неметаллических включений;
 - ЕВ строчечные глобулярные включения;
 - ED отдельные глобулярные включения.
 - ПРИМЕЧАНИЕ Данные обозначения аналогичны установленным в европейском стандарте [2].
 - 3.3 В настоящем стандарте применены следующие сокращения:
 - НК неразрушающий контроль;
 - ЭМАП электромагнитоакустический преобразователь;
 - СИ средство измерений.

4 Классификация и категории рельсов

- 4.1 Рельсы подразделяют:
- а) по типам: Р50, Р65, Р65К (для наружных нитей кривых участков пути) и Р75;
- б) по способу выплавки стали:
 - 1) в конвертере (К);
 - 2) в электропечи (Э);
- в) по применению:
 - 1) рельсы общего применения;
 - 2) рельсы специального применения:
 - рельсы низкотемпературной надежности (НН);
 - рельсы повышенной износостойкости и контактной выносливости (ИК);
 - рельсы для скоростного совмещенного движения (СС);
 - рельсы для высокоскоростного движения (BC);
- г) по способу термического упрочнения:
- рельсы дифференцированно термоупрочненные по сечению с контролем охлаждения подошвы рельса после прокатного и последующего индукционного нагрева (ДТ);
 - 2) рельсы нетермоупрочненные с прокатного нагрева (Н);
 - д) по уровню технических требований:
 - 1) по классу твердости (минимальной твердости):
 - 370 (термоупрочненные);
 - 350 (термоупрочненные):
 - 320 (нетермоупрочненные);
 - 300 (нетермоупрочненные);
 - 260 (нетермоупрочненные);
 - 2) по классу точности изготовления профиля (классу профиля):
 - X;
 - Y:
 - 3) по классу прямолинейности:
 - A;
 - B;
 - C;
 - 4) по классу качества поверхности:
 - E;
 - _ D.
 - 5) по наличию болтовых отверстий на концах:
 - с отверстиями;
 - без отверстий.
- 4.2 Рельсы в зависимости от вида термоупрочнения, класса твердости и эксплуатационного применения разделяются на категории.

Таблица 1 - Категории рельсов

Обозначение категории рельсов	Характеристика категории рельсов
ДТ370ИК	Дифференцированно термоупрочненные по сечению с контролем охлаждения подошвы рельса после прокатного и последующего индукционного нагрева повышенной износостойкости и контактной выносливости

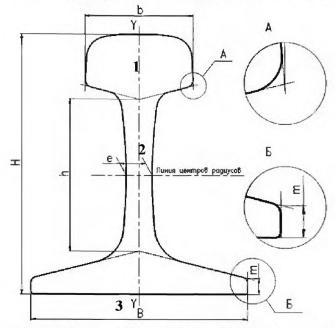
Таблица 1 (продолжение)

Обозначение	Характеристика категории рельсов						
категории рельсов							
HT250DC	Дифференцированно термоупрочненные по сечению с контролем ох-						
ДТ350ВС	лаждения подошвы рельса после прокатного и последующего индукци- онного нагрева для высокоскоростного пассажирского движения						
	Дифференцированно термоупрочненные по сечению с контролем охлаж-						
ДТ350СС	дения подошвы рельса после прокатного и последующего индукционно-						
	го нагрева для скоростного совмещенного движения						
	Дифференцированно термоупрочненные по сечению с контролем охла-						
ДТ350НН	ждения подощвы рельса после прокатного и последующего индукцион-						
	ного нагрева низкотемпературной надежности						
	Дифференцированно термоупрочненные по сечению с контролем охлаж-						
ДТ350	дения подошвы рельса после прокатного и последующего индукционно-						
	го нагрева общего применения						
H320BC	Нетермоупрочненные для высокоскоростного пассажирского движения						
H320	Нетермоупрочненные высокой прочности общего применения						
H300	Нетермоупрочненные повышенной прочности общего применения						
H260	Нетермоупрочненные обычной прочности общего применения						
ПРИМЕЧАНИЕ І	ПРИМЕЧАНИЕ В обозначениях категорий рельсов использованы сокращения, указанные в 4.1						

По соглашению потребителя и изготовителя (далее – сторон) допускается выпуск рельсов других категорий, отличающихся иным сочетанием класса прочности, класса точности профиля, класса качества поверхности и класса прямолинейности, установленных в 4.1 и 4.2.

- 4.3 Рекомендуемые сферы применения рельсов приведены в Приложении А.
- 4.4 При заказе рельсов используют схему и примеры обозначения рельсов, приведенные в Приложении Б.

5 Обшие технические требования


5.1 Общие положения

- 5.1.1 Рельсы изготовляют по требованиям настоящего стандарта по конструкторской и технологической документации, разработанной, согласованной и утвержденной в установленном порядке.
- 5.1.2 Конструкция рельсов при данных условиях использования и технического обслуживания должна обеспечивать возможность ее восстановления путем шлифования и фрезерования рельсов в соответствии с установленными нормами. Рельсы должны иметь удовлетворительную свариваемость в соответствии с требованиями действующей нормативной документации владельца инфраструктуры железнодорожного транспорта, которая обеспечивается соблюдением всех требований настоящего стандарта и соответствующими режимами сварки и наплавки.
- 5.1.3 Рельсы должны быть контроле пригодными при дефектоскопировании в железнодорожном пути, обеспечивая безопасность движения в течение всего жизненного цикла.

5.2 Основные параметры и размеры рельсов

5.2.1 Форма и основные размеры поперечного сечения рельсов

5.2.1.1 Форма и основные (контролируемые) размеры поперечного сечения рельсов должны соответствовать размерам, приведённым на Рисунке I и в Таблице 2.

1 – головка рельса; 2 – шейка рельса; 3 – подошва рельса (А – радиус закругления нижней части головки рельса, Б – толщина основания подошвы рельса)

Рисунок 1 – Основные размеры поперечного сечения рельса

Таблица 2 – Основные размеры поперечного сечения рельсов

В миллиметрах

Da	Обозна-	Значен	ие размера дл	размера для рельса типа		
Размер поперечного сечения	чение	P50	P65	P65K	P75	
Высота рельса	Н	152,0	180,0	181,0	192,0	
Высота шейки	h	83,0	105,0	105,0	104,4	
Ширина головки	b	72,0	75,0	75,0	75,0	
Ширина подошвы	В	132,0	150,0	150,0	150,0	
Толщина шейки	e	16,0	18,0	18,0	20,0	
Высота пера подошвы	m	10,5	11,2	11,2	13,5	

Допускаемые отклонения контролируемых размеров и формы поперечного сечения рельсов должны соответствовать значениям, указанным в Таблице 3.

Таблица 3 Допускаемые отклонения размеров и формы поперечного сечения рельсов

В миллиметрах

Наименование показателя			Класс профиля рельса		
паименов	зание показателя	значе- ние	X	Y	
·	типа Р50		±0,5	+0,5 -1,0	
Высота рельса:	типа Р65, Р75	igcap H	±0,6	+0,6 -1,1	
	типа Р65К		1	+1.3 -1,0	
Высота шейки		h	±0,5	±0.6	
Ширина головки	b	±0,5	+0,6 -0,5		
Ширина подошвы		В	±1,0	+1,5 -1,0	
Толщина шейки		e	+1,0 -0,5		
Высота пера подошвы		m	+0,75 -0,50		
Отклонение формы класса прямолинейности А		_	+0,6 -0,3		
от номинальной для классов прямолинейности В и С		-	±0,6		
Несимметричность рел	ьса	-	<u>±1</u>		
Выпуклость основания	подошвы	-	0,3	0,5	

ПРИМЕЧАНИЕ Нормы по отклонению формы поверхности катания от номинальной не распространяются на рельсы типа P65K.

- 5.2.1.2 Вогнутость основания подошвы рельсов не допускается.
- 5.2.1.3 Размеры рельсов, используемые для построения прокатных калибров и не контролируемые при приемке рельсов, приведены в Приложении В.
 - 5.2.1.4 Расчетные параметры конструкций рельсов приведены в Приложении Γ .

5.2.2 Длина рельсов

Рельсы без болговых отверстий изготавливают:

- длиной от 12,5 м до 20 м включительно с допускаемым отклонением ± 1 мм на метр длины;
 - длиной от 20 м до 25 м включительно с допускаемым отклонением ±20 мм;
 - длиной от 25 м до 105 м включительно с допускаемым отклонением ±30 мм;
 - длиной от 105 м до 125 м включительно с допускаемым отклонением ±30 мм.

Рельсы с болтовыми отверстиями изготавливают длиной 25,00; 24,92; 24,84; 12,52; 12,50; 12,46; 12,42 и 12,38 м с допускаемым отклонением ±4 мм.

ПРИМЕЧАНИЕ Длина рельсов указана при температуре 15 °C. Результаты измерений, проведенных при других температурах. должны быть скорректированы с учетом температурного линейного расширения рельсов.

5.2.3 Болтовые отверстия в рельсах

Расположение, количество и диаметр болтовых отверстий в шейке на концах рельсов должны соответствовать приведенным на Рисунке 2 и в Таблице 4.

По согласованию сторон рельсы могут быть изготовлены с другим расположением, количеством и диаметром болтовых отверстий.

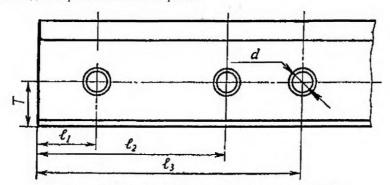


Рисунок 2 - Расположение болтовых отверстий

Таблица 4 - Расположение и размеры болтовых отверстий

В миллиметрах

Тип рельса		Допускаемое					
	D	T	ℓ_1	ℓ_2	£3	отклонение	
P50	34,0	68,5	66,0	216,0	356,0		
P65,P65K	36,0	78,5	96,0	316,0	446,0	±0,7	
P75	36,0	80,4	96,0	316,0	446,0		

Болтовые отверстия должны иметь фаски размером от $1,5\,$ мм до $3,0\,$ мм, снятые под углом около 45° .

5.2.4 Перпендикулярность торцов рельсов

Отклонение поверхностей торцов от перпендикулярности по отношению к поверхности рельса не должно превышать $0,6\,\mathrm{mm}$.

5.2.5 Прямолинейность рельсов

Отклонения от прямолинейности на заданной базовой длине для рельсов соответствующих классов не должны превышать значений, указанных в Таблице 5.

Таблица 5 – Допускаемые отклонения рельсов от прямолинейности

Элемент рельса*	Направление	Класс А		Класс В		Класс С	
	отклонения	d, мм	L, M	d, мм	L, м	d, мм	L, м
Основная часть рельса	В вертикальной плоскости	0,30	3	0,40	3	0,60	1,5
			И		И		
		0,20	1	0,30	1		

Таблица 5 – Допускаемые отклонения рельсов от прямолинейности (продолжение)

Элемент рельса*	Направление	Класс А		Класс В		Класс С		
Элемент рельса	отклонения	d, мм	<i>L, м</i>	d, мм	<i>L</i> , м	d, мм	<i>L</i> , м	
Основная часть рельса	В горизонтальной плоскости	0,45	1,5	0,60	1,5	0,80		
	Длина зоны		2 м	1,5 м				
Концевая зона	В вертикальной плоскости вверх	0,40 0,30	2 и 1	0,50	1,5	0,70	1,5	
Концевая зона рельса	В вертикальной плоскости вниз	<i>e</i> ≤0,2 мм при F ≥0,6 м						
	В горизонталь-	0,60 0,40	2 и 1	0,50	1,5	0,50	1,5	
	Длина зоны	2 м		1,5 м				
Переходная зона	В вертикальной плоскости	0,30	2	0,40	1,5	-	-	
зона	В горизонталь- ной плоскости	0,60	2	0,60	1,5	-	1	
Рельс в целом	В вертикальной плоскости	Для рельсов длиной 25 м и более — кривизна рельса, лежащего на подошве или головке, не более 10 мм Для рельсов длиной менее 25 м: Прогиб не более 1/2500 длины						
Применти	Е Обозначения:	ны рельс		рельса				

ПРИМЕЧАНИЕ Обозначения:

- *d* нормируемая величина отклонения;
- L базовая длина, для которой установлена нормируемая величина отклонения;
- е нормируемая величина отклонения конца рельса вниз;
- F расстояние от торца до начала отклонения конца рельса вниз.

Нормы прямолинейности класса A применяют для рельсов категорий BC и CC, классов B и C – для рельсов остальных категорий.

5.2.6 Скручивание рельсов

Скручивание рельсов длиной от $18,00\,\mathrm{m}$ до $24,84\,\mathrm{m}$ включительно — не более $1/10000\,\mathrm{д}$ лины рельса; длиной свыше $24,84\,\mathrm{m}$ — не более $2,5\,\mathrm{mm}$.

5.3 Требования к заготовкам и технологии производства

- 5.3.1 Для производства рельсов используют непрерывно-литые заготовки из стали кислородно-конвертерного или электропечного производства, подвергнутой внепечной обработке и вакуумированию.
 - 5.3.2 Технология производства и контроля рельсов должна:
 - предусматривать удаление окалины при помощи гидросбива;

^{*} Элементы рельса приведены в Приложении Д.

- возможность правки рельсов в двух плоскостях на роликоправильных машинах и прессах;
 - автоматизированный контроль отклонения рельсов от прямолинейности;
 - автоматизированный контроль размеров и формы профиля рельсов;
 - автоматизированный ультразвуковой контроль внутренних дефектов;
 - автоматизированный неразрушающий контроль качества поверхности рельсов:
 - систему идентификации рельсов по технологическому потоку.
- 5.3.3 По соглашению сторон допускается изготовление рельсов с изменением отдельных требований, установленных в 5.3.1 и 5.3.2. В этом случае особенности технологии производства и контроля указывают в соглашении о поставке рельсов или в заказе.
 - 5.3.4 Коэффициент вытяжки при прокатке:
 - для типов рельсов P50, P65 и P65К не менее 9,0;
 - для типа рельса P75 не менее 7,6.
- 5.3.5 Допускается однократная повторная правка рельсов в горизонтальной и вертикальной плоскостях на роликоправильных машинах и неоднократная правка местных и концевых искривлений на прессах.
 - 5.3.6 Технология производства должна обеспечивать отсутствие флокенов в рельсах. При массовой доле водорода в жидкой стали в промежуточном ковше;
- до 0,00020 % (2,0 ppm) включительно допускается не проводить противофлокенную обработку заготовок и рельсов;
- свыше 0,00020 % (2,0 ppm) до 0,00025 % (2,5 ppm) включительно проведение противофлокенной обработки заготовок или рельсов обязательно;
 - свыше 0,00025 % (2,5 ppm) сталь не назначают для производства рельсов.

5.4 Требования к химическому составу стали

5.4.1 Химический состав стали, определяемый по ковшовой пробе, должен соответствовать указанному в Таблице 6.

По соглашению сторон устанавливают суженные пределы массовой доли элементов в стали.

- 5.4.2 Массовая доля в стали остаточных элементов не должна превышать:
- меди -0.20 %;
- никеля 0,20 % для рельсов категорий ДТ350НН и ДТ350;
 - 0,15 % для рельсов всех остальных категорий;
- суммарная доля никеля и меди 0,27 %;
- титана -0.010 %.

При этом суммарная массовая доля указанных элементов и хрома, если он является остаточным элементом, должна быть не более 0.40 %.

Таблипа 6 – Химический состав стали

	_				Массовая дол	я элементов, %	ó		
Марка стали	' '		вана-	XDOM	азот	фосфор	cepa	а люми- ний	
	род	нец	ний	дий				не бо	лее
90XA	0,83-	0,75-	0,25-	0,08-	0,200-0,600	0,010-0,020	0,020	0,020	0,004
Φ	0,95	1,25	0,60	0,15	0,200-0,000	0,010-0,020	0,020	0,020	0,004
76XA	0,71-	0,75-	0,25-	0,05-	0,200-0,800	0,010-0,020	0,020	0,020	0,004
Φ	0,82	1,25	0,60	0,15_	0,200-0,800	0,010-0,020	0,020	0,020	0,004
76ХФ	0,71-	0,75-	0,25-	0,03-	0,200-0,800	_	0,020	0,020	0,004
/0/	0,82	1,25	0,60	0,15	0,200-0,800		0,020	0,020	0,004
76XC	0,71-	0,75-	0,30-	0,05-	0,500-1,250	_	0,020	0,020	0,004
Ф	0,82	1,25	1,10	0,15	0,500-1,250	0,300-1,230		0,020	0,004
90АФ	0,83-	0,75-	0,25-	0,08-	не более	0,010-0,020	0,020	0,020	0,004
θUAΨ	0,95	1,25	0,60	0,15	0,200	0,010-0,020	0,020	0,020	0,004
76АФ	0,71-	0,75-	0,25-	0,05-	не более	более		0,020	0,004
/0ΑΦ	0,82	1,25	0,60	0,15	0,200	0,010-0,020	0,020	0,020	0,004
76Ф	0,71-	0,75-	0,25-	0,03-	не более	-	0,020	0,020	0,004
	0,82	1,25	0,60	0,15	0,200				

ПРИМЕЧАНИЕ К обозначению марки стали добавляют впереди букву «К» для конвертерной и букву «Э» для электропечной стали

5.4.3 В рельсах допускаются отклонения от норм в соответствии с Таблицей 6, по массовой доле элементов, как указано в Таблице 7.

Таблица 7 – Допускаемые отклонения химического состава рельсов, не более

В процентах ванадий алюминий углерод марганец кремний азот хром фосфор cepa ± 0.02 ± 0.05 ± 0.02 +0.02 ± 0.002 ± 0.005 +0.005+0.005 +0.001

5.4.4 Массовая доля общего кислорода в рельсах не должна превышать 0,0020 % (20 ppm).

Допускается не более 5 % плавок от месячного объема поставки с массовой долей общего кислорода от 0,0020 % (20 ppm) до 0,0030 % (30 ppm).

- 5.4.5 Массовая доля кислорода в высокоглиноземистых оксидных включениях не должна превышать 0,0010 % (10 ppm). Данная норма начинает действовать через два года после даты введения в действие настоящего стандарта.
- 5.4.6 Категории рельсов устанавливаются с учетом марки стали и термической обработки рельсов в соответствии с Таблицей 8.

Таблица 8 – Категории рельсов в зависимости от марки стали и термической обработки рельсов

	Категории рельсов по термическому упрочнению				
Марка стали	дт	Н			
90ХАФ	ДТ370ИК	-			
90АФ	ДТ370ИК	-			
76ХАФ	ДТ350НН	-			
76АФ	дтз50нн	-			
76ХФ	ДТ350ВС ДТ350СС ДТ350	H300			
76ХСФ	-	H320BC H320			
76Ф	ДТ350BC ДТ350CC ДТ350	H260			

5.5 Загрязнённость стали неметаллическими включениями

- 5.5.1 Размер наибольшего диаметра (P_D) отдельных глобулярных включений (группы ED) не должен превышать 30 мкм при оценке по каждому из шести шлифов и 20 мкм при оценке усредненного диаметра по шести шлифам.
- 5.5.2 Размер наибольшей длины (P_L) строчечных глобулярных включений (группы EB) не должен превышать:
- для рельсов специального применения 353 мкм при оценке максимального размера по каждому из шести шлифов и 300 мкм при оценке максимального размера, усредненного по шести шлифам;
- для рельсов общего применения 705 мкм при оценке максимального размера по каждому из шести шлифов и 500 мкм при оценке максимального размера, усредненного по шести шлифам.
- 5.5.3 Суммарный коэффициент загрязненности рельсов строчечными глобулярными включениями и отдельными глобулярными включениями K_a , должен быть не более $30 \text{ мкм}^2/\text{мм}^2$ для каждой группы включений. Данная норма начинает действовать через два года после даты введения в действие настоящего стандарта.

5.6 Внутренние дефекты и дефекты макроструктуры

5.6.1 В рельсах не допускаются флокены, расслоения, трещины, корочки, пятнистая ликвация, инородные металлические и шлаковые включения.

Вид, характер и место расположения допускаемых и недопускаемых дефектов макроструктуры должны соответствовать нормам, установленным шкалой макроструктуры рельсов в соответствии с Приложением Ж.

5.6.2 В рельсах не допускаются выявляемые при ультразвуковом контроле внутренние дефекты, амплитуда эхо-сигналов от которых или ослабление донного сигнала которыми превышают установленный уровень (см. Приложение И).

5.7 Качество поверхности

5.7.1 Поверхность рельса должна быть без раскатанных загрязнений, трещин, рванин, раскатанных корочек, плен, закатов, раковин от окалины, подрезов, вмятин, продиров, поперечных рисок и поперечных царапин.

Вид и максимальные значения параметров допускаемых дефектов поверхности в зависимости от места их расположения в соответствии с Таблицей 9.

5.7.2 На поверхности рельсов, предназначенных для сварки, на длине менее 200 мм от торцов не допускаются раскатанные пузыри, морщины и волосовины.

Таблица 9 – Допускаемые дефекты поверхности рельсов

В миллиметрах

	Параметр	Место расположения и параметры дефекта для классов качества поверхности рельсов Е и Р						
Вид дефекта	дефекта	поверхность ка- тания		средняя треть ос- нования подошвы		Остальные эле- менты профиля		
		Е	P	E	P	Е	P	
Раскатанные пузы-	Глубина	0,35	1,00	0,30	0,30	0,50	1,00	
ри, волосовины	Длина	500	1000	500	1000	500	1000	
Продольные риски царапины, морщинь	т пуоина	0,30	0,50	0,30	0,30	0,50	0,50	

ПРИМЕЧАНИЕ На поверхности шейки рельсов вне зоны сопряжения с накладками допускаются выпуклые отпечатки высотой не более $5\,\mathrm{mm}$.

5.7.3 Допускается удаление недопустимых дефектов пологой зачисткой абразивным инструментом вдоль рельса, без прижогов, на глубину, не превышающую норм установленных в соответствии с Таблицей 10. После зачистки размеры профиля должны соответствовать требованиям, указанным в Таблицах 2 и 3.

Таблица 10 – Допускаемая глубина удаления дефектов

В миллиметрах

		D WILLIAM CIPAX		
	Глубина удаления дефектов для рельсов классов качества поверхности, не более			
Место расположения дефекта	E	P		
Поверхность катания	0,35	0,50		
Средняя треть основания подошвы	0,30	0,50		
Остальные элементы профиля	0,50	1,00		

- 5.7.4 Допускается удаление отпечатков и знаков выпуклой маркировки на шейке рельса в зоне сопряжения с накладками зачисткой абразивным инструментом вдоль направления прокатки при обеспечении размеров шейки.
- 5.7.5 На поверхности катания головки и основания подошвы рельсов не допускаются дефекты, выявляемые методами неразрушающего контроля в соответствии с И.5 (см. Приложение И, метод В).
- 5.7.6 Поверхность торцов рельсов должна быть без рванин, расслоений и трещин. Кромки торцов рельсов должны быть без заусенцев и наплывов металла.

Для рельсов без болтовых отверстий рекомендуется притуплять кромки торцов по контуру головки и шейки.

На термоупрочненных рельсах с болтовыми отверстиями, на торцах по нижним кромкам головки рельсов и верхней части перьев подошвы должна быть снята фаска размером до 3 мм.

- 5.7.7 Поверхность болтовых отверстий и фасок должна быть без рванин, задиров, винтовых следов от сверления.
- 5.7.8 Для рельсов применений BC, CC и HH применяют нормы качества поверхности класса E, для рельсов остальных применений применяют нормы качества поверхности класса E или P.

5.8 Механические свойства

Механические свойства при испытаниях на растяжение и ударную вязкость должны соответствовать требованиям, указанным в Таблице 11.

TT 6	4.4	3.6	·
1 аолица	11 -	Механические	своиства

Категория рельсов	Временное сопротивление, σ _B , H/мм ²	Предел текучести, $\sigma_{0,2}$, H/мм ²	Относительное удлинение, δ, %	Относительноє сужение, ψ, %	Ударная вязкость, КСU, Дж/см ²
	_		не менее		
дт370ик	1280	870	9,0	14,0	15
ДТ350 ДТ350НН ДТ350СС ДТ350ВС	1180	800	9,0	25,0	15
H320 H320BC	1080	600	9,0	-	-
H300	980	510	8,0	_	-
H260	900	500	8,0	-	<u>-</u>

ПРИМЕЧАНИЕ 1 Ударную вязкость для рельсов категории ДТ350HH определяют при температуре образцов минус 60 °C, а для рельсов остальных категорий – при комнатиой температуре.

ПРИМЕЧАНИЕ 2 Ударная вязкость для рельсов категории ДТ350НН из стали марки 76АФ, дифференцированно термоупрочненных с повторного нагрева, должна быть не менее 25 Дж/см²

5.9 Твердость по сечению и длине рельсов

5.9.1 Твердость термоупрочненных рельсов должна соответствовать требованиям, указанным в Таблице 12. Точки измерения твердости показаны на Рисунке 3. Допускаемые отклонения расположения точек: ± 1 мм, $\pm 3^\circ$.

Таблица 12 - Твердость термоупрочненных рельсов

В единицах твердости по Бринеллю (НВ, НВW)

	Твердос	ть рельсов категорий
Место определения	дт370ик	ДТ350, ДТ350НН, ДТ350СС, ДТ350ВС
На поверхности катания головки (см. точку 1)	370 - 409	352 – 405
На глубине 10 мм от поверхности катания головки по вертикальной оси рельса (см. точку 2), не менее	363	341
На глубине 10 мм от поверхности выкружки рельса (см. точки 3 и 4), не менее	363	341
На глубине 22 мм от поверхности катания головки по вертикальной оси рельса (см. точку 5), не менее	352	321
В шейке (см. точку 6), не более	352	341
В подошве (см. точки 7 и 8), не более	388	363

Размеры в мм

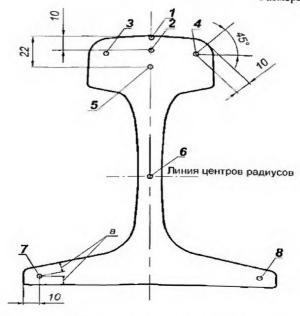


Рисунок 3 – Точки измерения твердости рельсов

- 5.9.2 Твердость по Бринеллю (далее твердость) НВ (НВW) нетермоупрочненных рельсов должна составлять:
 - а) на поверхности катания (см. точку 1 на Рисунке 3):
 - 1) от 321 до 363 включительно для рельсов категорий Н320 и Н320ВС;
 - 2) от 301 до 341 включительно для рельсов категории Н300;
 - 3) от 262 до 321 включительно для рельсов категории Н260:
 - б) на глубине 10 мм (см. точку 2 на Рисунке 3):
 - 1) от 321 до 363 включительно для рельсов категорий Н320 и Н320ВС.
- 5.9.3 Разность значений твердости по Бринеллю на поверхности катания одного рельса не должна превышать 30 HB (HBW).

5.10 Копровая прочность рельсов

Копровая прочность рельсов, определяемая при испытаниях полнопрофильных проб рельсов на копре при ударе падающим грузом, должна соответствовать требованиям Таблицы 13.

Y	l l	падения г цля рельсо		Температура	Требуемый
Категория рельсов	P50	P65, P65K	P75	пробы, °С	результат испытаний
ДТ370ИК	_	4,2	_		отсутствие излома и трещин
ДТ350	4,0	5,0	6,0	минус (60±5)	
ДТ350СС, ДТ350ВС	-	5,0	-] Mility (00±3)	
ДТ350НН	-	9,0	_]	
H320, H320BC	-	7,3	-	om 0 no 40	грещин
H300, H260	6,1	7,3	8,2	от 0 до 40	

Таблица 13 - Копровая прочность рельсов

5.11 Остаточные напряжения в шейке рельсов

Для рельсов категорий ДТ370ИК, ДТ350, ДТ350СС, ДТ350ВС, ДТ350НН, Н320ВС и Н320ВС допускаются остаточные напряжения в шейке, приводящие к расхождению паза на торце полнопрофильной пробы рельса после ее прорезания, не превышающее - 2,0 мм.

Допускаются остаточные напряжения, приводящие к схождению паза.

5.12 Микроструктура

5.12.1 Микроструктура головки термоупрочненных рельсов должна представлять собой пластинчатый перлит не выше балла 4, а рельсов категорий H300 и H320 – балла 8 по шкале 1 ГОСТ 8233.

В микроструктуре головки термоупрочненных рельсов допускаются мелкие разрозненные участки феррита не выше балла 2 по шкале 7 ГОСТ 8233, бейнит не допускается.

В микроструктуре рельсов класса прочности 370 из стали марок 90АФ и 90ХАФ допускаются участки карбидной сетки не выше балла 3 по шкале 5 ГОСТ 8233.

5.12.2 Глубина обезуглероженного слоя на поверхности головки рельсов не должна превышать 0,5 мм.

5.13 Маркировка

5.13.1 Выпуклая маркировка

- 5.13.1.1 На средней части шейки с одной стороны каждого рельса в горячем состоянии выкатывают выпуклую маркировку, содержащую:
 - обозначение предприятия-изготовителя;
- месяц (римскими цифрами) и последние две цифры года изготовления (арабскими цифрами),
 - тип рельса:
- обозначение направления прокатки стрелкой (острие стрелки указывает на передний конец рельса по ходу прокатки).
- 5.13.1.2 Маркировку выкатывают с периодичностью не более 4 м по длине рельсов. На рельсах с болтовыми отверстиями маркировка не должна располагаться на расстоянии менее 0,6 м от торцов рельса.
- 5.13.1.3 Маркировочные знаки должны быть высотой от 20 мм до 25 мм и выступать на расстояние от 0,6 мм до 1,3 мм с плавным переходом к поверхности шейки.
- 5.13.1.4 Допускается дополнительно выкатывать не более четырех знаков в виде выпуклых точек диаметром от 2 мм до 3 мм высотой около 1 мм и выпуклых линий длиной до 80 мм.

5.13.2 Маркировка, наносимая клеймовочной машиной

- 5.13.2.1 На средней части шейки каждого рельса со стороны, противоположной выпуклой маркировке, в горячем состоянии наносят:
 - а) обозначение способа выплавки буквой:
 - 1) для конвертерной сталиК;

 - б) номер плавки;
 - в) номер ручья;
 - г) номер заготовки в ручье.
- 5.13.2.2 Маркировку наносят на расстоянии более 1 м от торцов рельса с периодичностью не более 12,5 м по длине рельсов. Расстояние между знаками за исключением пробела должно быть от 20 мм до 40 мм.

Маркировочные знаки должны иметь высоту около 16 мм, глубину от 0,4 мм до 1,5 мм, угол наклона около 10° к вертикальной оси рельса. Знаки должны быть четкими, без острых очертаний контуров и вершин.

5.13.2.3 Не допускается наносить и исправлять клеймением в холодном состоянии маркировочные знаки, нанесенные горячим клеймением.

5.13.3 Маркировка приемочными знаками

На торце подошвы каждого принятого рельса наносят приемочные знаки службы технического контроля предприятия-изготовителя.

5.13.4 Маркировка краской

В зависимости от категории рельса на шейке рельса наносят маркировку краской в соответствии с [2].

5.13.5 Дополнительная маркировка

Допускается на торце рельсов в холодном состоянии наносить дополнительную маркировку.

5.13.6 Маркировка единым знаком обращения продукции на рынке

5.13.6.1 Рельсы, соответствующие требованиям безопасности и прошедшие процедуру подтверждения соответствия, должны иметь маркировку единым знаком обращения продукции на рынке государств-членов Таможенного союза.

- 5.13.6.2 Маркировка единым знаком обращения осуществляется перед выпуском рельсов в обращение на рынке.
- 5.13.6.3 Единый знак обращения наносится на каждый рельс в холодном состоянии любым способом, не наносящим концентраторов напряжений на поверхности рельса и обеспечивающим четкое и ясное изображение в течение всего срока службы рельсов.

5.14 Магнитная индукция

Максимальное значение магнитной индукции на поверхности катания головки рельсов не должно превышать 0,7 мТл (данная норма начинает действовать через 2 года после даты введения настоящего стандарта). При превышении нормативного значения проводят размагничивание рельса с повторным контролем величины магнитной индукции. Погрузку рельсов с магнитной индукцией, соответствующей требованиям настоящего стандарта, необходимо осуществлять погрузочными устройствами, предусматривающими подъем рельсов без применения магнитов.

5.15 Эксплуатационная надёжность рельсов

5.15.1 Предел выносливости рельсов

Предел выносливости рельсов при испытаниях полнопрофильных проб рельсов должен быть, МПа:

- не менее 300 для рельсов категорий H260 и H300;
- не менее 350 для рельсов категорий Н320, Н320ВС и ДТ370ИК;
- -не менее 370 для рельсов категорий ДТ350, ДТ350НН, ДТ350СС, ДТ350ВС.

5.15.2 Циклическая долговечность

Циклическая долговечность при испытаниях на усталость образцов из рельсов на растяжение-сжатие при постоянной амплитуде полной деформации 0.00135 для рельсов всех категорий должна быть не менее $5 \cdot 10^6$ циклов.

5.15.3 Скорость роста усталостной трещины

Скорость роста усталостной трещины для термоупрочненных рельсов при испытаниях образцов из рельсов при размахе коэффициента интенсивности напряжений ДК равном

10 МПа·м^{1/2} должна быть не более 17 м/10⁹ циклов, а при Δ К равном 13,5 МПа·м^{1/2} – не более 55 м/10⁹ циклов.

5.15.4 Циклическая трещиностойкость

Трещиностойкость (циклическая) $K_{\rm fc}$ при испытаниях полнопрофильных проб рельсов классов твердости 260, 300 и 320 должна быть не менее 26 МПа·м^{1/2}, рельсов класса твердости 350 — не менее 32 МПа·м^{1/2}, рельсов класса твердости 370 — не менее 28 МПа·м^{1/2}.

5.15.5 Статическая трещиностойкость

Трещиностойкость (статическая) K_{lc} при испытаниях образцов из рельсов в соответствии с Таблицей 4.

Таблица 14 – Трещиностойкость (статическая) Кіс

Класс твердости рельсов	Трещиностойк	ость, K_{lc} , МПа·м $^{1/2}$, не менее
	одного образца	средняя для трех образцов
370 и 350	30	32
320, 300 и 260	24	26

5.15.6 Остаточные напряжения в средней части подошвы рельсов

Остаточные растягивающие напряжения в средней части подошвы рельсов не должны превышать 250 H/мм².

6 Правила приёмки

6.1 Общие положения

6.1.1 Испытания для проверки соответствия рельсов требованиям, установленным в 5.2, 5.3.6, 5.4-5.15 проводят на этапе освоения производства на опытных образцах в соответствии с ГОСТ 15.001.

В данный вид испытаний включают лабораторные, стендовые и квалификационные испытания.

- 6.1.2 Для проверки соответствия готовых рельсов требованиям настоящего стандарта проводят приемо-сдаточные испытания по 6.2, периодические испытания по 6.5 и сертификационные испытания по 6.6.
- 6.1.5 Допускается совмещение проводимых квалификационных и сертификационных испытаний на соответствие требованиям настоящего стандарта. Сертификационные испытания являются обязательными для любых производителей и поставщиков, размещающих рельсы на территории Республики Казахстан. В случае положительных результатов испытаний рельсы считаются соответствующими требованиям ТР ТС 002/2011, ТР ТС 003/2011 и настоящего стандарта.
- 6.1.3 Рельсы, принятые службой технического контроля предприятия-изготовителя, предъявляют представителю заказчика.

Принятые рельсы маркируют приемочными знаками в соответствии с 5.13.3.

- 6.1.4 Испытания для подтверждения соответствия рельсов требованиям, установленным в 5.2.1, 5.2.5, 5.2.6, 5.3.6, 5.4.1 5.4.4, 5.5 5.15, проводят на рельсах Р65 классов прочности 300, 320, 350, 370 и результаты распространяют на рельсы других типов и категорий в рамках одного предприятия-изготовителя с учетом способа термоупрочнения.
- 6.1.5.1 Сертификационные испытания проводят органы по подтверждению соответствия, аккредитованные в соответствии с ИСО/МЭК 65.
- 6.1.5.2 Все испытания рельсов проводятся в лабораториях, аккредитованных в соответствии с ISO/IEC 17025.
- 6.1.5.3 Допускается, с согласия владельца инфраструктуры железнодорожного транспорта, подтверждение соответствия и(или) испытания рельсов проводить в уполномоченных органах по сертификации (подтверждению соответствия) и(или) испытательных лабораториях государств-членов Таможенного союза или зарубежных стран, если данная продукция входит в область их аккредитации, а полученные результаты признаются на территории Республики Казахстан в установленном порядке. При этом заказчик должен иметь полный доступ к планам, расчетам, методикам проведения испытаний для непосредственного участия и контроля хода испытаний.

ПРИМЕЧАНИЕ Заказчиком может быть владелец инфраструктуры или его уполномоченный представитель.

6.2 Приёмо-сдаточные испытания

6.2.1 Приемо-сдаточные испытания рельсов проводят поплавочно (партиями).

Допускается проводить приемку сборной партии рельсов от разных плавок, отставших по технологическому потоку более чем на 10 суток. В партию допускается объединять только рельсы одного типа, одной марки стали, одного класса профиля, одного класса прямолинейности, одной категории, прошедшие термоупрочнение по одному режиму (для дифференцированно упрочненных рельсов), одновременно предъявляемые к приемке в количестве не более 100 шт.

- 6.2.2 Рельсы одной плавки или партии, прокатанные или дифференцированно упрочненные с разрывом более 10 суток, подвергают приемно-сдаточным испытаниям как рельсы разных плавок и партий.
- $6.\overline{2}.3$ Периодичность и объем приемо-сдаточных испытаний рельсов по 5.3.6, 5.4.1, 5.5.2, 5.4.4, 5.4.5, 5.5, 5.6, 5.7, 5.9.1 5.9.3, 5.10, 5.11, 5.12.1, 5.12.2, 5.13, 5.14 в соответствии с Таблицей 15. Отбор проб для приемо-сдаточных испытаний по 6.3.1 6.3.15,

Таблица 15 – Приемо-сдаточные испытания рельсов

	нетермоупро	чненные	Дифференцир			
Показатель			рочненные		Объем	
качества рельсов	Рельсы	Рельсы	Рельсы	Рельсы	Выборки	
Ku icerbu penbeeb	специаль-	общего	специально-	общего	2 Dicopin	
	ного при-	примене-	го примене-	примене-		
	менения	кин	ния	РИН		
Химический со-					одна ковше-	
став стали (5.4.1,		каждая плавка				
5.4.2)		вая проба				
Массовая доля					одно измере-	
водорода в жид-		каж	дая плавка		ние*	
кой стали (5.3.6)						
Массовая доля		первая и		первая и		
общего кислоро-	каждая	последняя	каждая	последняя	один обра-	
да** (5.4.4)	плавка	плавка	плавка	плавка	зец	
да (э.т.т)		из серии		из серии		
Массовая доля						
кислорода	последняя		последняя			
в высокоглино-	плавка	_	плавка	_	один обра-	
земистых оксид-		_			зец	
ных включени-	из серии		из серии			
ях** (5.4.5)						

Таблица 15 – Приемо-сдаточные испытания рельсов (продолжение)

		Периодичность испытаний				
Показатель каче-	Нетермоупрочненные		Дифференц рочненные	Дифференцированно упрочненные		
ства рельсов	Рельсы специаль- ного при- менения	Рельсы общего примене- ния	Рельсы специально го примене ния	ODIHERO	Объем Выборки	
Загрязненность неметаллически- ми включения- ми** (5.5)		последн	яя плавка из с	ия плавка из серии		
Макрострукту- ра** (5.6)		первая плавка из серии				
Механические свойства при рас- тяжении (5.8)	Кажд	ая 20 плавка	или последня рии	или последняя плавка из се- рии		
Ударная вязкость (5.8)	-	-	кажда	каждая плавка		
Копровая проч- ность (5.10)	к а ждая плавка	Каждая 20 плавка или последняя плавка из серии	каждая плавка	Каждая 20 плавка или последняя плавка из серии	одна проба	
Твердость на поверхности катания головки (5.9.1)		ка	ждая плавка		одна проба	
Твердость по по- перечному сече- нию рельса (5.9.2)	каждая плавка	-	каждая плавка	последняя плавка из се- рии	одна проба	
Разность значений твердости на поверхности катания по длине рельса (5.9.3)	не реже одного раза за 8 часов	-	не реже од- ного раза за 8 часов	не реже одного раза в сутки	в трех мес- тах	
Остаточные на- пряжения в шейке рельсов (5.11)	не реже одного раза за 8 часов	не реже одного раза в сутки	не реже од- ного раза за 8 часов	не реже одного раза в сутки	одна проба	

Таблица 15 – Приемо-сдаточные испытания рельсов (продолжение)

		Периодич	чность испытан	———— ий	
Показатель каче-	нетермоупро	чненные	Дифференцир рочненные	0.5	
ства рельсов	Рельсы специаль- ного при- менения	Рельсы общего примене- ния	Рельсы специально- го примене- ния	Рельсы общего применения	. Объем Выборки
Микроструктура (5.12.1)	Каждая плавка. При устой- чивых ре- зультатах испытаний – каждая 20-я плавка	-	Каждая плав- ка. При ус- тойчивых ре- зультатах ис- пытаний – каждая 20-я плавка	Каждая 20-я плавка или одна плавка из серии	Одна проба
Глубина обезуг- лероженного слоя (5.12.2)**	Каждая плавка. При устойчивых результатах испытаний – каждая 20-я плавка	Каждая 20- я плавка или одна плавка из серии	Каждая плавка. При устойчивых результатах испытаний — каждая 20-я плавка	Каждая 20-я плавка или одна плавка из серии	три образца из одной пробы
Маркировка (5.13)		каждый рельс			
Магнитная ин- дукция (5.14)		кажда	ая плавка		каждый рельс

ПРИМЕЧАНИЕ Устойчивыми результатами контроля микроструктуры, глубины обезуглероживания, считаются такие результаты, которые при первичных испытаниях или после плавки давшей неудовлетворительные результаты имели на пяти подряд испытанных рельсов в плавках результаты, соответствующие требованиям настоящего стандарта.

- 6.2.4 Рельсы из стали с массовой долей водорода (см. 5.3.6) свыше 0,00020 % (2,0 ppm) до 0,00025 % (2,5 ppm) включительно подвергают выборочному разрушающему контролю на отсутствие флокенов на одной пробе от одного из рельсов плавки. При обнаружении флокенов все рельсы данной плавки считают не соответствующими требованиям настоящего стандарта.
- 6.2.5 Загрязненность неметаллическими включениями (см. 5.5) рельсов контролируют в соответствии с Таблицей 15,
- 6.2.6 Приемо-сдаточные испытания по определению механических свойств (см. 5.8) при растяжении проводят на одном образце, ударной вязкости (см. 5.8) на двух образцах, копровой прочности (см. 5.10) и остаточных напряжений в шейке рельса (см. 5.11) на одной пробе.
- 6.2.7 Твердость на поверхности катания головки и по поперечному сечению рельса (см. 5.9.1, 5.9.2), а также разность значений твердости на поверхности катания по длине

^{*} На первой плавке в серии проводят два измерения.

^{**} Результаты испытаний, полученные на нетермоупрочненных рельсах, распространяются на рельсы, подвергнутые в дальнейшем термоупрочнению.

рельса (см. 5.9.3) определяют (см. Таблицу 15) на пробах, вырезанных из рельсов.

Допускается проводить контроль твердости на поверхности катания (см. 5.9.1), по поперечному сечению рельса (см. 5.9.2) и контроль разности значений твердости на поверхности катания по длине рельса (см. 5.9.3) непосредственно на рельсах неразрушающими методами контроля или другим методом, обеспечивающим требуемую точность измерения.

При этом на поверхности катания зачистка на глубину до 0,5 мм и отпечаток шарика при определении твердости не являются браковочным признаком при оценке качества поверхности рельса для рельсов любого применения, указанного в Таблице 2, кроме СС и ВС. Для рельсов применений СС и ВС отпечатки шарика при определении твердости на поверхности катания не допускаются, при наличии отпечатков шарика допускаются перевод таких рельсов в другие категории.

6.2.8 Контроль формы и основных размеров поперечного сечения (см. 5.2.1), длины рельсов (см. 5.2.2), расположения и размеров болтовых отверстий (см. 5.2.3), перпендикулярности торцов рельсов (см. 5.2.4), прямолинейности (см. 5.2.5) и скручивания (см. 5.2.6) рельсов, качества поверхности, включая торцы и болтовые отверстия (см. 5.6), внутренних дефектов (см. 5.6), маркировки (см. 5.13) и индукции магнитного поля на поверхности катания головки рельса (см. 5.14) проводят на каждом рельсе.

При обеспечении выполнения требований за счет технологии изготовления рельсов допускается проводить выборочный контроль расположения и размеров болтовых отверстий (см. 5.2.3), перпендикулярности торцов рельсов (см. 5.2.4), качества поверхности торцов и болтовых отверстий (при их наличии) (см. 5.7). Объем выборочного контроля должен быть согласован с владельцем инфраструктуры железнодорожного транспорта.

6.2.9 Для неразрушающего контроля рельсов следует применять методы А, Б, В и Г (см. Приложение И).

Применение методов неразрушающего контроля A, Б и В является обязательным для всех рельсов. По согласованию с владельцем инфраструктуры железнодорожного транспорта допускается вместо применения двух методов A и Б применение одного из них: A или Б.

Применение метода Г является обязательным для всех рельсов категорий ДТ350ВС, ДТ350СС, Н320ВС, а для рельсов остальных категорий – по требованию владельца инфраструктуры железнодорожного транспорта.

Рельсы, идентифицированные средствами контроля как «условно-дефектные» по внутренним дефектам и (или) качеству поверхности, допускается подвергать дополнительному автоматизированному контролю, а также механизированному или ручному контролю (см. Приложение И).

6.3 Отбор проб

6.3.1 Отбор проб для определения химического состава стали (см. 5.4.1 - 5.4.4) – по ГОСТ 7565 и ISO 14284. Пробы для определения химического состава стали отбирают в середине разливки каждой плавки из промежуточного ковша (ковшовая проба).

По требованию владельца инфраструктуры железнодорожного транспорта, а также при экспертизе, при арбитраже для определения химического состава стали пробы отбирают от контрольных рельсов, а при их отсутствии – от любых рельсов плавки.

- 6.3.2 Определение массовой доли водорода в жидкой стали (см. 5.3.6) проводят в промежуточном ковше в середине разливки каждой плавки, при этом на первой плавке в серии дополнительно проводят определение в начале разливки.
- 6.3.3 Для выборочного разрушающего контроля на отсутствия флокенов (см. 5.3.6, 6.1.4) отбирают пробу длиной от 200 мм до 250 мм от одного из рельсов плавки.

6.3.4 Пробы для контроля макроструктуры (см. 5.6.1) отбирают от задних концов рельсов, прокатанных из первой заготовки каждого ручья. или от прилегающей технологической обрези.

Для повторного контроля макроструктуры рельсов пробы отбирают от противоположных концов рельсов или от прилегающих концов смежных рельсов.

6.3.5 Пробы для определения механических свойств при растяжении и ударной вязкости (см. 5.8) отбирают от любого конца раската контрольного рельса.

Пробы для определения массовой доли общего кислорода (см. 5.4.4) и массовой доли кислорода в высокоглиноземистых оксидных включениях (см. 5.4.5) отбирают в первой плавке серии от любого конца раската рельса и в последней плавке серии — от заднего конца раската рельса.

Допускается при изготовлении рельсов длиной 125 м отбор проб от любого контрольного рельса производить с переднего или с заднего конца.

Допускается в качестве заготовок образцов для анализа кислорода (см. 5.4.4, 5.4.5) использовать головки разрушенных образцов, испытанных на растяжение (см. 5.8).

Допускается проводить отбор заготовок проб для определения массовой доли обшего кислорода и массовой доли кислорода в высокоглиноземистых оксидных включениях (см. 5.4.4, 5.4.5) при помощи пил горячей резки.

6.3.6 Пробы для контроля копровой прочности (см. 5.10), остаточных напряжений в шейке (см. 5.11) отбирают от любого термоупрочненного рельса плавки, в состоянии поставки, способом холодной механической резки.

Отбор проб для контроля копровой прочности нетермоупрочненных рельсов (см. 5.10) допускается проводить с помощью пил горячей резки.

- 6.3.7 Для определения твердости (см. 5.9) при приемо-сдаточных испытаниях используют один из контрольных рельсов. Для контроля твердости на поверхности катания и по поперечному сечению рельса (см. 5.9.1, 5.9.2) отбирают пробы на расстоянии не менее 150 мм от торца рельса. Для контроля разности значений твердости на поверхности катания по длине рельса (см. 5.9.3) отбирают пробы в трех местах: по одной пробе на расстоянии не менее 150 мм от торцов и одну пробу в середине рельса.
- 6.3.8 Пробы для контроля загрязненности рельсов неметаллическими включениями (см. 5.5) отбирают от задних концов рельсов, в количестве указанном в Таблице 15. Из каждого образца, изготовленного из проб (см. Таблицу 15) изготавливают один шлиф. Количество шлифов, недостающее до регламентированного (6 штук), готовят из тех же образцов.
- 6.3.9 Пробы для контроля микроструктуры (см. 5.12.1) отбирают от одного из контрольных рельсов.
- 6.3.10 Пробы для контроля глубины обезуглероженного слоя (см. 5.12.2) отбирают на пилах горячей резки.
- 6.3.11 Для контроля маркировки (см. 5.13) и магнитной индукции (см. 5.14) отбирают каждый рельс каждой плавки.
- 6.3.12 Пробы для других видов испытаний вырезают из любого раската или рельса плавки.
- 6.3.13 При документально подтвержденном отсутствии контрольных рельсов для изготовления проб допускается использовать один любой рельс данной плавки.
- 6.3.14 Все отобранные пробы клеймят номером рельса и другими идентификационными клеймами по технической документации предприятия-изготовителя.
- 6.3.15 Пробы для определения остаточных напряжений в шейке (см. 5.11) следует отбирать на расстоянии не менее 3 м от торцов, от шести рельсов разных плавок и ручьев разливки.
 - 6.3.16 Пробы для оценки соответствия рельсов требованиям, установленным в 5.15

следует отбирать:

- на расстоянии не менее 3 м от торцов, от трех рельсов разных плавок и ручьев разливки для определения предела выносливости (см. 5.15.1), циклической долговечности (см. 5.15.2), скорости роста усталостной трещины (см. 5.15.3), циклической трещиностой-кости Кfc (см. 5.15.4), статической трещиностойкости KIc (см. 5.15.5);
- на расстоянии не менее 3 м от торцов, от шести рельсов разных плавок и ручьев разливки – для определения остаточных напряжений в подошве (см. 5.15.6) рельсов.

6.4 Порядок приемки рельсов при отрицательных результатах контроля

6.4.1 В случае отрицательного результата контроля массовой доли общего кислорода [свыше 0,0030 % (30 ppm)] проводят повторный контроль на удвоенном количестве проб, взятых от противоположного конца данного контрольного рельса. При хотя бы одном отрицательном результате повторного контроля все рельсы данной плавки считают не соответствующими требованиям настоящего стандарта. При этом допускается перевод рельсов плавки в другие категории, требованиям к которым удовлетворяют полученные результаты.

При массовой доле общего кислорода свыше 0,0020 % (20 ppm) до 0,0030 % (30 ppm) включительно проводят контроль последовательно на рельсах смежных плавок в данной серии с отбором проб по 6.2.5 до получения положительного результата [не более 0,0020 % (20 ppm)]. Предельно допустимая месячная доля плавок с массовой долей кислорода свыше 0,0020 % (20 ppm) до 0,0030 % (30 ppm) включительно определена по 5.4.4.

6.4.2 В случае отрицательного результата контроля массовой доли кислорода в высоко-глиноземистых оксидных включениях более 0,0010 % (10 ppm) проводят повторный контроль на удвоенном количестве проб, взятых от противоположного конца данного контрольного рельса. При хотя бы одном отрицательном результате повторного контроля все рельсы данной плавки считают не соответствующими требованиям настоящего стандарта для рельсов специального применения.

При массовой доле кислорода в высокоглиноземистых оксидных включениях свыше 0,0010 % (10 ppm) проводят контроль последовательно на рельсах предыдущих плавок в данной серии с отбором проб по 6.2.5 до получения положительного результата [не более 0,0010 % (10 ppm)].

6.4.3 В случае отрицательных результатов контроля загрязненности неметаллическими включениями рельса хотя бы по одному параметру (см. 5.5.1 – 5.5.3) все контрольные рельсы данной плавки считают не соответствующими требованиям настоящего стандарта и проводят повторный контроль на пробах, взятых от противоположных концов рельсов, не выдержавших контроля. или на пробах, взятых от смежных рельсов.

В случае отрицательных результатов повторного контроля все рельсы контролируемой плавки признают не соответствующими требованиям настоящего стандарта. Дальнейший контроль должен производиться последовательно на рельсах из предыдущих плавок данной серии до получения положительного результата.

- 6.4.4 В случае отрицательных результатов контроля макроструктуры рельса данный рельс контролируемой плавки признается не соответствующими требованиям настоящего стандарта. На остальных рельсах этой плавки допускается проводить последовательный повторный контроль макроструктуры на смежных рельсах до выявления рельсов, макроструктура которых соответствует требованиям настоящего стандарта.
- 6.4.5 Для рельсов применения НН в случае, если при повторных испытаниях на ударную вязкость при температуре минус 60 °C величина ударной вязкости составляет не менее 15 Дж/см², то допускается перевод рельсов в другие категории без проведения дополнительных испытаний на ударную вязкость при комнатной температуре.

6.4.6 При отрицательных результатах определения твердости на поверхности катания или по поперечному сечению проводят повторное определение твердости на удвоенном количестве проб, отобранных от того же рельса, или на том же контрольном рельсе с удвоенным количеством измерений.

В случае отрицательных результатов повторного определения твердости рельсов хотя бы по одному измерению все рельсы данной плавки допускается рассортировывать поштучно по твердости. Рельсы с неудовлетворительной твердостью допускается переводить в соответствующую категорию твердости.

6.4.7 В случае получения при приемо-сдаточных испытаниях отрицательного результата контроля остаточных напряжений в шейке проводят повторные испытания на удвоенном количестве проб, отобранных от того же контрольного рельса.

В случае получения отрицательного результата повторного контроля остаточных напряжений в шейке контролируемые нетермоупрочненные и дифференцированно упрочненные рельсы признают не соответствующими настоящему стандарту и проводят контроль последующих рельсов до получения положительного результата.

Дальнейший контроль остаточных напряжений в шейке рельсов проводят в соответствии с требованиями Таблицы 15.

6.4.8 В случае получения при приемо-сдаточных испытаниях на растяжение, ударную вязкость, или копровую прочность отрицательного результата проводят повторные испытания того вида, по которому получен отрицательный результат, на удвоенном количестве образцов (проб), отобранных от того же контрольного рельса.

При отрицательных результатах повторного контроля копровой прочности, или механических свойств при растяжении, или ударной вязкости последующий контроль рельсов по контролируемому показателю проводят поплавочно до получения устойчивых положительных результатов, при которых у четырёх подряд прокатанных или термически упрочненных и подвергнутых контролю плавок этот показатель удовлетворяет требованиям настоящего стандарта.

- 6.4.9 При отрицательных результатах контроля обезуглероженного слоя проводят повторные испытания на удвоенном количестве проб, отобранных от того же контролируемого рельса. При получении отрицательных результатов повторных испытаний контролируют последовательно следующие рельсы до получения устойчивого положительного результата.
- 6.4.10 При отрицательных результатах повторного контроля все рельсы контролируемых плавок считают не соответствующими требованиям настоящего стандарта.

Допускается в случае получения отрицательных результатов повторного контроля механических свойств при растяжении, или ударной вязкости, или копровой прочности, или твёрдости, или разности значений твёрдости по длине рельса, или остаточных напряжений в шейке рельсов, или микроструктуры, или прямолинейности, или скручивания подвергать рельсы однократной повторной термической обработке в соответствии с Приложением К и предъявлять к приемке как новую плавку.

6.5 Периодические испытания

6.5.1 Рельсы, отобранные для проведения периодических испытаний, должны соответствовать требованиям, установленным в 6.1.4. Периодические испытания проводят с целью проверки выполнения требований в соответствии с 5.15.1-5.15.6.

Периодические испытания проводят не реже одного раза в три года. Отбор проб для периодических испытаний проводят в соответствии с 6.3.16.

6.5.2 Испытания на статическую трещиностойкость КІс (см. 5.15.5), циклическую долговечность при усталостных испытаниях (см. 5.15.2), скорость роста усталостной тре-

- щины (см. 5.15.3) проводят на образцах, изготовленных из проб, отобранных согласно 6.3.16.
- 6.5.3 Испытания рельсов для определения предела выносливости (см. 5.15.1) и циклической трешиностойкости Кfc (см. 5.15.4), остаточных напряжений в средней части подошвы рельсов (см. 5.15.6) проводят на полнопрофильных пробах рельсов, отобранных согласно 6.3.16.

6.6 Сертификационные испытания

- 6.6.1 Для контроля показателей по 5.2.1, 5.2.5, 5.2.6, 5.7, 5.13 отбирают шесть рельсов, прошедших приемо-сдаточные испытания за последние десять суток.
 - 6.6.2 Контроль показателей по 5.3.6, 5.4.1 5.4.4 проводят на рельсах одной плавки.
- 6.6.3 Контроль загрязнённости рельсов неметаллическими включениями (см. 5.5) проводят на шести образцах одного рельса одной плавки.
 - 6.6.4 Для контроля макроструктуры (см. 5.6) отбирают один рельс от одной плавки.
- 6.6.5 Механические свойства рельсов (см. 5.8) контролируют на шести образцах из одного рельса.
 - 6.6.6 Твердость (5.9) контролируют на одном рельсе.
- 6.6.7 Контроль копровой прочности рельсов (см. 5.10) проводят на трех полнопрофильных пробах из одного рельса.
- 6.6.8 Контроль остаточных напряжений в шейке рельса (см. 5.11) проводят на одной полнопрофильной пробе из одного рельса.
- 6.6.9 Микроструктуру металла (см. 5.12) контролируют на одной пробе из одного рельса.
- 6.6.10 Определение предела выносливости (см. 5.15.1) рельсов проводят на шести пробах из одного рельса.
- 6.6.11 Циклическую долговечность (см. 5.15.2) при испытаниях на усталость определяют на трех образцах из одного рельса.
- 6.6.12 Определение скорости роста усталостной трещины (см. 5.15.3) проводят на двух образцах из одного рельса.
- 6.6.13 Циклическую трещиностойкость Кfc (см. 5.15.4) определяют на шести образцах из одного рельса, статическую трещиностойкость Кfc (см. 5.15.5) – на трех.
- 6.6.14 Остаточные напряжения в подошве рельсов (см. 5.15.6) контролируют на полнопрофильных пробах от шести рельсов.

Рельсы считают выдержавшими испытания для подтверждения соответствия, если по всем показателям получены положительные результаты.

7 Методы контроля

7.1 Контроль размеров и формы поперечного сечения рельсов

- 7.1.1 Размеры и форму поперечного сечения рельсов (см. 5.2.1) контролируют автоматизированными средствами контроля, обеспечивающими требуемую точность.
- 7.1.2 Допускается проведение контроля размеров и формы поперечного сечения шаблонами. Вид шаблонов, рекомендуемых для контроля размеров и формы поперечного сечения рельсов, приведен в Приложении Е. Шаблоны для контроля размеров и формы поперечного сечения рельса должны соответствовать классу точности изготовления профиля рельсов определенного типа.

При контроле шаблонами размеры и форму поперечного сечения рельсов контролируют на расстоянии от 100 мм до 500 мм от торца, толщину шейки — у торца.

7.2 Контроль длины рельсов

Длину рельсов (см. 5.2.2) измеряют лазерным измерителем длины, или рулеткой измерительной металлической по ГОСТ 7502, или другим способом. обеспечивающим требуемую точность измерения.

7.3 Контроль диаметра болтовых отверстий

Контроль диаметра болтовых отверстий, размеров, определяющих их расположение (см. 5.2.3), проводят с применением шаблонов (см. Приложение Е). При арбитраже контроль рельсов проводят шаблонами (см. Приложение Е).

7.4 Контроль перпендикулярности торцов рельсов

Контроль перпендикулярности торцов рельсов (см. 5.2.4) проводят с помощью угольника поверочного марки УП-2-250 с углом 90° по ГОСТ 3749 и набора щупов плоских по ГОСТ 8925.

7.5 Контроль прямолинейности рельсов

Прямолинейность рельсов в целом (см. 5.2.5) предварительно контролируют визуально.

Кривизну рельсов длиной менее 25 м в целом определяют вручную по стреле прогиба, которую измеряют по хорде (по наибольшему зазору между поверхностью рельса и стальной струной, натянутой между его концами) с помощью щупов плоских по ГОСТ 8925, имеющих свидетельство о поверке.

Кривизну рельсов длиной более 25 м, лежащего на подошве или головке, определяют как зазор между центром основания подошвы и прилегающей плоскостью с помощью щупов плоских по ГОСТ 8925.

7.6 Контроль отклонения рельсов от прямолинейности

Применяемые средства измерений подлежат испытаниям с целю утверждения типа или метрологической аттестации и поверке, испытательное оборудование подлежит аттестации в соответствии с требованиями законодательства и нормативных документов в области обеспечения единства измерений Республики Казахстан.

- 7.6.1 Отклонение рельсов от прямолинейности (см. 5.2.5) во всех зонах определяют с помощью автоматизированных средств контроля.
- 7.6.2 При отсутствии автоматизированного контроля прямолинейности рельсов на концах и в переходных зонах контроль этих участков рельсов должен быть выполнен вручную с помощью контрольных линеек по ГОСТ 427, щупов по ГОСТ 8925 в соответствии с Приложением Д.

Отклонение рельсов от прямолинейности следует определять по наибольшему зазору между поверхностью головки рельса и контрольной линейкой (по хорде или касательной) с помощью щупов плоских по ГОСТ 8925.

При определении отклонения концов рельсов от прямолинейности в вертикальной плоскости вниз точка начала отклонения поверхности рельса от контрольной линейки должна быть расположена на расстоянии не менее 0,6 м от торца (см. Таблицу Д.2, Приложения Д).

7.6.3 В спорных случаях контроль прямолинейности в любом месте рельсов проводят вручную средствами измерения по 7.6.2 и в соответствии с Приложением Д.

7.7 Контроль скручивания рельсов

- 7.7.1 Скручивание рельсов (см. 5.2.6) определяют с помощью автоматизированных средств контроля по методикам «определения прочности при кручении стальных элементов».
- 7.7.2 Скручивание рельса определяют как зазор между краем основания подошвы и прилегающей плоскостью в соответствии с Таблицей Д.1.

Допускают определение скручивания рельса вручную с помощью шаблона, как указано на Рисунке Е.15, прикладывая шаблон до соприкосновения с рельсом трех опор: двух — на расстоянии 1 м от торца рельса и одной — у торца рельса, и измеряя зазор между четвертой опорой шаблона и нижней (опорной) поверхностью подошвы у торца рельса.

7.7.3 Скручивание рельса при контроле вручную определяют по зазору между четвертой опорой и краем подошвы в положении рельса «стоя на подошве» с помощью плоских щупов по ГОСТ 8925.

Допускается применение специальных щупов все средства, обеспечивающих достоверность результатов не ниже указанных выше.

7.8 Контроль химического состава

Определение химического состава стали рельсов (5.4.1 - 5.4.5), проводят по ГОСТ 22536.1 - ГОСТ 22536.5, ГОСТ 22536.7 - ГОСТ 22536.12, ГОСТ 17745, ГОСТ 18895, ГОСТ 28033, ГОСТ Р 54153.

Массовую долю водорода в жидкой стали (5.3.6) определяют по равновесному парциальному давлению водорода с применением системы зондового измерения.

Массовую долю общего кислорода (5.4.4) определяют по ГОСТ 17745, массовую долю кислорода в высокоглиноземистых оксидных включениях (5.4.5) определяют при помощи фракционного газового анализа методом восстановительного плавления в потоке инертного газа-носителя в режиме импульсного нагрева, когда температура в печи анализатора практически мгновенно достигает от 2000 °C до 2500 °C.

Химический состав стали допускается определять другими методами, не уступающими стандартизованным методам по точности измерений.

7.9 Контроль рельсов на отсутствие флокенов

Для выборочного разрушающего контроля на отсутствие флокенов (см. 5.6) из пробы, отобранной по 6.3.3, методами холодной механической резки и обработки (строжки, фрезеровки, шлифовки) в соответствии с требованиями ГОСТ 10243 изготавливают продольный темплет в вертикальной продольной плоскости симметрии рельса. Контроль отсутствия флокенов проводят визуально на подготовленной поверхности темплета после ее глубокого травления по ГОСТ 10243. Условия проведения контроля — по ГОСТ 10243.

7.10 Контроль загрязнённости неметаллическими включениями

7.10.1 Образцы для контроля неметаллических включений изготавливают в соответствии с Рисунком 4, при этом черновую поверхность рельса не удаляют.

Размеры в мм

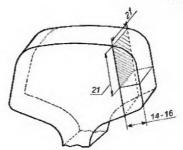


Рисунок 4 - Схема расположения шлифа для контроля неметаллических включений

Допускается снятие фасок размером не более 3 мм \times 3 мм на углах боковых граней шлифов. Область на полированной плоскости шлифа, на которой проводят контроль, должна быть размером не менее 15 мм \times 15 мм. Края шлифа на ширину до 3 мм не контролируют.

7.10.2 Контроль загрязненности рельсов неметаллическими включениями (см. 5.5) проводят методами оценки P и K с определением параметров P_D , P_L и K_a на металлографическом микроскопе с применением автоматической системы анализа изображений или с помощью визуального контроля путем сравнения с серией эталонных изображений

(см. Приложение Л).

7.11 Контроль внутренних дефектов и дефектов макроструктуры

7.11.1 Для проверки отсутствия внутренних дефектов и дефектов макроструктуры (см. 5.6) используют сплошной неразрушающий ультразвуковой контроль рельсов методами в соответствии с Приложением Е (см. 5.6.2) и выборочный разрушающий контроль.

При подозрении на наличие дефекта допускается вскрывать его путем механических испытаний с оценкой дефекта по излому.

При выборочном разрушающем контроле из пробы, отобранной согласно 6.3.4, методами холодной резки и механической обработки (строжка, фрезеровка, шлифовка) изготавливают поперечный темплет полного сечения рельса. Контроль проводят визуально после глубокого травления подготовленной поверхности темплета по ГОСТ 10243

Допускается контроль макроструктуры проводить снятием серных отпечатков по Бауману по методике, указанной в ГОСТ 10243, с поперечных темплетов полного сечения рельса или непосредственно с торцов рельсов после соответствующей их подготовки.

7.11.2 Оценку дефектов макроструктуры (см. 5.6.1) проводят по шкале в соответствии с Приложением Ж.

7.12 Контроль качества поверхности рельсов

Контроль качества поверхности рельсов (см. 5.7.1 – 5.7.5) выполняют средствами неразрушающего контроля в соответствии с Приложением И, и визуально. Поверхности торцов, болтовых отверстий и фасок (см. 5.7.6, 5.7.7) контролируют визуально.

При необходимости используют пробную вырубку или другой способ, гарантирующий правильность определения вида и размеров дефекта. Раздвоение стружки при вырубке считают признаком дефекта.

7.13 Контроль механических свойств

7.13.1 Определение механических свойств рельсов (см. 5.8) при испытании на растяжение проводят по ГОСТ 1497 при комнатной температуре (от 15 °C до 22 °C) на цилиндрических образцах типа Ш № 6 диаметром 6 мм и начальной расчетной длиной рабочей части 30 мм.

Заготовки для изготовления образцов стали вырезают из головки проб из зоны выкружки возможно ближе к поверхности катания вдоль направления прокатки.

7.13.2 Определение ударной вязкости стали рельсов (см. 5.8) проводят по ГОСТ 9454 при комнатной температуре (от 15 °C до 22 °C) на образцах типа 1.

Заготовки для изготовления образцов стали для испытаний на ударную вязкость вырезают из головки проб из зоны выкружки возможно ближе к поверхности катания вдоль направления прокатки. Надрез на образце наносят со стороны поверхности катания головки рельса.

Оценку производят по наименьшему значению ударной вязкости двух образцов.

7.13.3 Образцы перед испытанием на растяжение (см. 7.11.1) и на ударную вязкость (см. 7.11.2) допускается выдерживать до 6 ч при температуре не более 200 °C.

7.14 Контроль твёрдости рельсов

7.14.1 Твёрдость рельсов (см. 5.9) контролируют с помощью приборов Бринелля по ГОСТ 9012 с шариком диаметром 10 мм при величине испытательной нагрузки 2942 Н (3000 кгс) и продолжительности выдержки под нагрузкой от 10 с до 15 с с использованием автоматизированных систем. Допустимо использование ручного метода определения размера отпечатка.

Допустимо определять твердость с использованием твердосплавного шарика диаметром 2,5 мм при испытательной нагрузке 1839 H (187,5 кгс) и продолжительности выдержки под нагрузкой от 10 с до 15 с.

В спорных случаях и при арбитраже следует использовать стационарные приборы Бринелля с шариком диаметром 10 мм.

- 7.14.2 Место определения твердости на поверхности катания рельса или темплета, вырезанного из пробы, отобранной согласно 6.3.7, должно быть зачищено для удаления окалины и обезуглероженного слоя металла на глубину не более 0,5 мм. Шероховатость зачищенной поверхности должна быть не более R_z 25 по ГОСТ 2789.
- 7.14.3 Разность твердости на поверхности катания по длине рельсов и проб определяют на средней линии поверхности катания (см. точку 1 на Рисунке 3) по трем замерам с интервалом не менее 25 мм на каждой из трех проб, отобранных от концов и средней части рельса, или на рельсе.

7.15 Контроль копровой прочности рельсов

Контроль прочности рельсов производят с помощью копра по ГОСТ 9454 (см. 5.10) на полнопрофильной пробе длиной (1300 ± 50) мм, отобранной по 6.3.6.

Пробу устанавливают горизонтально головкой вверх на две цилиндрические опоры с радиусами закругления (125 \pm 2) мм и расстоянием между осями опор (1000 \pm 5) мм и

подвергают однократному удару грузом массой (1000 ± 3) кг, падающим с заданной высоты. Радиус закругления бойка падающего груза $-(125 \pm 2)$ мм.

Высота, с которой груз падает, температура пробы и критерий испытания указаны в 5.9 Таблипы 13.

7.16 Контроль остаточных напряжений в шейке рельсов

Контроль остаточных напряжений в шейке рельса (см. 5.11) проводят с помощью штангенциркуля 1-го или 2-го класса точности на полнопрофильной пробе длиной (600 ± 3) мм, отобранной по 6.3.6. Пробу прорезают рельсорезным станком с ножовочным полотном в холодном состоянии по нейтральной оси рельса на длину (400 ± 3) мм. Ширина прорезаемого паза должна быть (6 ± 1) мм.

Остаточные напряжения в шейке рельса определяют по расхождению паза как разницу высоты рельса $(H_2 - H_I)$ по оси у торца пробы до и после прорезания паза, в соответствии со схемой Рисунка 5.

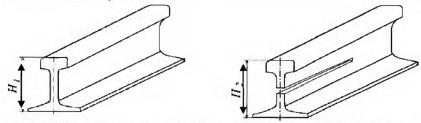


Рисунок 5 — Схема определения остаточных напряжений в шейке рельсов 7.17 Контроль микроструктуры

7.17.1 Микроструктуру металла (см. 5.12) контролируют по ГОСТ 8233 на поперечном шлифе, изготовленном из зоны выкружки головки рельса в соответствии с Рисунком ба. Контролируемая зона находится на расстоянии более 2 мм от поверхности рельсов. Контроль выполнения требований 5.12.1 проводят с использованием оптического микроскопа при увеличении, соответствующем применяемой шкале.

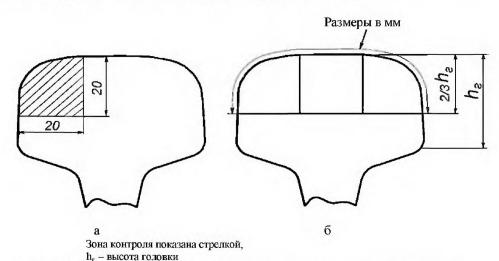


Рисунок 6 – Схема расположения в головке рельса образцов для контроля микроструктуры (а) и глубины обезуглероженного слоя (б)

7.17.2 Глубину обезуглероженного слоя (см. 5.12.2) контролируют визуально с помощью оптического микроскопа при увеличении от 90 х до 110 х на трех травленых шлифах, вырезанных, как указано на Рисунке 66, по глубине $h_{\rm r}$ распространения ферритной сетки, считая от поверхности рельса до границы непрерывной ферритной сетки, как показано на Рисунке 6.

Оценка соответствия требованиям 5.12.2 – по наибольшей глубине обезуглероженного слоя.

Допускается контроль обезуглероженного слоя по твердости. Для этого на образце из головки рельса после минимальной шлифовки со стороны поверхности катания (не более

0,5 мм) измеряют твердость в трех точках по осевой линии поверхности катания. Результат считают положительным, если все три полученных значения твердости не ниже минимальной величины твердости, указанной для данной категории рельсов, более чем на 7 НВ (НВW).

ПРИМЕЧАНИЕ Методики контроля установлены в европейском стандарте [1].

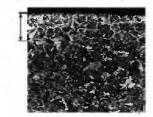


Рисунок 7 — Схема оценки глубины обезуглероженного слоя в головке рельса на травленом микрошлифе

7.18 Контроль маркировки рельсов

2

Контроль маркировки рельсов (см. 5.13) проводят для каждого рельса визуальным осмотром или с помощью автоматизированных систем.

7.19 Контроль магнитной индукции

- 7.19.1 Значения магнитной индукции (см. 5.14) на поверхности катания головки рельсов после контроля геометрических размеров и прямолинейности рельсов, контролируют методами магнитных измерений: феррозондовым, магнитной локации.
- 7.19.2 Измерения магнитной индукции допускается проводить в диапазоне температур окружающей среды от минус 40 °C до 60 °C.
- 7.19.3 Средства измерений должны обеспечивать измерение магнитной индукции в диапазоне от 0,2 мТл до 100 мТл и иметь максимальную допускаемую относительную погрешность измерения магнитной индукции при наибольшем значении диапазона измерений \pm 10 %.
 - 7.19.4 Перед проведением измерений рельсы размещают на стеллаже.
- 7.19.5 Измерения магнитной индукции на поверхности катания головки рельсов осуществляют по всей длине рельсов непрерывно или с интервалом не более 1,0 м в зависимости от конструкции применяемых средств измерений. Полученные результаты измерений оформляют в виде графиков распределения магнитной индукции по длине рельсов при непрерывном измерении или в виде протокола измерений с Таблицей значений магнитной индукции для каждого рельса, измеренной с интервалом не более 1,0 м.

СТ РК 2432-2013

7.19.6 По результатам измерений определяют наибольшее значение магнитной индукции, которое вносят в паспорт по ГОСТ 2.601, отгружаемой партии рельсов в соответствии с 8.3

7.20 Контроль эксплуатапионной надежности рельсов

7.20.1 Контроль предела выносливости

7,20.1.1 Определение предела выносливости (5.15.1) рельсов проводят с помощью гидравлического пресса мошностью 1000 кН путем испытаний полнопрофильных проб длиной (1200 + 10) мм, вырезанных из рельсов методами холодной механической резки, методом циклического нагружения. Схема нагружения — плоский трехточечный симметричный изгиб. Расстояние между нижними опорами (1000 \pm 5) мм. Верхний пуансон устанавливают посередине между опорами (500 \pm 5) мм. Пробы испытывают при мягком нагружении (управление по усилию) в положении рельса «головкой вниз» при асимметрии цикла нагружения 0,1 млн. цикла. База испытаний 2 млн. циклов.

От каждого рельса должно быть испытано не менее щести проб (образцов).

- 7.20.1.2 Испытания по определению предела выносливости проводят в диапазоне температур окружающей среды от 15 °C до 35 °C.
- 7.20.1.3 Испытания проб по определению предела выносливости проводят с помощью гидравлического пресса, способного обеспечить максимальную нагрузку цикла нагружения, равную 1000 кH, с максимальной относительной погрешностью $\pm 2 \%$ и частотой нагружения не более 20Γ ц при максимальной относительной погрешности $\pm 2 \%$.

Величина нагрузки, действующей на образец, во время его испытания должна циклически меняться от максимального значения, выбранного в соответствии с применением испытуемых рельсов, до минимального при асимметрии цикла нагружения 0,1 млн. цикла В течение испытаний каждого образца выбранный для него режим нагружения, т.е. равномерный режим должен поддерживаться постоянно.

- 7.20.1.4 Каждую из шести проб испытывают до разрушения или до прохождения пробой базы испытаний. По окончании испытания пробы регистрируют максимальную нагрузку цикла нагружения, число циклов до разрушения или значение базы испытаний.
- 7.20.1.5Проведение испытаний на прочность, применяемых средств измерений и оборудования осуществляют в соответствии с ГОСТ 25.502.

7.20.2 Контроль циклической долговечности

7.20.2.1 Циклическую долговечность (см. 5.15.2) при испытаниях на усталость определяют по ГОСТ 25.502 при жестком нагружении (управление по деформации) образцов с постоянной амплитудой полной деформации (продольной), равной 0,00135. Схема нагружения – циклическое растяжение—сжатие. Контроль амплитуды деформации в процессе усталостных испытаний осуществляют с использованием двухконсольного датчика тензорезисторного типа (экстензометра), установленного на рабочую часть образца.

От рельса должно быть испытано (до разрушения) не менее трех образцов.

ПРИМЕЧАНИЕ Основные размеры образцов в методика испытаний установлены в европейском стандарте [1].

7.20.2.2 Образцы для испытаний должны быть изготовлены из рельсов в соответствии с Рисунками 8 и 9. Рабочая часть образцов относится к типу II по ГОСТ 25.502, имеет номинальные размеры: d = 7,00 мм, I = 12 мм, R = 26 мм, и должна быть изготовлена в

соответствии с ГОСТ 25,502 (см. пункты 1.4, 1.5 и 1.7 – 1.10).

При изготовлении образцов соблюдают следующие дополнительные требования:

- центровочные отверстия должны быть соосны, резьбы на обеих головках должны быть соосны с допуском ЕРС, равным 0,01 мм (обеспечивают оборудованием и технологией изготовления);
- допуск цилиндричности рабочей части (см. обозначение «А» на Рисунке 9) TFZ 0,01 мм;
 - допуск круглости рабочей части TFE 0,01 мм;
 - не указанные на Рисунке 9 допуски ±0,2 мм;
- галтели радиуса 26 мм должны переходить в цилиндрическую рабочую часть плавно по сопряжению (без подреза или оставления ступеньки);
- маркировку образцов наносят на обоих торцах заготовки перед началом проточки галтелей и цилиндрической рабочей части.
- 7.20.2.3 Испытания на циклическую долговечность проводят в помещении при температуре воздуха от 15 °C до 35 °C, относительной влажности воздуха от 45 % до 80 %. Образцы перед испытаниями должны иметь температуру от 15 °C до 35 °C.
- 7.20.2.4 Средства измерений или оборудование должны обеспечивать циклическую нагрузку не менее 100 кН и иметь максимальную допускаемую относительную погрешность измерения ±3 %. Максимальная относительная погрешность датчика ±2 %
- 7.20.2.5 Остальные требования к оборудованию, средствам измерений, а также порядок проведения испытаний по ГОСТ 25.502. Размеры в мм

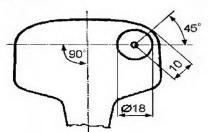


Рисунок 8 – Схема расположения образца для испытания на циклическую долговечность при растяжении-сжатии

Размеры в мм

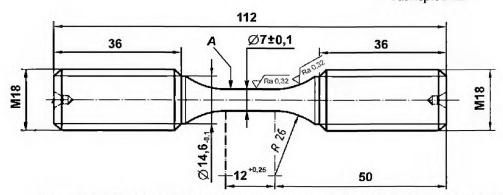


Рисунок 9 – Вид и основные размеры образца для испытаний стали на циклическую долговечность при растяжении-сжатии

7.20.2.6 Для проведения испытаний по определению циклической долговечности при растяжении-сжатии образец устанавливают в захваты испытательной машины, оснащенные резьбой с соответствующими образцу геометрическими размерами.

К образцу прикладывают продольную одноосную циклическую нагрузку с коэффициентом асимметрии цикла нагружения минус 1, частотой нагружения — от 5 Гц до 50 Гц База испытаний — 5 млн. циклов нагружения.

Испытания прекращают при образовании трещины или излома образца или по достижении базы испытаний.

Результатом испытания является оценка: выдержал или нет образец испытание на базе 5 млн. циклов нагружения.

Результаты испытаний считаются положительными, если по достижении базы испытаний изломы и трещины во всех испытанных образцах отсутствуют или образование трещин или изломов образцов произошло при количестве циклов нагружения, превышающем базу испытаний.

Результаты испытаний считаются отрицательными, если образование трещины или излома хотя бы одного образца произошло при количестве циклов нагружения, меньшем базы испытаний.

7,20,3 Контроль скорости роста усталостной трещины

7.20.3.1 Определение скорости роста усталостной трещины (см. 5.15.3) рельсов при испытаниях на циклическую трещиностойкость проводят путем механических испытаний образца. Частота нагружения должна находиться в интервале от 5 Γ ц до 40 Γ ц, размах коэффициента интенсивности напряжений Δ К при испытаниях должен быть установлен 10 МПа·м^{1/2} и 13,5 МПа·м^{1/2}.

Механические испытания включают два этапа:

- циклические испытания образца по схеме трехточечного изгиба, которые проводят с целью выращивания начальной усталостной трещины от концентратора напряжений в виде надреза;
- циклические испытания образца по схеме трехточечного изгиба с выращенной усталостной трещиной с целью определения скорости ее роста.

Испытывают не менее двух образцов от рельса. Схема расположения, вид и основные размеры образцов представлены на Рисунках 10 и 11. Ширина надреза, обозначенная «е» на Рисунке 11, должна быть не более 3,5 мм.

- 7.20.3.2 Испытания проводят при температуре воздуха от 15 °C до 35 °C, относительной влажности воздуха от 45 % до 80 %. Образцы перед испытаниями должны иметь температуру от 15 °C до 35 °C.
- 7.20.3.3 Средства измерений, испытательное оборудование должны обеспечивать циклическую нагрузку не менее 70 кН и иметь максимальную относительную погрешность измерения нагрузки $\pm 1\%$. Средства измерений для контроля размера трещины должны обеспечивать диапазон измерения от 0 мм до 250 мм с ценой деления 0,1 мм, для контроля температуры образца диапазон измерения от минус 20 С до плюс 60 С, погрешность $\pm 1\%$.

7.20.3.4 Для проведения испытаний по определению скорости роста усталостной трещины образец устанавливают на опоры испытательной машины, расположенные на расстоянии (180±1) мм друг от друга, таким образом, чтобы предварительно нанесенный надрез находился в зоне действия растягивающих напряжений. Перед установкой на опоры испытательной машины на боковые поверхности образца, перпендикулярно оси надреза наносят метки в виде рисок, расположенных на расстоянии (1,0±0,1) мм друг от друга. Первую метку наносят на расстоянии (1,0±0,1) мм от конца надреза. По данным меткам

контролируют длину трещины как при ее выращивании до начального размера, так и при испытаниях по определению скорости роста трещины.

Для создания усталостной трешины начального размера к образцу прикладывают циклическую нагрузку с коэффициентом асимметрии цикла напряжений, равным плюс 0.5 с частотой нагружения от 5 Гц до 40 Гц. При этом максимальную нагрузку цикла Р_{тах} выбирают таким образом, чтобы она соответствовала действию максимального напряжения в острие надреза образца, указанному в формуле:

$$\sigma_{\text{max}} = (0.5 - 0.6) \cdot \sigma_{0.2},$$
 (1)

где $\sigma_{0,2}$ – условный предел текучести стали рельсов.

Максимальную нагрузку цикла P_{max} , соответствующую максимальному напряжению σ_{max} , определяют по формуле

$$P_{\text{max}} = \frac{4W\sigma_{\text{max}}}{L},\tag{2}$$

где L – расстояние между опорами (L=(180±1) мм),

W – момент сопротивления сечения образца с надрезом, который для образца, изготовленного в соответствии с Рисунками 10 и 11, составляет W=4083 мм³.

Минимальную нагрузку цикла нагружения Р_{тіп} определяют по формуле:

$$P_{\min} = 0.5 \times P_{\max},\tag{3}$$

Длина начальной трещины должна составлять с обеих сторон образца (12±1) мм с учетом длины надреза, которая в соответствии с Рисунком 11 составляет (10-0,2) мм.

После достижения усталостной трещиной начальной длины (12 ± 1) мм начинают второй этап циклических испытаний, на протяжении которого образец с предварительно выращенной трещиной циклически нагружают нагрузками P_{max} и P_{min} . Нагружение осуществляют до достижения трещиной длины (21 ± 1) мм с учетом длины надреза или до излома образца, в том случае, если излом произойдет при меньшей длине трещины.

В процессе испытаний с интервалом 1 мм по заранее нанесенным меткам осуществляют измерения прироста трещины с обеих сторон образца ΔL_1 и ΔL_2 , определяемые как разность между длиной трещины в момент измерения и начальной длиной трещины (12±1) мм, и фиксируют соответствующие значениям прироста длин трещины количества циклов нагружения N_1 и N_2 . Наибольшее количество точек измерения с интервалом 1 мм составит

21 - 12 = 9. Количество точек измерения может быть меньше 9, в случае, когда излом образца происходит до достижения длины 21 мм.

Для каждого измеренного значения прироста трещины с двух сторон образца ΔL_1 и ΔL_2 определяют скорости роста трещины V_1 и V_2 по формулам:

$$V_1 = \frac{\Delta L_1}{N_1},\tag{4}$$

$$V_2 = \frac{\Delta L_2}{N_2},\tag{5}$$

Для каждой точки измерения і определяют среднеарифметическое по скоростям роста трещины с обеих сторон образца (V_1 и V_2) значение скорости роста трещины \overline{V}_i по формуле:

$$\overline{V}_i = \frac{V_1 + V_2}{2},\tag{6}$$

Для каждой точки измерения і определяют значение коэффициента интенсивности напряжений K_i по формулам:

$$K_i = \frac{6M}{t\sqrt{b^3}} \sqrt{\lambda_i} y_i, \tag{7}$$

где К – коэффициент интенсивности напряжений;

М – изгибающий момент;

b – ширина образца, мм, b=(45±0,2) мм;

 λ_i – относительная длина трещины в точке измерения i;

t – толщина образца, мм, t=(20±0,1) мм;

уі – безразмерный параметр.

Изгибающий момент вычисляют по формуле:

$$M = (P \cdot L)/4, \tag{8}$$

где Р – нагрузка на образец при трехточечном изгибе;

L – расстояние между опорами, L=180 мм.

Относительную длину трещины в точке измерения і вычисляют по формуле:

$$\lambda_i = \frac{l_i}{h},\tag{9}$$

где l_i – длина трещины в точке измерения і с учетом длины надреза и первоначально выращенной трещины, мм.

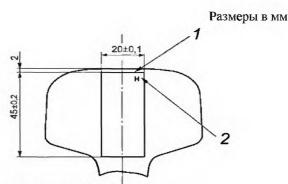
$$y_i = 1,93 - 3,07 \cdot \lambda_i + 14,53 \cdot \lambda_i^2 - 25,11 \cdot \lambda_i^3 + 25,08 \cdot \lambda_i^4,$$
 (10)

С учетом размера образца (см. Рисунок 11)

$$K_i = 0.045 \cdot P_i \sqrt{\lambda_i} y_i \tag{11}$$

$$\Delta K_i = 0.045 \cdot \Delta P_i \sqrt{\lambda_i} y_i \tag{12}$$

где ΔP_i (МПа) определяют по формуле:


$$\Delta P_i = \frac{\Delta PL}{4W},\tag{13}$$

где $\Delta P = P_{\text{max}} - P_{\text{min}} -$ амплитуда нагрузки, H;

 W_i — изменяющийся в зависимости от длины трещины момент сопротивления сечения образца, определяемый по формуле:

$$W_i = \frac{t(b-l_i)^2}{6},\tag{14}$$

Значения параметров $\mathbf{1}_i$, λ_i , \mathbf{y}_i , \mathbf{P}_{max} , \mathbf{P}_{min} , ΔP (H), ΔP_i (МПа), ΔL_1 , ΔL_2 , V_1 , V_2 , \overline{V}_i , ΔK_i для каждой точки измерения і заносят в журнал регистрации испытаний.

Надрез наносят со стороны верха образца (см. стрелку 1), верх образца обозначают клеймом «Н» на торце образца (см. стрелку 2).

Рисунок 10 — Схема расположения образца в головке рельса для определения скорости роста усталостной трещины

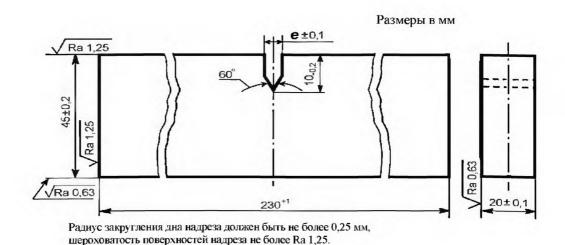


Рисунок 11 – Вид и основные размеры образца для определения скорости роста усталостной трещины

7.20.3.5 По результатам испытаний строят график зависимости средних значений скорости роста усталостной трещины \overline{V} от значений размаха коэффициента интенсивности напряжений ΔK . По данному графику находят значения скоростей роста усталостных трещин, соответствующие значениям размаха коэффициента интенсивности напряжений ΔK , равным $10 \, \mathrm{M}\Pi\mathrm{a}\cdot\mathrm{m}^{1/2}$ и $13,5 \, \mathrm{M}\Pi\mathrm{a}\cdot\mathrm{m}^{1/2}$.

Результаты испытаний являются положительными, если значения скорости роста усталостной трещины, определенные при значениях размахов коэффициента интенсивности напряжений 10 МПа·м $^{1/2}$ и 13,5 МПа·м $^{1/2}$, удовлетворяют требованиям 5.15.3 для всех испытанных образцов.

7.20.4 Контроль циклической трещиностойкости

7.20.4.1 Определение циклической трещиностойкости $K_{\rm fc}$ (см. 5.15.4) рельсов проводят методом циклического нагружения путем испытаний полнопрофильных проб длиной (1200+10) мм, вырезанных из рельсов методами холодной механической резки. Схема нагружения — плоский трехточечный симметричный изгиб. Расстояние между нижними опорами (1000 \pm 5) мм. Верхний пуансон устанавливают посередине между опорами — (500 \pm 5) мм. Пробы испытывают при мягком нагружении (управление по усилию) в положении рельса «головкой вниз» при асимметрии цикла нагружения плюс 0,1. База испытаний — 2 млн. циклов.

От каждого рельса должно быть испытано не менее шести проб.

7.20.4.2 Испытания проводят в помещении при температуре воздуха от 15 °C до 35 °C, относительной влажности воздуха от 45 % до 80 %. Образцы перед испытаниями должны быть выдержаны при температуре помещения от 15 °C до 35 °C в течение трех часов.

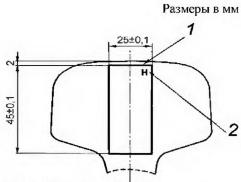
7.20.4.3 Испытания проводят на испытательной машине, способной обеспечить следующие условия и параметры нагружения: максимальная нагружка цикла нагружения $\pm 1000 \text{ kH}$, погрешность $\pm 2 \text{ %}$, частота нагружения не более $\pm 2 \text{ %}$.

Средства измерений должны иметь диапазон измерения от 0 мм до 250 мм, и максимальную допускаемую относительную погрешность измерения ± 0.05 мм.

7.20.4.4 Для определения циклической трещиностойкости каждый образец доводят до разрушения при циклическом нагружении аналогично испытаниям по определению предела выносливости по ГОСТ 25.502. Головку каждого образца фотографируют со стороны излома. Две точки фронта трещины, выходящие на поверхность образца, соединяют хордой. Определяют ее середину. Из точки, лежащей на середине хорды, восстанавливают перпендикуляр до пересечения с образующей (радиусом) головки рельса. Точку пересечения принимают за центр окружности, дуга которой аппроксимирует фронт трещины. Измерение радиуса (глубины) трещины производят из этой точки до наиболее удаленной точки фронта трещины в одном направлении три раза с помощью штангенциркуля ІШЦ-II-250-0.06 по ГОСТ 166. Для каждого образца, сломавшегося при испытаниях, определяют трещиностойкость путем вычисления критического значения коэффициента интенсивности напряжений.

7.20.4.5 Остальные требования к оборудованию, средствам измерений, а также порядок проведения испытаний – по ГОСТ 25.502

7.20.5 Контроль статической трещиностойкости


7.20.5.1 Определение статической трещиностойкости К_{Іс} (см. 5.15.5) проводят по

ГОСТ 25.506. Испытывают не менее трех образцов от рельса.

Образцы для определения статической трещиностойкости должны быть изготовлены по общим требованиям ГОСТ 25.506 из рельсов в соответствии с Рисунками 12 и 13.

ПРИМЕЧАНИЕ Основные размеры образцов установлены в европейском стандарте [1].

Ширину надреза, обозначенную «е» на Рисунке 13, устанавливают не более 3,5 мм. Для установки пружинных датчиков смещения допустима приварка упоров импульсным разрядом или точечной сваркой, в этом случае отверстия с резьбой для крепления упоров не делают.

Надрез наносят со стороны верха образца (см. стрелку 1), верх образца обозначают клеймом «Н» на торце образца (см. стрелку 2).

Рисунок 12 – Схема расположения образца для испытания на статическую трещиностойкость

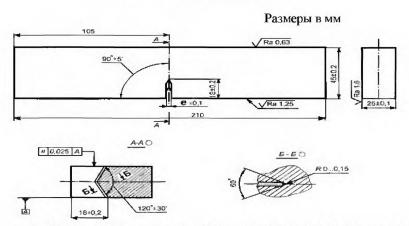


Рисунок 13 – Вид и основные размеры образца для испытаний на статическую трещиностойкость

7.20.5.2 При создании усталостной трещины от надреза и затем при испытаниях используют схему нагружения образца – плоский трехточечный симметричный изгиб.

Предварительное нанесение усталостной трещины выполняют, соблюдая следующие условия:

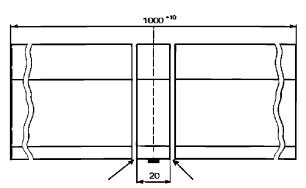
- циклическое нагружение с асимметрией от 0 до плюс 0,1 (надрез в зоне растяжения);
 - частота нагружения от 5 Гц до 120 Гц;
- температура образца вблизи края растущей трешины должна быть не выше 40 °C, а температура в помещении, где проводят испытания (20 ± 5) °C;
- усталостную трешину выращивают до достижения размера от 0,45 мм до 0,55 мм ширины образца (считая вместе с надрезом от края образца), причем на протяжении последних 1,25 мм роста трещины величина K_{max} не должна превышать от 18 до 22 МПа·м $^{1/2}$.

При испытании на статическую трешиностойкость расстояние между нижними опорами должно быть (180 ± 1) мм, а температура образца — минус (20 ± 2) °C (5.15.5). Температуру образца следует измерять термопарой, приваренной без оплавления к образцу на расстоянии от 5 мм до 10 мм от вершины трещины.

7.20.5.3 В остальном порядок проведения испытаний, требования к оборудованию и обработка результатов – по ГОСТ 25.506.

7.20.6 Контроль остаточных напряжений в средней части подошвы рельсов

Определение остаточных напряжений в средней части подошвы рельсов (см. 5.15.6) проводят на полнопрофильных пробах от шести рельсов. Пробы длиной (1,0+0,1) м вырезают из рельсов методами холодной механической резки на расстоянии не менее 3 м от торцов.


На опорной поверхности подошвы в средней части пробы проводят абразивную зачистку на глубину от $0,3\,$ мм до $0,5\,$ мм, и прикрепляют в продольном направлении тензодатчик, следуя рекомендациям изготовителя датчика. Датчик должен иметь относительную погрещность не более $\pm 1\,$ %.

Измерения выполняют до и после разрезки образца, с учетом его температуры. Разрезка должна быть выполнена холодным механическим способом так, как показано на Рисунке 14, без повреждения тензодатчика. В результате разрезки получают поперечный темплет рельса толщиной около 20 мм с тензодатчиком.

Разницу в напряжениях до и после разрезки пробы, взятую с обратным знаком, принимают за величину продольных остаточных напряжений в рельсе.

ПРИМЕЧАНИЕ Методика испытаний установлена европейским стандартом [2].

Размеры в мм

Места разрезки показаны стрелками.

Тензодатчик, прикрепленный к подошве образца, показан черным цветом.

Рисунок 14 — Схема разрезки образца при определении остаточных напряжений в подошве рельса

8 Транспортирование и хранение

- 8.1 Рельсы транспортируют железнодорожным, автомобильным, речным или морским видами транспорта при соблюдении правил перевозок, действующих на соответствующем виде транспорта.
- 8.2 Погрузку и крепление рельсов проводят в соответствии с техническими условиями размещения и крепления грузов, утвержденными уполномоченным государственным органом в установленном порядке.
- 8.3 Отгружаемая партия рельсов должна сопровождаться паспортом изготовителя по ГОСТ 2.601, содержащим:
 - наименование или условное обозначение предприятия-изготовителя;
 - обозначение настоящего стандарта;
 - тип рельсов;
 - категорию рельсов;
 - класс точности изготовления профиля рельсов;
 - класс прямолинейности рельсов;
 - класс качества поверхности рельсов;
 - марку стали;
 - максимальное значение магнитной индукции рельсов в партии;
- отпечатки или описание присмочных знаков владельца инфраструктуры железнодорожного транспорта и описание маркировки рельсов красками;
 - количество рельсов с указанием длины, массы и номеров плавок;
- результаты приемо-сдаточных, периодических и(или) сертификационных испытаний;
 - дату оформления паспорта;
 - номер вагона или другого транспортного средства;
 - наименование и адрес покупателя;
 - номер заказа (договора).
 - 8.4 При погрузке и транспортировании не допускается повреждение рельсов.

Не допускается падение рельсов с высоты более 1 м. Рельсы, упавшие с высоты более 1 м, считают не соответствующими требованиям настоящего стандарта.

8.5 При хранении рельсы должны быть уложены таким образом, чтобы не возникали деформация и изменение прямолинейности рельсов.

9 Гарантии изготовителя

- 9.1 Предприятие-изготовитель гарантирует соответствие рельсов требованиям настоящего стандарта при соблюдении потребителем требований настоящего стандарта в части условий разгрузки и хранения рельсов.
- 9.2 Гарантийные обязательства определяют в соглашении (договоре) на поставку рельсов между сторонами.

Приложение А (информационное)

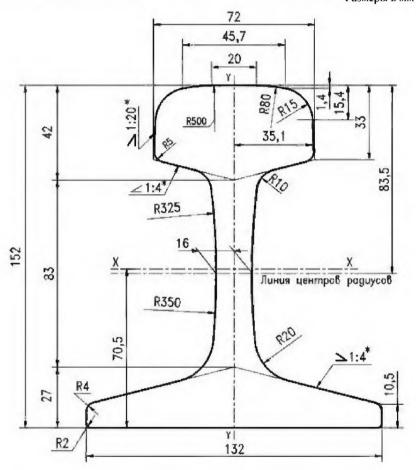
Рекомендуемые сферы рационального применения рельсов различных категорий

Таблица А.1

Категории рельсов	Сферы применения
ДТ370ИК	Грузонапряженность более 50 млн. т.км брутто/км в год Кривые малых и средних радиусов при любой грузонапряженности
ДТ350*	Грузонапряженность менее 50 млн. т.км брутто/км в год и пологие кривые
ДТ350НН	Грузонапряженность менее 50 млн. т.км брутто/км в год и пологие кривые в условиях холодного и умеренно холодного климата (по ГОСТ 16350)
ДТ350СС	Скорость движения пассажирских поездов от 141 км/ч до 200 км/ч и интенсивное грузовое движение
ДТ350BC, H320BC	Скорость движения пассажирских поездов более 200 км/ч
H320	Невысокая грузонапряженность. Прямые участки пути Метрополитены
H300	Стрелочные переводы Метрополитены
H260	Стрелочные переводы Метрополитены
* Исп	ользование рельсов прямолинейности класса С при скоростях движения не более

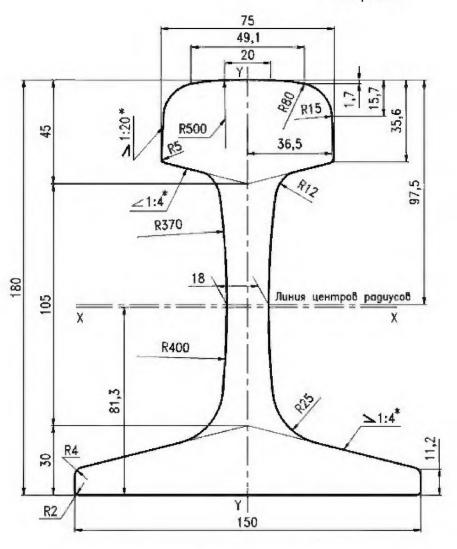
¹⁴⁰ км/ч.

Приложение Б (информационное)


Схема и примеры обозначения рельсов при заказе

При заказе рельсов следует использовать схему, приведенную на Рисунке Б.1, и примеры условного обозначения рельсов, приведенные ниже:

Рельс X — X — X — X — X — X — X — X — X — X
Тип рельса
Категория рельса —
Марка стали ——————
Длина рельса — — — — — — — — — — — — — — — — — — —
Класс точности профиля
Класс прямолинейности ————————————————————————————————————
Класс качества поверхности
Наличие болтовых отверстий ————————————————————————————————————
Обозначение настоящего стандарта (с указанием года его утверждения)
Рисунок Б.1 – Схема условного обозначения рельсов при заказе
1 Пример условного обозначения рельса типа P65, категории ДТ350СС, из стали марки К76ХФ, длиной 120 м, класса профиля X, класса прямолинейности A, класса каче ства поверхности E, без болтовых отверстий, изготовленного по СТ РК Рельс P65-ДТ350СС-К76ХФ-120-X-A-E-0-СТ РК
2 Пример условного обозначения рельса типа Р65, категории ДТ350НН, из сталимарки Э76АФ, длиной 25 м, класса профиля Y, класса прямолинейности B, класса качества поверхности P, с тремя болтовыми отверстиями на обоих концах рельса, изготовленного по СТ РК: Рельс Р65-ДТ350НН-Э76АФ-25-Y-B-P-3/2-СТ РК
3 Пример условного обозначения рельса типа Р65, категории ДТ370ИК, из стали марки Э90АФ, длиной 120 м, класса профиля Y, класса прямолинейности В, класса каче ства поверхности Р, с тремя болтовыми отверстиями на обоих концах рельса, изготовленного по СТ РК: Рельс Р65-ДТ370ИК-Э90АФ-120-Y-В-Р-3/2-СТ РК
4 Пример условного обозначения рельса типа P65, категории H320BC, из стали мар ки Э76XСФ, длиной 120 м, класса профиля X, класса прямолинейности A, класса качества поверхности E, без болтовых отверстий, изготовленного по CT PK: Рельс P65-H320BC-Э76XСФ-120-X-A-E-0-CT PK


Приложение В (информационное)

Размеры рельсов, используемые для построения прокатных калибров Размеры в мм

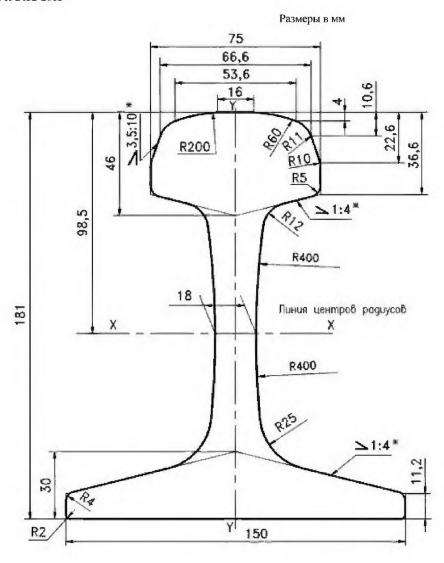

^{*} Размеры для справок

Рисунок В.1 – Рельс типа Р50

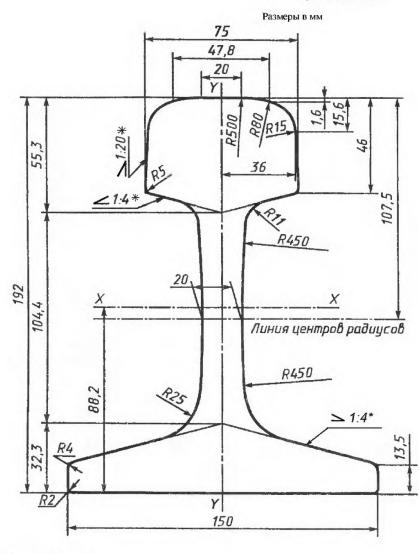

^{*} Размеры для справок

Рисунок В.2 – Рельс типа Р65

^{*} Размеры для справок

Рисунок В.3 – Рельс типа Р65К

^{*} Размеры для справок

Рисунок В.4 – Рельс типа Р75

Приложение Г (информационное)

Расчетные параметры конструкции рельсов Таблица Г.1

Неукурования тапомотов	Значение параметра для рельса типа			
Наименование параметра	P50	P65	P65K	P75
Площадь, поперечного сечения				
рельса, см²	65,99	82,65	82,38	95,037
Расстояние от центра тяжести, мм:				, ,
до низа подошвы	70,50	81,30	80,60	88,20
до верха головки	81,50	98,70	100,40	103,80
Расстояние от центра кручения, мм:				
до низа подошвы	40,10	39,40	38,20	45,80
до верха головки	111,90	140,60	141,80	146,20
Момент инерции рельса				- '
относительно вертикальной оси, см4:				
всего рельса	375	564	557	665
головки	91	106	103	143
подошвы	278	445	439	508
Момент инерции рельса относительно				
горизонтальной оси. см4:				
всего рельса	2011	3540	3495	4491
ГОЛОВКИ	986	1728	1698	2198
подошвы	915	1539	1532	2005
Момент сопротивления, см ³ :				
по низу подошвы	285	435	434	509
по верху головки	245	358	348	432
по боковой грани подошвы	55	75	73	89
Момент инерции рельса при его				
кручении, см	201	288	285	401
Секториальный момент инерции, см6	1.0×10^4	1,9x10 ⁴	$1,84 \times 10^4$	$2,6x10^4$
Жесткость поперечного сечения				
рельса, кН/см ² :				
при его свободном кручении	163,2x10 ⁶	233,5x10 ⁶	$229,4\times10^6$	$325,0x10^6$
при его стесненном кручении	$144,0x10^6$	$180,0x10^6$	$177,0x10^6$	234.0×10^6
Теоретическая линейная масса од-	,			
ного метра рельса	51.00	44.00	(4.67	74.60
(при плотности стали 7850 кг/м ³), кг	51.80	64,88	64,67	74,60
Площадь элементов сечения рельса,				
% от общей площади:				
головка	38,12	34,11	33,52	37,42
шейка	24,46	28,52	28,78	26,54
подошва	37,42	37,37	37,70	36,04
Температурный коэффициент				
линейного расширения, $\alpha \ 10^6$, град ⁻¹			11,8	

Приложение Д (обязательное)

Схема контроля отклонений рельсов от прямолинейности

Таблица Д.1

Таблица Д. 2

Элемент рельса	Направление контроля	Схема измерения отклонений от прямолинейности рельсов
Основная часть рельса	В горизонтальной и вертикальной плоскости	
Конец рельса	В вертикальной плоскости	E если $e > 0$, то $F > 0.6$ м
	В горизонтальной плоскости	
Переход- ная зона	В горизонтальной и вертикальной плоскости	L 1M
Рельс в целом	Кривизна в вертикальной и горизонтальной плоскостях	10 mm max
-		

Приложение Е (информационное)

Шаблоны для контроля размеров и формы поперечного сечения рельсов, размеров и расположения болтовых отверстий

- Е.1 Характерные точки и размеры поперечного сечения рельсов для построения шаблонов показаны на Рисунках Е.1 и Е.2, в Таблице Е.1.
- Е.2 Шаблоны для контроля размеров и формы рельсов и болтовых отверстий показаны на Рисунках Е.3 Е.16, перечень шаблонов приведен в Таблице Е.2.

ПРИМЕЧАНИЕ На рисунках буквой Z обозначен зазор, как правило, между шаблоном и характерными точками.

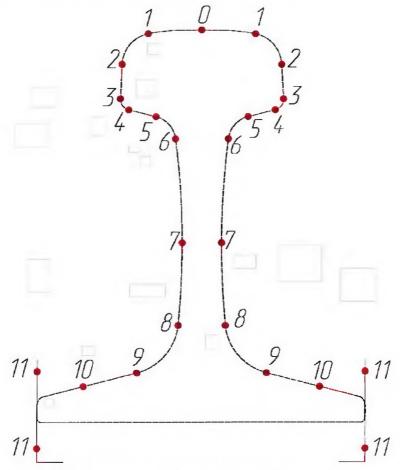


Рисунок Е.1 – Характерные точки контроля предельных отклонений поперечного сечения рельсов

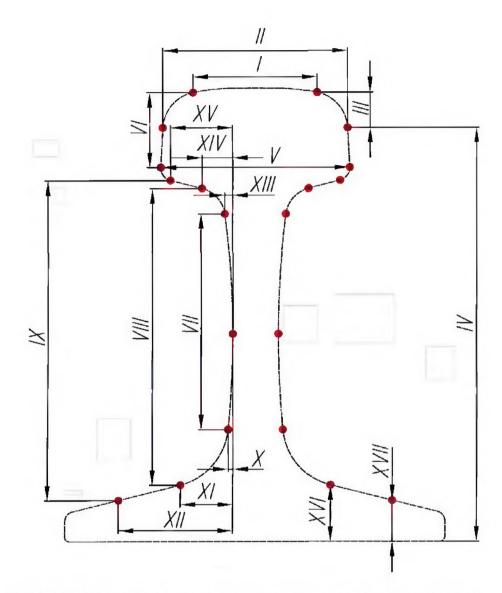


Рисунок E.2 – Характерные размеры поперечного сечения рельсов для построения шаблонов

Таблица E.1 – Значения характерных размеров поперечного сечения рельсов для построения шаблонов

В миллиметрах

P50	P65	P75	P65K
45,70	49,10	47,80	53,60
70,24	73,00	72,00	75,00
14,00	14,00	14,00	20,30
136,60	164,30	176,40	156,70
71,59	74,59	74,59	75,00
29,14	29,80	41,93	28,70
67,26	85,74	85,53	85,56
93,50	117,71	117,19	117,65
102,65	124,68	124,39	124,73
1,28	1,81	1,58	1,81
16,36	20,62	20,41	20,62
45,00	45,00	45,00	45,00
2,15	3,09	2,55	2,83
9,66	12,07	10,84	11,83
24,01	24.52	23,51	24,72
20,91	22,57	24,68	22,57
15,75	18,72	21,02	18,72
	45,70 70,24 14,00 136,60 71,59 29,14 67,26 93,50 102,65 1,28 16,36 45,00 2,15 9,66 24,01 20,91	45,70 49,10 70,24 73,00 14,00 14,00 136,60 164,30 71,59 74,59 29,14 29,80 67,26 85,74 93,50 117,71 102,65 124,68 1,28 1,81 16,36 20,62 45,00 45,00 2,15 3,09 9,66 12,07 24,01 24,52 20,91 22,57	45,70 49,10 47,80 70,24 73,00 72,00 14,00 14,00 14,00 136,60 164,30 176,40 71,59 74,59 74,59 29,14 29,80 41,93 67,26 85,74 85,53 93,50 117,71 117,19 102,65 124,68 124,39 1,28 1,81 1,58 16,36 20,62 20,41 45,00 45,00 45,00 2,15 3,09 2,55 9,66 12,07 10,84 24,01 24,52 23,51 20,91 22,57 24,68

Таблица Е.2 – Перечень шаблонов

Номер Рисунка	Наименование шаблона	
Рисунок Е.3	Шаблоны контроля высоты рельса	
Рисунок Е.4	Шаблон контроля отклонения профиля поверхности катания голов-	
	ки рельса от номинального расположения	
Рисунок Е.5	Шаблон контроля ширины головки рельса	
Рисунки Е.6	Шаблоны контроля несимметричности рельса	
Рисунок Е.7	Шаблон контроля толщины шейки рельса	
Рисунок Е.8	Шаблон контроля ширины подошвы рельса	
Рисунок Е.9	Шаблоны контроля высоты пера подошвы	
Рисунок Е.10	Шаблоны контроля высоты шейки рельса	
Рисунок Е.11	Шаблон контроля расположения болтовых отверстий в горизон-	
L	тальной плоскости	
Рисунок Е.12	Шаблон контроля расположения болтовых отверстий в вертикаль-	
	ной плоскости	
Рисунок Е.13	Шаблон контроля диаметра болтовых отверстий	
Рисунок Е.14	Шаблон контроля фасок болтовых отверстий	
Рисунок Е.15	Шаблон и схема контроля скручивания концов рельсов	
Рисунок Е.16	Шаблон контроля выпуклости основания подошвы	

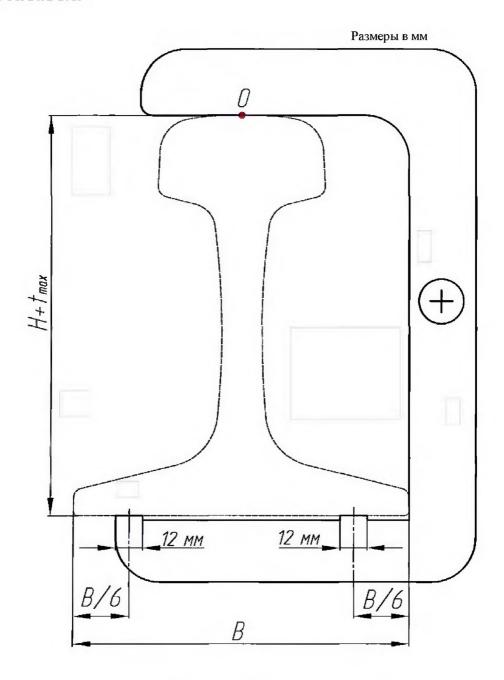
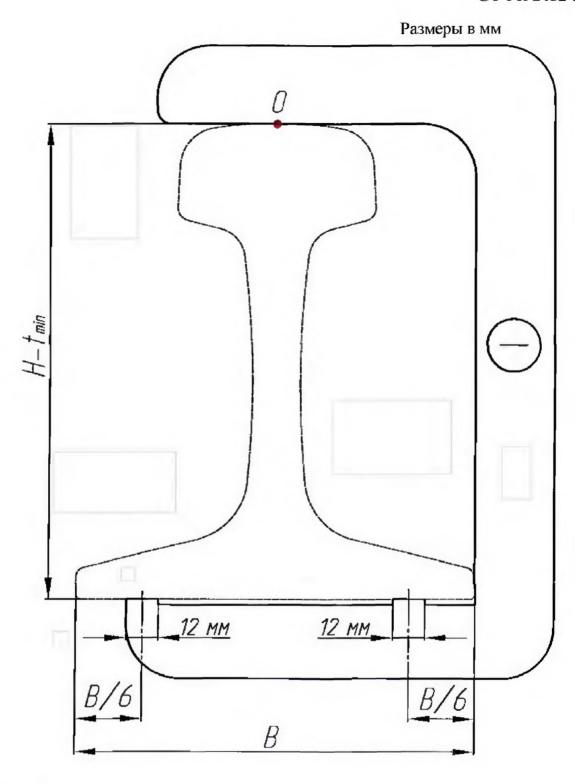



Рисунок Е.3 – Шаблоны контроля высоты рельса, Лист 1

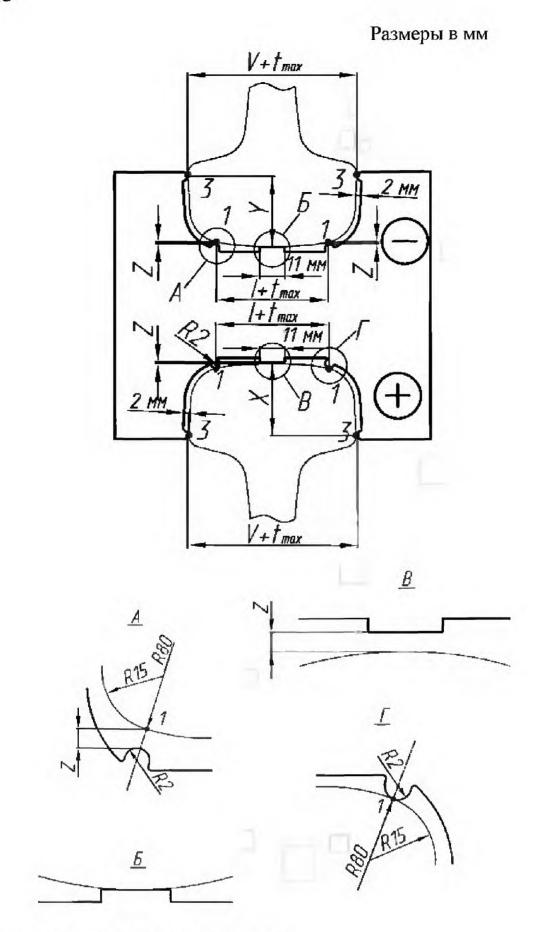
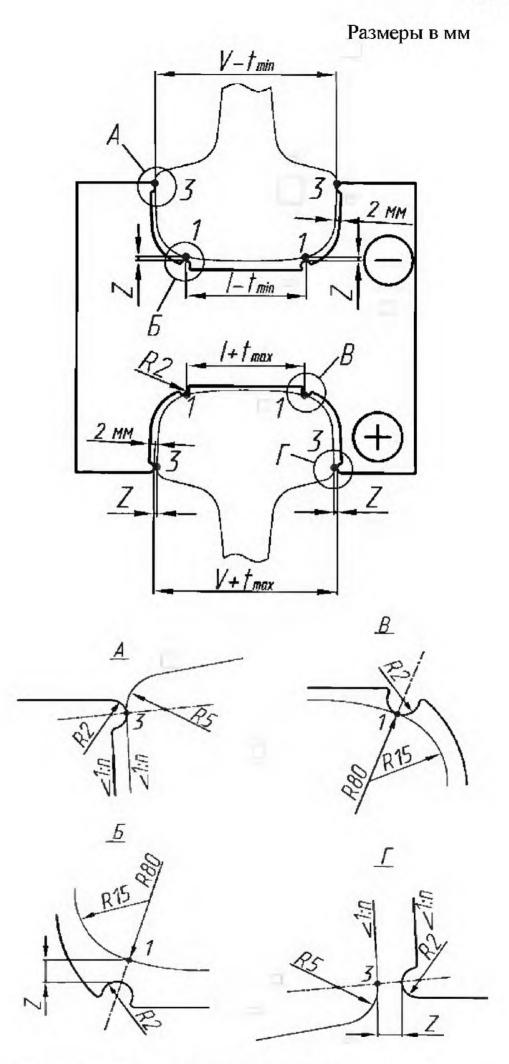

Н - высота рельса;

Рисунок Е.З, лист 2

В – ширина подошвы рельса:

⁰ – точка на поверхности катания головки, максимально удаленная от основания подошвы рельса; $t_{\rm max},\,t_{\rm min}$ – максимальный и минимальный допуски высоты рельса;

Знак «+» означает, что шаблон должен проходить по высоте рельса, либо проходить без зазора; Знак «-» означает, что шаблон не должен проходить по высоте рельса, либо проходит без зазора.


t_{max} – максимальный допуск ширины головки рельса;

X = VI + максимальный допуск отклонения формы поверхности катания от номинальной;

Y = VI – минимальный допуск отклонения формы поверхности катания от номинальной;

Знак «+» обозначает, что шаблон должен касаться точек 1 и не касаться поверхности катания головки; Знак «-» обозначает, что шаблон должен касаться поверхности катания головки и не касаться или может касаться точек 1.

Рисунок Е.4 — Шаблон контроля отклонения профиля поверхности катания головки рельса от номинального расположения

t_{max}, t_{min} — максимальный и минимальный допуски ширины головки рельса; Знак «+» означает, что шаблон должен касаться точек 1 и не касаться или может касаться точек 3; Знак «—» означает, что шаблон должен касаться точек 3 и не касаться или может касаться точек 1

Рисунок Е.5 – Шаблон контроля ширины головки рельса

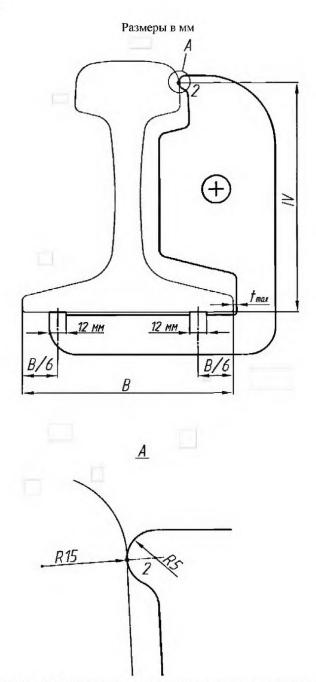
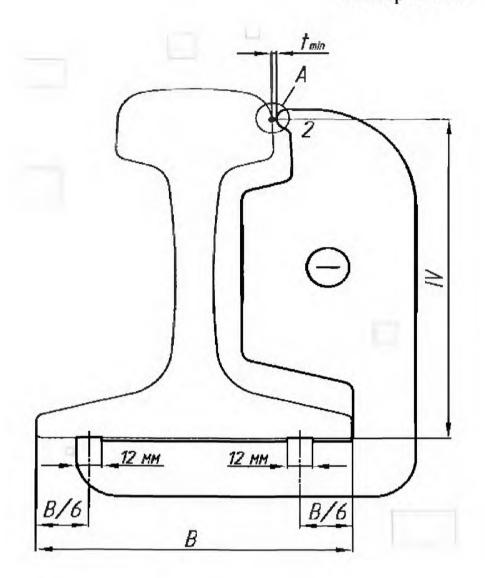
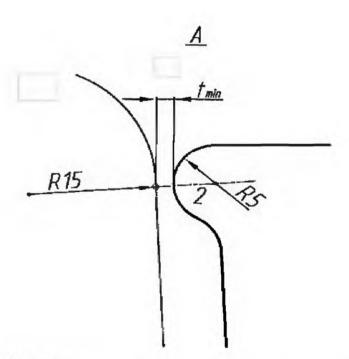
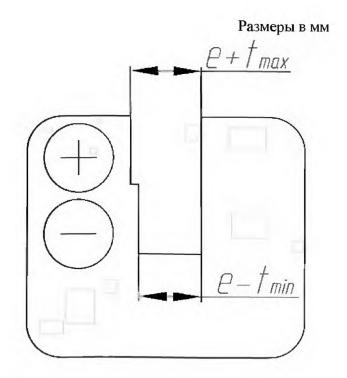




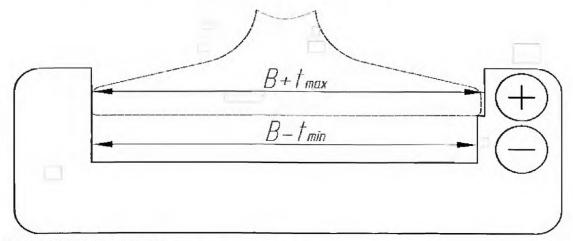
Рисунок Е.6 – Шаблоны контроля несимметричности рельса, Лист 1


В – ширина подошвы рельса;

 $\mathbf{t}_{\mathrm{max}},\,\mathbf{t}_{\mathrm{min}}$ – максимальный и минимальный допуски отклонения профиля от симметричности;

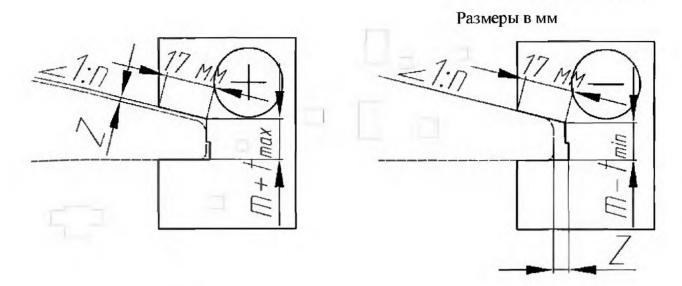
Знак «+» означает, что шаблон должен касаться головки и не касаться или может касаться торца фланца подошвы рельса;

Знак «—» означает, что шаблон должен касаться торца фланца подошвы рельса и не касаться или может касаться головки.


Рисунок Е.6, лист 2

е - толщина шейки рельса;

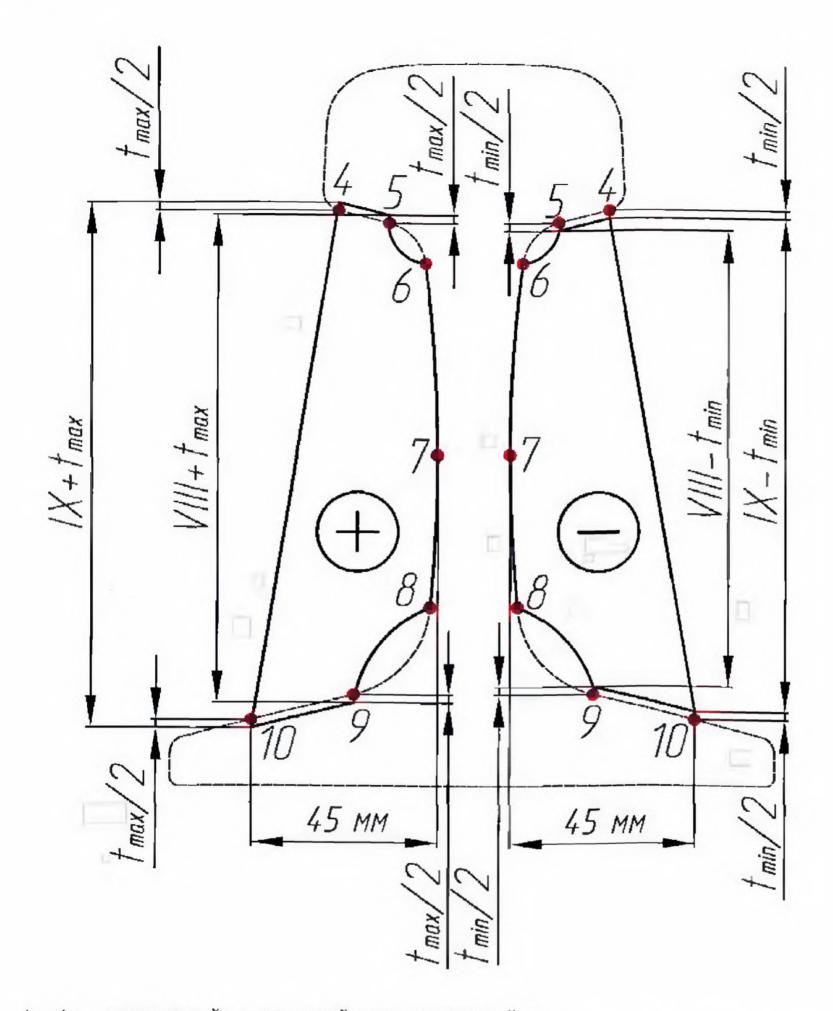
 t_{max} , t_{min} — максимальный и минимальный допуски толщины шейки рельса; Знак «+» означает, что шаблон должен плотно проходить или проходить с зазором; Знак «—» означает, что шаблон должен плотно проходить или не проходить.


Рисунок Е.7 – Шаблон контроля толшины шейки рельса

В – ширина подошвы рельса;

 $t_{max},\,t_{min}$ — максимальный и минимальный допуски ширины подошвы рельса; Знак «+» означает, что шаблон должен плотно проходить или проходить с зазором; Знак «—» означает, что шаблон должен плотно проходить или не проходить.

Рисунок Е.8 – Шаблон контроля ширины подошвы рельса

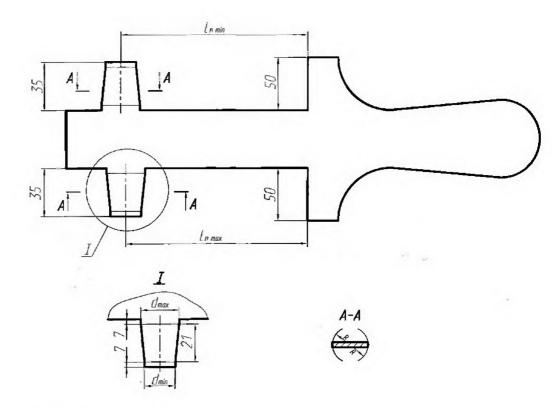

т – высота пера подошвы рельса;

 $\mathbf{t}_{\text{max}},\,\mathbf{t}_{\text{min}}$ – максимальный и минимальный допуски высоты пера;

Знак «+» означает, что торец фланца подошвы рельса должен касаться шаблона;

Знак «-» означает, что торец фланца подошвы рельса не должен касаться шаблона.

Рисунок Е.9 – Шаблоны контроля высоты пера подошвы



 $t_{\text{max}},\,t_{\text{min}}$ — максимальный и минимальный допуски высоты шейки;

Знак «+» означает, что шаблон должен касаться поверхностями уклонов подошвы и головки и не касаться точек 6, 7, 8 поверхности шейки или может касаться;

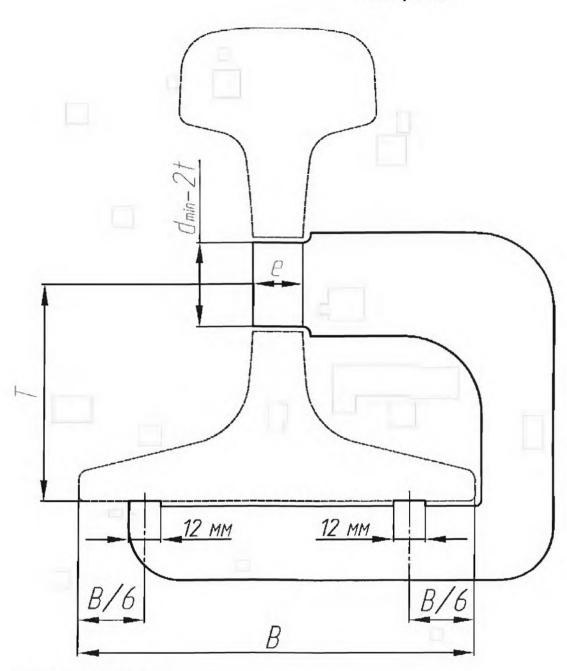

Знак «—» означает, что шаблон должен касаться точек 6, 7, 8 поверхности шейки и не касаться или может касаться поверхностями уклонов подошвы и головки.

Рисунок Е.10 – Шаблоны контроля высоты шейки рельса

п – номер болтового отверстия.

Рисунок Е.11 — Шаблон контроля расположения болтовых отверстий в горизонтальной плоскости

В – ширина подошвы рельса:

Рисунок Е.12 - Шаблон контроля расположения болтовых отверстий в вертикальной плоскости

т – высота пера подошвы рельса;

t – верхнее н нижнее допускаемое отклонение расположения болтового отверстия.

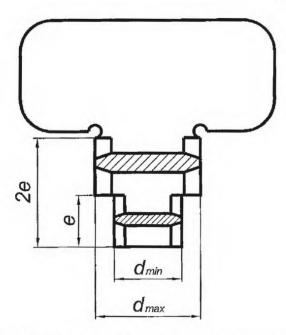


Рисунок Е.13 - Шаблон контроля диаметра болтовых отверстий

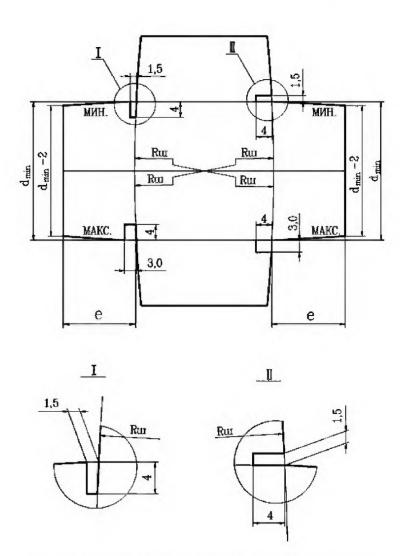
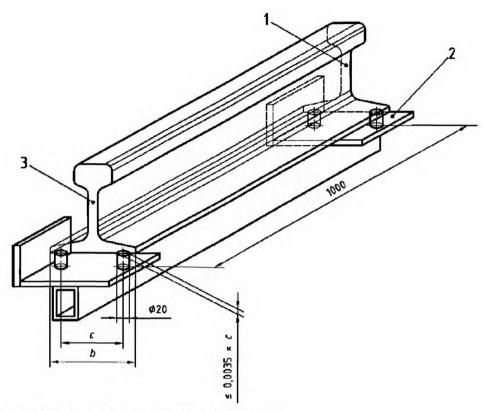



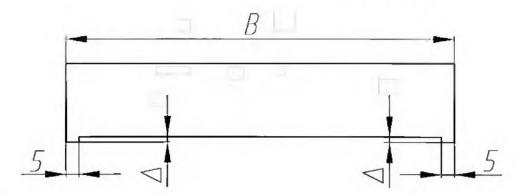
Рисунок Е.14 – Шаблон контроля фасок болтовых отверстий

- 1 поперечное сечение рельса на расстоянии 1 м от торца;
- 2 шаблон:
- 3 поперечное сечение на конце рельса;
- b номинальная ширина подошвы рельса;
- с расстояние между опорами.

ПРИМЕЧАНИЕ 1 Диаметр опор – 20 мм.

ПРИМЕЧАНИЕ 2 Расстояние между опорами (с) составляет:

$$c = b - t_{min} - 2R - 2r$$


где t_{min} — минимальный допуск ширины подошвы;

R – наибольший из радиусов закругления нижней части фланцев подошвы;

r – радиус опорных цилиндров на шаблоне.

ПРИМЕЧАНИЕ 3 Нормы по скручиванию концов рельсов в п. 5.2.6 рассчитаны по соотношению $0.0035 \cdot c$.

Рисунок Е.15 - Шаблон и схема контроля скручивания концов рельсов

 Δ – допускаемая выпуклость основания подошвы (см. Таблицу 4)

В – ширина подошвы рельса

Рисунок Е.16 – Шаблон контроля выпуклости основания подошвы

Приложение Ж (обязательное)

Шкала макроструктуры рельсов

 ${\rm Ж.1}$ Макроструктура рельсов должна соответствовать допустимым значениям, установленным в Таблице ${\rm Ж.1}$ и на Рисунках ${\rm Ж.1}$ – ${\rm Ж.5}$, ${\rm Ж.13}$.

На Рисунках Ж.6 – Ж.12, Ж.14 – Ж.16 изображены недопустимые макроструктуры рельсов.

Таблипа Ж.1

Dryn modorma	Oniversity not ever province		
Вид дефекта	Описание дефекта макрострук-	Пределы	Devas assets
макроструктуры	туры и причин его возникнове-	допустимости	Рисунки
	ния		
Ликвация	Зоны повышенной (прямая лик-	Распространение со-	Ж1 (допустимо)
	вация) или пониженной (обрат-	средоточенной и рас-	Ж2 (допустимо)
	ная ликвация) травимости (на	средоточенной ликва-	Ж3 (допустимо)
	темплете после глубокого трав-	ции за пределы шейки	Ж4 (допустимо)
	ления) или контрастности (на	в головку и (или) по-	Ж5 (допустимо)
	серном отпечатке) и их сочетание	дошву на расстояние	Ж6 (не допустимо)
	вследствие обогащения или	не более 15 мм.	Ж7 (не допустимо)
	обеднения центральной части	Ширина ликвацион-	Ж8 (не допустимо)
	шейки и прилегающих к ней зон	ной зоны, не превы-	
	головки и подошвы ликвирую-	шающая 1/3 толщины	
	щими элементами.	шейки.	
	Сосредоточенная осевая ликва-	Наличие несиммет-	
	ция представляет собой ярко вы-	рично расположенных	
	раженные темные или светлые	относительно верти-	
	полосы в шейке или их сочета-	кальной оси рельса	
	ние.	зон повышенной и по-	
	Рассредоточенная осевая ликва-	ниженной травимости	
	ция представляет собой широкую	при длине такой зоны	
	зону, которая по степени трави-	менее 15 мм	
	мости приближается к основному		
	металлу и содержит темные или		
	светлые участки в виде штрихов		
	и точек		
Точечная не-	Одиночные точечные растравы	Диаметр одиночных	Ж9 (не допустимо)
однородность	(на темплете после глубокого	точек не должен пре-	Ж10 (не допусти-
	травления) или точки повышен-	вышать 1 мм. Одиноч-	мо)
	ной контрастности (на серном	ными считаются точ-	Ж11 (не допусти-
	отпечатке), а также их скопления,	ки, расстояние между	мо)
	расположенные в любом элемен-	которыми более 6 мм.	Ж12 (не допусти-
	те профиля рельса.	Retepolisin conce o MM.	мо)
	Точки представляют собой неме-	В одном элементе	IVIO
	таллические включения, поры,	профиля не должно	
	газовые пузыри и точечные лик-	быть более трех оди-	
	ваты. Частным случаем	ночных точек любого	
	ваты, частным случасм		
		диаметра	

Таблица Ж.1 (продолжение)

Вид дефекта макро- структуры	Описание дефекта макроструктуры и причин его возникновения	Пределы допустимости	Рисунки
	точечной неоднородностью яв- ляются подкорковые пузыри	На темплете (на всем сечении рельса) не должно быть более шести точек любого диаметра. Не допускается наличие скоплений точек любого диаметра. Скоплением считается группа трех и более точек любого диаметра при расстоянии между соседними точками 6 мм и менее.	
Ликвационные полоски	Нитевидные полоски повышенной травимости (на темплете после глубокого травления) или контрастности (на серном отпечатке). Дефект наследуется от внутренних горячих кристаллизационных трещин непрерывнолитых заготовок	Ликвационные полоски не допускаются на глубине менее 25 мм от поверхности катания головки. Длина одиночных ликвационных полосок в любом элементе профиля не должна превышать 5 мм. Длина группы ликвационных полосок в любом элементе профиля не должна превышать 6 мм при протяженности хотя бы одной полоски свыше 3 мм. Длина группы ликвационных полосок в любом элементе профиля не должна превышать 20 мм при протяженности всех полосок менее 3 мм. Группой считается скопление трех и более полосок с расстоянием между соседними полосками	Ж13(допустимо) Ж14(не допустимо) Ж15(не допустимо) Ж16(не допустимо)

Рисунок Ж.1 – Макроструктура без ликвации (серный отпечаток)

Рисунок Ж.2 — Незначительная прямая и обратная ликвация (серный отпечаток)

Рисунок Ж.3 – Обратная ликвация в шейке (серный отпечаток)

Рисунок Ж.4 — Незначительная прямая ликвация (серный отпечаток)

Рисунок Ж.5 – Осевая ликвация в шейке, простирающаяся в головку и (или) в подошву (серный отпечаток)

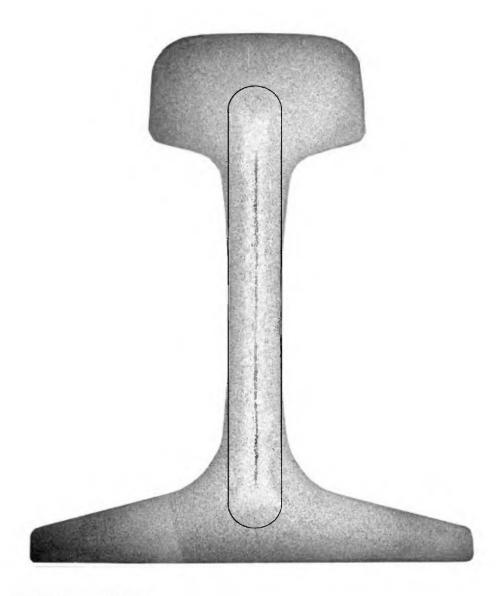


Рисунок Ж.6 – Осевая ликвация, распространяющаяся за пределы шейки в головку и в подошву на расстояние более 15 мм (глубокое травление)

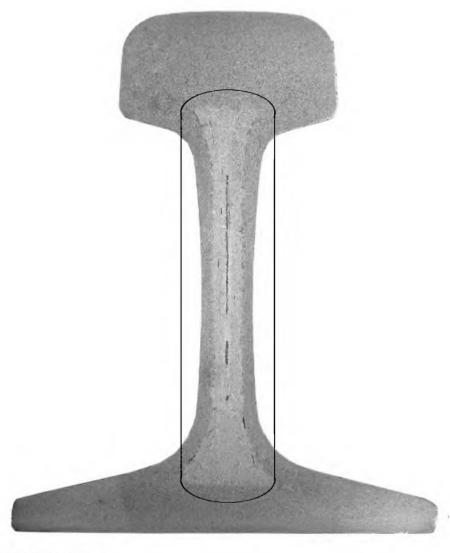


Рисунок Ж.7 — Ликвационная зона, имеющая ширину, превышающую 1/3 толщины шейки (глубокое травление)

Рисунок Ж.8 — Несимметрично расположенные относительно вертикальной оси зоны повышенной и пониженной травимости при длине такой зоны более 15 мм (глубокое травление)

Рисунок Ж.9 – Одиночные точки диаметром более 1 мм (глубокое травление)

Рисунок Ж.10 — Наличие более 3 одиночных точек в одном элементе профиля (глубокое травление)

Рисунок Ж.11 — Наличие более 6 одиночных точек на поперечном сечении рельса (глубокое травление)

Классификация – не допустима

Рисунок Ж.12 – Скопление точек любого диаметра (глубокое травление)

Рисунок Ж.13 – Ликвационные полоски (серный отпечаток)

Рисунок Ж.14 – Одиночные ликвационные полоски с длиной более 5 мм (глубокое травление)

Рисунок Ж.15 – Группа ликвационных полосок с общей протяженностью более 6 мм при протяженности одной полоски более 3 мм (глубокое травление)

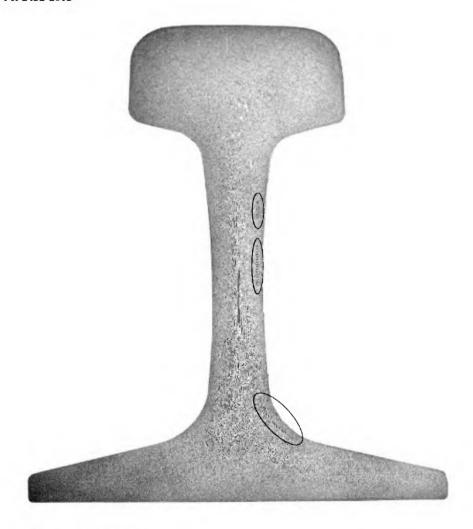


Рисунок Ж.16 – Группа ликвационных полосок с общей протяженностью более 20 мм при протяженности каждой полоски менее 3 мм (глубокое травление)

Приложение И

(обязательное)

Неразрушающий контроль рельсов

И.1 Общие положения

- И.1.1 НК рельсов осуществляет подразделение НК, аккредитованное в установленном порядке. К проведению НК и оценке качества рельсов допускают персонал, аттестованный на уровень квалификации, указанный в технологической документации на контроль.
- И.1.2 НК рельсов должен обеспечивать сканирование со сплошной регистрацией сигналов и сопутствующей контролю информации в электронном виде и выдачу протокола, содержащего информацию о выполнении контроля каждого рельса. об отсутствии или наличии в нем дефектов и ложных индикаций.

НК должен обеспечивать выявление следующих дефектов и недопустимых отклонений рельсов от требований настоящего стандарта в пределах чувствительности метода НК:

- внутренних несплошностей в головке, шейке и средней части подошвы (см. 5.5);
- дефектов макроструктуры рельсов в головке и шейке (см. 5.5);
- дефектов поверхности катания головки и основания подошвы (см. 5.6.5);
- недопустимых отклонений формы и размеров поперечного сечения рельса (см. 5.1.1),
- недопустимых отклонений от прямолинейности рельсов, скручивания (см. 5.1.5, 5.1.6).
- И.1.3 НК подвергают рельсы по всей длине. Концевые участки рельсов, не проконтролированные при автоматизированном НК, подлежат обрезке либо дополнительному механизированному или ручному НК. Длина концевых участков рельсов, не подвергаемых автоматизированному НК, должна быть указана в технологической документации на НК.
- И.1.4 Для выявления дефектов в рельсах при их производстве следует применять следующие методы НК:
- метод А ультразвуковой импульсный зеркально-теневой метод для выявления несплошностей и дефектов макроструктуры в области головки и шейки, не обнаруживаемых ультразвуковым эхо-методом;
- метод ${\bf F}$ ультразвуковой импульсный эхо-метод для выявления несплошностей и дефектов макроструктуры в области головки, шейки и средней части подошвы;
- метод В вихретоковый, магнитный, ультразвуковой или другой метод для выявления дефектов поверхности;
- метод Г оптический или другой метод для выявления дефектов в виде отклонений от прямолинейности, скручивания, формы и размеров поперечного сечения рельсов.
- V1.1.5 Для контроля выполнения требований 5.1.1, 5.1.5, 5.1.6 и 5.5.2, 5.6.1, 5.6.5 следует применять методы A, B, B, C с учетом категории рельсов.
- И.1.6 При НК рельсов методами A и Б должно быть обеспечено прозвучивание поперечных сечений рельса с шагом не более 2,5 мм.
- И.1.7 Все образцы, используемые для настройки аппаратуры НК, должны быть аттестованы на соответствие чертежам, согласованным с владельцем инфраструктуры железнодорожного транспорта.

И.2 Неразрушающий контроль рельсов методом А

И.2.1 При НК рельсов методом А должны быть использованы плоско поляризованные поперечные волны, возбуждаемые двумя ЭМАП.

ЭМАП располагают над поверхностью катания (Рисунок И.1а) и у боковой поверхности головки (Рисунок И.16) так, чтобы плоскости поляризации возбуждаемых поперечных волн совпадали с плоскостью поперечного сечения рельса.

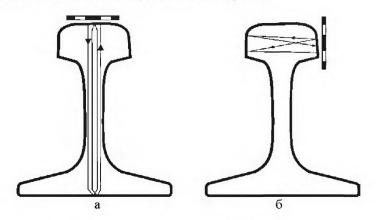


Рисунок И.1 - Схемы сканирования при НК рельсов методом «А»

- И.2.2 Номинальные значения частот возбуждаемых ультразвуковых колебаний должны быть в пределах от 1,5 МГц до 2,0 МГц. Допуск на отклонение частоты от номинального значения не должен превышать ± 10 %.
- И.2.3 Контроль рельсов со стороны поверхности катания головки (см. Рисунок И.1а) должен быть выполнен по амплитуде второго донного импульса при условной чувствительности не менее 12 отрицательных дБ.
- И.2.4 Контроль рельсов со стороны боковой поверхности головки (см. Рисунок И.16) должен быть выполнен по минимальной из одновременно измеряемых амплитуд первого и второго донных импульсов при условной чувствительности не менее 12 отрицательных дБ.
- И.2.5 Настройка условной чувствительности должна быть выполнена по опорному отражателю (поверхность основания подошвы или боковая поверхность головки).
- И.2.6 Минимальный условный размер фиксируемых несплошностей должен быть не более 50 мм.

И.З Неразрушающий контроль рельсов методом Б

- И.З.1 При НК рельсов методом Б должны быть использованы продольные волны. Допускается использование поперечных волн.
- И.3.2 Головку рельса контролируют с обеих сторон и с поверхности катания. Расположение преобразователей на рельсе должно обеспечивать контроль:
 - не менее 70 % поперечного сечения головки рельса (см. Рисунок И.2а);
 - не менее 60 % поперечного сечения шейки (см. Рисунок И.26);
 - поперечного сечения подошвы в зоне проекции шейки (см. Рисунок И.2в).

ПРИМЕЧАНИЕ Метод контроля установлен в европейском стандарте [1].

Контролируемые площади сечений рельса условно определяются проекциями номинальных размеров преобразователей.

- И.З.3 Номинальные значения частот возбуждаемых ультразвуковых колебаний должны быть:
- для продольных волн от 2,5 МГц до 5,0 МГц (при контроле головки, шейки с поверхности катания головки и с основания подошвы) и от 5,0 МГц до 7,5 МГц (при контроле шейки сбоку);
 - для поперечных волн от 1,5 МГц до 2,0 МГц.

Допуск на отклонение частоты от номинального значения не должен превышать ± 10 %.

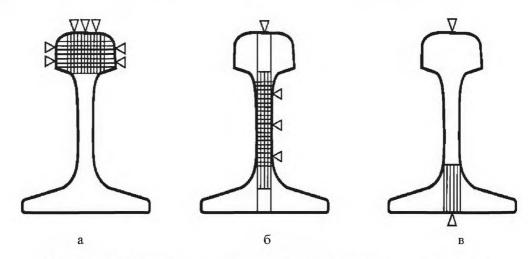


Рисунок И.2 – Схемы сканирования и зоны контроля рельсов методом Б

- И.3.4 Чувствительность контроля методом Б должна обеспечивать выявление следующих эталонных отражателей диаметром 2 мм:
 - а) в головке рельсового образца:
- 1) в виде плоскодонных отверстий глубиной 15 мм, выполненных под углом 90° к противоположной грани головки (см. Рисунок И.За);
- 2) в виде плоскодонных отверстий глубиной 15 мм, выполненных под углом 8° к оси дефектов, указанных на Рисунке И.За, (см. Рисунок И.Зб);
 - 3) в виде сквозного отверстия (см. Рисунок И.Зв);

Рисунок И.З - Расположение отражателей в головке образца

CT PK 2432-2013

б) в шейке рельса: в виде плоскодонных отверстий глубиной до оси симметрии сечения рельса (см. Рисунок И.4);

в) в подошве рельса: в виде сквозного отверстия (см. Рисунок И.5).

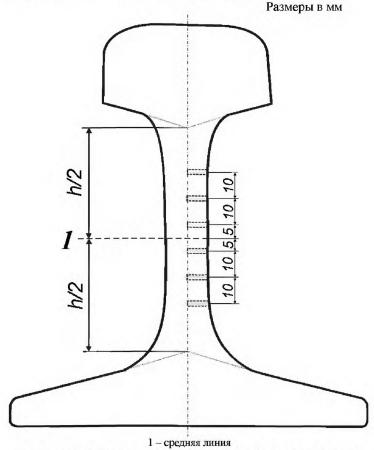
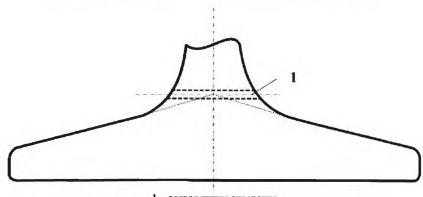



Рисунок И.4 - Расположение отражателей в шейке образца

1 – осевая линия отверстия Рисунок И.5 - Расположение отражателя в подошве образца

И.3.5 Контроль рельсов методом Б следует выполнять при условной чувствительности аппаратуры, повышенной на 4 дБ относительно уровня чувствительности, обеспечивающего выявление в рельсовых образцах эталонных отражателей по И.3.4.

И.4 Оценка качества рельсов по результатам неразрушающего контроля методами A и B

Рельсы считают годными по результатам контроля методами A и Б при отсутствии сигналов о наличии дефектов.

При обнаружении сигналов о наличии дефектов рельс считают условно-дефектным и проводят повторный контроль методами А или Б (соответственно) при повышенной на 2 дБ чувствительности по сравнению с чувствительностью, указанной в И.2.3-И.2.4 и И.3.5 (соответственно), и пониженной в два раза скорости перемещения рельса. Допускается повторение контроля после проведения зачистки рельса. После этого результаты повторного контроля рельса являются окончательными.

И.5 Неразрушающий контроль рельсов методом В

- И.5.1 Рельс должен быть подвергнут НК методом В
- на поверхности катания головки в зоне ± 24 мм от оси симметрии поперечного сечения рельса;
- на нижней (опорной) поверхности подошвы; при этом неконтролируемая зона плоской части подошвы с каждого края подошвы должна быть не более 5 мм.
- V1.5.2 HK рельсов методом В должен обеспечивать выявление обеих моделей дефектов, имеющих размеры, указанные в Таблице V1.1, или одной из них глубиной 1,0 мм и длиной 20 мм. Допуск на размеры моделей дефектов по глубине и ширине ± 0 ,1 мм, по длине ± 0 ,5 мм.

Таблица И.1 – Размеры моделей поверхностных дефектов

В миллиметрах

Глубина	Длина	Ширина
1,0	20	0,5
1,5	10	0,5

И.5.3 При обнаружении сигналов о наличии дефектов рельс считают условнодефектным. Решение о дефектности рельса принимают по результатам повторного автоматизированного контроля при пониженной в 2 раза скорости перемещения рельса или ручного (механизированного) вихретокового, магнитного или ультразвукового контроля условно-дефектных участков с учетом технического осмотра.

И.6 Неразрушающий контроль рельсов методом Г

НК рельсов методом Г должен обеспечивать выявление дефектов в виде отклонений от прямолинейности, от размеров поперечного сечения и скручивания рельсов в соответствии с требованиями настоящего стандарта. Контроль указанных дефектов проводят средствами измерений с точностью не ниже, чем по 7.1, 7.4, 7.5.

Приложение К

(информационное)

Допустимые варианты достижения соответствия методом повторной термической обработки и видов последующего контроля и приемки рельсов

Порядок проведения термической обработки, последующего контроля и приемки нетермоупрочненных и дифференцированно термоупрочненных рельсов

При отклонении от норм настоящего стандарта по обезуглероживанию нетермоупрочненные рельсы из углеродистой стали допускается подвергать объемной закалке с дополнительным контролем обезуглероживания методом твердости.

При отклонении от норм настоящего стандарта по механическим свойствам при растяжении, по ударной вязкости, твердости, микроструктуре, копровой прочности, остаточным напряжениям нетермоупрочненные и дифференцированно упрочненные рельсы следует подвергать нормализации с приемкой партии как рельсы категорий H260, H300, H320.

Приложение Л (обязательное)

Методика металлографического анализа. Сталь. Определение загрязненности оксидными включениями по эталонным изображениям

Л.1 Определение загрязненности оксидными включениями с помощью визуального контроля методами оценки Р и К

Определение загрязненности рельсов строчечными глобулярными (группы EB) и отдельными глобулярными (группы ED) включениями выполняют методом металлографического анализа путем сравнения с эталонными изображениями с помощью визуального контроля или автоматических систем анализа изображений.

Для контроля загрязненности рельсов соответствующими включениями наблюдают нетравленую поверхность шлифа, площадь которой должна быть не менее 15 мм × 15 мм под оптическим микроскопом при увеличении 100.

Результатом оценки является наибольшая длина строчечных глобулярных (группа EB) оксидных включений (P_L), наибольший диаметр отдельных глобулярных (группа ED) оксидных включений (P_D), суммарный коэффициент загрязненности включениями групп EB и ED (K_8).

Определение данных параметров включений проводят на шести шлифах сравнением с серией эталонных изображений. Необходимо следующее дополнительное оборудование: оптический микроскоп; видеокамера или фотоаппарат (для автоматического сканирования изображения); персональный компьютер (для автоматического анализа изображения); моторизованный предметный столик с джойстиком управления (для автоматического анализа изображения) и программа анализа изображения.

Л.1.1 Сущность методов

Методом оценки загрязненности включениями P определяют параметры P_L (подсчет наибольшей длины включения), P_D (подсчет наибольшего диаметра) самых крупных включений.

Методом оценки K определяют параметр K_{a} (суммарный коэффициент загрязненности).

Для определения каждого из параметров P_L , P_D и K_a при помощи микроскопа сканируют нетравленую поверхность каждого из шести шлифов поле за полем.

Длину кромки поля измерения принимают равной 710 мкм (соответствует увеличению микроскопа 100 х и площади одного поля зрения на шлифе, равной 0,5 мм²). Образец устанавливают на предметный столик так, чтобы главное направление деформации было вертикальным по отношению к просматриваемому полю зрения. Включение, пересекаемое кромкой поля зрения, необходимо переместить в пределы поля зрения путем перемещения образца столиком микроскопа.

В результате просмотра поверхности шлифа одновременно регистрируют:

- наибольщую длину (P_L, мкм) строчечных глобулярных оксидных включений (группа EB) на каждом шлифе;
- наибольший диаметр (P_D , мкм) отдельных глобулярных оксидных включений (группа ED) на каждом шлифе;
- число включений групп EB и ED, длина которых соответствует значению, начиная с 3 строки серии эталонных изображений (см. Рисунок М.1).

Л.1.2 Определение параметра P_L (наибольшая длина)

В пределах анализируемой плошади шлифа находят включения, соответствующие группам ЕВ (см. столбцы 7 - 10) серии эталонных изображений (см. Рисунок Л I) Регистрируют только номер строки, соответствующей самому крупному включению на поверхности измерения по серии эталонных изображений. В Таблицу Л.1 записывают номер строки самого длинного включения

Процедуру проводят для каждого из шести шлифов, отобранных от плавки.

Определяют значение длины включения по соответствующей строке серии эталонных изображений и записывают ее в Таблицу Л.1. Затем на каждом из шести шлифов выбирают максимальную длину включения группы ЕВ и вычисляют среднее значение длины.

Окончательным результатом оценки является среднее значение наибольших длин, обнаруженных на шести шлифах.

Л.1.3 Определение параметра Р_Д (наибольший диаметр)

Определение параметра P_D аналогично определению параметра P_L . Параметр P_D определяют только для включений группы ED сравнением с серией эталонных изображений (см. Рисунок Л.1), по столбцу 6, начиная со строки 1.

В Таблицу Л.1 записывают значение диаметра самого крупного включения, соответствующее эталонным изображениям.

Процедуру проводят для каждого из шести шлифов. отобранных от плавки.

Окончательным результатом оценки считают среднее значение наибольших диаметров, обнаруженных на шести шлифах

Л.1.4 Определение суммарного коэффициента загрязненности Ка

Каждый шлиф просматривают с помощью микроскопа поле за полем. В пределах поверхности измерения каждого шлифа находят включения групп EB и ED (см. столбцы 7-10 и 6, соответственно), начиная со строки 3 серии эталонных изображений (см. Рисунок Л.1).

Сравнением с серией эталонных изображений, классифицируют каждое включение в пределах каждого поля зрения с присвоением номера строки — q и номера столбца — k. В Таблицу Л.2 записывают число включений групп EB и ED во всех строках и столбцах для каждого поля зрения (в соответствующей строке Таблицы записывают цифру 1, если включение данного класса найдено, включения одного класса записывают через запятую). Затем подсчитывают и записывают общее число включений для каждой группы и каждого класса на каждом из шести шлифов. Подсчет разного количества включений одного класса в одном поле зрения можно заменить оценкой по столбцам 11 — 12 (см. Рисунок Л.1). Также в Таблицу Л.2 записывают площадь одного поля зрения, равную 0,5 мм² и общую сканированную площадь на шести шлифах, равную 1350 мм² (см. Таблицу Л.2).

Полученные значения общего числа включений переносят из Таблицы Л.2 в соответствующие поля Таблицы Л.3. В Таблице Л.4 приведены значения длины L (мкм), ширины w (мкм), площади а (мкм 2), отношения длины к ширине L/w и коэффициента формы f включений. Ширину включения w рассчитывают по формуле:

$$w = \frac{4}{\pi} \cdot \frac{a}{L} \,, \tag{JI.1}$$

где a рассчитывают по формуле:

$$a = \frac{\pi}{4} \cdot L \cdot w . \tag{JI.2}$$

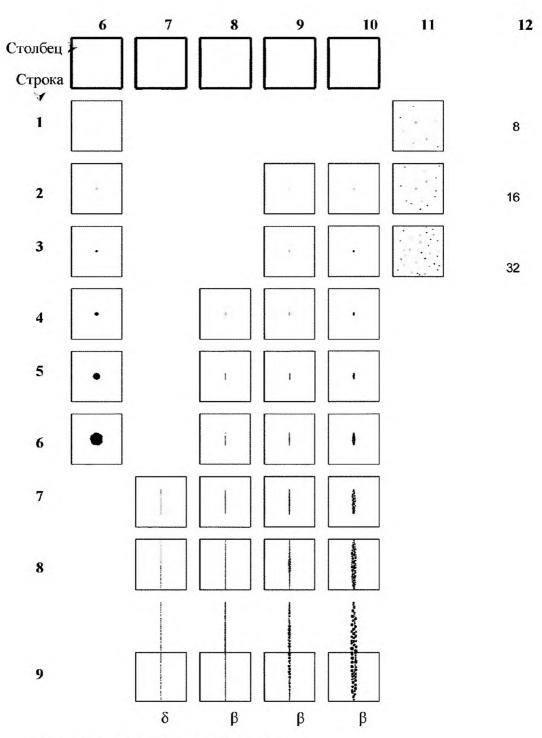
Из Таблицы Л.4 в Таблицу Л.3 записывают значение площадей классов. Затем умножают общее число оксидных включений на соответствующую площадь класса (см. Таблицу Л.4) и получают общую площадь. Для каждого вида оксидных включений суммируют общие площади и получают промежуточную сумму.

Отдельно для EB и ED подсчитывают их общую площадь. Умножая общую площадь включений EB и ED на средний множитель, получают взвешенную сумму площадей.

Средний множитель (при увеличении 100) для оксидных включений группы ED равен 0,5; для оксидных включений группы EB - 0,355. Переписывают из Таблицы M.3 значение сканированной площади. Вычисляют промежуточные значения K_a^{EB} и K_a^{ED} делением взвешенной суммы площадей включений на сканированную площадь.

 K_a равно сумме промежуточных значений K_a^{EB} и K_a^{ED} , соответствующих группам включений EB и ED.

Результатом оценки считают суммарное значение загрязненности оксидными включениями К_в из Таблицы Л.3.


Л.2 Определение загрязненности оксидными включениями с помощью автоматической системы анализа изображений

Загрязненность оксидными включениями с помощью автоматической системы анализа изображений контролируют определением параметров P_L , P_D и K_a путем сканирования с помощью микроскопа в автоматическом режиме нетравленой поверхности каждого из шести шлифов. Размер кромки поля зрения должен быть равным 710 мкм. Образец устанавливают на предметный столик микроскопа так, чтобы главное направление деформации было вертикальным по отношению к просматриваемому полю зрения.

В автоматической системе анализа изображений параметры P_L , P_D и K_a определяются аналогично Л.1.1, Л.1.2, Л.1.3.

Анализ должен включать следующие этапы:

- калибровка анализатора изображения по объект-микрометру;
- установка шлифа/шлифов на предметный столик микроскопа;
- установка параметров сканирования шлифа и анализа изображения (площадь сканирования, оптимальный уровень закрашивания оксидов, условия фокусировки);
 - проведение сканирования поверхности шлифов для идентификации включений;
 - проверка правильности идентификации включений;
 - подготовка отчета.

 $[\]delta$ – глобулярные нерегулярные включения; β – глобулярные строчечные включения:

Рисунок Л.1 Серия эталонных изображений

столбец 6 – отдельные глобулярные включения;

столбцы 7 – 10 – строчки из глобулярных включений;

столбец 11 - разное число глобулярных включений;

столбец 12 – число включений в одном поле.

Таблица Л.1 – Бланк для регистрации и расчета результатов определения параметров P_D и P_L наибольших включений

Номер		группа ED, столбец 6	Г	группа ЕВ, столбец 710				
шлифа		Длина, $P_{\rm D}$, мкм	Номер	Длина, P_L , мкм				
			строки					
1								
2								
3	_							
4								
5								
6								
Максималь-								
ное значение,								
МКМ	$\mathbf{P}_{\mathbf{D}}$		P _L					
Сумма, мкм								
Среднее								
значение в								
MKM								

Таблица Л.2 – Бланк для записи содержания включений

Строка	группа ЕВ,		группа ЕВ,		группа ЕВ,		группа ЕВ,		группа ED,	
	столбец 7		столбец 8		столбец 9		столбец 10		столбец 6	
	Число	Общее								
	вклю-	число								
	чений	вклю-								
		чений								
3										
4										
5										
6										
7					_					
8										
9										

ПРИМЕЧАНИЕ 1 Площадь одного поля зрения, $\text{мм}^2 - 0.5 \text{ мм}^2$

ПРИМЕЧАНИЕ 2 Общая сканированная площадь, $\text{мm}^2 - 6$ шлифов × 225 $\text{мm}^2 = 1350 \text{ мm}^2$.

ПРИМЕЧАНИЕ 3 Исходная точка для строчечных, вытянутых и отдельных глобулярных оксидных включений: строка 3.

Таблица Л.3 – Бланк для расчета суммарного коэффициента загрязненности К.

№		лпа Е			группа ЕВ, группа ЕВ,			Группа ЕВ,			группа ED,				
стро-	ро- столбец 7		СТ	столбец 8		столбец 9		столбец 10			столбец 6				
ки	Об-	Пло	Об	Об	Пло	Об-	Об-	Пло	Об	Об	Пло	Об	Об	Пло	Об
	щее	щад	щая	щее	щад	щая	щее	щад	щая	щее	щад	щая	щее	щад	щая
	чис-	ь	пло	чис-	ь	пло	чис-	ь	пло	чис-	ь	пло	чис-	ь	пло
	ло	кла	щад	ло	кла	щадь	ло	клас	щад	ЛО	клас	щад	ло	клас	щад
		cca	ь		cca			ca	Ь		ca	ь		ca	ь
3															
4															
5															
6															
7															
8															
9															
Про-															
межу-															
точ-															
ная															
сумма															
Общая															
площа	дь														
включ	ений														
Средн	ий														
множи	тель														
Взвеш	енная														
сумма															
щадей,															
мкм ²															
Общая															
нирова															
площа,	дь,														
MM ²		_													
Проме															
точное															
мкм ² / 1															
Сумма	рный														
Ка,	мкм ² /														
мм ²										_					
				для с	троче	чных,	вытя	нутых	ио	гдельн	ных г	пооул	ярных	ОКСИ	дных
включений: строка 3															

Таблица Л.4 – Длина, ширина, площадь, отношение длины к ширине включений и коэффициенты формы для изображений включений

			Дл	ина включени	Столбцы, k ний, L, не менее 3 мкм, не менее 2 мкм чения, Столбец 6, D, не менее 3 мкм				
Строка,	L,		7	8	9	10	6		
q	МКМ								
1	5,50	<i>w</i> , mkm	-	_	2,00	-	5,50		
		a , mkm^2	-	_	9,00	-	24		
		L/w	-	-	2,70	-	1,00		
		f	_	_	0,58	_	0,00		
2	11	₩, МКМ	-	-	3,00	8,00	11		
		a , $m \kappa m^2$	-	-	25	71	95		
		L/w	-	-	3,80	1,34	1,00		
		f	-	_	0,56	0,12	0,00		
3	22	<i>w</i> , мкм	-	-	4,00	12	22		
		$ a, \text{ MKM}^2 $	-	_	71	200	380		
		L/w	-	_	5,40	1,90	1,00		
		f	-	_	0,55	0,21	0,00		
4	44	<i>w</i> , мкм	_	2,00	6,00	16	44		
		a , mkm^2	-	71	200	565	1525		
		L/w	-	22	7,60	2,70	1,00		
		f	-	0,81	0,54	0,26	0,00		
5	88	<i>w</i> , мкм	-	3,00	8,00	23	88		
		a, MKM ²	-	200	565	1600	6100		
		L/w	-	30	11	3,80	1,00		
		f	-	0,76	0,53	0,30	0,00		
6	176	<i>w</i> , мкм	-	4,00	12	33	176		
		a , mkm^2	-	565	1600	4525	24500		
		L/w	-	43	15	5,40	1,00		
		f	-	0,73	0,53	0,33	0,00		
7	353	<i>w</i> , мкм	2,00	6,00	16	46	_		
		a , mkm^2	566	1600	4525	12800	_		
		L/w	177	61	22	7,60	_		
		f	0,88	0,70	0,52	0,35	_		
8	705	<i>w</i> , мкм	3,00	8	23	65	_		
		а, мкм ²	1600	4525	12800	36200	_		
		L/w	244	86	30	11	_		
		f	0,84	0,68	0,52	0,36	_		
9	1410	w, мкм	4,00	12	33	93	_		
		a , $m \times m^2$	4525	12800	36200	102400	_		
		L/w	345	122	43	15	_		
		$ _f$	0,81	0,66	0,52	0,38	_		

Библиография

- [1] Технический Регламент Таможенного Союза 002/2011 «О безопасности высокоскоростного железнодорожного транспорта».
- [2] Технический Регламент Таможенного Союза 003/2011 «О безопасности инфраструктуры железнодорожного транспорта».
- [3] EN 13674-1:2011 Железные дороги Путь Рельсы Часть1: Рельсы Виньоля от 46 кг/м и более (Bahnanwendungen Oberbau Schienen Teil 1: Vignolschienen ab 46 kg/m).
- [4] EN 10247:2007 Металлографическое определение содержания неметаллических включений в сталях по эталонным изображениям (Metallographische Prüfung des Gehaltes nichtmetallischer Einschlüsse in Stählen mit Bildreihen; Deutsche Fassung).

УДК 625.143.52 MKC 45.080

Ключевые слова: железнодорожные рельсы широкой колеи, классификация, конструкция и размеры, технические требования, правила приемки, методы испытаний, транспортирование и хранение, гарантии изготовителя.

Басуға	ж. қол қойылды Пішімі 60х84 1/16	
Қағазы офсеттік	Қаріп түрі «KZ Times New Roman»,	
	Times New Roman»	
Шартты баспа табағы	1,86. Таралымы дана. Тапсырыс	

«Қазақстан стандарттау және сертификаттау институты» республикалык мемлекеттік кәсіпорны 010000, Астана қаласы, Орынбор көшесі, 11 үй, «Эталон орталығы» ғимараты Тел.: 8 (7172) 79 33 24