Государственное санитарно-эпидемиологическое нормирование Российской Федерации

Государственные санитарно-эпидемиологические правила и нормативы

2.1.6. АТМОСФЕРНЫЙ ВОЗДУХ И ВОЗДУХ ЗАКРЫТЫХ ПОМЕЩЕНИЙ. САНИТАРНАЯ ОХРАНА ВОЗДУХА

Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в атмосферном воздухе населенных мест

Гигиенические нормативы ГН 2.1.6.1763—03

4.2. МЕТОДЫ КОНТРОЛЯ. МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Методические указания

МУК 4.2.1767—03

МУК 4.2.1768—03

МУК 4.2.1769—03

МУК 4.2.1770—03

МУК 4.2.1771—03

МУК 4.2.1772—03

МУК 4.2.1773—03 МУК 4.2.1774—03

MYK 4.2.1774—03 MYK 4.2.1775—03

Издание официальное

Минздрав России Москва • 2004

4.2. МЕТОДЫ КОНТРОЛЯ. МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Методические указания

МУК 4.2.1767-03

МУК 4.2.1768—03

МУК 4.2.1769—03

МУК 4.2.1770—03 МУК 4.2.1771—03

МУК 4.2.1772—03

МУК 4.2.1773—03

МУК 4.2.1774—03

МУК 4.2.1775—03

ББК51.21 М54

М54 Методические указания. – М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. – 66 с.

ISBN 5-7508-0510-7

- 1. Разработаны Российским государственным медицинским университетом (к. б. н. Н. И. Шеиной).
- 2. Утверждены Первым заместителем министра здравоохранения Российской Федерации Главным государственным санитарным врачом Российской Федерации 24 октября 2003 г.
 - 3. Введены в действие с 1 декабря 2003 г.
 - 4. Введены впервые.

ББК 51.21

ISBN 5-7508-0510-7

[©] Минздрав России, 2004

[©] Федеральный центр госсанэпиднадзора Минздрава России, 2004

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации Г Г Онишенко

24 октября 2003 г.

Дата введения: 1 декабря 2003 г.

4.2. МЕТОДЫ КОНТРОЛЯ. МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Метод микробиологического измерения концентрации клеток *Candida tropicalis* Y-456 — продуцента ксилита в атмосферном воздухе населенных мест

Методические указания МУК 4.2.1773—03

1. Общие положения и область применения

Настоящие методические указания устанавливают методику проведения микробиологического количественного анализа концентрации клеток штамма Candida tropicalis Y-456 — продуцента ксилита в атмосферном воздухе населенных мест в диапазоне концентраций от 10 до 3 000 клеток в 1 м³ воздуха.

Методические указания разработаны в соответствии с требованиями ГОСТ 17.2.4.02—81 «Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ» и Р 8.563—96 «Методики выполнения измерений».

Методические указания предназначены для применения в лабораториях предприятий, организаций и учреждений, аккредитованных в установленном порядке на право проведения микробиологических исследований.

Методические указания одобрены и рекомендованы секцией «Гигиенические аспекты биотехнологии и микробного загрязнения окружающей среды» Проблемной комиссии «Научные основы гигиены окружающей среды».

2. Биологическая характеристика Candida tropicalis Y-456 и его гигиенический норматив

На сусло-агаре на 2—3 сутки штамм образует круглые кремоватые колонии с ровным краем, средний диаметр изолированных колоний составляет 0,3 см, а максимальный – 0,8 см. В центре колоний образуется небольшое возвышение – «бугорок», на среде появляется маленькое желто-оранжевое окрашивание. Консистенция колоний мягкая, неплотная, вязкая. Поверхность гладкая, слегка матовая.

Морфологически штамм представлен полиморфными клетками: округлые, овальные, большей частью одиночные 2—4 мкм, иногда цепочки или конгломераты из вытянутых клеток 10—12 мкм. Наблюдается обилие бластоспор.

При выращивании на кукурузном агаре по Дальмау в чашках Петри обильно образуются псевдогифы с многократными разветвлениями и бластоконидиями, расположенными одиночно или цепочками вдоль гиф (8).

Систематическое положение микроорганизма

Класс Fungi imperfecti Порядок Blastomycetales Род Candida

Род Canaiaa Вид tropicalis Штамм Y-456

Штамм получен из ЦМПМ ВНИИгенетика как продуцент этанола и селектирован по признаку формирования крупных колоний на средах с ксилозой. Штамм является продуцентом ксилита. Продуктивность на средах с 5% содержанием ксилозы: максимальная – 80% ксилита, средняя – 78,8—76,2% (39,5 г/л) ксилита.

Штамм-продуцент растет на жидких и агаризованных средах. Оптимальная температура роста 35—37 °C, pH среды – 5,0—6,0. Для размножения используется сусло-агар 5—6 °Б, среда ДАП – глюкоза (ксилоза) – 20 г, дрожжевой экстракт – 2,0 г, пептон – 2 г, агар-агар – 20 г, вода – 1 л, pH среды – 5,0—6,0.

Предельно допустимая концентрация (ПДК) в атмосферном воздухе населенных мест – $30 \, \text{кл/м}^3$, пометка A.

3. Пределы измерений

Методика обеспечивает выполнения измерений количества клеток дрожжевого гриба в атмосферном воздухе населенных мест в диапазоне концентраций от 10 до 3 000 клеток в 1 м³ воздуха при доверительной вероятности 0.95.

4. Метод измерений

Метод основан на аспирации из воздуха клеток дрожжеподобного гриба на поверхность среды сусло-агар и подсчета выросших колоний по типичным культурально-морфологическим признакам на 2 сутки развития. В качестве дополнительного контроля предлагается отбор пробы на чашку Петри с селективной средой для дифференцирования С. tropicalis от других дрожжеподобных грибов, обладающих способностью к образованию ростковых трубок (9, 10).

5. Средства измерений, вспомогательные устройства, реактивы и материалы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства и материалы.

5.1. Средства измерений, вспомогательные устройства, материалы

Harrison	лля бактерио	WORLLWOOMODO	A	D. 0.D. TT. 111.0
пооби	лля оактерио	логического	анапиза	возлуха.

модель 818 (щелевой прибор Кротова) ТУ 64-12791—77

Термостаты электрические суховоздушные

или водяные

Автоклав электрический ГОСТ 9586—75

Бокс, оборудованный бактерицидными лампами

Холодильник бытовой

Весы лабораторные, аналитические типа ВЛА-200

Микроскоп биологический с иммерсионной

системой типа «Биолам» Л-211

Лупа с увеличением х10 ГОСТ 25706—83

Чашки Петри бактериологические плоскодонные,

стеклянные, диаметром 100 мм

Пробирки биологические, вместимостью

20 и 35 мл ГОСТ 10515—75 Пипетки мерные на 1, 5 и 10 мл ГОСТ 10515—75 Пипетки мерные на 1, 5, и 10 мл ГОСТ 1770—74

Колбы конические, вместимостью 250 и 500 мл	ГОСТ 177074
Секундомер	ΓΟCT 9586—75
Барометр	ГОСТ 246 96—79
Марля медицинская	ΓΟCT 9412—77
Вата медицинская гигроскопическая	ΓΟCT 25556—81

5.2. Реактивы, растворы

Среда сусло-агар: солодовое сусло (значение Баллинга от 5 до 6°) – 98 %, агар-агар – 2 %, pH среды 5,0—6,0, режим стерилизации: $P-0.8~\rm krc/cm^2$, 40 мин.

Спирт этиловый ректификат ГОСТ 5962—67.

Сыворотка или плазма крови человека (вместо них можно использовать среду 199).

Антибиотик биомицин (хлортетрациклина гидрохлорид).

6. Требования безопасности

При выполнении измерений концентрации клеток штаммапродуцента в воздухе рабочей зоны соблюдают следующие требования:

- 6.1. Правила техники безопасности при работе с химическими реактивами по ГОСТ 12.1.005—88.
- 6.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019—79 и инструкции по эксплуатации прибора.
- 6.3. «Инструкции по устройству, требованиям безопасности и личной гигиены при работе в микробиологических лабораториях предприятий микробиологической промышленности» (1977).
- 6.4. Все виды работ с реактивами проводят только в вытяжном шкафу при работающей вентиляции, работа с биологическим материалом осуществляется в боксе, оборудованном бактерицидными лампами.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц с высшим или средним специальным образованием, прошедших соответствующую подготовку и имеющих навыки работы в области микробиологических исследований.

8. Условия измерений

Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях при температуре воздуха

(20 \pm 5 °C), атмосферном давлении 30—800 мм рт. ст. и влажности воздуха не более 80 %.

9. Проведение измерения

9.1. Условия отбора проб воздуха

Для определения концентрации клеток продуцента воздух аспирируют при помощи аппарата Кротова со скоростью 10 л/мин на поверхность среды сусло-агар. Время аспирации воздуха (5—20 мин) зависит от предполагаемой концентрации клеток штаммапродуцента.

Аппарат Кротова перед каждым отбором пробы воздуха тщательно протирают спиртом. Особенно тщательно обрабатывают поверхность подвижного диска и внутреннюю стенку прибора, наружную и внутреннюю стенку крышки. На подвижной диск устанавливают подготовленную чашку Петри со средой, одновременно снимая с нее крышку. Прибор закрывают. Соприкосновение крышки прибора со средой недопустимо. После отбора пробы воздуха и остановки диска, прибор открывают, быстро снимают чашку Петри и закрывают крышкой от данной чашки. На дне чашки Петри стеклографом отмечают точку контроля, время аспирации и дату отбора пробы.

9.2. Выполнение анализа

Метод предполагает учет количества типичных колоний, выросших на 2 сутки после посева проб воздуха по культуральноморфологическим признакам. Метод позволяет учитывать на чашке до 200 колоний продуцента.

Агаризованную среду сусло-агар расплавляют, остужают до 50—60 °C, тщательно перемешивают и разливают по 10 мл в стеклянные чашки Петри на горизонтальной поверхности.

Чашки с застывшей средой помещают в термостат на сутки при температуре 37 °C, после чего проросшие чашки бракуют, стерильные чашки используют для контроля воздуха.

После отбора проб воздуха чашки Петри помещают в термостат при температуре 37 °C. На 2-е сутки производят подсчет выросших типичных колоний продуцента. При необходимости культуру подвергают микроскопированию.

Для постановки дополнительного контроля в среду добавляют сыворотку или плазму крови человека (можно также заменить средой 199) из расчета 0,5 мл сыворотки на 5 мл среды. После отбора

проб инкубируют при 37 °C в течение 3 часов. При микроскопировании некоторые дрожжеподобные грибы (C. albicans) в отличие от C. tropicalis на селективной среде образуют ростковые трубки диаметром 3—4 мкм и длиной до 20 мкм (они сходны с мицелием, но не дают сужения в месте прикрепления к дрожжевой клетке).

10. Вычисление результатов измерения

Расчет концентрации клеток продуцента в пересчете на 1 м³ воздуха производят по формуле:

$$X = \frac{N \cdot 1000}{V} \kappa n / M^3$$
, где

X – концентрация клеток продуцента в воздухе;

N - количество колоний продуцента, выросших на чашке;

1 000 - коэффициент пересчета на 1 м3 воздуха;

V – объем воздуха, л (произведение скорости на время аспирации).

11. Оформление результатов измерений

Результаты измерений оформляют протоколом по форме.

Протокол №

количественного микробиологического анализа штамма-продуцента *Candida tropicalis* Y-456 в атмосферном воздуже населенных мест

1. Дата проведения анализа
2. Место отбора пробы
3. Название лаборатории
4. Юридический адрес организации

Результаты микробиологического анализа

Шифр или № пробы	Определяемый микроорганизм	Концентрация, кл/м ³

Ответственный исполнитель Научный руководитель

Список литературы

- 1. Руководство по контролю загрязнения атмосферы: РД 52.04.186—96. М., 1991, 693 с.
 - 2. ГОСТ 8.563—96. ГСИ «Методики выполнения измерений».
- 3. Положение об организации работы по технике безопасности микробиологической промышленности. М., 1980. 27 с.
- 4. Инструкции по устройству, требованиям безопасности и личной гигиены при работе в микробиологических лабораториях предприятий микробиологической промышленности. М., 1977. 7 с.
- 5. ГОСТ 17.2.4.02—81 «Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ». М.: Изд-во стандартов, 1981. 3 с.
- 6. Влодавец В. В., Немыря В. И. Санитарно-микологический контроль объектов окружающей среды на предприятиях микробио-логической промышленности// Гиг. и сан., 1977. № 1, 25—28 с.
 - 7. Бабьева И. П., Зенова Г. М. Биология почв. М.: МГУ. 122 с.
- 8. Саттон Д., Фотергилл А., Ринальди М. Определитель патогенных и условно патогенных грибов. М.: Мир, 2001. 110 с.
- 9. Кашкин П. Н., Лисин В. В. Практическое руководство по медицинской микологии. М.: Медицина, 1983. 153 с.
- 10. Kwon-Chung K. J., Bennett J. E. Medical mycology. Philadelphia: Lea & Febiger, 1992. P. 61—62.

Содержание

Предельно допустимые концентрации (ПДК) микроорганизмов-	
продуцентов, бактериальных препаратов и их компонентов	
в атмосферном воздухе населенных мест. ГН 2.6.1763—03	5
Метод микробиологического измерения концентрации клеток	
Aspergillus awamori ВНИИгенетика 120/177 – продуцента	
глюкоамилазы в атмосферном воздухе населенных мест.	
MYK 4.2.1767—03	9
Метод микробиологического измерения концентрации клеток	
Aspergillus terreus 44-62 — продуцента ловастатина	
в атмосферном воздухе населенных мест. МУК 4.2.1768—03	16
Метод микробиологического измерения концентрации клеток	
микроорганизма Bacillus subtilis 65 – продуцента нейтральной	
протеиназы и амилазы в атмосферном воздухе населенных мест	
МУК 4.2.1769—03	23
Метод микробиологического измерения концентрации клеток	
микроорганизма Bacillus subtilis 72 – продуцента щелочной	
протеазы в атмосферном воздухе населенных мест.	
МУК 4.2.1770—03	30
Метод микробиологического измерения концентрации клеток	
микроорганизма Bacillus subtilis 103 (Ч-15) – продуцента нейтральной	
протеазы в атмосферном воздухе населенных мест.	
МУК 4.2.1771—03	37
Метод микробиологического измерения концентрации клеток	
микроорганизма Bacillus licheniformis 1001 – продуцента	
бацитрацина в атмосферном воздухе населенных мест.	
МУК 4.2.1772—03	44
Метод микробиологического измерения концентрации клеток	
Candida tropicalis Y-456 — продуцента ксилита	
в атмосферном воздухе населенных мест.	
МУК 4.2.1773—03	51
Метод микробиологического измерения концентрации клеток	
микроорганизма Penicillium canescens F-832 ВКПМ	
продуцента ксиланазы в атмосферном воздухе населенных мест.	
МУК 4.2.1774—03	58
Метод микробиологического измерения концентрации	
клеток микроорганизма Trichoderma viride 44—11—62/3 –	
продуцента комплекса целлюлолитических ферментов	
в атмосферном воздухе населенных мест.	٠.
МУК 4.2.1775—03	64

Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в атмосферном воздухе населенных мест

Гигиенические нормативы ГН 2.1.6.1763—03

Методические указания МУК 4.2.1767—4.2.1775—03

Редакторы Аванесова Л. И., Максакова Е. И. Технический редактор Климова Г. И.

Подписано в печать 29.06.04

Формат 60х88/16

Печ. л. 4,5 Заказ 53

Тираж 3000 экз.

Министерство здравоохранения Российской Федерации 101431, Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати и тиражирован Издательским отделом Федерального центра госсанэпиднадзора Минздрава России 125167, Москва, проезд Аэропорта, 11. Отдел реализации, тел. 198-61-01