МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 34138— 2017

ПРОДУКТЫ ПИЩЕВЫЕ, ПРОДОВОЛЬСТВЕННОЕ СЫРЬЕ

Метод определения остаточного содержания макроциклических лактонов с помощью высокоэффективной жидкостной хроматографии с флуориметрическим детектированием

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 PA3PAБOTAH Федеральным государственным бюджетным учреждением «Всероссийский государственный Центр качества и стандартизации лекарственных средств для животных и кормов» (ФГБУ «ВГНКИ»)
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 июля 2017 г. № 101-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации		
Армения	AM	Минэкономики Республики Армения		
Казахстан	KZ	Госстандарт Республики Казахстан		
Киргизия	KG	Кыргызстандарт		
Россия	RU	Росстандарт		

4 Приказом Федерального агентства по техническому регулированию и метрологии от 4 августа 2017 г. № 808-ст межгосударственный стандарт ГОСТ 34138—2017 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2018 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2017

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ПРОДУКТЫ ПИЩЕВЫЕ, ПРОДОВОЛЬСТВЕННОЕ СЫРЬЕ

Метод определения остаточного содержания макроциклических лактонов с помощью высокоэффективной жидкостной хроматографии с флуориметрическим детектированием

Food products, food raw materials. Method of determining residual content of macrocyclic lactones by high performance liquid chromatography with fluorimetric detection

Дата введения — 2018—07—01

1 Область применения

Настоящий стандарт распространяется на пищевые продукты и продовольственное сырье: мясо (все виды животных), в том числе мясо птицы, субпродукты, молоко, молочные продукты, в т. ч. масло из коровьего молока и сыр, животный жир и устанавливает метод высокоэффективной жидкостной хроматографии с флуориметрическим детектированием (далее — ВЭЖХ) для определения остаточного содержания макроциклических лактонов в диапазоне измерений от 0,5 до 250,0 мкг/кг.

П р и м е ч а н и е — Макроциклические лактоны: эприномектин, мокс<mark>идектин, эмамектин, абамектин, дора</mark>мектин, ивермектин.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007—76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.019—79 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты*

ГОСТ 61—75 Реактивы. Кислота уксусная. Технические условия

ГОСТ OIML R 76-1—2011 Государственная система обеспечения единства измерений. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 1770—74 (ИСО 1042—83, ИСО 4788—80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2603—79 Реактивы. Ацетон. Технические условия

ГОСТИСО 5725-6—2003 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике**

ГОСТ 6709—72 Вода дистиллированная. Технические условия

ГОСТ 6995—77 Реактивы. Метанол-яд. Технические условия

ГОСТ 7269—2015 Мясо. Методы отбора образцов и органолептические методы определения свежести

ГОСТ 8285—91 Жиры животные топленые. Правила приемки и методы испытания ГОСТ 9293—74 (ИСО 2435—73) Азот газообразный и жидкий. Технические условия

^{*} В Российской Федерации действует ГОСТ Р 12.1.019—2009.

^{**} В Российской Федерации действует ГОСТ Р ИСО 5725-6—2002.

ГОСТ 34138-2017

ГОСТ 22300—76 Реактивы. Эфиры этиловый и бутиловый уксусной кислоты. Технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 26809.1—2014 Молоко и молочная продукция. Правила приемки, методы отбора и подготовка проб к анализу. Часть 1. Молоко, молочные, молочные составные и молокосодержащие продукты

ГОСТ 26809.2—2014 Молоко и молочная продукция. Правила приемки, методы отбора и подготовка проб к анализу. Часть 2. Масло из коровьего молока, спреды, сыры и сырные продукты, плавленые сыры и плавленые сырные продукты

ГОСТ 29227—91 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29245—91 Консервы молочные. Методы определения физических и органолептических показателей

ГОСТ 31467—2012 Мясо птицы, субпродукты и полуфабрикаты из мяса птицы. Методы отбора проб и подготовка их к испытаниям

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Сущность метода

Метод основан на выделении макроциклических лактонов из анализируемой пробы с их последующим количественным определением методом ВЭЖХ с флуориметрическим детектированием при длинах волн возбуждения 365 нм и эмиссии 455 нм. Количественное определение проводят методом абсолютной калибровки.

4 Требования безопасности и условия выполнения измерений

- 4.1 Применяемые в работе реактивы относятся к веществам 1-го и 2-го класса опасности по ГОСТ 12.1.007, при работе с ними необходимо соблюдать требования безопасности, установленные для работ с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005.
- 4.2 Помещения, в которых проводят анализ и подготовку проб, должны быть оборудованы приточно-вытяжной вентиляцией.
 - 4.3 Приготовление градуировочных растворов проводят в вытяжном шкафу.
- 4.4 При выполнении измерений с использованием жидкостного хроматографа соблюдают правила по электробезопасности по ГОСТ 12.1.019.
- 4.5 Применяемые при определении остаточных содержаний макроциклических лактонов средства измерений должны иметь свидетельства о поверке, вспомогательное оборудование свидетельства об аттестации, оформленные в соответствии с требованиями национального законодательства в области обеспечения единства измерений, действующего на территории государства, принявшего стандарт.
- 4.6 К выполнению измерений методом ВЭЖХ допускаются лица, владеющие техникой ВЭЖХ и изучившие инструкции по эксплуатации применяемого оборудования.
 - 4.7 При выполнении измерений соблюдают следующие условия:

5 Средства измерений, вспомогательное оборудование, материалы, посуда и реактивы

5.1 Для определения содержания макроциклических лактонов применяют следующие средства измерений, вспомогательное оборудование, материалы и посуду:

- весы неавтоматического действия высокого класса точности по ГОСТ OIML R 76-1 с максимальной нагрузкой не более $\pm 0,001$ г;
- весы высокого (II) класса точности с пределами допускаемой абсолютной погрешности не более ± 0.2 мг;
- систему высокоэффективную жидкостную хроматографическую, состоящую из бинарного насоса со смесителем, системы фильтрования и дегазации подвижных фаз, термостата хроматографической колонки, обеспечивающего температуру нагрева до (50 \pm 1) °C, колонки хроматографической, заполненной обращенно-фазным сорбентом C18 с размером частиц не более 4,0 мкм, длиной 150 мм и внутренним диаметром 3,9 мм, компьютера с установленным программным обеспечением, флуоресцентного детектора с диапазоном длин волн возбуждения (200—890) нм, диапазоном длин волн эмиссии (210—900) нм, погрешностью измерения длины волны не более ± 3 нм, пределом детектирования по антрацену не более $1 \cdot 10^{-12}$ г/см³;
- модуль термостатируемый нагревательный с системой отдувки растворителей инертным газом и максимальной температурой термостатирования 50 °C;
 - устройство вакуумное для твердофазной экстракции;
- картриджи для твердофазной экстракции вместимостью не менее 12 см³, заполненные 0,5 г обращенно-фазным сорбентом С18 с диаметром частиц сорбента не более 40 мкм;
 - генератор азота, с объемной долей азота не менее 90 % и производительностью 200 дм³/мин;
- насос мембранный вакуумный, производительностью не менее 11,5 дм³/мин, конечным вакуумом не более 24 кПа, максимальным давлением 200 кПа;
 - баню ультразвуковую с рабочей частотой не менее 20 Гц и объемом не менее 1 дм³;
- встряхиватель (шейкер) вибрационный для пробирок орбитального типа движения с амплитудой встряхивания 3 мм, диапазоном скоростей от 150 до 2000 об/мин;
- встряхиватель (вортекс) вибрационный для пробирок с амплитудой встряхивания 5 мм и диапазоном скоростей от 0 до 2500 об/мин;
 - измельчитель-гомогенизатор лабораторный;
- камеру лабораторную морозильную с рабочим диапазоном температур от минус 15 °C до минус 25 °C;
- систему получения деионизированной воды высокой чистоты с удельным сопротивлением 18 Мом · см;
 - холодильник бытовой с рабочим диапазоном температур от 2 °C до 8 °C;
- центрифугу лабораторную рефрижераторную со скоростью вращения не менее 4000 об/мин и диапазоном температур от 4 °C до 20 °C с адаптерами для пробирок вместимостью 15 и 50 см³;
- шкаф сушильный с максимальной температурой нагрева не менее 200 °C и погрешностью поддержания заданной температуры \pm 5 °C;
- пробы, не содержащие макроциклических лактонов, подготовленные и проанализированные ранее в соответствии с требованиями разделов 7 и 8, в зависимости от типа исследуемой матрицы («чистые» пробы*);
- виалы (флаконы) стеклянные с коническим дном вместимостью 2 см³, с завинчивающимися крышками и тефлоновыми прокладками 9 мм;
 - вставки стеклянные в виалы вместимостью 250 мм³;
 - пробирки полипропиленовые вместимостью 15 и 50 см³ с завинчивающимися крышками;
 - колбы мерные 1—10(25)—1 по ГОСТ 1770;
 - колбы конические Кн—1—100(250)—29/32 по ГОСТ 25336;
 - пипетки 2—2—1—10(25) по ГОСТ 29227;
- пипетки одноканальные переменной вместимости 5—25, 20—100, 200—1000, 1000—5000 мм 3 с допустимой относительной погрешностью дозирования по метанолу и ацетонитрилу не более \pm 1 %;
 - стакан B—1—1000 TC по ГОСТ 25336;
 - цилиндры 1—100(500,1000)—1 по ГОСТ 1770.
 - 5.2 При определении содержания макроциклических лактонов применяют следующие реактивы:
 - 1-метилимидазол с массовой долей основного вещества не менее 99 %;
 - азот газообразный 2-го сорта по ГОСТ 9293, ос. ч.;
 - ацетон по ГОСТ 2603;
 - ацетонитрил для ВЭЖХ с массовой долей основного вещества не менее 99,8 %;
- воду деионизированную для ВЭЖХ, полученную с использованием системы производства ультрачистой воды из дистиллированной воды по ГОСТ 6709;

^{*} Срок хранения «чистых» проб при температуре от минус 15 °C до минус 25 °C — не более 3 мес.

FOCT 34138-2017

- кислоту ортофосфорную с массовой долей основного вещества не менее 85 %;
- кислоту уксусную по ГОСТ 61, х. ч.;
- метанол, по ГОСТ 6995, х. ч.;
- трифторуксусный ангидрид с массовой долей основного вещества не менее 95 %;
- триэтиламин с массовой долей основного вещества не менее 99,0 %;
- эфир этиловый уксусной кислоты (этилацетат) по ГОСТ 22300, ч. д. а.
- 5.3 Для приготовления исходных растворов в качестве образцов сравнения применяют соединения:
 - эмамектинбензоат с содержанием основного вещества не менее 99,3 %;
 - ивермектин с содержанием основного вещества не менее 94.0 %;
 - моксидектин с содержанием основного вещества не менее 96,4 %;
 - эприномектин с содержанием основного вещества не менее 92.4 %;
 - абамектин с содержанием основного вещества не менее 98,7 %;
 - дорамектин с содержанием основного вещества не менее 83,7 %.
- 5.4 Допускается применение других средств измерений и посуды, не уступающих вышеуказанным по метрологическим и техническим характеристикам и обеспечивающим необходимую точность измерения, а также вспомогательного оборудования, реактивов и материалов по качеству не хуже вышеуказанных.

6 Подготовка к проведению измерений

6.1 Подготовка лабораторной посуды и реактивов

- 6.1.1 Мойку и сушку посуды проводят в отдельном помещении, оборудованном приточно-вытяжной вентиляцией. Для сушки лабораторной посуды и подготовки реактивов необходимо использовать отдельные сушильные шкафы.
- 6.1.2 Стеклянную посуду подвергают стандартной процедуре очистки лабораторной посуды с последующей последовательной промывкой органическими растворителями: этилацетатом (однократно), ацетоном (дважды).
- 6.1.3 Процедуру промывки органическими растворителями следует проводить в вытяжном шкафу. Рекомендуется на стадиях промывки использовать ультразвуковую баню. Окончательную сушку посуды проводят в сушильном шкафу, установленном в вытяжном шкафу, при температуре от 105 °C до 110 °C.
- 6.1.4 Каждую новую партию реактивов проверяют на отсутствие контаминации анализируемыми соединениями путем проведения холостого опыта с использованием «чистой» пробы в качестве анализируемой в соответствии с процедурой анализа.

6.2 Приготовление растворов

6.2.1 Приготовление подвижной фазы

Для приготовления подвижной фазы в стакан вместимостью 1000 см³ приливают 650 см³ ацетонитрила, 200 см³ метанола, 90 см³ деионизированной воды, добавляют 0,9 см³ триэтиламина и 0,9 см³ ортофосфорной кислоты, перемешивают.

Срок хранения раствора при температуре от 15 °C до 25 °C — не более 1 мес.

6.2.2 Приготовление раствора ацетонитрила и деионизированной воды в объемном соотношении 3:7

В коническую колбу вместимостью 250 см³ вносят 60 см³ ацетонитрила и 140 см³ деионизированной воды, перемешивают.

Раствор используют свежеприготовленным.

6.2.3 Приготовление 2 %-ного раствора триэтиламина

В коническую колбу вместимостью 100 см³ приливают 49 см³ раствора ацетонитрила в деионизированной воде (см. 6.2.2), вносят 1 см³ триэтиламина, перемешивают.

Раствор используют свежеприготовленным.

6.2.4 Приготовление раствора метанола и деионизированной воды в объемном соотношении 1:3

В полипропиленовую пробирку вместимостью 50 см³ вносят 10 см³ метанола и 30 см³ деионизированной воды, перемешивают.

Раствор используют свежеприготовленным.

6.2.5 Приготовление раствора 1-метилимидазола и ацетонитрила в объемном соотношении 2:7

В полипропиленовую пробирку вместимостью 15 см 3 вносят 2 см 3 1-метил-имидазола и 7 см 3 ацетонитрила, перемешивают.

Раствор используют свежеприготовленным.

6.2.6 Приготовление раствора трифторуксусного ангидрида и ацетонитрила в объемном соотношении 2:7

В полипропиленовую пробирку вместимостью 15 см³ вносят 2 см³ трифторуксусного ангидрида и 7 см³ ацетонитрила, перемешивают.

Раствор используют свежеприготовленным.

6.3 Приготовление градуировочных растворов

6.3.1 Приготовление исходных стандартных растворов макроциклических лактонов с массовыми концентрациями 500 мкг/см 3 (растворы C_0)

Для приготовления исходных стандартных растворов C_0 рассчитывают необходимую массу i-го вещества, эквивалентную 12,5 мг, с учетом содержания основного вещества для каждого определяемого аналита по формуле

$$m_i = \frac{m}{0.01 \cdot P_i},\tag{1}$$

где *т* — масса образца сравнения макроциклического лактона, г;

 P_i — массовая доля основного вещества i-го образца сравнения, %.

В мерные колбы вместимостью 25 см³ по отдельности вносят рассчитанные массы исходных веществ (взвешивание проводят с точностью до четвертого десятичного знака), доводят до метки метанолом, перемешивают и помещают в ультразвуковую баню на 10 мин при температуре от 30 °C до 35 °C в режиме перемешивания.

Срок хранения растворов при температуре от минус 15 °C до минус 25 °C — не более 3 мес.

Перед применением растворы выдерживают при комнатно<mark>й температуре в темном месте не менее</mark> 30 мин.

6.3.2 Приготовление рабочих стандартных растворов макроциклических лактонов (растворы C_1 , C_2 , C_3)

Рабочие растворы C_1 , C_2 , C_3 готовят в мерных колбах вместимостью 10 см³ согласно рисунку 1.



Рисунок 1 — Приготовление рабочих растворов C_1 , C_2 , C_3

Растворы C_1 , C_2 , C_3 хранят при температуре от минус 15 °C до минус 25 °C не более 1 мес. Перед применением растворы выдерживают при комнатной температуре в темном месте не менее 30 мин.

6.3.3 Приготовление матричных градуировочных растворов (растворы $G_1 - G_5$)

Матричные градуировочные растворы G_1 — G_5 готовят в полипропиленовых пробирках вместимостью 15 см³ из «чистых» проб массой 1,0 г, в которые вносят рабочие растворы определяемых макроциклических лактонов C_2 , C_3 (см. 6.3.2) в соответствии с таблицей 1.

ГОСТ 34138-2017

Табпина	1 — Приготовление	MATURALLY EDATION	OODOUULIV DACTDOD	OR GG-
гаолица	 — приготовление 	матричных градуиі	оовочных раствос)OB G₁—G₅

Обозначение и массовая концентрация	Вносимый объем рабочего раствора, см ³		
приготовляемого матричного градуиро- вочного раствора	C ₃	C ₂	
G ₁ (0,001 мкг/см ³)	0,010	<u> </u>	
$G_2(0,004 \text{ мкг/см}^3)$	0,040	_	
G ₃ (0,020 мкг/см ³)	0,200	_	
G₄ (0,100 мкг/см³)	_	0,100	
G ₅ (0,500 мкг/см ³)	_	0,500	

Пробирки встряхивают в шейкере в течение 1—2 мин и проводят дальнейшую обработку растворов согласно разделу 7.

Растворы G_1 — G_5 используют свежеприготовленными.

7 Отбор и подготовка проб

7.1 Отбор проб

- 7.1.1 Отбор проб мяса, субпродуктов по ГОСТ 7269.
- 7.1.2 Отбор проб мяса, субпродуктов и продуктов из мяса птицы по ГОСТ 31467.
- 7.1.3 Отбор проб животных жиров по ГОСТ 8285.
- 7.1.4 Отбор проб молока и молочных продуктов по ГОСТ 26809.1, сыра, масла из коровьего молока — по ГОСТ 26809.2.
- 7.1.5 Пробы, отобранные по 7.1.1—7.1.2, при отсутствии возможности анализа в день отбора замораживают и хранят при температуре от минус 15 °C до минус 25 °C до проведения анализа.

7.2 Подготовка проб

Подготовку проб молока и молочных продуктов проводят по ГОСТ 26809.1 [восстановление сухих молочных продуктов — по ГОСТ 29245 (пункт 3.4)], сыра, масла из коровьего молока — по ГОСТ 26809.2. Мышечную ткань предварительно очищают от грубой соединительной ткани. Мясо и субпродукты измельчают на гомогенизаторе. Обработку проб проводят в соответствии с рисунком 2.

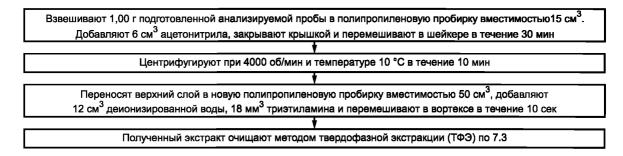


Рисунок 2 — Подготовка анализируемых проб

7.3 Очистка подготовленных проб методом ТФЭ

Картриджи для твердофазной экстракции предварительно кондиционируют, последовательно пропуская 5 см³ ацетонитрила и 5 см³ раствора триэтиламина (см. 6.2.3). Затем пропускают через картридж пробу, полученную в соответствии с 7.2 (избыточное давление или вакуум не применяют). В пробирку из-под экстракта вносят 2 см³ раствора ацетонитрила (см. 6.2.2), перемешивают в шейкере в течение 10 с и наносят раствор на картридж. Промывают картридж последовательно 2 см³ деионизированной воды и 1 см³ раствора метанола (см. 6.2.4), сушат в вакууме мембранного вакуумного насоса в течение 10 мин. Элюируют определяемые вещества 5 см³ ацетонитрила в новую полипропиленовую пробирку вместимостью 15 см³. Упаривают элюат досуха в токе азота в системе упаривания при темпе-

ратуре 40 °C. Остаток перерастворяют, последовательно добавляя 90 мм³ раствора 1-метилимидазола в ацетонитриле (см. 6.2.5), 90 мм³ раствора трифторуксусного ангидрида в ацетонитриле (см. 6.2.6) и 20 мм³ уксусной кислоты, перемешивают в вортексе в течение 10 с, переносят в виалу вместимостью 2 см³ со стеклянной вставкой и используют для измерения методом ВЭЖХ.

8 Порядок выполнения анализа

8.1 Условия хроматографического разделения

- 8.1.1 Высокоэффективный жидкостный хроматограф с флуоресцентным детектором включают в соответствии с руководством (инструкцией) по эксплуатации и устанавливают параметры, указанные ниже
- 8.1.2 Например, для колонки диаметром 3,9 мм, длиной 150 мм, с обращенно-фазным сорбентом C18 с размером частиц 4,0 мкм, соблюдают следующие условия хроматографирования:
 - температура колонки 30 °C;
 - скорость потока подвижной фазы 0,6 cм³/мин;
 - объем вводимой пробы 20 мм³.

Детекцию осуществляют на флуоресцентном детекторе при длинах волн возбуждения 365 нм и эмиссии 455 нм. Разделение проводят в изократическом режиме элюирования (приготовление подвижной фазы по 6.2.1) в соответствии с таблицей 2.

Таблица 2 — Времена удерживания макроциклических лактонов

Аналит	Время, мин	
Эприномектин	7,4	
Моксидектин	9,8	
Эмамектин	12,8	
Абамектин	16,5	
Дорамектин	21,4	
Ивермектин	29,0	

П р и м е ч а н и е — Приведенные выше параметры хроматографического разделения могут отличаться в зависимости от используемого оборудования.

Пример хроматографического разделения макроциклических лактонов приведен в приложении А.

8.2 Построение градуировочной характеристики

Градуировочные характеристики строят заново в каждой серии анализов. Построение и расчет градуировочной характеристики проводят с помощью программного обеспечения.

- 8.2.1 Проводят однократное измерение градуировочных растворов, приготовленных по 6.3.3, в порядке возрастания их концентраций в условиях по 8.1.
- 8.2.2 Градуировочную характеристику строят в координатах «Площадь пика определяемого вещества в градуировочном растворе» «Массовая концентрация определяемого вещества в градуировочном растворе». При построении градуировочной зависимости используют линейную регрессию вида y = a + bx, при этом коэффициент корреляции должен быть не менее 0,99.
- 8.2.3 Количественное определение проводят методом абсолютной калибровки по площади пика идентифицированного макроциклического лактона относительно градуировочной зависимости, полученной при анализе градуировочных растворов в аналогичных условиях.
- 8.2.4 Построение линейного градуировочного графика и расчет концентраций макроциклических лактонов в анализируемых пробах выполняется системой обработки данных в автоматическом режиме.

8.3 Измерение методом ВЭЖХ

- 8.3.1 Для определения содержания макроциклических лактонов проводят измерение методом ВЭЖХ в соответствии с руководством (инструкцией) по эксплуатации применяемого оборудования.
- 8.3.2 Измерение методом ВЭЖХ выполняют в виде последовательности однократных измерений, включающей следующие образцы:
 - «чистую» пробу;

- градуировочные растворы (см. 6.3.3);
- экстракты анализируемых проб, приготовленных по 7.2.
- 8.3.3 Определяют и регистрируют на хроматограмме время удерживания пика каждого соединения, соответствующее времени удерживания, найденному при измерении градуировочных растворов по 8.1.2.

9 Обработка результатов измерений

- 9.1 В соответствии с данными, полученными при анализе градуировочных растворов, создают градуировочную характеристику с использованием программного обеспечения.
 - 9.2 Содержание *i*-го аналита X_i , мкг/кг, вычисляют по формуле

$$X_j = \frac{C_i \cdot V_j}{m_i} \cdot 1000, \tag{2}$$

- где C_i массовая концентрация аналита в анализируемой пробе, найденная по градуировочному графику, мкг/см³;
 - V_i объем, до которого разбавлена проба, см 3 ;

 - m_{i} масса анализируемой пробы, г; 1000 коэффициент пересчета с граммов на килограмм веса продукта.
- 9.3 За результат измерений принимают среднеарифметическое значение результатов двух параллельных определений, если выполняется условие приемлемости по ГОСТ ИСО 5725-6 (пункт 5.2.2).

10 Метрологические характеристики

Установленный в настоящем стандарте метод обеспечивает выполнение измерений содержания макроциклических лактонов с расширенной неопределенностью результатов аналитических измерений при коэффициенте охвата k = 2 и доверительной вероятности P = 0.95.

Т а б л и ц а 3 — Показатели точности и прецизионности метода при проведении измерений содержания макроциклических лактонов

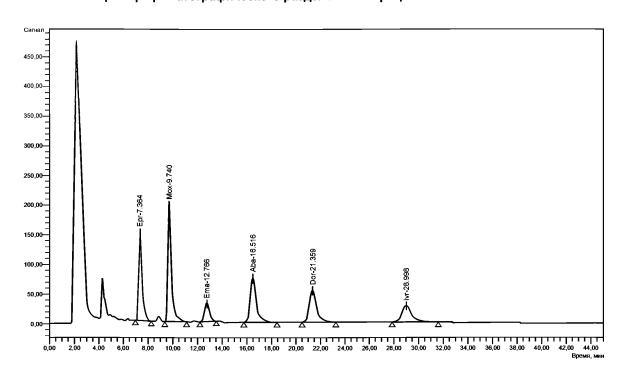
Аналит	Диапазон измерений содержания аналита, мкг/кг	Значение относительной расширенной неопределенности $\pm U_p$ %, при коэффициенте охвата $k=2$	Показатель повторяемости (относительное стандартное отклонение повторяемости) σ_{ρ} , %	Показатель воспро- изводимости (отно- сительное стандартное откло- нение воспроизво- димости) σ_{R} , %	Предел повторяе- мости <i>r</i> , % (при <i>P</i> = 0,95, <i>k</i> = 2)
Абамектин	От 0,5 до 2,0 включ	90	29	44	81
	Св. 2,0 до 250,0 включ.	43	7	18	19
Ивермектин	От 0,5 до 2,0 включ.	87	23	39	65
	Св. 2,0 до 250,0 включ.	45	13	20	35
Дорамектин	От 0,5 до 2,0 включ.	90	29	44	74
	Св. 2,0 до 250,0 включ.	33	7	15	19
Эмамектин	От 0,5 до 2,0 включ.	78	26	39	71
	Св. 2,0 до 250,0 включ.	51	11	23	31
Эприномектин	От 0,5 до 2,0 включ.	78	26	39	71
	Св. 2,0 до 250,0 вкл	51	11	23	31
Моксидектин	От 0,5 до 2,0 включ	66	22	33	62
	Св. 2,0 до 250,0 включ.	49	16	24	43

11 Оформление результатов измерений

Содержание і-го макроциклического лактона, мкг/кг, представляют в виде

$$\overline{X}_i \pm 0.01 \cdot U_i \cdot \overline{X}_i$$
, при $P = 0.95$, (3)

- где X_i среднеарифметическое значение вычислений двух параллельных измерений содержания i-го макроциклического лактона в анализируемой пробе, мкг/кг (9.3);
 - U_i значение относительной расширенной неопределенности содержания *i*-го макроциклического лактона для соответствующего диапазона измерений, % (в соответствии с таблицей 3);
 - 0,01 коэффициент перевода значения относительной расширенной неопределенности в значение расширенной неопределенности в абсолютных единицах.


Результат измерений округляют до первого десятичного знака и выражают в мкг/кг.

12 Контроль стабильности результатов измерений

Контроль стабильности результатов измерений в пределах лаборатории осуществляют по ГОСТ ИСО 5725-6 (пункт 6.2.3) с использованием контрольных карт Шухарта.

Приложение А (справочное)

Пример хроматографического разделения макроциклических лактонов

УДК 637.07:614.3:006.354

MKC 67.050 67.100 67.120.10 67.120.20

Ключевые слова: пищевые продукты, продовольственное сырье, остаточное содержание, макроциклические лактоны, метод определения содержания с помощью высокоэффективной жидкостной хроматографии с флуориметрическим детектированием

БЗ 9—2017/92

Редактор Л.В. Коретникова
Технический редактор В.Н. Прусакова
Корректор М.И. Першина
Компьютерная верстка А.Н. Золотаревой

Сдано в набор 07.08.2017. Подписано в печать 14.08.2017. Формат $60 \times 84 \frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,26. Тираж 25 экз. Зак. 1442. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта