РУКОВОДЯЩИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ ДИ- И ПОЛИХЛОРФЕНОЛОВ В ВОДАХ ГАЗОХРОМАТОГРАФИЧЕСКИМ МЕТОДОМ

Предисловие

- 1 РАЗРАБОТАН Гидрохимическим институтом
- 2 РАЗРАБОТЧИКИ Л.В. Боева, канд хим. наук, Ю.Я. Винников, канд. хим. наук
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Начальником УЭМЗ Росгидромета Цатуровым Ю.С. 8.06.98 г.
- 4 ОДОБРЕН Секцией по методам химического и радиологического мониторинга природной среды ЦКПМ Росгидромета 21.10.97 г. протокол №2 (22)
 - 5 АТТЕСТАТ Выдан Гидрохимическим институтом в 1995 г. N 507.
 - 6 ЗАРЕГИСТРИРОВАН ЦКБ ГМП в 1998 г. N 507.
 - 7 РАЗРАБОТАН ВПЕРВЫЕ

Введение

Хлорфенолы представляют собой производные фенола, содержащие один или несколько атомов хлора в бензольном кольце; бензольное кольцо может содержать также другие заместители.

Хлорфенолы в отличие от их нехлорированных аналогов имеют чисто антропогенное происхождение. В природные воды они попадают как непосредственно со сточными водами ряда производств, так и в результате трансформации органических веществ других классов при обеззараживании сточных вод хлорированием. Значительные количества ди- и полихлорфенолов могут содержаться в сточных водах целлюлозно-бумажного производства, использующего хлор для отбеливания целлюлозы; производства пестицидов; ряда химических и электрохимических производств.

Хлорфенолы обладают существенно большей устойчивостью в окружающей среде по сравнению с нехлорированными аналогами и большей токсичностью, причем в целом и то и другое возрастает с увеличением

числа атомов хлора в молекуле. По этой причине хлорфенолы во многих странах включены в перечни приоритетных загрязнителей.

Хлорфенолы (особенно тетра- и пентахлорфенолы) в большой степени способны сорбироваться взвешенными веществами и донными отложениями, которые могут служить источником вторичного загрязнения как хлорфенолами, так и продуктами их трансформации.

Предельно-допустимые концентрации (ПДК) хлорфенолов в природных водах приведены в таблице 1.

Таблица 1 - Предельно-допустимые концентрации хлорфенолов

	ПДК, мкг/дм ³	, для водных объектов	
Соединение	рыбохозяйственного	Хозяйственно-питьевого и	
	назначения	культурно бытового	
		назначения	
Дихлорфенол	не установлена	2	
Трихлорфенол	не установлена	4	
Пентахлорфенол	0,5	10	

РУКОВОДЯЩИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИИ ДИ- И ПОЛИХЛОРФЕНОЛОВ В ВОДАХ ГАЗОХРОМАТОГРАФИЧЕСКИМ МЕТОДОМ

Дата введения 01.01.2000 r.

1 Назначение и область применения методики

Настоящий руководящий документ устанавливает газохроматографическую методику выполнения измерений в пробах поверхностных и очищенных сточных вод массовой концентрации 2,3-, 2,4-, 2,5-, 2,6-дихлорфенолов в диапазоне 0,20 - 8,0 мкг/дм³, 3,4-, 3,5-дихлорфенолов в диапазоне 0,30 - 12,0 мкг/дм³, три-, тетра- и пентахлорфенолов в диапазоне 0,05 - 2,00 мкг/дм³. Анализ проб воды с массовой концентрацией хлорфенолов, превышающей 8,0, 12,0 и 2,00 мкг/дм³ соответственно, возможен при увеличении объема гексанового экстракта, подвергаемого газохроматографическому анализу, либо при уменьшении объема анализируемой воды.

При наличии соответствующих стандартных образцов или препаратов гарантированной чистоты с помощью данной методики могут быть определены ди- и полихлорпроизводные метилфенолов, этилфенолов и диметилфенолов, а также ди- и полибромпроизводные фенола.

2 Нормы погрешности и значения характеристик погрешности измерений

Погрешность определения ди-, три-, тетра- и пентахлорфенолов в водах ГОСТ 27384 не нормируется.

Установленные для настоящей методики значения характеристик погрешности и ее составляющих приведены в таблице 2.

Таблица 2 - Значения характеристик погрешности и ее составляющих (P=0,95)

Определяемое	Диапазон измеряемых	Характеристики составляющих погрешности, мкг/дм ³		Характерис- тика
соединение	концентра- ций С, мкг/дм ³	случайной,	системати- ческой	погрешности, $MK\Gamma/дM^3$, Δ
	ции С, мкиди	$\sigma(\Delta)$	A	икі/дм, д
			Δ.,	
2,3-, 2,4-, 2,5-,	0,20-1,20	0,02+0,10°C	0,01+0,06 C	0,04+0,20°C
2,6-дихлор-				
фенолы	св.1,20-8,00	0,10 C	0,07 [·] C	0,22 ⁻ C
3,4-, 3,5- ди-	0,30-1,80	0,03+0,10°C	0,02+0,07 ⁻ C	0,06+0,22 C
хлорфенолы	св.1,80-12,0	0,10 [°] C	0,07 ⁻ C	0,22 C
Трихлорфенолы	0,05-2,00	0,10 C	0,07 ⁻ C	0,21°C
Терта- и пента-				
хлорфенолы	0,05-2,00	0,01+0,10 C	0,07 [·] C	0,02+0,21 C

При массовой концентрации 2,3-, 2,4-, 2,5-, 2,6-дихлорфенолов свыше $8,0\,$ мкг/дм 3 , 3,4-, 3,5-дихлорфенолов свыше $12,0\,$ мкг/дм $^3\,$ и полихлорфенолов свыше $2,00\,$ мкг/дм $^3\,$ погрешность определения не превышает значений, рассчитанных по приведенным в таблице $2\,$ зависимостям.

3 Метод измерений

Определение основано на извлечении хлорфенолов из воды толуолом, реэкстракции их раствором карбоната натрия, ацилировании уксусным ангидридом, экстракции ацетильных производных гексаном с последующим газохроматографическим определением их на хроматографе, снабженном электронозахватным детектором.

Идентификацию индивидуальных хлорфенолов проводят по временам удерживания. В случае неоднозначной идентификации используют две колонки разной полярности.

Расчет количественного содержания хлорфенолов осуществляют по высотам или площадям их пиков на хроматограмме с использованием внутреннего стандарта.

Мешающее влияние посторонних веществ в основном устраняется при выполнении операций, предусмотренных методикой, лишь при анализе сильно загрязненных вод могут появиться дополнительные пики на хроматограммах, затрудняющие идентификацию и расчет количественного содержания хлорфенолов. Для устранения таких помех достаточно использовать дополнительную идентификацию определяемых соединений на колонке с полярной фазой.

4 Средства измерений, вспомогательные устройства, реактивы, материалы

- 4.1 Средства измерений, вспомогательные устройства
- 4.1.1 Хроматограф газовый серии Цвет-500М или аналогичный с детектором по захвату электронов (ДПР, ИРД).
 - 4.1.2 Весы аналитические 2 класса точности по ГОСТ 24104.
- 4.1.3 Весы технические лабораторные 4 класса точности по ГОСТ 24104 с пределом взвешивания 200 г.
 - 4.1.4 Печь муфельная по ТУ 79 РСФСР 337.
- 4.1.5 Шкаф сушильный общелабораторного назначения по ГОСТ 13474.
- 4.1.6 Плитка электрическая с закрытой спиралью и регулируемой мощностью нагрева по ГОСТ 14919.
 - 4.1.7 Баня песчаная.
 - 4.1.8 Баня водяная.
 - 4.1.9 Микрокомпрессор аквариумный любого типа.
 - 4.1.10 Секундомер по ГОСТ 8.4213.
- 4.1.11 Колонки кварцевые капиллярные длиной 25 м, диаметром 0,25-0,32 мм с привитыми фазами типа SE-54 (SE-30) и XE-60 (OV-225), 0,25-0,30 мкм (или другие с аналогичными характеристиками);

или колонки хроматографические стеклянные длиной 2 м с внутренним диаметром 3 мм, заполненные носителем типа Хроматон

NAW-DMCS (NAW-HMDS, N-Super), фракция 0,16-0,20 мм, с 5 неподвижной фазы типа SE-30 или SE-54 и с 5 % неподвижной фа XE-6O или OV-225 (или другими с аналогичными характеристиками)	13Ы).
4.1.12 Колбы мерные не ниже 2 класса точности по ГОСТ 177	
пришлифованными пробками вместимостью: 25 см ³	- 6
50 cm ³	- 2
4.1.13 Пипетки градуированные не ниже 2 класса точности по ГО	CT
29227 вместимостью: 1 см ³ -	10
2 cm ³	
5 cm ³	- 6
10 cm ³	- Ž
4.1.14 Микрошприц МШ-10М по ТУ 2-833-106	. 🤈
4.1.15 Цилиндры мерные или мензурки по ГОСТ 1	- 77∩
вместимостью: 25 cm^3	
100 cm ³	
250 cm ³	- 1 - 2
500 cm ³	
4.1.16 Воронки делительные по ГОСТ 25336 вместимостью:	- 1
4.1.10 Воронки делительные по г ОСТ 25550 вместимостью. 50-100 см ³	6
500 см ³	- U
4.1.17 Воронки лабораторные по ГОСТ 25336 диаметром 3-4 см	
4.1.18 Стаканы химические по ГОСТ 25336 вместимостью:	- 2
4.1.18 Стаканы химические по гост 25550 вместимостью. 50 см ³	6
250 cm ³	
250 см 1 дм ³	
4.1.19 Микропробирки конические градуированные вместимостьк	
3-4 см ³ (рисунок 1) - 10	
4.1.20 Колбы конические с пришлифованными пробками по ГС	
25336 вместимостью 5 см ³	_
4.1.21 Установка из стекла для перегонки растворителей	
перегонной колбой вместимостью 1 дм ³ и елочным дефлегматор	•
Y	- 1
4.1.22 Бюксы (стаканчики для взвешивания) высокие по ГОСТ 25	
диаметром 20 мм	- 2
4.1.23 Чашки фарфоровые диаметром 9-12 см по ГОСТ 9147	- 2

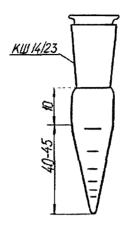


Рисунок 1 - Микробюретка коническая градуированная

- 4.1.24 Капельница с клювиком и тубусом с полиэтиленовой пробкой по ГОСТ 25336 вместимостью
 50 см³ 1

 4.1.25 Палочки стеклянные длиной:
 12-15 см 6

 25-30 см 1
 25-30 см 1

 4.1.26 Склянка для очистки газов типа СПТ по ГОСТ 25336
 1

 4.1.27 Капилляр стеклянный
 1

 4.1.28 Трубки соединительные фторопластовые
- 4.1.29 Флаконы аптечные с навинчивающимися пробками и полиэтиленовыми вкладышами по ТУ 64-2-109 номинальной вместимостью 30 и 50 см³ для хранения стандартных растворов и экстрактов.

Допускается использование других типов средств измерений, посуды и вспомогательного оборудования, в том числе импортных, с характеристиками не хуже, чем у приведенных в 4.1.

4.2 Реактивы и материалы

4.2.1 Препараты хлорфенолов: 2,4-дихлорфенол по ТУ 6-09-15-383, ч.; 2,5-дихлорфенол по ТУ 6-09-07-837, ч.; 2,6- дихлорфенол по

ТУ 6-09-2650,ч.; 3,4-дихлорфенол, по ТУ 6-09-11-804, ч.; 2,4,5-трихлорфенол по ТУ 6-09-11-933, ч.; 2,4,6-трихлорфенол по ТУ 6-09-11-1111, ч.; пентахлорфенол по ТУ 6-09-4827, ч., а также 2,3-дихлорфенол; 3,5-дихлорфенол; 2,3,4-трихлорфенол; 2,3,5-трихлорфенол; 2,3,6-трихлорфенол; и тетрахлорфенолы с содержанием основного вещества не менее 98 %, либо стандартные образцы соответствующих хлорфенолов.

- 4.2.2 2,4,6-трибромфенол по ТУ 6-09-08-1244, ч.
- 4.2.3 н-Гексан по ТУ 6-09-3375, ч.
- 4.2.4 Толуол по ГОСТ 5789, ч.д.а.
- 4.2.5 Уксусный ангидрид по ГОСТ 5815, ч.д.а.
- 4.2.6 Ацетон по ТУ 6-09-3513, ос.ч. или по ГОСТ 2603, ч.д.а, перегнанный.
 - 4.2.7 Спирт изопропиловый по ТУ 6-09-402, ч.
 - 4.2.8 Серная кислота по ГОСТ 4204, ч.д.а.
- 4.2.9 Натрия карбонат безводный по ГОСТ 83 или натрия карбонат декагидрат по ГОСТ 84, х.ч.
 - 4.2.9 Натрия сульфат безводный по ГОСТ 4166, ч.д.а. (допустимо ч.).
 - 4.2.10 Меди сульфат, пентагидрат по ГОСТ 4165, ч.д.а.
- 4.2.11 Натрия сульфит, безводный по ГОСТ 195, ч.д.а. или натрия сульфит, гептагидрат по ГОСТ 429, ч.д.а.
 - 4.2.12 Калия перманганат по ГОСТ 20490.
 - 4.2.13 Вода дистиллированная по ГОСТ 6709.
 - 4.2.14 Уголь активированный БАУ.
 - 4.2.15 Бумага индикаторная универсальная по ТУ 6-09-1181.
- 4.2.16 Азот газообразный особой чистоты по МРТУ 6-02-375, или азот нулевой поверочный по ТУ 6-21-39.

Допускается использование реактивов, изготовленных по другой нормативно-технической документации, в том числе импортных, с квалификацией не ниже указанной в 4.2.

5 Отбор и хранение проб

Отбор проб производят в соответствии с ГОСТ 17.15.05. 250 см 3 отобранной пробы воды помещают в склянки вместимостью 0,25 дм 3

с притертыми или завинчивающимися пробками с плотными полиэтиленовыми вкладышами. Экстракция проб должна быть выполнена в течение суток с момента отбора пробы.

При необходимости более длительного хранения пробы консервируют, добавляя по 2 см³ раствора серной кислоты 2 моль/дм³, 10 % раствора сульфата меди и 10 % раствора сульфита натрия Законсервированные таким образом пробы можно хранить в темном прохладном месте три недели.

Хранение проб в течение месяца возможно в виде толуольных экстрактов во флаконах с завинчивающимися пробками с плотным полиэтиленовым вкладышем или колбах с притертыми пробками вместимостью 25 см³. Хранить экстракты следует в темноте.

6 Подготовка к выполнению измерений

- 6.1 Приготовление растворов и реактивов
- 6.1.1 Раствор серной кислоты, 2 моль/дм3.

К 480 см³ дистиплированной воды в термостойком стакане вместимостью 1 дм³ осторожно при непрерывном перемешивании прибавляют 27 см³ концентрированной серной кислоты. После охлаждения раствор переносят в стеклянную склянку с притертой или полиэтиленовой пробкой.

- 6.1.2 Раствор карбоната натрия, 0,15 моль/дм³.
- 7,95 г безводного препарата или 21,4 г декагидрата растворяют в 500 см³ дистиллированной воды. Раствор хранят в стеклянной посуде с притертой или полиэтиленовой пробкой не более 10 лней.
 - 6.1.3 Уксусный ангидрид.

Около 20 см уксусного ангидрида помещают в чистую сухую делительную воронку, добавляют 10 см³ очищенного гексана и встряхивают в течение 2 мин. После расслоения фаз уксусный ангидрид (нижний слой) сливают в чистую сухую колбу с притертой пробкой. Хранят очищенный уксусный ангидрид при комнатной температуре в темном месте не более 10 дней. При использовании уксусный ангидрид следует тщательно оберегать от попадания посторонних веществ, особенно воды и щелочных растворов.

- 6.1.4 Раствор сульфата меди, 10 %
- 15 г CuSO₄·5H₂O растворяют в 100 см³ дистиллированной воды.
- 6.1.5 Раствор сульфита натрия, 10 %
- $10~\rm r~Na_2SO_3$ или $20~\rm r~Na_2SO_3$ - $7H_2O$ растворяют в $100~\rm cm^3$ дистиллированной воды. Хранят в темной, плотно закрытой склянке не более месяца.
 - 6.1.6 Очистка растворителей

Для очистки растворителей (гексана, толуола и изопропилового спирта) используют одно-двукратную перегонку в установке с дефлегматором. Степень чистоты растворителей контролируют холостым опытом.

6.1.7 Сульфат натрия, безводный

Сульфат натрия прокаливают в муфельной печи при 450-500 °C в течение 5-6 ч. Хранят в склянке с притертой пробкой.

6.1.8 Вода бидистиллированная

Дистиллированную воду подкисляют серной кислотой, добавляют несколько кристаллов перманганата калия, кипятят 15-20 мин и затем перегоняют.

6.2 Приготовление стандартных растворов хлорфенолов

Стандартные растворы, аттестованные по процедуре приготовления, готовят из стандартных образцов или соответствующих реактивов. В качестве растворителя для приготовления стандартных растворов применяют очищенный изопропиловый спирт.

При использовании стандартного образца производят разбавление исходного раствора таким образом, чтобы массовая концентрация 2,3-, 2,4-, 2,5-, 2,6-дихлорфенолов в рабочем стандартном растворе № 1 составляла 0,80 мкг/см³; 3,4-, 3,5-дихлорфенолов - 1,20 мкг/см³; три-, тетра- и пентахлорфенолов 0,20 мкг/см³ , а в рабочем стандартном растворе № 2 массовая концентрация 2,3-, 2,4-, 2,5-, 2,6-дихлорфенолов должна быть равна 0,40 мкг/см³; 3,4-, 3,5-дихлорфенолов - 0,60 мкг/см³; три-, тетра- и пентахлорфенолов 0,10 мкг/см³.

Массовая концентрация 2,4,6-трибромфенола в рабочем растворе равна 0,10 мкг/см³ .

Приготовление стандартных растворов из реактивов проводят в соответствии с 6.2.1-6.2.4.

Для всех стандартных растворов погрешности, обусловленные процедурой приготовления, не превышают 3 % относительно приписанного значения массовой концентрации компонента.

6.2.1 Основные растворы индивидуальных хлорфенолов

Взвешивают в бюксе на аналитических весах с точностью до четвертого знака после запятой навеску 0,05-0,1 г каждого образца хлорфенола. Растворяют навеску в изопропиловом спирте, количественно переносят ее в мерную колбу вместимостью 25 или 50 см³, доводят спиртом до метки и перемешивают. Переносят раствор во флакон с хорошо пришлифованной пробкой или завинчивающейся пробкой с плотным полиэтиленовым вкладышем.

Массовую концентрацию хлорфенолов в полученных растворах рассчитывают по формуле

$$C = \frac{a \cdot 1000}{V} , \qquad (1)$$

где C - массовая концентрация конкретного хлорфенола в основном растворе, мг/см³;

а - навеска образца, г;

V - объем мерной колбы, см³.

В герметично закрытом флаконе в холодильнике растворы можно хранить до года.

6.2.2 Основной стандартный раствор смеси хлорфенолов

Массовая концентрация 2,3-, 2,4-, 2,5-, 2,6-дихлорфенолов в основном стандартном растворе смеси хлорфенолов составляет 200 мкг/см 3 ; 3,4-, 3,5-дихлорфенолов - 300 мкг/см 3 ; три-, тетра- и пентахлорфенолов - 50 мкг/см 3 .

Поскольку некоторые изомеры хлорфенолов могут иметь одинаковые времена удерживания, следует готовить 2-3 смеси, так, чтобы в каждой смеси присутствовали вещества с разными временами удерживания для данной колонки.

Объем раствора индивидуального хлорфенола (6.2.1), необходимый для приготовления 25 см³ основного стандартного раствора смеси хлорфенолов рассчитывают по формуле

$$V = \frac{C_1 \cdot 25}{C_2 \cdot 1000},\tag{2}$$

где V - объем раствора индивидуального хлорфенола, см³;

 ${f C}_1$ - концентрация данного компонента в основной смеси хлорфенолов, мкг/см³ ;

С₂ - концентрация основного раствора индивидуального хлорфенола, мг/см³.

Рассчитанный объем раствора каждого хлорфенола помещают в одну мерную колбу вместимостью 25 см³, затем доводят до метки изопропиловым спиртом и перемешивают. Хранят в холодильнике во флаконе с хорошо пришлифованной пробкой не более 3 мес.

6.2.3 Основной стандартный раствор 2,4,6-трибромфенола (внутреннего стандарта) с массовой концентрацией 50 мкг/см³

Взвешивают в бюксе на аналитических весах с точностью навеску четвертого знака после запятой 0.05 - 0.1трибромфенола. Растворяют навеску изопропиловом В количественно переносят ее в мерную колбу вместимостью 25 или 50 см3, доводят спиртом до метки и перемешивают. Переносят раствор во флакон с хорошо пришлифованной пробкой или завинчивающейся полиэтиленовым вкладышем. Массовую плотным концентрацию 2,4,6-трибромфенола полученном растворе рассчитывают по формуле (1) (6.2.1)

По формуле (2) (6.2.2) рассчитывают объем полученного раствора 2,4,6-трибромфенола, необходимый для приготовления 25 см 3 основного стандартного раствора с массовой концентрацией 50 мкг/см 3 .

Рассчитанный объем раствора 2,4,6-трибромфенола помещают в мерную колбу вместимостью 25 см³, затем доводят до метки изопропиловым спиртом и перемешивают. Хранят в холодильнике во флаконе с хорошо пришлифованной пробкой не более 3 мес.

6.2.4. Промежуточный стандартный раствор смеси хлорфенолов или 2,4,6-трибромфенола

1,00 см³ основного стандартного раствора смеси хлорфенолов (или 2,4,6-трибромфенола) отбирают пипеткой вместимостью 1 см³ и помещают в мерную колбу вместимостью 25 см³, доводят до метки изопропиловым спиртом и перемешивают. Хранят в холодильнике в течение недели.

Массовая концентрация **2,3-**, **2,4-**, **2,5-**, **2,6-**дихлорфенолов в промежуточном стандартном растворе смеси хлорфенолов составляет $8,00 \text{ мкг/см}^3$; 3,4-, 3,5-дихлорфенолов - $12,0 \text{ мкг/см}^3$; три-, тетра- и пентахлорфенолов, а также 2,4,6-трибромфенола - $2,00 \text{ мкг/см}^3$

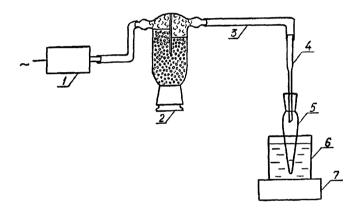
6.2.5 Рабочий стандартный раствор смеси хлорфенолов № 1

Градуированной пипеткой вместимостью 5 см³ отбирают 2,5 см³ промежуточного стандартного раствора смеси хлорфенолов, помещают его в мерную колбу вместимостью 25 см³, доводят до метки изопропиловым спиртом и перемешивают. Используют в день приготовления.

6.2.6 Рабочий стандартный раствор смеси хлорфенолов № 2

Градуированной пипеткой вместимостью $2\ cm^3$ отбирают $1,25\ cm^3$ промежуточного стандартного раствора смеси хлорфенолов, помещают его в мерную колбу вместимостью $25\ cm^3$, доводят до метки изопропиловым спиртом и перемешивают. Используют в день приготовления.

6.2.7 Рабочий стандартный раствор 2,4,6-трибромфенола


Пипеткой вместимостью 2 см³ отбирают 1,25 см³ промежуточного стандартного раствора 2,4,6-трибромфенола, помещают его в мерную колбу вместимостью 25 см³, доводят до метки изопропиловым спиртом и перемешивают. Используют в день приготовления.

6.3 Приготовление фильтра для очистки воздуха

Для очистки воздуха при упаривании экстрактов его пропускают через фильтр с активным углем. В качестве фильтра применяют склянку для очистки газов. Входной и выходной отросток склянки заполняют медицинской ватой (рходной 1 см толщиной, выходной —

3-4 см), наполняют склянку активным углем доверху и закрывают пробкой. Уровень активного угля не должен доходить до выходного отростка примерно на 2 см.

После этого входной отросток склянки соединяют с аквариумным микрокомпрессором, а выходящий из выходного отростка очищенный воздух используют для отдувки растворителя. На выходной отросток надевают фторопластовую трубку необходимой длины, в другой конец которой вставляют стеклянный капилляр (рисунок 2).

1 - микрокомпрессор;
2 - фильтр с активным углем;
3 - фторопластовая соединительная трубка;
4 - капилляр;
5 - микробюретка:
6 - песчаная или водяная баня;
7 - нагреватель (электроплитка).

Рисунок 2 - Схема установки для упаривания экстрактов

6.4 Подготовка стеклянных хроматографических колонок

Стеклянные хроматографические колонки внутренним диаметром 3 мм и длиной 2 м промывают последовательно ацетоном и н-гексаном, сушат при температуре 110-120 °C в сушильном шкафу и заполняют одну колонку носителем с неподвижной фазой SE-30 или SE-54, другую колонку - носителем с фазой XE-60 (OV-225).

Для заполнения хроматографической колонки один ее конец, который в дальнейшем будет подсоединяться к детектору, закрывают тампоном из промытого ацетоном и н-гексаном стекловолокна и присоединяют к вакуумному насосу через мелкую капроновую сетку. Включают насос и при постоянно работающем насосе заполняют колонку носителем с фазой, добавляя его небольшими порциями и постукивая по колонке палочкой с резиновым наконечником. Носитель должен заполнять колонку равномерно, без пустот.

Заполненную колонку закрывают тампоном промытой хроматографа, стеклоткани помещают термостат колонок детектору. подсоединив К испарителю, но не подсоединяя к 40-50 Устанавливают расход азота через колонку выдерживают колонку при температуре 60 - 70 °C в течение 20-30 мин и затем поднимают температуру термостата колонок со скоростью 2-3 град/мин до температуры 230 °C При этой температуре кондиционируют колонку в течение 8-10 ч.

После кондиционирования колонки ее подсоединяют к детектору, устанавливают расход газа-носителя (азота) через колонку 30 - 40 см³/мин и проверяют герметичность соединений.

6.5 Подготовка хроматографа

Подготовку хроматографа к работе осуществляют в соответствии с инструкцией.

Режим работы для определения хлорфенолов при работе с капиллярной колонкой с фазой типа SE-54 или SE-30 устанавливают следующий: температура испарителя - $250\,^{\circ}$ C, температура детектора - $300\,^{\circ}$ C, температура термостата колонок $50\,^{\circ}$ C - $1\,^{\circ}$ мин., затем повышение температуры со скоростью $15\,^{\circ}$ Град/мин до $270\,^{\circ}$ С и

выдержка 2 мин при 270 °С. При идентификации хлорфенолов на колонке с полярной фазой XE-60 или OV-225 максимальная температура 220-230 °С, выдержка 5 мин, температура испарителя 240 °С. Расход газа-носителя (азота) через колонку 1,6 - 2,0 см 3 /мин, деление потока 1:8 - 1:10.

При работе с набивными колонками температура испарителя 240 °C, температура детектора 280 °C, температура термостата колонок 150 °C - 5 мин, затем повышение со скоростью 15 °/мин до 230 °C и выдержка 5 мин при 230 °C. Расход газа-носителя (азота) через колонку 30 - 40 см 3 /мин.

Расход азота на поддув детектора - в соответствии с инструкцией по его эксплуатации.

Рабочий предел измерений на усилителе - в зависимости от определяемых концентраций (ориентировочно при работе на хроматографе серии Цвет-500М с капиллярными колонками $64 \cdot 10^{10}$, с набивными 256 $\cdot 10^{10}$); скорость диаграммной ленты 600 мм/ч.

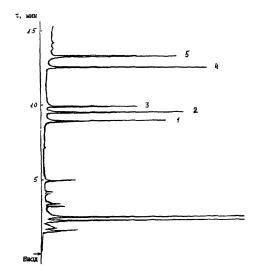
6.6 Установление градуировочных зависимостей и определение времени удерживания индивидуальных хлорфенолов по отношению к внутреннему стандарту

Для установления градуировочных зависимостей готовят градуировочные образцы - экстракты ацетатов хлорфенолов с различным их содержанием и одинаковым содержанием внутреннего стандарта (0,10 мкг 2,4,6-трибромфенола). Для этого в делительные воронки вместимостью 50-100 см³ помещают 20 см³ раствора карбоната натрия 0,15 моль/дм³, добавляют 1,0 см³ рабочего стандартного раствора 2,4,6-трибромфенола с массовой концентрацией последнего 0,10 мкг/см³, добавляют рабочий стандартный раствор смеси хлорфенолов в соответствии с таблицей 3, приливают 4-5 см³ очищенного гексана и встряхивают содержимое в течение 0,5 мин.

После расслоения переносят водную фазу в другую воронку такой же вместимости, добавляют 0,4 см³ уксусного ангидрида и далее проводят все операции по извлечению ацетат хлорфенолов и обработке экстракта, как описано в разделе 7 и записывают хроматограммы.

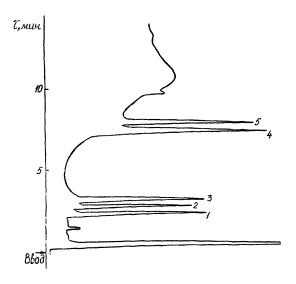
Таблица 3 - Схема приготовления и состав градуировочных образцов хлорфенолов

Номер	Объем рабочего раствора смеси		Содержание хлорфенолов в градуировочном образце, мкг		
градуиро	хлорфе	нолов, см ³	00.04.05	24.25	· ·
вочного	35.0	36.1	2,3-; 2,4-;2,5-;	3,4-; 3,5-	Три и тетра- и
образца	№ 2	№ 1	2,6-	дихлорфенолы	пентахлор-
L			дихлорфенолы		фенолы
1	0,20	-	0,080	0,12	0,020
2	0,40	-	0,16	0,24	0,040
3	0,60		0,24	0,35	0,060
4	0,80	-	0,32	0,48	0,080
5	1,00	-	0,40	0,60	0,100
6	•	1,0	0,80	1,2	0,20
7	-	1,5	1,2	1,8	0,30
8		2,0	1,6	2,4	0,40
9	-	2,5	2,0	3,0	0,50


При хранении в темном прохладном месте полученные экстракты можно использовать в течение месяца.

Во время хранения не следует допускать полного испарения гексана, это делает образец непригодным для дальнейшего использования.

На рисунке 3 приведена хроматограмма ряда ацетатов хлорфенолов, полученная на капиллярной колонке с иммобилизованной фазой SE-54, а на рисунке 4 хроматограмма тех же соединений на набивной колонке с неподвижной фазой XE-60.


При проведении расчетов используют высоты или площади пиков. Находят отношения K_{xn} высоты (площади) пика каждого хлорфенола к высоте (площади) внутреннего стандарта на той же хроматограмме.

$$K_{xn} = \frac{h_{xcn}(S_{xcn})}{h_{T6\phi cm}(S_{T6\phi cm})} , \qquad (3)$$

1-2,4-дихлорфенолы (0,4 мкг); 2-3,4 дихлорфенол (0,6 мкг); 3-2,4,6 — трилорфенол (0,1 мкг); 4-2,5,6 —трибромфенол (0,1 мкг) 5 — пентахлорфенол (0,1 мкг)

Рисунок 3 — Хроматограмма ацетильных производных хлорфенолов на капиллярной колонке с неподвижной фазой SE-54

1-2,4-дихлорфенол (0,4 мкг); 2-2,4,6 - трихлорфенол (0,1 мкг) 3-3,4- дихлорфенол (0,6 мкг); 4-2,4,6-трибромфенол (0,1 мкг); 5- пентахлорфенол (0,1 мкг)

Рисунок 4 — Хроматограмма ацетильных производных хлорфенолов на набивной колонке с неподвижной фазой XE-60

где - $h_{xcm}(S_{xcm})$ - высота (площадь) пика хлорфенола; $h_{T\delta cm}(S_{T\delta cm})$ - высота (площадь) пика внутреннего стандарта.

По полученным данным устанавливают две градуировочные зависимости для каждого хлорфенола, откладывая по оси абсцисс его содержание в конкретном градуировочном образце (таблица 3), а по оси ординат величину K_{xn} для этого же образца, графически или рассчитывают методом наименьших квадратов. Первую градуировочную зависимость устанавливают по образцам № 1-5, вторую - № 5-9.

Проверку градуировочных зависимостей следует проводить не реже одного раза в неделю при ежедневной работе, либо при анализе каждой серии проб при периодической работе на приборе.

Для определения времени удерживания хлорфенолов относительно внутреннего стандарта используют градуировочный образец N 5. Проверку времени удерживания осуществляют перед анализом каждой серии проб.

6.7 Холостая проба

Перед анализом проб природной воды следует проверить чистоту используемых растворов и реактивов. Для этого берут 250 см³ бидистиллированной воды, с которой проводят все операции, описанные в разделе 7.

Если на хроматограмме холостой пробы практически отсутствуют пики, совпадающие по времени выхода с определяемыми соединениями (допускается наличие незначительных пиков, высота которых не превышает 3 % от высоты внутреннего стандарта), то все растворы и реактивы могут использоваться для анализа. В противном случае следует выяснить, какой из реактивов вносит загрязнение и очистить или заменить его.

7 Выполнение измерений

7.1 Выделение хлорфенолов из воды и ацетилирование

В делительную воронку вместимостью 500 см³ полностью переносят пробу из склянки, в которую ее поместили после отбора, стенки склянки тщательно ополаскивают дважды по 2 -3 см³ ацетона, который присоединяют к пробе. Если проба не была законсервирована, добавляют 2 см³ раствора серной кислоты 2 моль/дм³, 2 см³ 10 % раствора сульфата меди, 1 см³ рабочего раствора внутреннего стандарта (0,1 мкг 2,4,6-трибромфенола), 15 см³ толуола и экстрагируют хлорфенолы в течение 1 мин. После расслоения фаз водный слой почти полностью переносят в другую воронку вместимостью 500 см³, круговыми движениями несколько раз перемешивают экстракт, дают еще несколько минут отстояться и как можно полнее отделяют воду. Экстракт переносят в делительную воронку вместимостью 50-100 см³.

Воронку, в которой проводили экстракцию, споласкивают 5 см³ толуола и переносят его в воронку с пробой. Повторяют экстракцию в течение 1 мин, после расслаивания водную пробу отбрасывают (если при отборе пробы объем ее не был измерен, то предварительно переносят пробу в мерный цилиндр и записывают объем с поправкой на добавленные реактивы). Экстракты объединяют, добавляют 20 см³ раствора карбоната натрия 0,15 моль/дм³ и реэкстрагируют хлорфенолы в течение 1,5 мин. Дают возможность фазам расслоиться, нижний водный слой переносят в другую делительную воронку вместимостью 50-100 см³, толуол отбрасывают.

К реэкстракту приливают 4-5 см³ гексана и встряхивают в течение 0,5 мин. После отстаивания переносят водный слой в третью воронку вместимостью 50-100 см³, добавляют 0,4 см³ уксусного ангидрида, перемешивают 10-15 с и дают постоять еще 30 с, затем приливают 10 см³ гексана, закрывают воронку пробкой, встряхивают ее и, перевернув пробкой вниз, открывают кран, чтобы сбросить избыточное давление паров гексана. Повторяют этот прием еще два-три раза, затем экстрагируют ацетаты хлорфенолов в течение 1,5 мин.

После отстаивания в течение 10-15 минут удаляют прозрачный водный слой. Если гексановый экстракт эмульгирован, после удаления водного слоя экстракт несколько раз перемешивают плавными круговыми движениями и дают возможность еще отстояться несколько минут. После этого водную фазу удаляют как можно полнее, а гексановый экстракт переносят в сухой стакан вместимостью 50 см³. В делительную воронку добавляют для споласкивания 3-4 см³ гексана.

К экстракту в стакане добавляют безводный сульфат натрия, перемешивая стеклянной палочкой, до полного осушения экстракта. Прозрачный экстракт переносят в коническую градуированную микропробирку (рисунок 1), предварительно сполоснув ее очищенным гексаном, и упаривают при нагревании (60-70 °C) на песчаной или водяной бане (рисунок 2) под струей очищенного воздуха, продуваемого микрокомпрессором через фильтр.

Экстракт переносят в микропробирку частями, по мере упаривания. После переноса всего экстракта в стакан с сульфатом натрия приливают гексан, использованный для споласкивания воронки и промывают сульфат натрия, тщательно перемешивая его палочкой. Эту порцию гексана переносят в микропробирку с экстрактом и вновь упаривают до объема 0,2 см³.

7.2 Хроматографирование экстрактов

Устанавливают условия хроматографирования в соответствии с 6.5. Вводят в испаритель хроматографа гексановый экстракт (2 мм 3 при работе с капиллярной колонкой и 5 мм 3 при работе с набивной колонкой), записывают хроматограмму. Повторяют измерения 2-3 раза.

На рис. 5 и 6 приведены в качестве примера хроматограммы экстракта воды р. Дон без добавки и с добавкой хлорфенолов.

Идентификацию хлорфенолов осуществляют сравнением времени удерживания относительно внутреннего стандарта на хроматограмме стандартной смеси ацетатов хлорфенолов и анализируемой пробы. Если на хроматограмме пробы имеются пики, соответствующие по времени удерживания ацетатам хлорфенолов, особенно при появлении пиков соответствующих веществам с одинаковыми временами

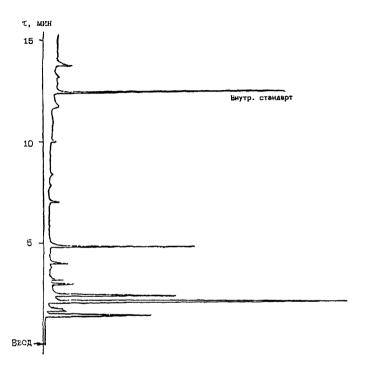
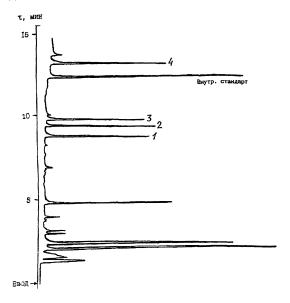



Рисунок 5 — Хроматограмма экстракта пробы воды из р. Дон на капиллярной колонке с неподвижной фазой SE-54. Внутренний стандарт — 2,4,6-трибром фенол (0,1 мкг).

1-2,4-дихлорфенол (1,2 мкг/дм³); 2-3,4-дихлорфенол (1,8 мкг/дм³); 3-2,4,6 –трихлорфенол (0,3 мкг/дм³) 4- пентахлорфенол (0,03 мкг/дм³)

Рисунок 6 — Хроматограмма экстракта пробы воды р. Дон с добавкой хлорфенолов на капиллярной колонке с неподвижной фазой SE-54. Внутренний стандарт – 2,4,6-трибромфенол (0,1 мкг) удерживания, либо при анализе сильно загрязненных проб, где возможно наложение пиков посторонних веществ, следует проверить корректность идентификации хроматографированием пробы на колонке с полярной фазой. Следует иметь в виду, что некоторые изомеры трудно разделить на любой фазе, например, 2,4- и 2,5-дихлорфенолы. Соединение можно считать идентифицированным только в том случае, если соответствующий ему пик выходит на обеих колонках, в противном случае делают вывод об отсутствии данного соединения в пробе.

При анализе однотипных проб, состав которых не подвергается резким изменениям, либо когда известно заранее, какие из хлорфенолов могут содержаться в пробе, идентификация с использованием полярной колонки не является обязательной для каждой пробы, а может быть проведена для одной-двух проб из однотипной серии.

8 Вычисление результатов измерений

Для расчета используют хроматограммы полученные на колонке с фазой SE-54 (SE-30), однако в том случае когда в пробе имеются соединения, времена удерживания которых совпадают на этой фазе, для расчета используют результаты, полученные на колонке с полярной фазой.

Находят отношения высот (площадей) пиков хлорфенолов на хроматограмме к высоте (площади) пика внутреннего стандарта. Если это отношение составляет менее 0,2, массовую концентрацию каждого хлорфенола (C_x , мкг/дм³) в анализируемой пробе воды рассчитывают по формуле

$$C_x = \frac{h_x(S_x) \cdot q_{x1}}{h_{m6\phi}(S_{m6\phi}) \cdot R_x \cdot V \cdot K_{x1}},$$
(4)

где $h_x(S_x)$ - высота (площадь) пика определяемого соединения; $h_{\tau 6 \varphi}(S_{\tau 6 \varphi})$ - высота (площадь) пика внутреннего стандарта; q_{x1} - количество определяемого соединения в градуировочном образце $N\!\!\!_{\, 2}$ 1 (см 6.6), мкг;

 R_x - степень извлечения хлорфенолов из воды (для 3,4-, 3,5дихлорфенолов $R_x = 0.90$, для остальных - $R_x = 1.0$);

V - объем пробы воды, взятый для анализа, дм³;

 K_{x1} - отношение высоты (площади) пика определяемого хлорфенола к высоте площади) пика внутреннего стандарта в градуировочном образце N 1 (см. 6.6).

Если отношение высоты (площади) пика определяемого хлорфенола к внутреннему стандарту составляет величину 0,2 или более, содержание его в аликвоте пробы, взятой для анализа находят по соответствующей градуировочной зависимости. Массовую концентрацию хлорфенола (C_x , мкг/дм³) в анализируемой пробе воды рассчитывают по формуле

$$C_x = \frac{q_x}{R_x \cdot V},\tag{5}$$

где q_x - содержание хлорфенола в аликвоте пробы, найденное по градуировочной зависимости, мкг;

 ${f R_x}$ - степень извлечения хлорфенолов из воды (для 3,4-, 3,5-дихлорфенолов ${f R_x}=0,90,$ для остальных - ${f R_x}=1,0);$

V - объем пробы воды, взятый для анализа, дм³.

Результат измерения в документах, предусматривающих его использование, представляют в виде:

$$C_x \pm \Delta$$
, MKT/ дm^3 (P = 0,95), (6)

где Δ - характеристика погрешности определения для данной массовой концентрации конкретного хлорфенола (таблица 2).

Численное значение результата определения должно оканчиваться цифрой того же разряда, что и значение характеристики погрешности.

9 Контроль погрешности измерений

Периодичность контроля - не менее одной контрольной на 15-20 рабочих проб за период, в течение которого условия проведения анализа неизменны. Образцами для контроля являются рабочие пробы воды, отобранные в соответствии с разделом 5. Их объем должен быть достаточным для проведения основного и контрольного определений.

Анализ неконсервированных проб должен быть выполнен не позднее суток, консервированных - не позднее 3 недель после отбора.

9.1 Оперативный контроль воспроизводимости

Для оперативного контроля воспроизводимости используют только пробы воды, законсервированные в соответствии с разделом 5.

Выполняют измерение массовой концентрации хлорфенолов в основной (C_{x1}) и контрольной (C_{x2}) пробах. Интервал между анализом основной и контрольной проб должен составлять 1-3 сут.

Результат контроля признают удовлетворительным, если расхождение между C_{x1} и C_{x2} не превышает норматив контроля D:

$$\left| C_{x1} - C_{x2} \right| \le D \tag{7}$$

Норматив контроля рассчитывают по формуле

D = 2,77
$$\sigma(\Delta)$$
 (P=0,95), (8)

где $\sigma(\dot{\Delta})$ - характеристика случайной составляющей погрешности для концентрации хлорфенолов, рассчитанной по формуле $C = (C_{x1} + C_{x2})/2$ (таблица 2).

При превышении норматива контрольное определение повторяют. При повторном превышении норматива выясняют причины, приводящие к неудовлетворительным результатам и устраняют их.

9.2 Оперативный контроль погрешности

Для проведения контроля погрешности отбирают пробу воды, отмеривают равные объемы ее и помешают в две склянки. Выполняют измерение массовой концентрации хлорфенолов в одной из них и получают результат C_{x1} . В другую склянку вводят добавку компонента C_{x2} выполняют анализ и получают результат C_{x2} . Величина добавки должна составлять не более 100~% от C_{x1} . При отсутствии хлорфенолов в исходной пробе добавка должна составлять удвоенную минимально определяемую концентрацию. Анализ проб без добавки и с добавкой выполняют в одно время и в одинаковых условиях.

Результат контроля признают удовлетворительным, если выполняется условие:

$$\left| C_{x2} - C_{x1} - C_{x} \right| \leq K \tag{5}$$

Норматив оперативного контроля погрешности К, мкг/дм³, рассчитывают по формуле

$$K = 0.84 \cdot \Delta_{cc} + 1.64 \cdot \sqrt{\sigma_{Cx2}^2(\Delta) + \sigma_{Cx1}^2(\Delta)},$$
 (6)

где $\Delta_{\rm cc}$ - характеристика систематической составляющей погрешности, соответствующая концентрации добавки $C_{\rm g}$; $\sigma_{\rm Cr}^2(\mathring{\Delta})$ и $\sigma_{\rm Cr}^2(\mathring{\Delta})$ - характеристики случайной составляющей погрешности для $C_{\rm x2}$ и $C_{\rm x1}$ соответственно.

Характеристики систематической и случайной составляющих погрешности находят из таблицы 2 в разделе 2 в соответствии с концентрациями хлорфенолов в пробах.

При превышении норматива контрольное определение повторяют. При повторном превышении норматива выясняют причины, приводящие к неудовлетворительным результатам и устраняют их.

10 Требования безопасности

- определений выполнении массовой концентрации хлорфенолов пробах природных сточных вод и очищенных соблюдают требования безопасности, установленные в "Правилах по технике безопасности при производстве наблюдений и работ на сети Госкомгидромета", Л., Гидрометеоиздат, 1983, или в "Типовой инструкции технике безопасности по для гидрохимических лабораторий служб Роскомвода", М., 1995.
- 10.2 По степени воздействия на организм вредные вещества, используемые при выполнении определений, относятся ко 2, 3, 4 классам опасности по ГОСТ 12.1.007.
- 10.3 Содержание используемых вредных веществ в воздухе рабочей зоны не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.005.
- 10.4 Определение следует проводить при наличии вытяжной вентиляции.
- 10.5 Оператор, выполняющий измерения на хроматографе должен знать правила безопасности при работе с электрооборудованием и сжатыми газами.

11 Требования к квалификации исполнителей

К выполнению определений и обработке их результатов допускаются специалисты-химики с высшим образованием или со средним профессиональным образованием и стажем работы в лаборатории не менее 3 лет, прошедшие подготовку в области газовой хроматографии и освоившие методику анализа.

12 Затраты времени

- 12.1 Затраты времени на подготовительные работы
- 12.1.1 Подготовка и очистка растворов и реактивов (включая контроль их чистоты) на 100 определений 30 чел.-ч.

- 12.1.2 Приготовление стандартных растворов хлорфенолов и внутреннего стандарта в год 25 чел.-ч.
 - 12.1.3 Установление градуировочных зависимостей:

подготовка градуировочных образцов - 5 чел.-ч; хроматографирование градуировочных образцов и расчет зависимостей - 12 чел.-ч.

12.2 Затраты времени на проведение анализа

- 12.2.1 Выполнение анализа единичной пробы до стадии хроматографирования 2,0 чел-ч.
- 12.2.2 Выполнение анализа серии из 10 проб до стадии хроматографирования 10 чел.-ч.
- 12.2.3. Хроматографирование экстракта и вычисление результата 2,0 чел.-ч.
- 12.3. Дополнительные затраты времени для идентификации хлорфенолов на полярной колонке 1,0 чел.-ч на каждую пробу.

Затраты времени на подготовку посуды включены в затраты времени на проведение анализа.

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕЛЫ

ГИДРОХИМИЧЕСКИЙ ИНСТИТУТ

СВИДЕТЕЛЬСТВО N 507

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ массовой концентрации ди- и полихлорфенолов в водах газохроматографическим методом.

ОСНОВАНА на извлечении хлорфенолов из воды толуолом, реэкстракции их раствором карбоната натрия, ацилировании уксусным ангидридом, экстракции ацетильных производных гексаном с последующим газохроматографическим определением их на хроматографе, снабженном электронозахватным детектором. Расчет количественного содержания хлорфенолов осуществляют по высотам или площадям их пиков на хроматограмме с использованием внутреннего стандарта.

РАЗРАБОТАНА Гидрохимическим институтом.

РЕГЛАМЕНТИРОВАНА в РД 52.24.507-98.

АТТЕСТОВАНА в соответствии с ГОСТ Р 8.563 (ГОСТ 8.010). АТТЕСТАЦИЯ проведена Гидрохимическим институтом на основании результатов экспериментальных исследований в 1996-1997 г.

В результате аттестации МВИ установлено:

1 МВИ соответствует предъявляемым к неи метрологическим требованиям и обладает следующими основными метрологическими характеристиками

Значения характеристик погрешности и ее составляющих (Р=0,95)

Определяемое соединение	Диапазон измеряемых концентраций	Характеристики составляющих погрешности, мкг/дм ³		Характерис- тика
	С, мкг/дм ³	случайной, $\sigma(\mathring{\Delta})$	системати- ческой ∆.	погрешности, Δ, мкг/дм ³
2,3-, 2,4-, 2,5 - , 2,6-	0 ,20-1,20	0,02+0,10 C	0,01+0,06 C	0,04+0,20 C
дихлорфенолы	св.1,20-8,00	0,10 C	0,07 C	0,22 C
3,4-, 3,5- дихлор-	0,30-1,80	0,03+0,10 C	0,02+0,07 C	0,06+0,22 C
фенолы	св.1,80-12,0	0,10 C	0,07 C	0,22 C
Трихлорфенолы	0,05-2,00	0,10 C	0,07 C	0,2 1 C
Терта- и пента- хлорфенолы	0,05-2,00	0,01+0,10 C	0,07 C	0,02+0,21 C

- 2. Оперативный контроль погрешности измерений проводят в соответствии с разделом 9 РД 52.24.507-98.
- 3. Дата выдачи свидетельства: июль 1997 г.

Директор

А.М. Никаноров

Главный метролог

А.А. Назарова