TUHOBOЙ ПРОЕКТ 901-3- 268.89

БЛОК ДОПОЛНИТЕЛЬНЫХ РЕАГЕНТОВ ДЛЯ СТАНЦИИ ОЧИСТКИ ВОДЫ ПОВЕРХНОСТНЫХ ИСТОЧНИКОВ МУТНОСТЬЮ до 120 мг/л ПРОИЗВОДИТЕЛЬНОСТЬЮ 20,0 тно.м3/оутки.

AJILEOM I

пояснительная записка

23907-01

СФ ЦИТП 620062, г.Свердловск, ул.Чебылава. 4 Зак 2506нв. 23 904-01 тираж 100 Сдано в печать 30.03. 19 90 Цена 1-10 ТИПОВОЙ ПРОЕКТ 901-3-268.89

ЕЛОК ДОПОЛНИТЕЛЬНЫХ РЕАГЕНТОВ ДЛЯ СТАНЦИЙ ОЧИСТКИ ВОДЫ ПОВЕРХНОСТНЫХ ИСТОЧНИКОВ МУТНОСТЬЮ ДО I20 мг/л, ПРОИЗВОДИТЕЛЬНОСТЬЮ 20,0 тыс.м3/сутки

AJIDEOM I - HORCHUTEJIDHAR BAHINCKA

Разработан ЦНИИЭП инженерного оборудования городов, жилых и общественных зданий

УТВЕРИДЕН Гоогражданстроем Приказ № 242 от 29 июля 1986г.

Главный инженер института КШУ Ответственный исполнитель

Klly of A.I. Ketaob
W.M. Hobuk

901-3-268.89

СОДЕРЖАНИЕ

1. Общая часть 1.1. Введение 1.2. Технико-экономические показатели 2. АРХИТЕКТУРНО- СТРОИТЕЛЬНАЯ ЧАСТЬ 2.1. Природние условия строительства и технические условия на проекти 2.2. Объемно-планировочние и конструктивние решения 2.3. Отделочние работн 2.4. Расчетние положения 2.5. Отделка и мероприятия по защите емкостных сооружений от коррозии 3. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА 3.1. Общая часть 3.2. Земляние работи и монтаж сборных железобетонных элементов	ħ 5
2. АРХИТЕКТУРНО- СТРОИТЕЛЬНАЯ ЧАСТЬ 2.І. Природные условия строительства и технические условия на проекти 2.2. Объемно-планировочные и конструктивние решения 2.3. Отделочные работн 2.4. Расчетные положения 2.5. Отделка и мероприятия по защите емкостных сооружений от коррозии 3. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА 3.І. Общая часть 3.2. Земляние работи	
2.І. Природние условия строительства и технические условия на проекти 2.2. Объемно-планировочние и конструктивние решения 2.3. Отделочние работн 2.4. Расчетные положения 2.5. Отделка и мероприятия по защите емкостных сооружений от коррозии 3. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА 3.І. Общая часть 3.2. Земляние работи	
3.1. Общая часть 3.2. Земляние работи	9
3.2. Земляние работи	
3.4. Гидравлическое испытание емкостных сооруженийй	10 11 12 14 15
3.5. Указания по производству работ в зимних условиях 3.6. Техника безопасности	15
4. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 4.І. Назначение и состав проекта	19

90	I-3- 268.	89 (I)	-3-
		четние параметри по реаг	
	-	рактеристика реагентных о	тделении
		3.1. Отделение извести 3.2. Отделение угля	
		· · · · · · · · · · · · · · · · · · ·	
	4.4. Bhy	тренний водопровод и кан	пицвенка
õ		E n Behtniuuhae n ei	
		ию сведения	
		лоснабжение	
	5.3. Oro		
	5.4. Вен	RULELUT	
6	электрот	ехническая часть	
	6.I. Odu	дая часть	
	6.2. Эле	ктроснабжение	
	6.3. Зан	~	
		ниезащита	
		ювое электрооборудование	•
		нтрическое освещение	
	6.7. ART	OMATUSATUR U TEXTOTOPUUG	ותווות אינותווות

27

28

6.8. Illuru

6.9. Связь и сигнализация

7. УКАЗАНИЯ ПО ПРИВЯЗКЕ ПРОЕКТА

I. ОБЩАЯ ЧАСТЬ

І.І. Введение

Настоящий типовой проект выполнен в соответствии с планом типового проектирования ЦНИИЭП инженерного оборудования на 1988-1989г.г.

Проект, положенный в основу данной расочей документации, утвержден Государственным комитегом по гражданскому строительству и архитектуре при Госстрое СССР, приказ № 242 от 29 июля 1986г.

Типовой проект разработан в соответствии с "Инструкцией по типовому проектированию" СН 227-82 и СНиП 2.04.02-84 " Водоснабжение. Наружные сети и сооружения".

Проект "Дополнительные реагенти для отанции очистки води поверхностних источников мутностью до I20 мг/л производительностью 20.0 тыс.м3/сутки" предусматривает возможность строительства сооружений, как в составе новых комплексов водоочистных станций, так и при расширении существующих.

Основным назначением запроектированных сооружений является дополнительная реагентная обработка воды поверхностных источников в комплексе с "Главным корпусом для станции очистки воды поверхностных источников мутностью до I20 мг/л производительностью 20.0 тыс.м3/сутки (ТП 90I-3-267.89) Блок дополнительных реагентов применяется для стабилизации очищенной воды, а также удаления привкусов и запахов (обработка воды активированным углем).

В настоящем типовом проекте применени архитектурные решения, технология, оборудование, строительные конструкции и организация труда, соответствующие новейшим достояниям отрасли.

Типовой проект разработан в соответствии с действующими нормами и правилами, а также предусматривает мероприятия, обеспечивающие взривобезопасность и пожаробезопасность при эксплуатации сооружений.

Ответственный исполнитель

1.2. Технико-экономические показатели

Технико-экономические показатели определени по данним соответствующих разделов настоящего типового проекта

			.		
jaja	Наименование показателей	Ед. изм. —	Значение показателей		
III Izamenobanko nokasatenok		F	Іастоящего гроекта	Проекта- аналога	(+) акономия (+) акономия
Ī		3	4	5	6
I	Номер типового проекта	- 9	01-3-268. 89	90I_3_14 3	
2	Производительность (полезная) сооружений	м3/сутки	20000	20000	
3	Общая сметная стоимость	тыс. рус	88,43	93,45	+ 5,02
4	Стоимость строительно-монтажных работ		3.72,05	75,22	+ 3,17
5	Сметная стоимость на расчетную единицу	pyď.	4421,5	4672.5	+ 251
6	Строительный объем	мЗ	2161,2	2691,5	+ 530,3
7	оден площадь	м2	374,4	484	+ 109,6
8	Потребляемая мощность электроэнергии	KBT	36,8	57,2	+ 20,4
9	Расход электроэнергии в год	мВт.ч.	274,0	500,0	+ 226
IO	Расход тепла в год	Гкал.	301,86	337,94	+ 36,08
II	Эксплуатационные затраты в год	тис.руб.	33,0	40,23	+ 7,23
12	Себестоимость очистки І мЗ воды	pyd.	0.0045	0,0055	+ 0,0010
13	Приведенные затрати	pyd.	46,26	54,25	+ 7,99

901-	-3-268.89 (I)	-6-			
Ī_		3	4 5		
14	Численность работающих	чөл	4	4	-
15	Коэффициент сменности	-	2	2	-
16	Коэффициент загрузки оборудования		0,75	0,75	-
17	Удельный вес прогрессивных видов строительно-монтажных работ	%	68	66	+ 2
18	Производительность труда	тнс.м3/ чел.	1825	1825,0	-
19	Трудозатрати построечние	чел.ч	10003	13129	+3126
20	Расход основных строительных				

T

T

м2

м2

%

тис.м3

144,91

7,25

37,24

I,86

74,50

0,027

7300

97

1217,71

135.09

6,75

38,88

I, 94

7300

96.5

- 9,82

-0.50

+ 1.64

+ 0,08

+ 0,5

21

материалов:

Cr.3

- стекло оконное

- труби пластмассовие

логических процессов

Годовой объем продукции

- цемент, приведенный к М 400

- сталь, приведенная к классам А-І и

- то же на расчетную единицу

- то же на расчетную единицу

- рулонние кровельние материали

Уровень механизации основных техно-

901-3-268.89

Ī		3	4	5	_6
23	Уровень автоматизации основных технологических процессов	%	97	96,5	+ 0,5
24	Удельный вес рабочих занятих ручным трудом	%	3	3,5	+ 0,5
25	Сметная стоимость с учетом привязки	THO. P.	114,96	I2I, 48	+ 6,52

ж Показатели приведени с поправкой на цени 1984 г., а также СНиП 2.04.02-84 "Водоснабжение".

За расчетную единицу принято I тис.мЗ полезной производительности (всего 20,0 расчетных единиц).

- 2. APXINTERTYPHO-CTPOINTENHAR YACTL
- 2.I. Природние условия отроительства и технические условия на проектирование

Типовой проект разработан в соответствии с "Инструкцией по типовому проектированию для промишленного строительства" СН 227-82.

Проект разработан для строительства в районах со следующими природно-климатическими условиями:

- расчетная зимняя температура наружного воздуха минус 30°C;
- скоростной напор ветра для I географического района СССР 0,23 кПа (23 кгс/м2);
- поверхностная снеговая нагрузка для II географического района СССР -I,00 кПа(I00 кго/м2);
- рельеф территории спокойный, грунтовые воды отсутствуют;
- грунти непучинистие, непросадочные со следующими нормативными карактернотиками: плотность грунта $\mathcal{P} = I.8 \text{ т/м3}$; нормативный угол внутреннего трения $Y = 0.49 \text{ рад (28}^{\circ})$; модуль деформации грунтов E = I4.7 мПа (150 кгс/см2); коэффициент безопасности по грунту Kr. = I; сейсмичность района строительства не выше 6 баллов; территория без подработки горными выработками.

Проектом не предусмотрены особенности строительства в районах вечной мерэлоты, на макро-пористых и водонасыщенных грунтах, в условиях оползней, осыпей, карстовых явлений и т.и.

По капитальности здание относится ко П классу сооружений, по долговечности - П степени, степень огнестойкости П.

2.2. Объемно-планировочные и конструкливные решения

Блок дополнительных реагентов размерами в осях I2.0 x I8.0 м.

Блок двухэтажний. Висота этажа 4,20 м. В блоке размещаются отделение баков известкового теста, отделение приготовления известкового молока, склад угля, отделение приготовления угольной пульши и венткамеры.

Отметки пола двух первих помещений минус 1,20 м.

Отделение баков известкового теста оборудуется подвесным краном грузоподъемностью 2,0 т; склад угля подвесными кранами на первом и втором этажах грузоподъемностью 0,5 т.

Блок примыкает к третьему блоку главного корпуса и представляет о ним единое целое.

Выполняется с применением сетки колонн $6.0 \times 6.0 \text{ м}$ для многоэтажных зданий по серии 1.020-1/63.

2.3. Отделочние работы

Наружние поверхности панельных стен окрашиваются цементно-перхлорвиниловыми красками. Наружные поверхности кирпичных вставок штукатурятся цементно-песчаным раствором марки 50 и окрашиваются цементно-перхлорвиниловыми красками под панели.

Внутренняя отделка дана на чертежах проекта.

2.4. Расчетные положения

Баки гашения комовой извести и хранения известкового теста — прямоугольные в плане сооружения, размерами 6,0 x 4,5 м.

Стени и днице - монолитние.

901-3-268.89 (I)

Армируются сварными сетками.

Бетон принят проектных марок BI5, 4, F 50.

Баки крепкого известкового молока прямоугольное в плане сооружения, размерами I,5xI,8м.

 Отделка и мероприятия по защите емкостных сооружений от коррозии

Днище и стени баков гашения комовой извести со оторони води торкретируются на 25 мм с последующей затиркой цементным раствором.

Со сторони грунта стени загираются цементно-песчаным раствором, а выше планировочных отметок земли штукатурятся.

Наружные поверхности стен затираются цементно-песчаным раствором и окрашиваются поливиния цетатными красками светлых тонов.

- з. организация строительства
- 3. І. Общая часть

Основания положения по производству строительно-монтажных работ блока дополнительных реагентов для станции очистки води поверхностных источников мутностью до I20 мг/л производи-тельностью 20 тис.м3/сутки разработани в соответствии с инструкциями СН 227-82 и СНиП 3.01.01-85.

Строительство блока дополнительных реагентов предусматривается в следующих условиях:

- сборние железобетонные конструкции, изделия и полуфабрикаты поставляются с существующих производственных баз стройиндустрии;
 - стройплощадка имеет горизонтальную поверхность;
- при строительстве сооружений в условиях высокого уровня грунтовых вод должен быть обеспечен непрерывный водоотлив: открытый с помощью самовсасывающих центробежных насосос или путем

водопонижения иглофильтровыми установками. Мощность водоотливных средств и продолжительность их работы определяются при привязке проекта на основании данных о величине подпора и принятых темпах работ.

До начала основних работ по строительству блока дополнительних реагентов должна бить виполнена работа подготовительного периода: устройство водоотводных канав, временных подъездов к площадке, геодезические работы по разбивке осей, возведение временных зданий и сооружений, прокладка временных коммуникаций.

3.2. Земляние работи

При производстве земляных работ следует руководствоваться положениями СНиП 3.02.01-87 "Земляные сооружения. Основания и фундаменты".

Разработка котлованов и траншей в подземной части здания осуществляется до отметок:

- котлованов для фунцаментов под колонни минус 1.95; 1.75; 1.35;
- под емкости РЕ -I. РБ-2, минус I.40:
- траншей для ленточных фундаметов минус І.75.

Работи осуществляются экскаватором, оборудованным обратной лопатой ковшом емкостью 0,65 м3 (типа 3-652E).

Добор грунта до проектных отметок осуществляется специальным устройством на экокаваторе 30-3322 и вручную.

По окончании земляных работ основание котлована и траншеи подлежат приемке по акту.

Обратная засника производится бульдовером слоями толщиной I5-20 см. Уплотнение грунта в пристенной части осуществляется электротрамбовками И3-450I равномерно по периметру. Уплотнение остальной части засники производится гусеницами бульдовера.

901-3-268.69

3.3. Бетонные работы и монтаж сборных железобетонных элементов

Бетонные работы и монтаж сборных железобетонных конструкций следует производить в соответствии со СНиИ 3.03.01-87 "Несущие и ограждающие конструкции"

Перед началом бетонирования конструкций выпольяют комплеко работ по подготовке опалубки. арматуры, поверхностей основания.

Бетонная подготовка под днища емкостей РЕ-1 и РЕ-2 устраивается по предварительно опианированному дну котлована по щебню, втрамбованному в грунт.

Бетонирование осуществляется в разборно-переставной опалуске из готовых уклушированных элементов или в простанственных блоках- формах. Подача бетонной омеси к месту укланки осуществляется в бадьях емкостью 0.5 м3. І.О м3 монтажным краном, бетононасосом типа СБ-95А или ленточным бетоноукланчиком.

Бетон при уклапке уплотняется поверхностными выбраторами ИВ-91.

Для создания благоприятных условий твердение бетона поверхность полготовки поливается водой. Через 3-4 дня после окончания бетонирования допускаэтся выполнение последующих работ.

Нанесение гидроизоляционного слоя из асфальтового раствора толщиной 8 мм производится следующим образом:

- горячий материал подают к месту работ краном в бальях или бочках:
- раствор виливают на поверхность и разравнивают металлическими скребками.

Нанесение асфальтового раствора возможно так же с помощью растворонасоса или асфальто-MOTA.

Перед началом бетонирования днища установленная опалубка и арматура должны быть приняти по акту. в котором подтверждается их соответствие проекту; к акту прикладываются сертификаты на адматурную сталь и сетки.

901-3-268.89

Запанные величины защитного слоя бетона нижней и верхней арматуры обеспечиваются за счет применения бетонных подкладок под нижнюю арматуру и установки специальных опорных каркасов для верхней асматури. Бетонирование дниша производится непрерывно парадледьними полосами без образования щвов. Ширина полос принимается с учетом возможного темпа бетонирования и необходимости сопряжения вновь укладываемого бетона с ранее уложенным до начала схвативания последнего. Уплотнение бетона и выравнивание поверхности днища осуществляется вибробрусом. с применением переносных маячных реек.

Уложенный бетон в течение 7 суток поддерживается во влажностном состоянии. Через 16 часов после окончания бетонирования допускается залить днише водой.

В период производства бетонных работ на стройплощадке должен быть организован постоянный технический контроль за качеством бетона, его укладкой, уплотнением и уходом за ним.

Приемка работ по устройству дница оформляется актом, где должны быть отмечены:

- плотность и прочность бетона;
- соответствие размеров и отметок шнища проектным данным:
- наличие и правильность установки закладных деталей: отсутствие в днище выбоин, обнаженной арматуры трешин и т.п.

Отклонение размеров днища от проектных не должно превишать:

- в отметках поверхностей на Iм плоскости в любом направлении ± 5 мм:
- в отметках поверхностей паза зуба ± 4 мм.

При бетонировании стен емкости инвентарная опалубка устанавличается с внутренней стороны на вою висоту, а с наружной сторони на висоту яруса бетонирования с последующим нарашиванием.

Бэтонарование отен производится поярусно с тщательным уплотнением глубинными вибраторами макия И-II6И.

Торкретирование поверхностей монолитных стен следует производить с тщательной их обработ-кой пескоструйным аппаратом с промивкой водой.

Цементно- песчаный раствор наносится цемент- пушкой СБ-II?.

Монтак сфорных железобетонных конструкций каркаса, илит покрытия, стеновых панелей, диафрагы жесткости осуществляется гусеничным краном СКГ-30 грузоподъемностью 30 тн, длина стрелы 25 м, исходя из максимальных масс конструкций ригеля - 2,6 тн и диафрагым жесткости - 4.59 тн.

Ход крана осуществляется вдоль осей "А" и "В".

Строповку и подъем сборных элементов следует производить с помощью грузозахватных приспособлений, разработанных в проекте производства работ.

3.4. Індравлическое испытание емкостных сооружений

Гидравлическое испытание емкостей производится на прочность и водонепроницаемость до засипки котлована при положительной температуре наружного воздуха путем заполнения ее водой до расчетного горизонта и определения суточной утечки.

Испытание допускается производить при достижении бетоном проектной прочности и не ранее 5-ти суток после заполнения водой.

Сооружение признается выдержавшим испытание, если убыль воды за сутки не превышает 3 литров на I м2 смоченной поверхности стен и днища; через стыки не наблюдается выход струи воды, а также не установлено увлажнение грунта в основании.

При выявлении дефектов, испытания прекращаются и возобновляются после их устранения. Все работы по испытанию вести в соответствии со CHиII 3.05.04.-85.

3.5. Указания по производству работ в зимних условиях

Работы в зимнее время надлежит производить в соответствии с требованиями положений СНиП часть 3 "Организация, производство и приемка работ, глав "Работы в зимних условиях".

Мерэлий грунт должен быть предварительно подготовлен одним из следующих способов:

- предохранение грунта от промерзания;
- оттаивание мерзлого грунта;
- рыхление мерзлого грунта

Устройство бетонных и железобетонных конструкций целесообразно проводить способом термоса с применением добавок — ускорителей твердения и цементов с повышенным тепловыделением (бистротвердеющие и високомарочние).

Замоноличивание стиков при монтаже сборных железобетонных конструкций осуществляется с помощью электропрогрева пластинчатыми и стержневыми электропрами.

Обмазочную гидроизоляцию запрещается наносить при температуре окружающей среди ниже 5° C. В исключительных случаях такую гидроизоляцию делают в инвентарных переносных тепляках с покрыйтием из полимерных пленок.

3.6. Техника безопасности

Производство отроительно-монтажных работ осуществляется в строгом соответствии с положениями СНиП II-4-80 "Техника безопасности в строительстве". Правилами техники безопасности Госгортехнадзора СССР и Госэнергонадзора Минэнерго СССР, требованиями санитарно-гигиенических норм и правил Минэдрава СССР.

Разработка котлована под фундаменты здания и емкости должна проводиться при крутизне откосов согласно табл. 4 CHuII II 4-80.

Перемещение, установке и работа машин вблизи выемок с неукрепленными откосами разрешается только за пределами призмы обрушения грунта на расстоянии согласно табл. 3 СНиП II-4-80.

907...3...268..89

При аксплуатации машин полжни бить приняти меры, предупреждающие их опрожедывание или самопроизвольное перемещение при действии ветра.

При укладке бетона из бадей или бункера расстояние между нежней крожкой бадей мли бункера и ранее удоженным бетоном или поверхностью, на которую укладывается бегои, колиго онть на остав I м.

При уплотнении фетонной смеси электровибраторами перемещать вибратор за токовелущие шланги не попускается, а при переривах в работе или при перехоле с опного места на иругое влеитровибраторы необходимо выключать.

Растворонасос и смеситель слепует полключать к сети в соответствии с "Правилами устройства алектроустановок" и "Правилами безопасности при эксплуатации электроустановок промиленных пред-MDNATHÄ".

Рабочее место и проходы вокруг механизмов должны быть свободны от посторонных предметов.

При работе с механизмами запрещается:

- а) производить очистку, смазку и ремонт при включенном электродвигателе:
- б) начинать и продолжать работу в случае обнаружения неисправности.

Все механизми должни быть належно заземлены.

Польем и установку конструкций монтажным краном осуществлять в соответствия с его наслостной грузопольемностью, не попуская волочения и полтягивания конструкций.

Крижи грузозахватных приспособлений должны бить снабжены препохранительными замыжающими устройствами, препотвращающими самопроизвольное выпаление груза.

График производства работ на строительство блока дополнительных реагентов дан на листах марки ОС в альбоме 2.

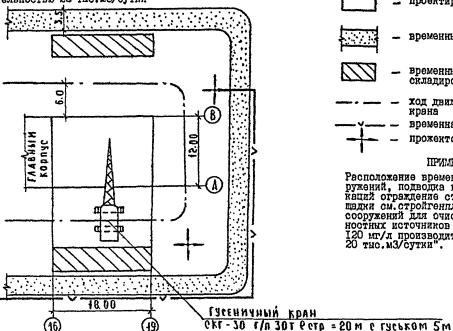

Настоящие положения по производству работ являются основой для разработки подробного проекта производства работ строительной организацией.

СХЕМА СТРОЙГЕНЦИАНА

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

проектируемые сооружения

Блока дополнительных реагентов для станции очистки воды поверхностных источников мутностью до I2O мг/л производительностью 20 тыс.м3/сутки

временные автодороги временные площадки складирования ход движения гусеничного крана временная электросеть

HAPPEMARII

прожектор

Расположение временных здания и сооружений подводка временних коммуни-каций ограждение строительной пло-шадки см. стройгенплан "Комплекса сооружений для очистки води поверхностных источников мутностью по I20 мг/л производительностью 20 тнс.м3/сутки".

ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

4. І. Назначение и состав проекта

Блок дополнительных реагентов предназначен для обработки воды поверхностных источников:

- с индексом насыщения карбонатом кальция в исходной и очищенной воде менее 0,3 более ш-х месяцев в году;
- с запахом и привкусом более 2 баллов, а также с высоким содержанием органических загрязнений:
- цветностью свише I20 градусов или содержанием фито и зоопланитона более I000 клеток в I мл производительностью более I-го месяца.

Блок дополнительных реагентов предусматривает возможность строительства сооружений как в составе новых комплексов водоочистных станций так и при расширении существующих.

Реагентное хозяйство в блоке запроектировано для двух дополнительных реагентов — извести и активного угля. Лабораторине анализи проводятся в лабораториях главного корпуса, разработанных по Т.П. 901-3-

4.2. Расчетные параметры по реагентам

HAL III	HOWERD AND AND AND AND AND AND AND AND AND AN	Доза мг/л	Суточный расход
Ī	Известь строительная ГОСТ 9179-77		
	а) по чистому продукту	15	0.36
	б) по товарному продукту с содержанием СаО 50%	30	0.72
2	Уголь активированный, осветляющий, древесный парошлакообразный		·
		5	0. T2
	б) по товарному продукту	6,I	Ŏ,ĨŜ
2	ГОСТ 4453-74 а) по чистому продукту	5 6,I	0,I2 0,I5

4.3. Характеристика реагентных отделений

4.3.1. Отделение извести

Отделение известкования запроектировано в составе:

- 2 бака гашения комовой извести и хранения известкового теота;
- кран-балка с моторным грейфером;

(I)

- приемний бункер
- известигасилка
- баки крепкого известкового молока
- гидромешалки известкового молока
- гидроциклоны
- насосное оборудование

Известь на станцию доставляется автосамосвалом и отгрукается в баки, частично заполненные водой, где она гасится и хранится в виде теста.

Из баков-хранилищ (общим объемом 50 м3) тесто подается моторным грейфером в приемный бункер с вибролотком и далее в известегасилку СМ-I247A, где происходит дробление и гашение извести с приготовлением I5% крепкого известкового молока. При работе моторным грейфером не следует допускать контакта известкового теса и привода грейфера.

Крепкое известковое молоко из известегасилки подается в баки крепкого известкового молока, откуда насосами СД 25/I4 направляется в одну из расходных гидромешалок, доводится до 3% концентрации, пропускается через гидроциклон и насосами — дозаторами перекачивается и месту ввода (в два трубопровода чистой воды, отводящие воду от контактных осветлителей).

4.3.2. Отделение угля

Отделение запроектировано в составе изолированного двухэтажного склада и номещения углевальной установки.

Порошкообразный реагент поставляется в ящиках или трехслойных бумажных мешках и хранится на складе. Высота слоя мешков не должна превышать I,5-I,3 м, ящики складируются в 2-3 яруса. Запас реагента обеспечивается на один месяц работы станции.

Транспортировка порошкообразного реагента производится замкнутой системой иневмотранопорта, работающей под вакуумом и исключающей попадание пыли в помещение.

Со склада порошок из специального ящика для загрузки реагента подается с помощью вакуумнасоса ВВНГ-3 (І рабочий, І резервний) в вакуум-бункер емкостью 1000 л. Объем бункера расочитан на І,5 суточный запас. Іневмоустановка заземляется и оборудуется противовурывным клапаном. Из бункера реагент черес секторный питатель — дозатор подается в одну из двух гидромешалок емкостью 2м³ каждая. В мешалках приготавливается 3% концентрации угольная пульпа. Объем мешалки позволяет обеспечить ее сработку в течении 8 часов.

Циркуляция пульпы производится насосами марки СД I6/I0 (I рабочий, I резервний), дозирование к точкам ввода - насосами-дозаторами НД 2,5 I000/I6Д I4A.

4.4. Внутренний водопровод и канализация

К данному разделу в проекте относятся только системы для отвода атмосферных осадков с кровли здания. Внутренняя система водостоков запроектирована из полиэтиленовых труб с открытым выпуском на отмостку.

5. OTOILIEHUE N BEHTUIRIUR

5.1. Общие сведения

Проект отопления и вентиляции блока дополнительных реагентов разработан на основании технологического задания и архитектурно-строительных чертежей в соответствии со СНиП 2.04.05-86.

При разработке проекта приняти расчетние температури наружного воздуха:

для отопления $t = -30^{\circ}$ с для вентиляции $t = -30^{\circ}$ с $t = +22^{\circ}$ с

Внутренние температури в помещениях приняти по ваданию технологов: склад угля, отделение баеов известкового молока — $(+5^{\circ}\text{C})$; отделение извести, отделение угля — $(+16^{\circ}\text{C})$

Коэффициенты теплопередачи ограждающих конструкций приняты в соответствии со СНиП П-3-79^{жж}

I. Для наружных отен из обикновенного глиняного кирпича P = 1800 kr/м3

6 = 380 mm $K = 1.49 \text{ BT/M2}^{\circ}\text{C}$ (I,28 KKAJ/M2 YAC. °C)

6 = 510 MM $K = 1.2 \text{ BT/M2}^{\circ}\text{C} (1.03 \text{ KKaJ/M2 Yac.}^{\circ}\text{C})$

2. Для наружных стен из керамзитобетонных панелей P = 900 kr/m3

6 = 300 MM $K = 2.07 \text{ BT/M2}^{\circ}\text{C} (0.92 \text{ KKa}\pi/\text{M2 } \text{Vac}^{\circ}\text{C})$

3. Для покрытия с утеплителем — пенобетон $\rho = 300 \text{ kg/m}^3$

6 = 100 MM $K = 0.77 \text{ BT/M2}^{\circ}\text{C} (0.66 \text{ KKaJ/M2 } \text{ Yac}^{\circ}\text{C})$

(I) -23-

4. Для остекления спаренного в деревянных переплетах $K = 2.56 \text{ вт/м2}^{\circ}\text{C}$ (2.2 ккал/м2 час $^{\circ}\text{C}$)

5. Для наружних дверей и ворот деревянных

 $K = 2.0 \text{ BT/M}2^{\circ}\text{C} (I.72 \text{ KKaJ/M}2 \text{ Vac}^{\circ}\text{C})$

 $K = 3.0 \text{ BT/M2}^{\circ}\text{C} (2.58 \text{ KKaJ/M2 Yac}^{\circ}\text{C})$

5.2. Теплоснабжение

Теплоснабжение здания предусматривается от уэла управления главного крпуса. Теплоносительвода с параметрами 150° – 70° (основной вариант) и 95° – 70° С.

5.3. Отопление

В здании запроектирована однотрубная горизонтальная система отопления с замыкающими участками. В качестве нагревательных приборов приняти радиаторы МС-I40. Трубопроводи прокладиваются с уклоном = 0,003. Прокладиваемие в подпольных каналах, трубопроводи изолируются шнуром минераловатным б= 30 мм с последующим покрытием по изоляции рулонным стеклопластиком. Удаление воздуха из системи осуществляется кранами инженера Маевского.

5.4. Вентиляция

В здании запроектирована приточно-витяжная система вентиляции с механическим и естественным побуждением.

В отделении баков известкового молока воздухообмен рассчитан из условия ассимиляции влаговиделений, что составляет I крат в зимний период и I,5 крата в летний период. В остальных помещениях количество вентиляционного воздуха определено по кратности. Приток осуществляется системами централизованно, витяжка — механическая. Все металлические воздуховоды окраживаются масляной краской.

Монтаж отонительно-вентиляционного оборудования вести в соответствии со СНиП 3.04.01-85

6. ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ

6.1. Общая часть

В данном проекте разработано: электроснабжение, зануление, модинезащита, оиловое электрооборудование, автоматизация и технический контроль, электрическое освещение и связь.

6.2. Электроснабжение

По требованиям, предъявляемим в отношении надежности и бесперебойности электроснабиения, электроприемники блока дополнительных реагентов относятся к третьей категории потребителей электроэнергии.

Электроснабжение потребителей 0.4 кВ, осуществляется от распределительных шкафов типа ШР-II-7000. установленных в отделении реагентного хозяйства главного корпуса.

6.3. Зануление

В соответствии с требованиями ПУЭ-85 раздел І, глава І-7 все металлические нетоковедущие части электроустановок должны бить занулены, путем присоединения к нулевой жиле питарщих кабелей.

В качестве нулевых защитных проводников используются четвертне жилы питающих кабелей и отальная полоса 40х4, соединенные с нулем силового трансформатора.

Зануление подкрановых путей осуществляется подключением к ним нулевой жилы питающего кабеля и соединением путей между собой стальной полосой 40х4.

6.4. Молниезащита

В соответствии с п.4 табл. І РД 34.21.122-87 для блока дополнительных реагентов, являющегося составной частью сооружения, объединяющего главний корпус и данний блок, относящегося по степени отнестойкости ко II категории и включающего оклад угля и отделение угля класса П-II, молниезащита может не выполняться, т.к. ожидаемое количество поражений молнией в год составляет N - [(5 + 6h) + (5 + 6h) + (5 + 6h) + (6h) + (6h

Для защити от статического электричества все оборудование склада угля и отделения угля заземляется стальной полосой 40х4 или зануляется.

Защита от вторичных проявлений молнии выполняется согласно РД 34.21.122-87

6.5. Силовое электрооборудование

Все электродвигатели выбрани асинхронными с короткозамкнутым ротором с пуском от полного напряжения сети. Двигатели поставляются комплектно с технологическим оборудованием. Напряжение питания электродвигателей 380 В.

Пуск и коммутация двигателей осуществляется норматизованными станциями управления в ящиках типа ЯБІОО. ЯОИ БІОІ и магнитными пускателями типа ПШЛ.

Для подключения крана предусмотрен ящик типа ЯВЗ-ЗІ-І и пускатель ПМЛ. Предусмотрено обесточивание толлеев крана при входе обслуживающего персонала на ремонтную плошалку.

Распределение электроэнергии и присоединение электродвигателей к пусковым аппаратам виполняется кабелем марки АВВГ, прокладываемым по строительным конотрукциям открыто на скобах, на кабельных конструкциях в лотках, а также в полиэтиленовых трубах в полу и в металлорукавах по стенам сооружений. 901-3-268.89

6.6. Электрическое освещение

Проектом предусмотрено общее рабочее и аварийное освещение, переносное освещение. Электрическое освещение выполнено в соответствии с ПУЭ-85. СН 357-77 и ВСН 294-72. Освещенность помещений принята согласно СН и П П-4-79.

Выбор светильников проведен в зависимости от назначения номещений, условий среди и висоти полвеса.

Напряжение сети общего освещения - 380/220В, переносного - 36В.

Питание сетей рабочего и аварийного освещения блока дополнительных реагентов предусмотрено от осветительных сетей главного корпуса по вволных зажимов осветительных шитков ШО и ШАО.

В качестве групповых щитков приняты щиток ооветительный типа СШВ и автоматический виклочатель типа АП-50Б-3МТ.

Питающие сети выполняются кабелем АВВГ, прокладываемым по кабельным конструкциям и на скобах по стенам.

Групповке сети выполняются кабелем АВВГ, прокладываемым по стенам и перекритиям на скобах, проволом АППВ скрыто пол слоем штукатурки.

Управление освещением осуществляется выключателями, установленными у входов.

Для переносного освещения в складе угля и отделении угля используется переносной аккумудяторный светильник.

Для зануления элементов электрооборудования используется нулевой рабочий провод сети.

6.7. Автоматизация и технологический контроль

Контроль за технологическим процессом очистки воды осуществляется при помощи контрольноизмерительных приборов, установленных непосредственно у места отбора импульсов, а также приборов и аппаратуры сигнализации, размещенных на щите диспетчера.

На щит диспетчера вынесена:

- светозвуковая сигнализация уровней в мешалках известкового молока, угольной пульпы, а также сигнализация аварийного состояния приточных систем П-3.

Все насосные агрегаты снабжены приборами давления.

Для приточных систем проектом предусматривается автоматическое поддержание температуры приточного воздуха и защита калорифера от замораживания.

6.8. ЩИТЫ

Для размещения аппаратуры контроля, управления, регулирования и сигнализации предусмотрены щиты и ящики: щит диспетчера ЩД секция 5, устанавливается в диспетчерской главного корпуса, ящик ЯУП-З управления приточной системой типа ЯОИ 5ІОІ- Ангарского электромеханического заводав приточной венткамере.

Щит диспетчера ЩД секция 5 изготавливается по ОСТ 36-13-76.

6.9. Связь и ситнализация

Проект связи и сигнализации выполнен на основании заданий технологических отделов, "Ведомственных норм технологического проектирования" ВНТП II6-80 Министерства связи СССР. "Инструкция по проектированию установок пожарной сигнализации" ВНТП 61-78, СНиП 2.04.09-84.

Проектом предусматривается пожарная сигнализация блока дополнительных реагентов от главного корпуса. Кабельный ввод выполняется кабелем ТІШ ІОх2хО,4, прокладываемым открыто по стенам. На вводе устанавливается распределительная коробка КРТП-IО. В качестве датчиков пожарной сигнализации применяются тепловие извещатели ИП-IО4-I, устанавливаемые на потолке. Сеть пожарной

90T-3- 268,89

сигнадизации выполняется проводом ТРП Іх2х0,5 открыто по стенам и потолкам. Покарние лучи выполняются в коробку КРТП-IO.

7. УКАЗАНИЯ ПО ПРИВЯЗКЕ ПРОЕКТА

При привязке проекта необходимо уточнить применение типового проекта к реальным условиям строительства, а именно:

- требуемий напор и дози реагентов в зависимости от технологических испитаний и исследований процесса обработки исходной воды конкретного водоисточника, и по возможности изучить опити эксплуатации очистных сооружений, работакщих в аналогичных условиях;
 - вид применяемых реагентов и условия поставки:
- марка насосов, компрессоров, грузоподъемного оборудования и т.п. в соответствии с номенклатурой, выпускаемой заводами на момент привязки и строительства и выполнить необходимую корректировку соответствующих разделов проекта:
 - объем автоматизации и технологического контроля:
 - расчет заземления по току замыклния конкретных характеристик грунта :
 - тип и глубину заложения фундамента с соответствующим расчетом на прочность:
 - теплотехнический расчет толшин ограждающих конструкций:
- нагрузки по снеговому покрову и ветровому напору и при необходимости откорректировать несущие конструкции здания.

Проект разработан для условий производства работ в летнее время.

При производстве работ в зимнее время необходимо внести коррективу согласно СНиП III-17-78. W-I5-76.

Просим организации, привязавшие настоящий проект, информировать нас (с указанием объекта привязки) по адресу: 117279 г.Москва, Профсорзная ул.д. 93а ЦНИИЭП инженерного оборудования.