научно-производственная и проектная фирма «ЭКОСИСТЕМА»

МЕТОДИКА

Выполнения измерений массовой концентрации хлористого водорода в промышленных выбросах в атмосферу турбидиметрическим методом

M - 5

ФР.1.31.2011.11268

Исполнитель - главный специалист ООО НППФ "Экосистема" Н.А.Анисёнкова

> Санкт-Петербург 1998 г.

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДИКИ

Методика предназначена для измерения массовой концентрации хлористого водорода в промышленных выбросах в атмосферу турбидиметрическим методом в диапазоне от 0,25 до 180 мг/м³ на предприятиях, использующих или получающих хлористый водород в технологических процессах. Бромиды и иодиды менают определению хлористого водорода.

2. ХАРАКТЕРИСТИКА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ

Расширенная неопределённость измерений (при коэффициенте охвата 2): 0,25С, где С - результат измерений массовой концентрации хлористого водорода, мг/м³.

Примечание: указанная неопределённость измерений соответствует границам относительной погрешности измерений ± 25% (при доверительной вероятности 0,95).

3. СРЕДСТВА ИЗМЕРЕНИЯ, РЕАКТИВЫ, МАТЕРИАЛЫ

3.1. Средства измерения:

Фотоэлектроколориметр	по ГОСТ 12083-78
Секундомер, класс 3, цена деления 0,2 с	по ГОСТ 5072-79 Е
Весы аналитические ВЛА-200	по ГОСТ 24104-80 Е
Меры массы	по ГОСТ 7328-82 Е
Барометр - анероид М-67	по ГОСТ 23696-79 Е
Tenmomern пабораторикій шкапкный	

Термометр лабораторный, шкальный

ТЛ-2, цена деления 1°C предел 0-100°C по ГОСТ 215-73 Е

Электроаспиратор (типа ПУ-4Э) по ТУ 4215-000-11696625 Колбы мерные (2-50-2; 2-100-2) по ГОСТ 1770-74 Е Пипетки (1,0; 2,0; 5,0; 10,0 см³) по ГОСТ 29227-91

3.2. Вспомогательные устройства:

Трубка пробоотборная (рис. 1)

Сорбционные трубки 112 или 212 по ТУ-25-1110-039-82

Силиконовые шланги

Поглотительные приборы с пористой пластинкой типа ПП по ТУ -25-11-1136-75

3.3. Реактивы:

Кислота азотная, хч	ΓΟCT 6461-77
Серебро азотнокислое, чда	ΓΟCT 1277-75
Государственный стандартный образец хлорид-иона	ΓCO 6687-93
Вола листиллированная	ГОСТ 6709-72

Примечание: допускается применение других средств измерения и вспомогательного оборудования с техническими и метрологическими характеристиками не ниже указанного.

4. МЕТОД ИЗМЕРЕНИЯ

Метод основан на:

- 1) поглощении хлористого водорода дистиллированной водой;
- 2) смывании из сорбционных трубок клористого водорода дистиллированной водой в пробирки;
- 3) добавлении азотнокислого серебра:

$$AgNO_3 + HCl = AgCl_{\downarrow} + HNO_3$$
;

- 4) колориметрировании.
- В диапазоне от 5 до 75 мкг/проба прямое измерение; свыше 75 мкг разбавление.

5. УСЛОВИЯ БЕЗОПАСНОГО ПРОВЕДЕНИЯ РАБОТ

- 5.1. При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.4.021.
- 5.2. Электробезопасность при работе с электроустановками по ГОСТ 2.1.019.
- 5.3. Организация обучения работающих безопасности труда по ГОСТ 12.0.004.
- 5.4. Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009.
- 5.5. Содержание вредных веществ в воздухе не должно превышать установленных предельно допустимых концентраций в соответствии с ГОСТ 12.1.00588.
- 5.6. Работы при анализе проб газа должны выполняться с соблюдением требований техники безопасности, регламентируемых «Основными правилами безопасной работы в химической лаборатории».
- 5.7. Работы, связанные с отбором проб на высоте, допускается проводить только при наличии прочных и устойчивых площадок, огражденных перилами. Обязательным является ознакомление со следующими инструкциями:
- -«Общие правила по технике безопасности при работе в химической лаборатории»;
- -«Правила пожарной безопасности на предприятиях газовой или химической промышленности»;
- «Правила пользования спецодеждой и предохранительными приспособлениями»;
- «Оказание помощи при несчастных случаях».

6. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К работе допускаются лица, не моложе 18 лет, прошедшие инструктаж по технике безопасности, имеющие квалификацию инженера-химика или техника-химика, имеющие опыт работы и владеющие техникой анализа, прошедшие инструктаж по правилам работы с токсичными газами.

7. УСЛОВИЯ ИЗМЕРЕНИЯ АНАЛИЗИРУЕМЫХ ГАЗОВЫХ ВЫБРОСОВ

7.1. <u>При отборе проб</u> ПНД Ф 12.1.1-99

у ротаметра

в газоходе

Температура

от 2⁰C до 35⁰C

от 2⁰C до 50⁰C

Лавление

от 82,5 кПа до 106,7 кПа

от 82,5 кПа до 106,7 кПа

Влажность относительная от 30 - 100%

от 30 - 100%

7.2. При выполнении измерений в лаборатории должны быть соблюдены следующие условия (по СанПиН 2.2.4.548-96):

 Температура
 20^{0} C ± 5^{0} C

 Давление
 101,3 кПа ± 3 кПа

 Относительная влажность
 до 75%

8. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

8.1. Приготовление растворов.

- 8.1.1. Приготовление рабочего градуировочного раствора концентрацией $20,0\,$ мкг/см $^3\,$ из $\Gamma CO.$
- 2 см³ ГСО хлористого водорода концентрацией 1 мг/см³ вносят в колбу объемом 100 см³ и доводят до метки дистиллированной водой. Срок хранения 1 мес.

8.1.2. 2% раствор азотнокислого серебра.

2,0 г. азотнокислого серебра помещают в колбу объемом 100 см³, растворяют примерно в 50 см³ воды, добавляют 5 см³ концентрированной азотной кислоты и доводят до метки дистиллированной водой. Хранят в посуде из темного стекла. Раствор устойчив.

8.2. Построение градуировочной характеристики (ГХ).

8.2.1 Градуировочная характеристика выражает зависимость оптической плотности от массы НСІ в 5см³ раствора. Для построения ГХ используют 5 градуировочных растворов (согласно таб.1). Каждый градуировочный раствор приготавливают в 5-ти параллелях, доливая в каждую пробирку дистиллированную воду до общего объема 5 см³. Вода должна быть свежеперегнанной. Затем в каждую пробирку приливают по 0,4 см³ концентрированной азотной кислоты и по 0,2 см³ раствора азотнокислого серебра. Содержимое пробирок перемешивают. В качестве нулевой пробы берут дистиллированную воду. Через 20 минут замеряют оптическую плотность градуировочных растворов при длине волны 440 нм. и кювете с толщиной поглощающего слоя 10 мм. (предварительно встряхнув пробирки).

Таблица 1.

N раствора	1	2	3	4	5
Объем рабочего градуировочного раствора, см ³	0,50	0,75	1,25	2,50	3,75
Объем дистиллированной воды, см ³	4,50	4,25	3,75	2,50	1,25
Масса хлористого водорода в 5 см ³ градуировочного раствора, мкг.	10,0	15,0	25,0	50,0	75,0

8.2.2 Результаты измерений оптической плотности каждого из градуировочных растворов признают приемлемыми при выполнении условия:

$$(D_{i \max} - D_{i \min}) / D_{i cp.} * 100 \le K_{pas},$$
 (1)

где

 $D_{i\,\text{max}}$, $D_{i\,\text{min}}$, $D_{i\,\text{cp}}$ –максимальное, минимальное и среднее значения оптической плотности i-го градуировочного раствора; единица оптической плотности (далее – e.o.n.);

 $K_{\text{раз}}$, - норматив (допускаемый размах результатов, отнесённый к среднему арифметическому), соответствующей вероятности 0,95, %

$$K_{pa3} = 20 \%$$

8.2.3 Градуировочную характеристику выражают линейным уравнением вида:

$$D = a + bm, (2)$$

гле

D - оптическая плотность раствора, е.о.п.;

m- масса HCI в 5 см³ і-го градуировочного раствора, мкг; а и b- коэффициенты градуировочной характеристики.

8.2.4 Коэффициенты градуировочной характеристики "a" и "b" паходят по методу наименьших квадратов по формулам:

$$a = \frac{\Sigma[m_i^2] \cdot \Sigma[D_{i \text{ cp.}}] - \Sigma[m_i] \cdot \Sigma[m_i \cdot D_{i \text{ cp.}}]}{n \cdot \Sigma[m_i^2] - [\Sigma m_i]^2}$$
(3)

$$\begin{array}{l} n \cdot \Sigma[m_i \cdot D_{i \; cp.}] - \Sigma[m_i] \cdot \Sigma[D_{i \; cp.}] \\ b = ----- \\ n \cdot \Sigma[m_i^2] - [\Sigma m_i]^2 \end{array} \tag{4}, \label{eq:bounds}$$

гле

 $D_{\text{icp.}}$ -среднее значение оптических плотностей i-го градуировочного раствора (среднее арифметическое 5-ти определений.) относительно нулевой пробы, единица оптической плотности;

п- количество градуировочных растворов;

m_i- масса HCI в 5 см³ і-го градуировочного раствора, мкг.

8.2.5 Градуировочную характеристику признают приемлемой при выполнении условия:

$$| D_{i cp} - D_{pac} | / D_{pac} * 100 \le K_{rp.}$$
 (5)

где

 D_{pac} – оптическая плотность i-го градуировочного раствора (e.o.п.), вычисленная по формуле (2) для соответствующего значения m_i ;

 K_{rp} – норматив (допускаемое расхождение результатов измерений), соответствующий вероятности 0,95.

 $K_{rp.} = 10 \%$

8.3. Отбор проб, их консервирование и хранение

Исследуемую газовоздушную пробу отбирают с помощью стеклянной пробоотборной трубки (рис. 1). Трубку устанавливают в отверстие на газоходе. К концу пробоотборной трубки при помощи силиконовых шлангов присоединены последовательно 2 сорбционные трубки или 2 поглотительных прибора.

* Подготовка сорбционных трубок.

Новые трубки помещают в высокий термостойкий стеклянный стакан, заливают дистиллированной водой и кипятят 20 минут, меняя воду 2-3 раза. Затем сушат при температуре 100 - 120⁰ С в сушильном шкафу. При проверке сорбционных трубок контролируется качество промывки и сушки слоя стеклянной крошки. Стеклянная крошка должна быть просушена до сыпучего состояния. Для проверки качества мытья сорбционных трубок определяют РН оставшейся воды (РН должен находиться в интервале 6-7). Чистые трубки, предназначенные для отбора проб воздуха, обрабатывают абсорбирующим раствором: в пробирку приливают 2-3 см³ свежеперегнанной дистиллированной воды и опускают туда сорбционную трубку сорбирующим слоем вниз. При помощи резиновой груши несколько раз прокачивают раствор, чтобы смочить гранулы. Затем трубку вынимают, и излишки раствора выдувают на фильтровальную бумагу. Тщательно вытирают трубку снаружи, закрывают с двух сторон заглушками и укладывают в полиэтиленовый мешок. В поглотительные приборы заливают по 5 см³ дистиллированной воды.

Сорбционные трубки при отборе держат вертикально, сорбентом вниз, чтобы ток газовоздушной смеси проходил через стеклянные гранулы снизу вверх. Аспирируют газовоздушную смесь со скоростью $1~{\rm дm}^3$ /мин в течение 20 минут. Срок хранения проб - $1~{\rm сут}$ ки.

8.4. Выполнение измерений

В аналитической лаборатории сорбционные трубки опускают в пробирки и промывают 5 см³ свежеперегнанной дистиллированной воды (путем нескольких прокачиваний при помощи резиновой груши). Затем вынимают трубку из пробирки и выдувают грушей остатки раствора в пробирку, а при использовании поглотительных приборов содержимое их выливают в пробирки. В зависимости от предполагаемого содержания хлористого водорода берут аликвоту от 1 до 5 см³ и доводят водой до общего объема 5 см³. При большом содержании хлористого водорода аликвоту от 1 до 5 см³ помещают в мерную колбу объемом 50 - 100 см³ и доводят до метки дистиллированной водой, а оттуда берут аликвоту 5 см³. В качестве нулевой пробы берется дистиллированная вода. Во все пробы (в нулевую тоже) прибавляют по 0,4 см³ концентрированной азотной кислоты и по 0,2 см³ 2%-го раствора азотнокислого серебра.

Обе сорбционные трубки и оба поглотителя анализируют отдельно, а результаты (мкг) складываются. ($m_1 + m_2 = m$)

9. Обработка результатов измерения.

9.1. Вычисление массы НСІ (т. мкг) в пробе

$$m_{1,2} = (D - a) * K/b$$
 (6),

где

D - оптическая плотность раствора относительно нулевой пробы, e.o.n.;

"а" и "b"- коэффициенты, найденные по формулам (3, 4) при построении градуировочной характеристики;

К – коэффициент, учитывающий разбавление пробы,

$$K = U_p / U_a$$
 (7),

где

 U_p - объём раствора после разбавления, см³;

 U_a -объём аликвоты раствора, взятый для разбавления, см³.

9.2. Вычисление V-объёма отобранной газовоздушной смеси (дм 3) и приведение к нормальным условиям (0 0 C,101,3кПа),

$$V = T * \cdot W \tag{8}$$

$$V_0 = V * \cdot 273 * P / 101,3 * (273+t_p)$$
 (9),

где

Т- время пропускания газа через ротаметр, мин.;

W - расход газа, дм³/мин.;

Р - атмосферное давление при отборе проб, кПа;

 t_p - температура газовоздушной смеси перед ротаметром, ${}^0{\rm C}.$

 V_0 - объём отобранной газовоздушной смеси, приведённый к нормальным условиям, дм 3 .

9.3. Вычисление массовой концентрации HCI в газовоздушной пробе (C, мг/м 3).

$$C = m/V_0 \tag{10}$$

9.4 За результат массовой концентрации НСІ в газовоздушной пробе принимается среднее арифметическое 2-х определений

$$C = (C_1 + C_2)/2 (11),$$

гле

 C_1 и C_2 - результаты определения массовой концентрации НСІ в параллельных пробах, мг/м³. Результат определения признают приемлемым при выполнении условия:

$$(C_{\text{max}} - C_{\text{min}}) / C_{\text{cp}} * 100 \le R$$
 (12),

где

 C_{max} , C_{min} – максимальное и минимальное значение результатов параллельных определений, мг/м³:

 $C_{cp}-$ среднее арифметическое значение двух параллельных определений, мг/м 3 .

R- норматив (степень близости результатов параллельных проб к друг другу) при вероятности 0,95, %.

R = 25%

10. КОНТРОЛЬ ТОЧНОСТИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ

10.1. Периодический контроль стабильности градуировочной характеристики.

Контроль стабильности градуировочной характеристики проводится не реже 1 раза в квартал, а также при смене реактивов. Контроль проводится по контрольным растворам. Контрольные растворы готовят согласно таб.1., каждый раствор приготавливают и анализируют 2 раза. Полученные для $\mathbf{i}-\mathbf{ro}$ контрольного раствора два значения оптической плотности признают приемлемым при выполнении условия (1) при нормативе $K_{\text{раз}}$, равном 20 %.

Среднее арифметическое значение используют для вычисления массы НСІ по формуле (6). Результат контроля признаётся удовлетворительным при выполнении условия:

$$|m_k - m_i|/m_i * 100 \le K_{cr}$$
 (13)

гле

 m_{i} -масса HCI в 5,0 см 3 i-го контрольного раствора (согласно таб.1), мкг;

 m_{κ} - масса HCI в 5,0 см 3 контрольного раствора, найденная по методике и рассчитанная по формуле (6), мкг. Значение m_{k} вычисляется как среднее арифметическое

2-х определений, расхождение между которыми не должно превышать 15 %.

 $K_{\text{ст.}}$ - норматив контроля (допускаемое отклонение результата измерений массы HCI в 5,0см³ контрольного раствора от значения массы, приписанному этому раствору), соответствующий вероятности 0,95, %.

$$K_{cr} = 15 \%$$

Примечание:

Если в лаборатории анализ проводится эпизодически, то рекомендуется проводить данный контроль перед каждой серией проб. В этом случае контроль проводят по одной концентрации, значение которой приближается к ожидаемому.

10.2. Контроль погрешности результатов измерения

Осуществляется на этапе освоения методики, а также по требованию контролирующих организаций. Контроль осуществляется путём анализа модельной смеси гидрохлорида с воздухом, приготовленной на термодиффузионном генераторе, укомплектованном источником микропотока гидрохлорида.

При контроле проводят отбор и анализ 2-х параллельных проб. Результаты контроля считаются положительными при выполнении условия:

$$\left| C_{k} - C_{cp} \right| / C_{\kappa} * 100 \le K_{norp} \tag{14}$$

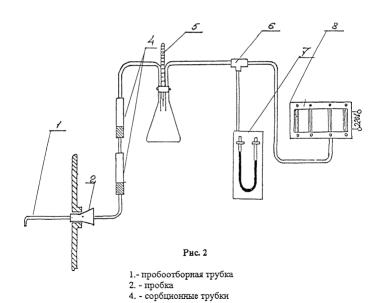
 C_{κ} – массовая концентрация гидрохлорида в контрольной газовой смеси, мг/м 3 .

 $C_{\text{ср.}}$ — среднее значение массовой концентрации гидрохлорида для 2-х параллельных определений, мг/м³.

 K_{norp} - норматив контроля, соответствующий вероятности 0,95, %.

 $K_{\text{norp}} = 25 \%$

Примечание: контроль по п.10.2 осуществляется при наличии данного оборудования в лаборатории или у контролирующих организаций.


11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерения округляется до 2-х значащих цифр и записывается в виде $(C \pm 0.25 \ C)$, мг/м³

Разработчик:	Главный специалист		
	ООО НППФ «Экосистема)		
	Н.А.Анисенкова		

Рис. 1 Пробоотборная трубка

5. - термометр6. - тройник7. - ртутный манометр8. - аспиратор

КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СТАНДАРТИЗАШИЙ, МЕТРОЛОГИЙ И СЕРТИФИКАНИИ

D.I.MENDELEYEV INSTITUTE FOR METROLOGY (VNIM)

State Centre for Measuring Instrument Testing and Certification

ГОСУДАРСТВЕННОЕ ПРЕДПРИЯТИЕ "ВНИИМ нм.Д.И.Менделеева"

Государственный сертификационный испытательный центр средств намерений

19 Moskovsky pr. St.Petersburg 198005, Russia Fax: (812) 113 01 14 Phone (812) 251 76 01

(812) 259 97 59 E-mail bal@onfi.vniim.spb.su 198005 Санкт-Петербург Московский пр., 19 Факс (812) 113 01 14

Телефон (812) 251 76 01 (812) 259 97 59

Телетайн 821 788 E-mail hal@onti.vnlim.spb.su

СВИДЕТЕЛЬСТВО CERTIFICATE OF COMPLIANCE

№ _____

об аттестации МВИ

№ 2420/172 - 98

Методика выполнения измерений массовой концентрации хлористого водорода в промышленных выбросах, разработанная ТОО "Экосистема" (199155, Санкт-Петербург, уд. Уральская, 17) и регламентированная в документе :М-5 "Методика определения концентрации хлористого хлористого водорода в промышленных выбросах в атмосферу турбидиметрическим методом, аттестована в соответствии с ГОСТ Р 8.563-96:

Аттестация осуществлена по результатам метрологической экспертизы материалов по разработке МВИ и экспериментальных исследований МВИ.

В результате аттестации МВИ установлено, что МВИ соответствует предъявленным к ней метрологическим требованиям и обладает основными метрологическими характеристиками, приведенными на оборотной стороне свидетельства.

Дата выдачи свидетельства 11 августа 1998 г.

Руководитель лаборатории Государственных эталогов в области аналитический лаберений тел. (812)-315-11-45

КОПИЯ ВЕРНА

A

Метрологические характеристики МВИ:

Диапазон измерений массовой концентрации хлористого водо рода от 0.25 до 180 мг/м^3 .

Границы относительной погрешности результата измерений (при доверительной вероятности 0,95): ± 25 %.

Нормативы оперативного контроля точности результатов измерений:

1.Норматив контроля сходимости измерений оптической плотности градуировочного раствора : размах результатов пяти измерений, отнесённый к среднему арифметическому (при P=0.95), (п.10.1.МВИ): не более 20 %.

- 2. Норматив контроля погрешности построения градуировочной характеристики (п.10.1.МВИ): $K_{rp} = 10 \%$.
- 3. Норматив периодического контроля стабильности градуировочной характеристики (п.10.2.МВИ): K_{cr} = 15 % .
- Норматив контроля сходимости результатов измерений массовой коцентрации хлористого водорода в контрольной газовой смеси (при n = 2, P = 0,95), (п.10.3.МВИ): d_c = 25 %.
- 5. Норматив контроля погрешности измерений массовой коцентрации хлористого водорода в контрольной газовой смеси (при P = 0.95), (п.10.3.МВИ): K = +/-25 %.

Ведущий инженер

Осипова Л.В

Методика М-5 прошла с положительным результатом экспертизу в НИИ "АТМОСФЕРА" Минприроды РФ (Заключение № 81 от 3.07.98 г.)

14

МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

Научно-исследовательский институт охраны атмосферного воздуха НИИ Атмосфера

RUSSIAN FEDERATION MINISTRY OF NATURAL RESOURCES

Scientific Research Institute for Atmospheric Air Protection SRI Atmosphere

194021, С.-Петербург, ул.Карбышева, д.7

Тел.: (812) 2478662

Факс: (812) 2478661. Телекс; 122612

194021, St.-Petersburg, Russia

Karbyshev st., 7. Phone: (812) 2478662 Fax: (812) 2478661

ЭКСПЕРТНОЕ ЗАКЛЮЧЕНИЕ

№ 192/33-09 от 26.08.2003 г.

В НИИ Атмосфера повторно рассмотрена «Методика определения концентрации хлористого водорода в промышленных выбросах в атмосферу турбидиметрическим методом» (свидетельство о метрологической аттестации №2420/172-98 от 11.08.98), представленная ООО НПФ «Экосистема».

По результатам экспертизы методика соответствует требованиям действующих государственных стандартов и других нормативных документов в области охраны атмосферного воздуха и может быть использована для измерения концентрации хлористого водорода в промышленных выбросах в диапазоне от 0,25 до 180мг/м^3 .

Ограничения по применению данной методики приведены на обороте заключения.

Срок действия методики 5 лет.

В.Б. Миляев

Цибульский В.В. (812) 2473618

О ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ И АТОМНОМУ НАДЗОРУ

Федеральное государственное унитарное предприятие "Научно-исследовательский институт охраны атмосферного воздуха" ФГУП "НИИ Атмосфера" Federal State Unitary Enterprise "Scientific Research Institute of Atmospheric Air Protection" FSUE "SRI Atmosphere"

194021, г.Санкт-Петербург,

ул.Карбышева, 7 тел.: (812) 297-8662 факс: (812) 297-8662

E-mail: info@nii-atmosphere.ru

ОКПО: 23126426 ОКОГУ: 13376 ОГРН: 1027801575724 ИНН: 7802038234

Исх. № 1-1351/68-0-6т 15.07.08

На № 295 от 09.06.08

О продлении срока действия экспертного заключения на МВИ 194021, St. Petersburg, Russia,

Karbyshev st, 7 Phone.: (812) 297-8662 Fax: (812) 297-8662

E-mail: info@nii-atmosphere.ru

Директору ООО « НППФ "ЭКОСИСТЕМА"» П.А. Богоявленскому

197342, Санкт-Петербург, наб. Черной речки, 41.

Настоящим письмом срок действия экспертного заключения НИИ Атмосфера №81/33-09 от 03.07.1998 года на «Методику определения концентрации хлористого водорода в промышленных выбросах в атмосферу турбидинамическим методом, М-5» продлен до 03.07.2013 года.

Исп. Цибульский В.В. Тел/факс (812) 2973618

my

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт охраны атмосферного воздуха" ОАО "НИИ Атмосфера"

194021, г.Санкт-Петербург, ул.Карбышева, 7, тел./факс: (812) 297-86-62 E-mail: info@nii-atmosphere.ru, http://www.nii-atmosphere.ru ОКПО: 23126426, ОГРН: 1097847184555, ИНН/КПП: 7802474128 / 780201001

Исх. № 07-2-330/13-0 от 23.05.2013 ООО НППФ "Экосистема"

На № 128 от 16.05.2013

Петровская набережная, 4, а/я 513
О продлении срока действия
экспертного заключения на МВИ

Настоящим письмом срок действия экспертного заключения НИИ Атмосфера №192/33-09 от 26.08.2003 г. на «Методику выполнения измерений концентрации хлористого водорода в промышленных выбросах в атмосферу турбидиметрическим методом (М-5). ФР.1.31.2011.11268» продлен до 26.08.2018 года.

В.А.Коплан-Дикс

0

Исп. В.В. Цибульский Тел/факс: (812) 380-92-41

12,20