ТИПОВОЙ ПРОЕКТ 901-3-263.89

ЕЛОК ДОПОЛНИТЕЛЬНЫХ РЕАГЕНТОВ ДЛЯ СТАНЦИИ ОЧИСТКИ ВОДЫ ПОВЕРХНОСТНЫХ ИСТОЧНИКОВ МУТНОСТЬЮ ДО 120 МГ/Л ПРОИЗВОДИТЕЛЬНОСТЬЮ 12,5 ТЫС.М³/СУТКИ

AJILEOM I

пояснительная записка

23816-01

СФ ЦИТП 620062, г.Свердловск, ул.Чебышева, 4 Зак.<u>289</u> ичв. <u>238/6 - О/</u>тираж <u>70</u> Сдано в печать <u>26.12.</u> 19<u>89</u> Цена <u>1-10</u>

TUII0BON IIPOEKT 901-3-263.89

ЕЛОК ДОПОЛНИТЕЛЬНЫХ РЕАГЕНТОВ ДЛЯ СТАНЦИИ ОЧИСТКИ ВОДЫ ПОВЕРХНОСТНЫХ ИСТОЧНИКОВ МУТНОСТЬЮ ДО 120 МГ/Л ПРОИЗВОДИТЕЛЬНОСТЬЮ 12,5 ТЫС.М³/СУТКИ

альбом і

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Разработан ЦНИИЭП инженерного оборудования городов, жилых и общественных зданий

Утвержден Госгражданстроем Приказ № 242 от 29 июля 1986 г.

23816-01

Главный инженер института Ответственный исполнитель A.F.Keraon

И.М.Новик

90I**-3**-263.89 (I) 2 238/6-0/

СОДЕРЖАНИЕ

		Cab
I.	OBUJAN YACTЬ	
	І.І. Введение	4
	І.2. Технико-экономические показатели	5
2.	APXNTEKTYPHO-CTPONTEJEHAS VACTE	
	2.1. Природные условия строительства и технические условия на проектирование	8
	2.2. Объемно-планировочные и конструктивные решения	9
	2.3. Отделочные работы	9
	2.4. Расчетные положения	9
	2.5. Отделка и мероприятия по защите емкостных сооружений от коррозии	10
3.	организация строительства	
	3.І. Общая часть	10
	3.2. Земляные работы	II
	3.3. Бетонные работы и монтаж сборных железобетонных элементов	12
	3.4. Гидравлическое испытание емкостных сооружений	14
	3.5. Указания по производству работ в зиних условиях	15
	3.6. Техника безопасности	16
4.	TEXHOJOINYECKAR YACTЬ	
	4.І. Назначение и состав проекта	18
	4.2. Расчетные параметры по реагентам	18

901-3-263.89 (1)	3	23816-01
4.2. Vanaumaniamius maanaumuu omaana	*	Стр.
4.3. Характеристика реагентных отделе 4.3.I. Отделение извести	нии	T 0
4.3.2. Отделение угля		I9 I9
• •		
4.4. Внутренний водопровод и канализа	ция	20
5. ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ		
5.1. Общие сведения		21
5.2. Теплоснабжение		22
5.3. Отопление		22
5.4. Вентиляция		22
6. ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ		
6.І. Общая часть		23
6.2. Электроснабжение		23
6.3. Зануление		23
6.4. Молниезащита		24
6.5. Силовое электрооборудование		24
6.6. Электрическое освещение		25
6.7. Автоматизация и технологический	контроль	26
6.8. Щиты		26
6.9. Связь и сигнализация		27
7. УКАЗАНИЯ ПО ПРИВЯЗКЕ ПРОЕКТА		27

І. ОБЩАЯ ЧАСТЬ

І.І. Введение

Настоящий типовой проект выполнен в соответствии с планом типового проектирования ЦНИИЭП инженерного оборудования на 1988-1989 г.г.

Проект, положенный в основу данной рабочей документации, утвержден Государственным комитетом по гражданскому строительству и архитектуре при Госстрое СССР, приказ № 242 от 29 июля 1986 г.

Типовой проект разработан в соответствии с "Инструкцией по типовому проектированию" СН 227-82 и СНиП 2.04.02-84 "Водоснабжение. Наружные сети и сооружения".

Проект "Дополнительные реагенты для станции очистки воды поверхностных источников мутностью до 120 мг/л производительностью 12.5 тыс.м³/сутки" предусматривает возможность строительства сооружений, как в составе новых комплексов водоочистных станций, так и при расширении существующих.

Основным назначением запроектированных сооружений является дополнительная реагентная обработка воды поверхностных источников в комплексе с "Главным корпусом для станции очистки воды поверхностных источников мутностью до I20 мг/л производительностью I2,5 тыс.м³/сутки (ТП 903-3-26I.89). Блок дополнительных реагентов применяется для стабилизации очищенной воды, а также удаления привкусов и запахов (обработка воды активированным углем).

В настоящем типовом проекте применены архитектурные решения, технология, оборудование, строительные конструкции и организация труда, соответствующие новейшим достояниям отрасли.

Типовой проект разработан в соответствии с действующими нормами и правилами, а также предусматривает мероприятия, обеспечивающие взрывобезопасность и пожаробезопасность при эксплуатации сооружений.

11/0.9

1.2. Технико-экономические показатели

Технико-экономические показатели определены по данным соответствующих разделов настоящего типового проекта.

NN-	University Townson	 Ед.	Значение показателей			
пп	Наименование показателей	изм.	настоящего проекта	проекта- аналога	(+) экономия (-) перерасход	
I		3	4	5	6	
I	Номер типового проекта	-	901-3-263.89	901-3-131		
2	Производительность (полезная) сооружений	м ³ /сутки	12500	12500	-	
3	Общая сметная стоимость	тыс.руб.	88,16	97,6	+9,53	
4	Стоимость строительно-монтажных работ	тыс.руб.	69,97	75,69	+ 5,71	
5	Сметная стоимость на расчетную единицу	pyď.	7052,8	7815,2	+ 762,4	
6	Строительный объем	M ³	2161,2	2691,2	+ 530,0	
7	Общая площадь	_M 2	374,4	499,0	+ 124,6	
8	Потребляемая мощность электро- энергии	кВт	28,5	92,75	+ 64,25	
9	Расход электроэнергии в год	MBr.u	212	690	+ 478	
IO	Расход тепла в год	Гкал	231,52	339,68	+ I08,I	
II	Эксплуатационные затраты в год	тыс.руб.	24,78	58,6	+ 33,8	
12	Себестоимость очистки I м ³ воды	pyo.	0,0054	0,013	+ 0,0076	
13	Приведенные затраты	pyo.	38,0	73,25	+ 35,25	

_I		3	4	5	_ 6
14	Численность работающих	чел.	4	4	-
15	Коэффициент сменности	-	2	2	_
16	Коэффициент загрузки оборудования		0,75	0,75	
17	Удельный вес прогрессивных видов строительно-монтежных работ		68	66	+ 2
18	Производительность труда	тыс.м ³ /чел.	1140,62	1140,62	-
I9	Трудозатраты построечные	чел.ч	9221	10624	+ 1403
20	Расход основных строительных материалов:				
	- цемент, приведенный к М400	T	144,91	98	- 46,9 I
	- то же, на расчетную единицу	T	II,59	7,82	- 3,77
	- сталь, приведенная к классам А-І и Ст.3	T	37,87	25,7	- I2,I7
	- то же, на расчетную единицу	T	3,03	2,05	- 0,98
	- стекло оконное	т м ²	74,50	-	_
	- рулонные кровельные материалы	_м 2	1339,80	-	_
	- трубы пластмассовые	T	20	_	-
21	Годовой объем продукции	тыс.м ³	4562,5	4562,5	-
22	Уровень механизации основных технологи- ческих процессов	%	97	96,5	+ 0,5
23	Уровень автоматизации основных техноло- гических процессов	%	97	96,5	+ 0,5

_ii	2	3	4	5	6
24	Удельный вес рабочих занятых ручным трудом	%	3	3,5	+ 0,5
25	Сметная стоимость с учетом привязки	тыс.руб.	114,6	127,0	+ 12,4

^{*} Показатели приведены с поправкой на цены 1984 г., а также СНиП 2.04.02-84 "Водоснабжение".

За расчетную единицу принято І тыс. $м^3$ полезной производительности (всего I2,5 расчетных единиц).

2. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ

2.1. Природные условия строительства и технические условия на проектирование

Типовой проект разработан в соответствии с "Инструкцией по типовому проектированию для промышленного строительства" СН 227-82.

Проект разработан для строительства в районах со следующими природно-климатическими условиями:

- расчетная зимняя температура наружного воздуха минус 30°C;
- скоростной напор ветра для I географического района СССР 0.23 кПа (23 кгс/м²);
- поверхностная снеговая нагрузка для Ш географического района СССР I,OC кПа (IOO кгс/м²);
- рельеф территории спокойный, грунтовые воды отсутствуют;
- грунты непучинистые, непросадочные со следующими нормативными характеристиками: плотность грунта $\mathcal{O}=I,8$ т/м³; нормативный угол внутреннего трения $\mathcal{Y}=0.49$ рад (28°) ; модуль деформации грунтов E=I4,7 мПа $(I50 \text{ krc/cm}^2)$; коэффициент безопасности по грунту Kr=I; сейсмичность района строительства не выше 6 баллов;

территория без подработки горными выработками.

Проектом не предусмотрены особенности строительства в районах вечной мерэлоты, на макропористых и водонасыщенных грунтах, в условиях оползней, осыпей, карстовых явлений и т.п.

По капитальности здание относится ко П классу сооружений, по долговечности - П степени, степень отнестойкости П.

2.2. Объемно-планировочные и конструктивные решения

Блок дополнительных реагентов размерами в осях I8,00xI2,00 м.

Блок двухэтажный. Высота этажа 4,20 м. В блоке размещаются отделение растворно-хранилищных баков известкового теста, отделение приготовления известкового молока, склад угля, отделение приготовления угольной пульпы и венткамера.

Отметки пола двух первых помещений - 1.20 м.

Отделение растворно-хранилищных баков известкового теста оборудуется подвесным краном грузоподъемностью 2,0 т; склад угля подвесными кранами на первом и втором этажах грузоподъемностью I,0 т.

Блок примыкает к третьему блоку главного корпуса и представляет с ним единое целое. Выполняется с применением сетки колонн 6,0x6,0 м для многоэтажных зданий по серии I.020-I/63.

2.3. Отделочные работы

Наружные поверхности панельных стен окрашиваются цементно-перхлорвиниловыми красками. Наружные поверхности кирпичных вставок штукатурятся цементно-песчаным раствором марки 50 и окрашиваются цементно-перхлорвиниловыми красками под панели.

Внутренняя отделка дана на чертежах проекта.

2.4. Расчетные положения

Бак гашения комовой извести и хранения известкового теста - прямоугольное в плане сооружение, размерами 6,0х4,5 м.

Стены и днище - монолитные.

Армируются сварными сетками.

Бетон принят проектных марок BI5, W 4, F50.

Баки крепкого известкового молока прямоугольные в плане, сооружение размерами 1,5х1,8.

2.5. Отделка и мероприятия по защите емкостных сооружений от коррозии

Днище и стены баков гашения комовой извести со стороны воды торкретируются на 25 мм с последую. щей затиркой цементным раствором.

Со стороны грунта стены затираются цементно-песчаным раствором, а выше планировочных отметок земли штукатурятся.

Наружные поверхности стен затираются цементно-песчаным раствором и окрашиваются поливинилацетатными красками светлых тонов.

3. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА

3.1. Общая часть

Основания положения по производству строительно-монтажных работ блока дополнительных реагентов для станции очистки воды поверхностных источников мутностью до I20 мг/л производительностью I2,5 тыс.м³/сутки разработаны в соответствии с инструкциями CH 227-82 и CHuП 3.01.01-85.

Строительство блока дополнительных реагентов предусматривается в следующих условиях:

- сборные железобетонные конструкции, изделия и полуфабрикаты поставляются с существующих производственных баз стройиндустрии;
 - стройплощадка имеет горизонтальную поверхность;

- при строительстве сооружений в условиях высокого уровня грунтовых вод должен быть обеспечен непрерывный водоотлив: открытый - с помощью самовсасывающих центробежных насосов или путем водопонижения иглофильтровыми установками. Мощность водоотливных средств и продолжительность их работы определяются при привязке проекта на основании данных о величине подпора и принятых темпах работ.

До начала основных работ по строительству блока дополнительных реагентов должна быть выполнена работа подготовительного периода: устройство водоотводных канав, временных подъездов к площадке, геодезические работы по разбивке осей, возведение временных зданий и сооружений, прокладка временных коммуникаций.

3.2. Земляные работы

При производстве земляных работ следует руководствоваться положениями СНиП 3.02.01-87 "Земляные сооружения. Основания и фундаменты".

Разработка котлованов и траншей в подземной части здания осуществляется до отметок:

- котлованов для фундаментов под колонны минус 1,95; 1,75; 1,35;
- под емкость PE-I минус I,40; PK-2 минус I,20;
- траншей для ленточных фундаментов минус I,75.

Работы осуществляются экскаватором, оборудованным обратной лопатой ковшом емкостью $0.65 \, \text{м}^3$ (типа 3-652B).

Добор грунта до проектных отметок осуществляется специальным зачистным устройством на экскаваторе 30-3322 и вручную.

По окончании земляных работ основание котлована и траншеи подлежат приемке по акту.

Обратная засыпка производится бульдозером слоями толщиной I5-20 см. Уплотнение грунта в пристенной части осуществляется электротрамбовками И3-450I равномерно по периметру. Уплотнение остальной части засыпки производится гусеницами бульдозера.

3.3. Бетонные работы и монтаж сборных железобетонных элементов

Бетонные работы и монтаж сборных железобетонных конструкций следует производить в соответствии со СНиП Ш-I5-76 и СНиП Ш-I6-80.

Перед началом бетонирования конструкций выполняют комплекс работ по подготовке опалубки, арматуры, поверхностей основания.

Бетонная подготовка под днища емкостей РЕ-I и РЕ-2 устраивается по предварительно спланированному дну котлована по щебню, втрамбованному в грунт.

Бетонирование осуществляется в разборно-переставной опалубке из готовых унифицированных элементов или в пространственных блоках-формах. Подача бетонной смеси к месту укладки осуществляется в бадьях емкостью 0,5 м³, I,0 м³ монтажным краном, бетононасосом типа СБ-95А или ленточным бетоноукладчиком.

Бетон при укладке уплотняется поверхностными вибраторами ИВ-91.

Для создания благоприятных условий твердение бетона поверхность подготовки поливается водой. Через 3-4 дня после окончания бетонирования допускается выполнение последующих работ.

Нанесение гидроизоляционного слоя из асфальтового раствора толщиной 8 мм производится следующим образом:

- горячий материал подают к месту работ краном в бадьях или бочках;
- раствор выливают на поверхность и разравнивают металлическими скребками.

Нанесение асфальтового раствора возможно так же с помощью растворонасоса или асфальтомёта. Перед началом бетонирования днища установленная опалубка и арматура должны быть приняты по акту, в котором подтверждается их соответствие проекту; к акту прикладываются сертификаты на арматурную сталь и сетки.

Заданные величины защитного слоя бетона нижней и верхней арматуры обеспечиваются за счёт применения бетонных подкладок под нижнюю арматуру и установки специальных опорных каркасов для верхней арматуры. Бетонирование днища производится непрерывно параллельными полосами без образования швов. Ширина полос принимается с учётом возможного темпа бетонирования и необходимости сопряжения вновь укладываемого бетона с ранее уложенным до начала схватывания последнего. Уплотнение бетона и выравнивание поверхности днища осуществляется вибробрусом, с применением переносных маячных реек.

Уложенный бетон в течение 7 суток поддерживается во влажностном состоянии. Через 16 часов после окончания бетонирования допускается залить пнише водой.

В период производства бетонных работ на стройплощадке должен быть организован постоянный технический контроль за качеством бетона, его укладкой, уплотнением и уходом за ним.

Приемка работ по устройству днища оформляется актом, где должны быть отмечены:

- плотность и прочность бетона;
- соответствие размеров и отметок днища проектным данным;
- наличие и правильность установки закладных деталей;
- отсутствие в днище выбоин, обнажённой арматуры трещин и т.д.

Отклонение размеров дница от проектных не должно превышать:

- в отметках поверхностей на I м плоскости в любом направлении ± 5 мм;
- в отметках поверхностей паза зуба ± 4 мм.

При бетонировании стен емкости инвентарная опалубка устанавливается с внутренней стороны на всю высоту, а с наружной стороны на высоту яруса бетонирования с последующим наращиванием. Бетонирование стен производится поярусно с тщательным уплотнением глубинными вибраторами марки И-II6И.

Торкретирование поверхностей монолитных стен следует производить с тщательной их обработкой пескоструйным аппаратом с промывкой водой.

Цементно-песчаный раствор наносится цемент-пушкой СБ-II7.

Монтаж сборных железобетонных конструкций каркаса, плит покрытия, стеновых панелей, диафрагм жесткости осуществляется гусеничным краном СКГ-30 грузоподъемностью 30 тн, длина стрелы 25 м, исходя из максимальных масс конструкций ригеля - 2,6 тн и диафрагмы жесткости - 4,18 тн.

Ход крана осуществляется вдоль осей "А и В".

Строповку и подъем сборных элементов следует производить с помощью грузозахватных приспособлений, разработанных в проекте производства работ.

3.4. Гидравлическое испытание емкостных сооружений

Гидравлическое испытание емкостей производится на прочность и водонепроницаемость до засыпки котлована при положительной температуре наружного воздуха путем заполнения её водой до расчетного горизонта и определения суточной утечки.

Испытание допускается производить при достижении бетоном проектной прочности и не ранее 5-ти суток после заполнения водой.

Сооружение признается выдержавшим испытание, если убыль воды за сутки не превышает 3 литров на $I \, \text{м}^2$ смоченной поверхности стен и днища; через стыки не наблюдается выход струи воды, а так же не установлено увлажнение грунта в основании.

При выявлении дефектов, испытания прекращаются и возобновляются после их устранения. Все работы по испытанию вести в соответствии со СНиП 3.05.04-85.

3.5. Указания по производству работ в зимних условиях

Работы в зимнее время надлежит производить в соответствии с требованиями положений СНиП часть 3 "Организация, производство и приёмка работ, глав "Работы в зимних условиях".

Мералый грунт должен быть предварительно подготовлен одним из следующих способов:

- предохранение грунта от промерзания;
- оттаивание мерэлого грунта;
- рыхление мерэлого грунта.

Устройство бетонных и железобетонных конструкций целесообразно проводить способом термоса с применением добавок - ускорителей твердения и цементов с повышенным тепловыделением (быстротвердеющие и высокомарочные).

Замонличивание стыков при монтаже сборных железобетонных конструкций осуществляется с помощью электропрогрева пластинчатыми и стержневыми электродами.

. Обмазочную гидроизоляцию запрещается наносить при температуре окружающей среды ниже 5° C. В исключительных случаях такую гидроизоляцию делают в инвентарных переносных тепляках с покрытием из полимерных плёнок.

3.6. Техника безопасности

Производство строительно-монтажных работ осуществляется в строгом соответствии с положениями СНиП Ш-4-80 "Техника безопасности в строительстве", правилами техники безопасности Госгортехнадзора СССР и Госэнергонадзора Минэнерго СССР, требованиями санитарно-гигиенических норм и правил Минэнрава СССР.

Разработка котлована под фунцаменты здания и ёмкости должна проводиться при крутизне откосов согласно табл.4 СНиП Ш-4-80.

Перемещение, установка и работа машин вблизи выемок с неукреплёнными откосами разрешается только за пределами призмы обрушения грунта на расстоянии согласно табл. 3 СНиП III-4-80.

При эксплуатации машин должны быть приняты меры, предупреждающие их опрокидывание или самопроизвольное перемещение при действии ветра.

При укладке бетона из бадей или бункера расстояние между нижней кромкой бадей или бункеров и ранее уложенным бетоном или поверхностно, на которую укладывается бетон, должно быть не более I м.

При уплотнении бетонной смеси электровибраторами перемещать вибратор за токоведущие шланги не допускается, а при перерывах в работе или при переходе с одного места на другое электровибраторы необходимо выключать.

Растворонасос и смеситель следует подключать к сети в соответствии с "Правилами устройства электроустановок" и "Правилами безопасности при эксплуатации электроустановок промышленных предприятий".

Рабочее место и проходы вокруг механизмов должны быть свободны от посторонних предметов. При работе с механизмами запрещается:

- а) производить очистку, смазку и ремонт при включённом электродвигателе;
- б) начинать и продолжать работу в случае обнаружения неисправности.

Все механизмы должны быть надёжно заземлены.

Подъем и установку конструкций монтажным краном осуществлять в соответствии с его паспортной грузоподъемностью, не допуская волочения и подтягивания конструкций.

Крюки грузозахватных приспособлений должны быть снабжены предохранительными замыкающими устройствами, предотвращающими самопроизвольное выпадение груза.

График производства работ на строительство блока дополнительных реагентов дан на листах марки OC в альбоме 2.

Стройгенплан приведен в альбоме "Комплекс сооружений для станции очистки воды поверхностных источников мутностью до 120 мг/л производительностью 5.0; 12.5; $20 \text{ и } 32 \text{ тыс.м}^3/\text{сутки}^*$ (типовые материалы для проектирования).

Настоящие положения по производству работ являются основой для разработки подробного проекта производства работ строительной организацией.

4. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

18

4. І. Назначение и состав проекта

Блок дополнительных реагентов предназначен для обработки воды поверхностных источников:

- с индексом насыщения карбонатом кальция в исходной и очищенной воде менее 0,3 более 3-х месяцев в году;
 - с запахом и привкусом более 2 баллов, а также с высоким содержанием органических загрязнений;
- цветностью свыше I20 градусов или содержанием фито- и зоопланитона более I000 клеток в I мл продолжительностью более I-го месяца.

Елок дополнительных реагентов предусматривает возможность строительства сооружений как в составе новых комплексов водоочистных станций, так и при расширении существующих.

Реагентное козяйство в блоке запроектировано для двух дополнительных реагентов — извести и активного угля. Лабораторные анализы проводятся в лабораториях главного корпуса, разработанных по Т.П. 901-3-257.89.

4.2. Расчетные параметры по реагентам

пп	Наименование реагентов	Доэа С <u>у</u> мг/л	точный расход	
I	Известь строительная ГОСТ 9179-77 а) по чистому продукту б) по товарному продукту с содержанием СаО 50%	I5 30	0,22 0,45	
2	Уголь активированный, осветляющий, превесный, парошлакообразный ГОСТ 4453-74 а) по чистому продукту б) по товарному продукту	5 6, I	0,075 0,09I	

- 4.3. Характеристика реагентных отделений
- 4.3.1. Отделение извести

Отделение известкования запроектировано в составе:

- 2 бака гашения комовой извести и хранения известкового теста;
- кран-балка с моторным грейфером;
- приемный бункер;
- известигасилка:
- баки крепкого известкового молока;
- гипромещалки известкового молока:
- гидроциклоны;
- насосное оборудование.

Известь на станцию доставляется автосамосвалами и сгружается в баки, частично заполненные водой, где она гасится и хранится в виде теста.

Из баков-хранилищ (общим объемом 50 м³) тесто подается моторным грейфером в приемный бункер с вибродотком и далее в известегасилку СМ-I247 A, где происходит дробление и гашение извести с приготовлением I5% крепкого известкового молока. При работе моторным грейфером не следует допускать контакта известкового теста и привода грейфера.

Крепкое известковое молоко из известегасилки подается в баки крепкого известкового молока, откуда насосами СД 25/I4 направляется в одну из расходных гидромешалок, доводится до 3% концентрации, пропускается через гидроциклон и насосами-дозаторами перекачивается к месту ввода (в два трубопровода чистой воды, отводящие воду от контактных осветлителей).

4.3.2. Отделение угля

Отделение запроектировано в составе изолированного двухэтажного склада и помещения углевальной установки.

Порошкообразный реагент поставляется в ящиках или трехслойных бумажных мешках и хранится на складе. Высота слоя мешков не должна превышать I,5-I,3 м, ящики складируются в 2-3 яруса. Запас реагента обеспечивается на I,5 месяца работы станции.

Транспортировка порошкообразного реагента производится замкнутой системой пневмотранспорта, работающей под вакуумом и исключающей попадание пыли в помещение.

Со склада порошок из специального ящика для загрузки реагента подается с помощью вакуумнасоса ВВНІ-3 (І рабочий, І резервный) в вакуум-бункер емкостью 1000 л. Объем бункера рассчитан на 3,5-ти суточный запас. Пневмоустановка заземляется и оборудуется противовзрывным клапаном. Из бункера реагент через секторный питатель - дозатор подается в одну из двух гидромешалок емкостью 2 м³ каждая. В мешалках приготавливается I,5% концентрации угольная пульпа. Объем мешалки позволяет обеспечить её сработку в течении 8 часов.

Циркуляция пульпы производится насосами марки СД I6/I0 (I рабочий, I резервный), дозирование к точкам ввода — насосами-дозаторами НД 2,5 I000/I6Д I4A.

4.4. Внутренний водопровод и канализация

К данному разделу в проекте относятся только системы для отвода атмосферных осадков с кровли эдания. Внутренняя система водостоков запроектирована из полиэтиленовых труб с открытым выпуском на отмостку. 901-3-263.89 (1)

5. OTODIJEHNE N BEHTVIJALINA

5.1. Общие сведения

Проект отопления и вентиляции блока дополнительных реагентов разработан на основании техноло-гического задания и архитектурно-строительных чертежей в соответствии со СНиП 2.04.05-86.

При разработке проекта приняты расчетные температуры наружного воздуха:

для отопления
$$t_{H} = -30^{\circ}C$$
 $t_{H} = +22^{\circ}C$

Внутренние температуры в помещениях приняты по заданию технологов: склад угля, отделение баков известкового молока $-(+5^{\circ}C)$; отделение извести, отделение угля $-(+16^{\circ}C)$.

Коэффициенты теплопередачи ограждающих конструкций приняты в соответствии со CHull П-3-79ж.

 $\chi = 1800 \text{ kg/m}^3$

- I. Для наружных стен из обыкновенного глиняного кирпича 6 = 380 мм K = I,49 BT/м^{2.0}C (I,28 ккал/м^{2.}час^{.0}C)
 - $6 = 510 \text{ mm} \quad K = 1,2 \quad \text{Br/m}^{2.0}\text{C} (1,03 \text{ kkan/m}^{2.4}\text{vac}^{.0}\text{C})$
- 2. Для наружных стен из керамантобетонных панедей $Y = 900 \text{ кг/м}^3$
 - 6 = 200 MM $K = I,55 \text{ BT/m}^2 \cdot ^{\circ}\text{C} (I,33 \text{ KKEJ/m}^2 \cdot ^{\circ}\text{Vac} \cdot ^{\circ}\text{C})$
 - 6 = 300 MM $K = 2.07 \text{ BT/m}^2 \cdot ^{\circ} \text{C} (0.92 \text{ KKan/m}^2 \cdot ^{\circ} \text{uac} \cdot ^{\circ} \text{C})$
- 3. Для покрытия с утеплителем пенобетоном $\gamma = 300 \text{ kr/m}^3$ б = 100 мм $K = 0.77 \text{ Br/m}^2 \cdot ^{0}\text{C} (0.66 \text{ kkm/m}^2 \cdot ^{0}\text{C})$

4. Для остекления спаренного в деревянных переплетах

$$K = 2.56 \text{ Br/m}^{2.0}\text{C} (2.2 \text{ KKAJ/m}^{2.4}\text{qac}^{-0}\text{C})$$

5. Для наружных дверей и ворот деревянных

$$K = 2,0$$
 $BT/M^{2.0}C$ (1,72 ккал/ $M^{2.0}$ uac. C)

 $K = 3.0 \text{ BT/m}^{2.0}\text{C} (2.58 \text{ KKan/m}^{2.4}\text{uac}^{-0}\text{C})$

5.2. Теплоснабжение

Теплоснабжение здания предусматривается от узла управления главного корпуса. Теплоноситель — вода с параметрами 150° – 70° C (основной вариант) и 95° – 70° C.

5.3. Отопление

В здании запроектирована однотрубная горизонтальная система отопления с замыкающими участками. В качестве нагревательных приборов приняты радиаторы МС-I40. Трубопроводы прокладываются с уклоном $\dot{\textbf{L}} = 0.003$. Прокладываемые в подпольных каналах, трубопроводы изолируются шнуром минераловатным G = 40 мм с последующим покрытием по изоляции рулонным стеклопластиком. Удаление воздуха из системы осуществляется кранами инженера Маевского.

5.4. Вентиляция

В здании запроектирована приточно-вытяжная система вентиляции с механическим и естественным побуждением.

В отделении баков известкового молока воздухообмен рассчитан из условия ассимиляции влаговыделений, что составляет I крат в зимний период и I,5 крата в летний период. Воздух удаляется с помощью

23816-01

шахты, оборудованной дефлектором, летом - системой ВІ. В остальных помещениях количество вентиляционного воздуха определено по кратности. Приток осуществляется системами ПІ; вытяжка системой В2. В складе угля запроектирована самостоятельная приточная система П2.

23

Все металлические воздуховоды окрашиваются масляной краской.

Монтаж отопительно-вентиляционного оборудования вести в соответствии со СНиП 3.04.01-85.

6. ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ

6.І. Общая часть

В данном проекте разработано: электроснабжение, зануление, молниезащита, силовое электрооборудование, автоматизация и технический контроль, электрическое освещение и связь.

6.2. Электроснабжение

По требованиям, предъявляемым в отношении надежности и бесперебойности электроснабжения, элек - троприёмники блока дополнительных реагентов относятся к третьей категории потребителей электроэнергии. Электроснабжение потребителей 0.4 кВ, осуществляется от распределительных шкафов типа ШР-II-7000

установленных в отделении реагентного хозяйства главного корпуса.

6.3. Зануление

В соответствии с требованиями IIV3-85 раздел I, глава I-7 все металлические нетоковедущие части электроустановок должны быть занулены, путем присоединения к нулевой жиле питающих кабелей.

В качестве нулевых защитных проводников используются четвертые жилы питающих кабелей и стальная полоса 40х4, соединенные с нулем силового трансформатора.

Зануление подкрановых путей осуществляется подключением к ним нулевой жилы питающего кабеля и соединением путей между собой стальной полосой 40х4.

6.4. Молниезащита

В соответствии с п.4 табл. І РД 34.21.122-87 для блока дополнительных реагентов, являющегося составной частью сооружения, объединяющего главный корпус и данный блок, относящегося по степени отнестойкости ко П категории и включающего склад угля и отделение угля класса П-П, молниезащита может не выполняться, т.к. ожидаемое количество поражений молнией в год составляет $N = \mathcal{L}(L + 6\hbar) \times (S + 6\hbar) - 7,7\hbar^2/x$ п х $10^{-6} = \mathcal{L}(12+6x9) \times (18+6x9) - 7,7x9^2/x12x10^{-6} = 0,035$. Расчет проводился для местности с наибольшей интенсивностью грозовой деятельности, при привязке проекта величина N уточняется.

Для защиты от статического электричества все оборудование склада угля и отделения угля заземляется стальной полосой 40х4 или зануляется.

Защита от вторичных проявлений молнии выполняется согласно РД 34.21.122-87.

6.5. Силовое электрооборудование

Все электродвигатели выбраны асинхронными с короткозамкнутым ротором с пуском от полного напряжения сети. Двигатели поставляются комплектно с технологическим оборудованием. Напряжение питания электродвигателей ~ 380 В.

Пуск и коммутация двигателей осуществляется нормализованными станциями управления в ящиках типа ЯБІОО, ЯОИ БІОІ и магнитными пускателями типа ПМЛ.

Для подключения крана предусмотрен ящик типа ЯВЗ-ЗІ-І и пускатель ПМЕ-235. Предусмотрено обесточивание толлеев крана при входе обслуживающего персонала на ремонтную плошалку.

Распределение электроэнергии и присоединение электродвигателей к пусковым аппаратам выполняется кабелем марки ABBC, прокладываемым по строительным конструкциям открыто на скобах, на кабельных конструкциях в лотках, а также в полиэтиленовых трубах в полу и в металлорукавах по стенам сооружений.

6.6. Электрическое освещение

Проектом предусмотрено общее рабочее и аварийное освещение, переносное освещение.

Электрическое освещение выполнено в соответствии с ЛУЭ-85, СН 357-77 и ВСН 294-72.

Освещенность помещений принята согласно СНиП П-4-79.

Выбор светильников проведен в зависимости от назначения помещений, условий среды и высоты подвеса. Напряжение сети общего освещения - 380/220В, переносного - 36 В.

Питание сетей рабочего и аварийного освещения блока дополнительных реагентов предусмотрено от осветительных сетей главного корпуса до вводных зажимов осветительных щитков ЩО и ЩАО.

В качестве групповых щитков приняты щиток осветительный типа $0 \oplus B$ и автоматический выключатель типа $A\Pi$ -50Б-3МТ.

Питающие сети выполняются кабелем ABBГ, прокладываемым по кабельным конструкциям и на скобах по стенам.

Групповые сети выполняются кабелем ABBГ, прокладываемым по стенам и перекрытиям на скобах, проводом AIIIB скрыто под слоем штукатурки.

Управление освещением осуществляется выключателями, установленными у входов.

Для переносного освещения в складе угля и отделении угля используется переносной аккумуляторный светильник.

Для зануления элементов электрооборудования используется нулевой рабочий провод сети.

6.7. Автоматизация и технологический контроль

Контроль за технологическим процессом очистки воды осуществляется при помощи контрольно-измерительных приборов, установленных непосредственно у места отбора импульсов, а также приборов и аппаратуры сигнализации, размещенных на щите диспетчера.

На щит диспетчера вынесена:

- светозвуковая сигнализация уровней в мешалках известкового молока, угольной пульпы, а также сигнализация аварийного состояния приточных систем Π -2 и Π -3.

Все насосные агрегаты снабжены приборами давления.

Для приточных систем проектом предусматривается автоматическое поддержание температуры приточного воздуха и защита калорифера от замораживания.

6.8. Шиты

Для размещения аппаратуры контроля, управления, регулирования и сигнализации предусмотрены щиты и ящики: щит диспетчера ЩД секция 5, устанавливается в диспетчерской главного корпуса, ящики ЯУП-2 управления приточной системой и ЯУП-3 типа ЯОИ 5ІОІ - Ангарского электромеханического завода - в приточной венткамере.

Шит диспетчера ШД секция 5 изготавливается по ОСТ 36-I3-76.

27

23816-01

6.9. Связь и сигнализация

Проект связи и сигнализации выполнен на основании заданий технологических отделов, "Ведомственных норм технологического проектирования" ВНТП II6-80 Министерства связи СССР. "Инструкции по проектированию установок пожарной сигнализации" ВНТП 6I-78, СНиП 2.04.09-84г

Проектом предусматривается пожарная сигнализация блока дополнительных реагентов от главного корпуса. Кабельный ввод выполняется кабелем ТПП 10х2х0,4, прокладываемым открыто по стенам. На вводе устанавливается распределительная коробка КРТП-10. В качестве датчиков пожарной сигнализации применяются тепловые извещатели ИП-104-1, устанавливаемые на потолке. Сеть пожарной сигнализации выполняется проводом ТРП 1х2х0,5 открыто по стенам и потолкам.

Пожарные лучи включаются в коробку КРТП-IO.

7. УКАЗАНИЯ ПО ПРИВЯЗКЕ ПРОЕКТА

При привязке проекта необходимо уточнить применение типового проекта к реальным условиям строительства, а именю:

- требуемый напор и дозы реагентов в зависимости от технологических испытаний и исследований процесса обработки исходной воды конкретного водоисточника, и по возможности изучить опыты эксплуатации очистных сооружений, работающих в аналогичных условиях;
 - вид применяемых реагентов и условия поставки;
- марка насосов, компрессоров, грузоподъемного оборудования и т.п. в соответствии с номенклатурой, выпускаемой заводами на момент привязки и строительства и выполнить необходимую корректировку соответствующих разделов проекта:

- объем автоматизации и технологического контроля;
- расчет заземления по току замыкания конкретных характеристик грунта;
- тип и глубину заложения фундамента с соответствующим расчетом на прочность;
- теплотехнический расчет толщин ограждающих конструкций;
- нагрузки по снеговому покрову и ветровому напору и при необходимости откорректировать несущие конструкции здания.

Проект разработан для условий производства работ в летнее время.

При производстве работ в зимнее время необходимо внести корректировку согласно СНиП Ш-I7-78, Ш-I5-76.

Просим организации, привязавшие настоящий проект: информировать нас (с указанием объекта привязки) по адресу: II7279, г.Москва, Профсоюзная ул., д.93а ЦНИИЗП инженерного оборудования.