POCROMICCIA IIO XMMITECKIM CPRACTBAM BOPABLI C RPEANTEARMS, BOJEBHRME PACTERMS II COPHRIAMI IIPE MINICEALXOBE CCCP

методические указания по определению микроколичеств пестипидов в продуктах питания, кормах и внепней среде

TACTH XIY-E

Настоящие методические указания предназначены для санитарноэпидемиологических станций и научно-исследовательских учреж-дений Минздрава СССР, а также ветеринарных, агрохимических, контрольнотоксикологических лабораторий Минсельхоза СССР и лабораторий других Министерств и ведомств, занимающихся анализом остаточных количеств пестицидов и биспрепаратов в продукт х питания, кормах и внешней среде.

Срок действия временных методических указний устанавливается то утверждения гигиенических регламентов.

Методические указания апробированы и рекомендованы в качестве эфициальных группой экспертов при Госкомиссии по химическим средетвам борьбы с вредителями, болезнями растений и сорняками при МСХ ЭССР.

Методические указания согласованы и одобрены отделом перспекгивного планирования санэпидслужбы ИМПиТМ им. Марциновского Е.И. и лабораторным советом при Главном санитарно-эпидемиологическом управтении Минэдрава СССР.

РЕДАКЦИОННАН КОЛЛЕГИЯ:

Л.Г. Александрова, Д.В. Гиренко, А.А.Калинина (секретарь), М.А. Клисенко (председатель), Г.И. Короткова, Г.А. Хохоль-кова (зам. председателя), В.Е. Кривенчук.

ANDERE CHOCOCOR:

- а) обработка проявляющим реактивом #I. Уф-облучение в течение
 5 минут в опрыскивание 0,5% водным раствором лимовной кволоты:
- б) УФ-облучение в течение Ю минут и обрасотка проявляющим реактивом №:
- в) Обработка О, 2н раствором серной кислоти, Уф-облучение в течение Ю минут и обработка проявляющим реактивом ЖЭ.

При наличии пликтрана в пробе, на хроматограмме, обработамной гематоксилином появляются сиреневые пятна на розовом фоне; пирокатехоловым фиолетовым — синие пятна на светлокоричневом фоне; кверцетином — интенсивно-желтые пятна на светлом фоне, с $R_L^1 = 0.76 \pm 0.01$.

Количество вещества в пробе находят по калибровочному графику, отражающему зависимость площади пятна от концентрации пликтрана в пробе (SMM² = f/C/). Для построения калибровочного графика поступают следующим образом: на ряд пластинок наносят стандартные растворы пликтрана с содержанием 0,5; Г; 2....... ЭОМКГ вещества. Развивают и обрабатывают хроматограмми, как описано выше. Затем в отраженном свете при помощи денситометра снимают денситограмму площади пятел и строят график зависимости площади пятна от концентрации пликтрана. Линейная зависимость функции умм² = f(C) сохраняется в пределах 0,5 - ЭОМКГ.

Определяя денситометрически площадь исследуемого пятна по графику находят содержание пликтрана в пробе.

Концентрации пликтрана (X) в воздухе в мг/м 3 рассчитывают по формуле

$$X = \frac{g}{V_{20}}$$
, rge;

 \mathscr{G} - количество пликтрана в пробе, мкг; V_{20} - объем воздуха, отобранный для анализа и приведенный к стандартным условиям, л

УІ. Требования безопасности

Меры предосторожности при работе с пликтраном - как со среднетоксичинии пестицидами. Выполнять требования по технике безопасности при работе в химической даборатории.

· YII. Paspadotyaka.

Бунятяя Ю.А., Оганесян Г.О., Армянский филиал внии ГИНТОКС-а, г. Ереван.

"YTBEPKHAD"

Заместитель Главного Государственного врача ОССР

A.И. Заиченко

"<u> 24 " августа</u> 1983 г.

Методические указания по опектрофотометрическому измерению концентраций ратиндана в воздухе рабочей зоми

$$\begin{array}{c|c}
0 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Ратендан /дефеценон, действующее начако — 2-дефенилацетелендандиом-I,3/ — жёлтый кристаллический порошок без вкуса в запака с

Т_{ПЛ}. I45^O—I47^OC. В воде не растворим, трудно раствотим в оперте. Хорошо растворим в ацетоне, диоксане, клороформе, бензоле. Препарат недетуч и стабален во внешней ореде, в воздухе находится в ниде авроводе.

І. Характеристика метода

1. Определение основано на взаимодействии ратиндава с хлорным

железом и измерении оптической плотности образующегося окрашенного в жёлтый цвет продукта реакции в видимой области опектра.

- 2.0тбор проб проводытся с концентрированием /фильтр "синяя лента"/.
 - 3. Предел измерения в анализируемом объёме проби-10 мкг.
- 4. Предел измерения в воздухе-0,05 мг/м 3 /при отборе 335 л вовиха/.
 - 5. Imanason esmedsement kohuentpaues $-0.05 \text{ mr/m}^3 1.1 \text{ mr/m}^3$.
- 6. Определению не мещают метиловый оперт, бензол, а также производние индандионового ряда.
 - 7.Граница суммарной погрешности измерения-213%.
- 8. Предельно допустимая концентрация ратиндана в воздухе 0.1 mr/m^3

II. Реактиви, растворы, материалы

Ратиндан.к.ч..ГОСТ 1906-77 /перекристал./.

Хлорное железо,ГОСТ 4147-74,3%-ный раствор.

Уксусная кислота,ГОСТ 6I-75, x.ч., 95% /99,5%/.

Ацетон перегнанный, ж.ч., ГОСТ 2603-79

Стандартный раствор ратиндана БТ с содержанием 1000 мкг/мл готовят растворением 100 мг ратиндана в ацетоне в мерной колбе ёмкостью 100 мл.

Стандартный раствор №2, содержащий 200 мкг/мл ратиндана, готовят соответствующим разбавлением стандартного раствора №1 ацетоном.

Стандартные растворы устойчиви один месяц.

III. Приборы в посуда

Спектрофотометр СФ-16, спектромо-204, фотовлектроколориметр-55Пм. Аспирационное устройство.

Фильтродоржатели.

Фильтры беззольные "синяя лента" ТУ 6-09-1678-77.

Пробирка колораметрические с пришлафованию пробиой "ГОСТ 1770—64 /I,5:15 см/.

Посуда стеклянная химическая, ГОСТ 1770-74.

Условин отбора проб воздука

Е здух со скоростью I5 л/мин аспараруют через беззольный фальтр «саняя лента», помещённый в фальтродержатель. Пля определения I/2 ПДК необходимо отобрать 335 латров воздуха. Срок кранения отобранных проб - одан год.

У. Условия анализа

фильтры с стобранной пробой переносят в химический стакан ёмкоотыю 50 мл и промывают 5 мл ацетона дважды поряжями по 2,5 мл и оставляют на 5 минут. После каждого промывания жидкость сливают и фильтр отжимают стеклянной палочкой.

Пробы в количестве 3 мл вносят в колориметричес не пробирки, приливают по 0,2 мл 3%-го раствора хлорного железа и через 5 минут добавляют по 0,1 мл укоуоной вислоти /рн-4/. Объём раствора доводят
до 5 мл ацетоном, перемешавают и через 10 минут фотометрируют в коветех с толщиной слоя I см при длине волни 420 нм Контрольным раствором служет смыв с чистого фильтра ацетоном. Содержание ратиндана в
анализируемом объёме определяют по предварительно построенному калибровочному графику. Для построения калибровочного графика готовят
шкаду отандартов согласно таблице 1.

Пкала станцартов

Taduena ?

		THE RESERVE OF THE PERSON NAMED OF THE PERSON			
»и станда- рта	Стандарт- ный раствор ратиндана 200 мкг/мл	Раствор клорного железа мл	Укоусная кислота мл	Цетов мл	Содержание ратиндана в миг
I	0	0,2	0,1	4,7	0
2	0,05	0,2	0,1	4,65	IO'
3	0,1	0,2	0,1	4,6	20
4	0,3	0,2	0,1	4,4	60
5	0,5	0,2	0,1	4,2	IDO
6	0,7	0,2	0,1	4,0	I40
7	0,9	0,2	0,1	3,8	160
- 8	I,I	0,2	0.1	3,6	220

Шкалой стандартов можно пользоваться для визуального определения. Её готовит в колориметрических пробирках одновременно с просама.

Шкала стандартов устойчива в течение 24 часов.

Концентрацию ратиндана в воздухе (Т) в мг/м³ вичисляют по форму-

ЛО

PHO:

V_т - общий объём пробы, мл;

V - объём пробы, взятый для анализа, мл;

У₂₀- объём воздуха, отобранный для анализа и приведённый к стандартным условиям:л.

УІ. Требования безопасности

меры предосторожносте при работа с ратимданом жак сильнотоксичимм пестициим

Соблюдать все требования по технике безопасности при работе в камических лабораториях.

УII. Разработчики

Таталашанди Н.С., Заракишвили З.В.

НИИ гигиени труда и профессолеваний им.Н.И. Махвиладзе Чинэдрава Грузинской ССР.

содержание:

Ι.	методические	RNHAEANY	ПО	измерению	KOHUEHTPAUNI	В
	BOSILYXE PAROU	TEN SOHH-				

	стр.
Агелона и ситрина	3
Актеллика и примипида	8
Алара	13
Бензоилпропатила и этилового эфира N-3,4- дихлор-	
фенилаланина	17
Беномила и ВМК	22
Бентазона	30
Биоресметрина	35
Болстара	40
Вронокота	48.
Бутилкаптакса	52
Бутокарбоксима	59
Гидрела	63
IMK-Na	66
Даконила	70
Диазинона, эптама, гамма-изомера ГХШ, фенмедедифама.	
ленацила, фосфамида и пиразона	77
Дигидоела	89
Диквата	93
Зоокуматина	97
Карбофурана	100
Косчетона	I04
Менида и 3-хлор-4-метиленилина	I08
Метазина и компонентов гироинидной смеси "карагард".	II3
Митака	II8
Odynara	124
Пликтрана	T28
Ратиндана	132
	138
Раундана	143
•	
Розалина	I48
Синтетических пиретроидов (амбуш, депис, рипкорд, скинцилич).	154
Стомпа	TAT

	crp.
Сумилекса Томилона Триморфамида Фекама-трибуфона Фталана Препарата 242 и металлилклорида (МХ) Хостаквика Эдила п. методические указания по определеняю нестицидов в продуктах питания, кормах и внечней среде	166 173 180 186 192 200 206 210
Хлорорганические пестипиды	
Методические указания по определению остаточных количеств гексахлогана (линдана) в сушеном картофеле полярографическим методом	518 513
Методические указания по определению метафоса, фосфамида и хлорофоса в сушених овощах и плодах (картофель, морковь, петрушка, яблоки, груши, слива) методами тонкослойной и газо-жидкостной хроматографии	223
Временные методические указания по определению метилнитрофоса, фенитрооксона и п-нитрокревода в лесной растительности и почьо гонкослойной	
жроматографией	24I
Методические указания по определению трихлорметафоса З и его метаболитов в биоматериале методом газо-	9-
жидкоотной хроматографии	252

Авотоодержение пестипли
методические указания по хроматографическому
определению указания по кроматографическому определению указания по кроматографическому
тельном материале
методические указания по определению .,IMK-Na, гидрела, дигидрела методом спектрофотометрии в
воде, растительном материале (томаты, толоки, свекла) 267
Временние методические указания по определению лонтре- ла в воде, почве и растениях методом газо-жидкостной хпоматографии
Временные методические указания по определению павриана методом газо-жидкостной хроматографии в почве, табаке и в табачном дыме
Временние методические указания по спределению розалина в растительных объектах, воде и почве кромато-спектрофотометрическим методом
Методические указания по определению трефлана в воде, почве, томатах и капусте методом УФ-спектро-фотометрии с использованием тонкослойной хроматографии
Методические указания по фотометрическому определению вдила в воде, растительном месле, семенах подсолнечника, траве
Методические указания по определению остаточных количеств пинеба в сушеных овощах и плодах фотометрическим методом
Биопрепараты
Временние методические указания по определению остаточных количеств препарата вирин-диприона на растительных объектах ИФ-методом
Временние методические указания по определению остаточных количеств биопрепарата видин-КШ на растительных объектах иммуно-филореспентным метопом33I