Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в сельскохозяйственном сырье и пищевых продуктах

Сборник методических указаний по методам контроля МУК 4.1.2917—4.1.2919—11; 4.1.2926—11; 4.1.2936—11

ББК 51.21+51.23 Об0

Обо Определение остаточных количеств пестицидов в сельскохозяйственном сырье и пищевых продуктах: Сборник методических указаний по методам контроля.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2011.—91 с.

- 1. Рекомендованы к утверждению Комиссией по санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от $2.06.2011 \, \mathbb{N} \, 1$).
- 2. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 12 июля 2011 г.
 - 3. Введены в действие с момента утверждения.
 - 4. Введены впервые.

ББК 51.21+51.23

[©] Роспотребнадзор, 2011 © Федеральный центр гигиены и

[©] Федеральныи центр гигиены и эпидемиологии Роспотребнадзора, 2011

Содержание

Определение остаточных количеств Тритиконазола в семенах и масле сои методом капиллярной газожидкостной хроматографии: МУК 4.1.2917—11	4
Определение остаточных количеств Хлорпирифоса в зерне и соломе пшеницы, яблоках и яблочном соке, семенах и масле рапса, клубнях картофеля методом капиллярной газожидкостной хроматографии: МУК 4.1.2918—11	21
Определение остаточных количеств Аминопиралида в зеленой массе, зерне и масле кукурузы, семенах и масле рапса методом капиллярной газожидкостной хроматографии: МУК 4.1.2919—11	41
Определение остаточных количеств Хлорпирифос-метила в зеленой массе и корнеплодах сахарной свеклы, семенах и масле рапса методом капиллярной газожидкостной хроматографии: МУК 4.1.2926—11	63
Определение остаточных количеств эмамектина (эмамектина бензоата) в яблоках и яблочном соке методом высокоэффективной жидкостной хроматографии: МУК 4.1.2936—11	79

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онишенко

12 июля 2011 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств Аминопиралида в зеленой массе, зерне и масле кукурузы, семенах и масле рапса методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2919—11

Свидетельство о метрологической аттестации № 0065.03.12.10 от 08.12.2010.

Настоящие методические указания устанавливают метод газожидкостной хроматографии для определения уровня остаточных количеств Аминопиралида в зеленой массе в диапазоне 0,05—0,5 мг/кг, в зерне и масле кукурузы, в семенах и масле рапса в диапазоне 0,01—0,2 мг/кг.

Название действующего вещества по ИЮПАК: 4-амино-3,6-ди-хлорпиридино-2-карбоновая кислота.

Структурная формула:

Эмпирическая формула: $C_6H_4Cl_2N_2O_2$.

Молекулярная масса: 207,026.

Физическое состояние технического продукта: желтоватый порошок.

Давление паров: 9,52 × 10⁻⁹ Па при 20 °C.

Коэффициент перераспределения октанол—вода (при 19 °C): K_{ow} logP = 1,76 (pH = 5); 2,87 при pH = 7; 2,96 при pH = 9.

Аминопиралид – сильная кислота: pKa = 2,56 (при 20 °C).

Температура плавления: 163,5—165,2 °C, разлагается в точке плавления.

Растворимость в воде (г/дм³, при 20 °C): 2,48 при pH 2,35; 212 при pH 5; 205—203 при pH 7 и 9.

Растворимость в органических растворителях (г/дм³, при 20 °C): в гептане <10; в ксилоле -0.05; в дихлорэтане -0.15; в этилацетате -4.37; в ацетоне -37.0; в метаноле -66.4.

Стабилен к гидролизу при pH 5, 7 и 9 при температуре от 20 до 50 °C.

Фотолитически малостоек, разрушается на свету с периодом полураспада – 0.6 дня.

Устойчив к разложению в почве в анаэробных условиях: DT_{50} при 20 °C составляет в среднем 67 дней (от 18 до 143 дней в различных почвах Европы); DT_{90} – от 26 до 116 дней. В аэробных условиях скорость деградации Аминопиралида значительно выше: DT_{50} в среднем составляет 25 дней (от 8 до 35 дней); DT_{90} – 84 дня (от 26 до 116 дней).

Краткая токсикологическая характеристика: Аминопиралид относится к веществам малоопасным по острой пероральной и дермальной токсичности (СД $_{50}$ для крыс более 5 000 мг/кг), но к умеренно опасным веществам по ингаляционной токсичности. При продолжительном контакте раздражает слизистые оболочки. Малотоксичен для водных организмов (СК $_{50}$ для рыб и дафний более 100 мг/дм 3).

Область применения: Аминопиралид – гербицид системного ауксиноподобного действия из группы гетерилкарбоновых кислот. Рекомендуется для послевсходовой обработки зерновых культур и пастбищ против широкого спектра широколистных сорняков в смеси с Флорасуламом с нормой расхода препарата 33—66 г/га.

В России установлены следующие гигиенические нормативы: ДСД -0.5 мг/кг массы человека; ПДК в воде водоемов -0.1 мг/ дм³; ОДК в почве -0.2 мг/кг; МДУ в зерне хлебных злаков -0.1 мг/кг.

1. Метрологическая характеристика метода

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности

P = 0.95 не превышает значений, приведенных в табл. 1 для соответствующих диапазонов концентраций.

Полнота извлечения вещества, стандартное отклонение, доверительные интервалы среднего результата для полного диапазона концентраций (n=20) приведены в табл. 2.

Таблица 1

Метрологические параметры для Аминопиралида

Анализируе- мый объект	Диапазон определяемых концентра- ций, мг/кг	Показатель точности (граница относительной погрешности), $\pm \delta$, $\%$, $P=0.95$	Стандартное отклонение повторяемости, σ_r , %	Предел повто- ряемо- сти, <i>r</i> , %	Предел воспро- изводи- мости, <i>R</i> , %
Зеленая масса	0,05—0,1 вкл.	50	2,7	7,5	8,9
кукурузы	0,1—0,5 вкл.	25	5,2	16,4	19,6
Зерно кукурузы	0,01—0,1 вкл.	50	4,8	13,5	16,0
	0,1—0,2 вкл.	25	6,9	19,2	22,8
Масло	0,01—0,1 вкл.	50	4,3	12,1	14,3
кукурузы	0,1—0,2 вкл.	25	4,0	11,1	13,2
Семена рапса	0,01—0,1 вкл.	50	3,2	9,0	10,7
	0,1—0,2 вкл.	25	4,4	12,2	14,5
Маача мачаа	0,01—0,1 вкл.	50	3,4	9,3	11,1
Масло рапса	0,1—0,2 вкл.	25	5,9	16,3	19,4

Таблица 2 Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для Аминопиралида

	Метрологические параметры, $P = 0.95$, $n = 20$					
Анализируе- мый объект	Предел обнару- жения, мг/кг	Диапазон определяемых концентраций, мг/кг	Полнота извлече- ния веще- ства, %	Стандарт- ное откло- нение, <i>S</i> , %	Доверительный интервал среднего результата, ±, %	
Зеленая масса кукурузы	0,05	0,05—0,5	82,8	0,88	1,92	
Зерно кукурузы	0,01	0,01-0,2	83,4	1,16	2,63	
Масло кукурузы	0,01	0,010,2	85,2	0,79	1,86	
Семена рапса	0,01	0,010,2	84,0	0,70	1,70	
Масло рапса	0,01	0,010,2	83,0	0,95	2,06	

2. Метод измерений

Метод основан на определении Аминопиралида методом капиллярной газожидкостной хроматографии с использованием детектора по захвату электронов после его экстракции из зеленой массы кукурузы и масел подкисленным ацетонитрилом и водно-спиртовым раствором щелочи из зерна кукурузы и семян рапса, очистки экстракта концентрированной серной кислотой, на концентрирующих патронах Диапак С16 и Диапак П, бутилирования и дополнительной очистки полученного бутилового эфира Аминопиралида на колонках с Флоризилом.

Идентификация веществ проводится по времени удерживания, а количественное определение – методом абсолютной калибровки.

В предлагаемых условиях анализа метод специфичен. Специфичность обеспечивается подбором капиллярной колонки и условий программирования температуры.

3. Средства измерений, реактивы, вспомогательные устройства и материалы

3.1. Средства измерений

Весы аналитические «ОНАUS», EP 114 с наибольшим пределом взвешивания до 110 г и дискретностью 0.0001 г, класс точности по ГОСТ 24104-1 – специальный (I) Весы лабораторные общего назначения с наибольшим пределом взвешивания до 600 г и пределом допустимой погрешности ± 0.038 г «ACCULAB» V600, соответствуют классу точности по ГОСТ 24104-1 – средний (III) Колбы мерные на 10, 25, 50, 100, 500 и 1 000 см³ Микрошприц для газовой хроматографии «Hamilton, 1700», объем 10 мм³, фирма «SUPELCO», кат. № 20972 Пипетки мерные на 1.0; 2.0; 5.0 и 10 см³ рН-метр/милливольтметр рН-150 0...14 рН; ± 1999 мВ, номер госрегистрации № 10663 Хроматограф газовый «Кристалл 2000м» с детектором по захвату электронов (ЭЗД) с пределом детектирования по Линдану $4 \times 10^{-14} \, \text{г/см}^3$ и приспособлениями для

ГОСТ 1770—74

ГОСТ 29227-91

капиллярной колонки. Номер в государственном реестре средств измерений 14516-95 Цилиндры мерные на 10, 25 и 50 см³

Аминопиралид, CAS 150114-71-9, аналитичес-

ГОСТ 1770—74

Допускается использование средств измерений с аналогичными или лучшими характеристиками.

3.2. Реактивы

кий стандарт с содержанием действующего вещества не менее 99,5 %, фирма Dr. Ehreustorfer GmbH, аккредитованная по ИСО 9001:2000 ГОСТ 9293-74 Азот, осч Ацетон, осч ТУ 6-09-3513-86 Ацетонитрил, осч, УФ-200 нм ТУ 6-09-2167—84 **FOCT 6006—78** Бутанол, ч Вода дистиллированная и (или) **FOCT 6709—72** бидистиллированная (вода дистиллированная. перегнанная повторно в стеклянной емкости) Гелий, очищенный марки «А» ТУ 51-940-80 п-Гексан, хч TV 6-09-3818---89 ГОСТ 20490—75 Калий марганцово-кислый, хч Кальций хлористый, ч ТУ 6-09-4711-81 Кислота серная, хч ΓΟCT 4204—77 Кислота соляная, хч ΓΟCT 3118—77 Кислота уксусная ледяная, хч ΓΟCT 61—75

Концентрирующие патроны Диапак С 16 и Диапак П (0,6 г), фирма «БиоХимМак СТ» ТУ 4215-002-05451931—94

 Натрий гидроокись, хч
 ГОСТ 4328—77

 Натрий серно-кислый безводный, хч
 ГОСТ 4166—76

 Спирт метиловый (метанол), хч
 ГОСТ 6995—77

 Спирт этиловый, ректификованный технический
 ГОСТ 18300—87

Флоризил® (Магния силикат, 99 %, CAS 1343-88-0) для колоночной хроматографии, зернение 60/100 меш, фирма «Acros Organics»

Допускается использование реактивов иных производителей с аналогичными или лучшими характеристиками.

3.3. Вспомогательные устройства и материалы

sist Benomecantestonate yempowemou	in maniepitation
Алонж прямой с отводом для вакуума (АО-	
14/23) для работы с концентрирующими па-	
тронами Диапак С 16	ГОСТ 25336—82
Аппарат для встряхивания проб «SKLO	
UNION TYP LT1»	
Банки с крышками для экстракции на 250 см ³ ,	
полипропилен, кат. № 3120-0250, фирма «NALGENE»	
Блок нагревательный для виал, Dri-Block DB-3,	
фирмы Тесат, или песчаная баня	
Ванна ультразвуковая «UNITRA» UNIMA	
OLSZTYN UM-4	
Вата медицинская гигроскопическая	
хлопковая нестерильная	ΓOCT 5556—81
Виалы (пузырьки) с тефлоновыми прокладками	
емкостью 40 см ³ , кат. № Z 27,702-9, фирма	
«Aldrich»	
Воронки делительные на 250 см ³	ΓOCT 25336—82
Воронки лабораторные, стеклянные	ΓOCT 25336—82
Испаритель ротационный Rota vapor R110	
Buchi с водяной баней В-480, фирма «Buchi»	
Колбы конические плоскодонные на 100, 250 и	
$1000{\rm cm}^3$	ΓOCT 25336—82
Колбы круглодонные со шлифом (концентра-	
торы) на 100, 250 см ³ и 4 000 см ³ TC	ТУ 92 - 891.029—91
Колонка хроматографическая кварцевая НР-1	
длиной 30 м, внутренним диаметром 0,32 мм,	
толщина пленки 0,25 мкм, фирма «Hewlett	
Packerd»	
Насос водоструйный	ΓOCT 25336—82
Насос диафрагменный FT.19, фирма «KNF Neu	
Laboport»	
Стаканы стеклянные, термостойкие объемом	
$100-2\ 000\ \text{cm}^3$	ГОСТ 25336—82
Установка для перегонки растворителей с	
круглодонной колбой объемом 4 000 см ³ и при-	
емной конической колбой объемом 1 000 см3	
Фильтры бумажные, «красная лента»	ТУ 6-09-1678—86

Центрифуга MPW-350e с набором полипропиленовых банок емкостью 200 см³
Шприц инъекционный однократного ГОСТ 24861—91 применения объемом 10 см³ (ИСО 7886:84)

Допускается применение хроматографических колонок и другого оборудования с аналогичными или лучшими техническими характеристиками

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313—03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются специалисты, имеющие высшее или специальное химическое образование, опыт работы в химической лаборатории, прошедшие обучение и владеющие техникой проведения анализа, освоившие метод анализа в процессе тренировки и уложившиеся в нормативы контроля при проведении процедуры контроля погрешности анализа.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 ± 5) °C, относительной влажности не более 80~% и нормальном атмосферном давлении;
- выполнение измерений на газожидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению определений

Выполнению измерений предшествуют следующие операции: очистка растворителей (при необходимости), приготовление растворов,

кондиционирование хроматографической колонки, подготовка концентрирующих патронов Диапак С16, Диапак П и колонок с Флоризилом для очистки экстракта, проверка хроматографического поведения вещества на концентрирующих патронах Диапак С16, Диапак П и на колонках с Флоризилом, установление градуировочной характеристики.

7.1. Подготовка органических растворителей

7.1.1. Очистка аиетонитрила

Ацетонитрил, содержащий воду, предварительно осушают, добавляя в него гранулированный безводный хлористый кальций из расчета не менее 100 г/дм³. Выдерживают его над осушителем в течение 5—6 ч. Затем ацетонитрил сливают с осушителя в круглодонную колбу со шлифом объемом 4 000 см³ аппарата для перегонки растворителей.

Ацетонитрил перегоняют при температуре 81,5 °C, а фракции, отогнанные при температуре ниже и выше 81,5 °C отбрасывают.

7.1.2. Очистка ацетона

Ацетон помещают в круглодонную колбу со шлифом объемом $4\,000\,{\rm cm}^3$ от аппарата для перегонки растворителей, добавляют к нему марганцово-кислый калий из расчета $1\,{\rm r/дm}^3$.

Ацетон перегоняют при температуре 56,2 °C, а фракции, отогнанные при температуре ниже и выше 56,2 °C, отбрасывают.

7.1.3. Приготовление бидистиллированной воды

Дистиллят помещают в круглодонную колбу со шлифом объемом $4\,000\,{\rm cm}^3$ от аппарата для перегонки растворителей, добавляют к нему марганцово-кислый калий из расчета $1\,{\rm r/дm}^3$ и кипятят в течение $6\,{\rm ч}$.

Собирают фракции, отогнанные при температуре 100,0 °C, а фракции, отогнанные при температуре ниже и выше 100,0 °C, отбрасывают.

7.2. Приготовление растворов для проведения анализа

7.2.1. Приготовление рабочих растворов

7.2.1.1. Приготовление 10 % водного раствора гидроокиси натрия.

В мерную колбу на 500 см³ переносят 50 г гидроокиси натрия, добавляют 500—600 см³ дистиллированной воды. Затем раствор перемешивают и после охлаждения доводят водой объем в колбе до метки (при приготовлении раствора соблюдать осторожность и работать под тягой).

7.2.1.2. Приготовление водно-спиртового раствора щелочи.

Водно-спиртовой раствор щелочи готовят путем смешивания 950 см³ этилового спирта и 50 см³ 10 %-го водного раствора гидроокиси натрия.

7.2.1.3. Приготовление подкисленного ацетонитрила.

К необходимому объему ацетонитрила пипеткой добавляют концентрированную соляную кислоту до $pH \approx 1$. При приготовлении раствора соблюдать осторожность и работать под тягой.

7.2.1.4. Приготовление 2%-го раствора серной кислоты в бутаноле (бутилирующей смеси).

Мерным цилиндром отбирают 2 см³ концентрированной серной кислоты и осторожно переносят в мерную колбу на 100 см³, куда предварительно наливают около 60 см³ бутанола. Затем раствор перемешивают и доводят бутанолом объем в колбе до метки (при приготовлении раствора соблюдать осторожность и работать под тягой).

7.2.1.5. Приготовление 1 М раствора соляной кислоты.

Мерным цилиндром отбирают 82 см³ концентрированной соляной кислоты и осторожно переносят в мерную колбу на 1 000 см³, куда предварительно наливают около 400 см³ дистиллированной воды. Затем раствор перемешивают и после охлаждения доводят водой объем в колбе до метки (при приготовлении раствора соблюдать осторожность и работать под тягой).

7.2.1.6. Приготовление 2 М раствора соляной кислоты.

Мерным цилиндром отбирают 164 см³ концентрированной соляной кислоты и осторожно переносят в мерную колбу на 1 000 см³, куда предварительно наливают около 400 см³ дистиллированной воды. Затем раствор перемешивают и после охлаждения доводят водой объем в колбе до метки (при приготовлении раствора соблюдать осторожность и работать под тягой).

7.2.1.7. Приготовление 10 М раствора гидроокиси натрия.

В мерную колбу на 500 см³ переносят 200 г гидроокиси натрия, добавляют 200—300 см³ дистиллированной воды. Затем раствор перемешивают и после охлаждения доводят водой объем в колбе до метки (при приготовлении раствора соблюдать осторожность и работать под тягой).

7.2.2. Приготовление градуировочных растворов

7.2.2.1. Стандартный раствор № 1 с концентрацией Аминопиралида 1.0 мг/см 3 .

Взвешивают 50 мг Аминопиралида в мерной колбе объемом 50 см³. Навеску растворяют в ацетоне и доводят объем до метки ацетоном. Полученный стандартный раствор № 1 используется для приготовления стандартных растворов для хроматографического исследования и построения калибровочной кривой. Стандартный раствор № 1 хранится в холодильнике в течение 6 месяцев.

7.2.2.2. Стандартный раствор № 2 с концентрацией Аминопиралида $100,0~{\rm Mkz/cm}^3$.

Из стандартного раствора № 1 отбирают пипеткой 1 см³, помещают в мерную колбу объемом $10~\text{см}^3$ и доводят объем до метки ацетоном. Стандартный раствор № 2 используется для приготовления стандартных растворов для построения калибровочной кривой. Стандартный раствор № 2 хранится в холодильнике в течение 6 месяцев.

 $\bar{7}.2.2.3$. Стандартный раствор № 3 с концентрацией Аминопиралида 1,0 мкг/см 3 .

Из стандартного раствора № 2 отбирают пипеткой 1 см³, помещают в мерную колбу объемом 100 см^3 и доводят объем до метки ацетоном. Стандартный раствор № 3 используется для приготовления стандартных растворов для построения калибровочной кривой и для внесения в контрольные образцы. Стандартный раствор № 3 хранится в холодильнике в течение 6 месяцев.

7.2.2.4. Стандартный раствор № 4 с концентрацией Аминопиралида 0,5 мкг/см 3 .

Из стандартного раствора № 3 отбирают пипеткой 5 см³, помещают в мерную колбу объемом 10 см^3 и доводят объем до метки ацетоном. Стандартный раствор № 4 используется для построения калибровочной кривой и для внесения в контрольные образцы. Стандартный раствор № 4 хранится в холодильнике в течение 6 месяцев.

 $\tilde{7}.2.2.5$. Стандартный раствор № 5 с концентрацией Аминопиралида 0.2 мкг/см 3 .

Из стандартного раствора № 3 отбирают пипеткой 2 см³, помещают в мерную колбу объемом $10~\text{см}^3$ и доводят объем до метки ацетоном. Стандартный раствор № 5 используется для построения калибровочной кривой и для внесения в контрольные образцы. Стандартный раствор № 5 хранится в холодильнике в течение 6 месяцев.

7.2.2.6. Стандартный раствор № 6 с концентрацией Аминопиралида 0.1 мкг/см^3 .

Из стандартного раствора № 3 отбирают пипеткой 1 см³, помещают в мерную колбу объемом 10 см^3 и доводят объем до метки ацетоном. Стандартный раствор № 6 используется для построения калибровочной кривой и для внесения в контрольные образцы. Стандартный раствор № 6 хранится в холодильнике в течение 6 месяцев.

 $\bar{7}.2.2.7$. Стандартный раствор № 7 с концентрацией Аминопиралида $0.01~{\rm MKz/cm}^3$.

 \dot{M}_3 стандартного раствора № 6 отбирают пипеткой 1 см³, помещают в мерную колбу объемом 10 см³ и доводят объем до метки ацетоном.

Стандартный раствор № 7 используется для построения калибровочной кривой и для внесения в контрольные образцы. Стандартный раствор № 7 хранится в холодильнике в течение 6 месяцев.

7.3. Бутилирование

7.3.1. Бутилирование экстракта

К сухому остатку в концентраторе прибавляют 4 см³ 2 %-го раствора концентрированной серной кислоты в бутаноле (бутилирующей смеси), полученной по п. 7.2.1.4, тщательно обмывают стенки концентратора и выдерживают 1—2 мин в ультразвуковой ванне. Отбирают пипеткой 2 см³ раствора из концентратора и переносят его в виалу. Виалу плотно закрывают крышкой, помещают в блок для виал, нагретый до 100 °С, и оставляют на 30 мин. По истечении этого времени в виалу вынимают из блока, охлаждают до комнатной температуры, добавляют 10 см³ гексана и 25—30 см³ очищенной воды. Смесь интенсивно встряхивают и после разделения фаз в виале из верхнего (гексанового) слоя 1 мм³ вводят в хроматограф.

7.3.2. Бутилирование стандартных растворов

В виалы объемом 40 см^3 помещают по 1 см^3 каждого стандартного раствора Аминопиралида в ацетоне ($N_2 3, 4, 5, 6$), удаляют растворитель током теплого воздуха и проводят бутилирование, как указано выше.

7.4. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади (высоты) пика от концентрации Аминопиралида в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4 растворам для градуировки с концентрацией 0,01; 0,02; 0,05 и 0,10 мкг/см³.

В испаритель хроматографа вводят по 1 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 9.5. Осуществляют не менее 5 параллельных измерений.

7.5. Подготовка концентрирующих патронов Диапак С16 для очистки экстракта и проверка хроматографического поведения Аминопиралида

7.5.1. Подготовка концентрирующих патронов Диапак С16 для очистки экстракта

Все процедуры происходят с использованием вакуума, скорость потока растворов через патрон не должна превышать $5\,\mathrm{cm}^3/\mathrm{muh}$ (1— $2\,\mathrm{kan./c}$).

Патрон Диапак C16 устанавливают на алонж с отводом для вакуума, сверху в патрон вставляют шприц с разъемом типа Люер объемом не менее 10 см³ (используют как емкость для элюентов).

Кондиционирование: концентрирующий патрон промывают $5\ \mathrm{cm}^3$ смеси ацетонитрила с водой соотношении $1:1,\ \mathrm{3arem}\ 10\ \mathrm{cm}^3$ воды. Элюаты отбрасывают.

7.5.2. Проверка хроматографического поведения Аминопиралида на концентрирующих патронах Диапак С16

Из стандартного раствора Аминопиралида в ацетоне, содержащего $1\,\mathrm{mkr/cm^3}$, отбирают $1\,\mathrm{cm^3}$, помещают в концентратор объемом $100\,\mathrm{cm^3}$ и выпаривают на ротационном вакуумном испарителе досуха при температуре не выше $30\,^\circ\mathrm{C}$. Сухой остаток растворяют в $2\,\mathrm{cm^3}$ ацетонитрила, тщательно обмывая стенки концентратора, прибавляют $8\,\mathrm{cm^3}$ воды, перемешивают и вносят на патрон. Элюат собирают в концентратор объемом по $100\,\mathrm{cm^3}$, выпаривают на ротационном вакуумном испарителе досуха при температуре не выше $30\,^\circ\mathrm{C}$.

Исходный концентратор обмывают 2 см³ ацетонитрила, прибавляют 8 см³ воды, перемешивают, вносят на патрон. Процедуру повторяют еще раз, используя тот же объем и состав элюентов. Элюат после прохождения каждой порции элюентов собирают в отдельные концентраторы объемом по 100 см³, выпаривают досуха на ротационном вакуумном испарителе при температуре не выше 30 °C.

Сухой остаток каждой фракции растворяют в 4 см³ бутилирующей смеси и проводят бутилирование, как указано в п. 7.3.1.

Определяют фракции, содержащие Аминопиралид, полноту смывания с патрона и необходимый объём элюента.

Изучение поведения Аминопиралида на концентрирующих патронах Диапак С16 проводят каждый раз при отработке методики или поступлении новой партии концентрирующих патронов.

7.6. Подготовка концентрирующих патронов Диапак П для очистки экстракта и проверка хроматографического поведения Аминопиралида

7.6.1. Подготовка концентрирующих патронов Диапак П для очистки экстракта

Все процедуры происходят с использованием вакуума, скорость потока растворов через патрон не должна превышать $5~{\rm cm}^3/{\rm muh}~(1-2~{\rm km}./c)$.

Патрон Диапак П устанавливают на алонж с отводом для вакуума, сверху в патрон вставляют шприц с разъемом типа Люер объемом не менее $10~{\rm cm}^3$ (используют как емкость для элюентов).

Кондиционирование: концентрирующий патрон промывают $20~{\rm cm}^3$ очищенной воды, затем $10~{\rm cm}^3~1$ %-го водного раствора уксусной кислоты. Элюаты отбрасывают.

7.6.2. Проверка хроматографического поведения Аминопиралида на концентрирующих патронах Диапак П

Из стандартного раствора Аминопиралида в ацетоне, содержащего $1\,\mathrm{mkr/cm^3}$, отбирают $1\,\mathrm{cm^3}$, помещают в концентратор объемом $100\,\mathrm{cm^3}$ и выпаривают на ротационном вакуумном испарителе досуха при температуре не выше $30\,^\circ\mathrm{C}$. Сухой остаток растворяют в $2\,\mathrm{cm^3}$ $1\,\mathrm{M}$ водного раствора соляной кислоты, тщательно обмывая стенки концентратора, прибавляют $5\,\mathrm{cm^3}$ воды, перемешивают, помещают на $10\,\mathrm{c}$ в ультразвуковую ванну и вносят на патрон. Элюат собирают в концентратор объемом по $100\,\mathrm{cm^3}$, выпаривают на ротационном вакуумном испарителе досуха при температуре не выше $30\,^\circ\mathrm{C}$.

Исходный концентратор обмывают последовательно 20 см³ очищенной воды, затем 20 см³ 1 %-го водного раствора уксусной кислоты и тремя порциями по 10 см³ каждая 1 %-го раствора уксусной кислоты в метаноле. Полученные растворы последовательно вносят на патрон. Элюат после прохождения каждой порции элюентов собирают в отдельные концентраторы объемом по 100 см³, выпаривают досуха на ротационном вакуумном испарителе при температуре не выше 30 °C.

Сухой остаток каждой фракции растворяют в 4 см³ бутилирующей смеси и проводят бутилирование, как указано в п. 7.3.1.

Определяют фракции, содержащие Аминопиралид, полноту смывания с патрона и необходимый объём элюента.

Изучение поведения Аминопиралида на концентрирующих патронах Диапак П проводят каждый раз при отработке методики или поступлении новой партии концентрирующих патронов.

7.7. Подготовка колонок с Флоризилом для очистки экстракта и проверка хроматографического поведения бутилового эфира Аминопиралида

7.7.1. Подготовка колонки с Флоризилом для очистки экстракта

В пластиковую или стеклянную колонку диаметром 15 мм помещают 4 г Флоризила с зернением 60/100 меш. и, аккуратно постукивая по стенкам колонки, формируют слой адсорбента. На слой Флоризила наносят слой безводного серно-кислого натрия толщиной 1 см.

За день до использования колонку промывают 20 см³ ацетона, затем 10 см³ гексана и высушивают при комнатной температуре.

7.7.2. Проверка хроматографического поведения бутилового эфира Аминопиралида на колонке с Флоризилом

В концентратор объемом 100 см^3 вносят 1 см^3 стандартного раствора бутилового эфира Аминопиралида в гексане с концентрацией $1,0 \text{ мкг/см}^3$ и выпаривают его досуха на ротационном вакуумном испарителе при температуре не выше $30 \, ^{\circ}\text{C}$. Сухой остаток растворяют в $2 \, \text{см}^3$ гексана, тщательно обмывают стенки концентратора и наносят на подготовленную колонку. Элюат собирают в концентратор объемом по $100 \, \text{см}^3$ и выпаривают досуха при температуре не выше $30 \, ^{\circ}\text{C}$.

Исходную колбу обмывают сначала 10 см^3 гексана, затем 10 см^3 смеси гексана с ацетоном в соотношении 9:1, а затем еще двумя порциями смеси гексана с ацетоном в соотношении 1:1 объемом 10 см^3 каждая и последовательно вносят их на колонку. Каждую порцию собирают отдельно в концентраторы объемом по 100 см^3 и выпаривают досуха на ротационном вакуумном испарителе при температуре не выше 30 °C.

Сухой остаток каждой фракции растворяют в 10 см³ гексана и 1 мм³ пробы вводят в хроматограф.

Определяют фракции, содержащие Аминопиралид, полноту смывания с колонки и необходимый объём элюента.

Изучение поведения Аминопиралида на колонке проводят каждый раз при отработке методики или поступлении новой партии Флоризила.

8. Отбор проб и хранение

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов», № 2051—79 от 21.08.79, а также по ГОСТ 13586.3—83 «Зерно. Правила приемки и методы отбора проб», ГОСТ Р 50436—92 (ИСО 950:79) «Зерновые. Отбор проб зерна», ГОСТ 8808—2000 «Масло кукурузное, ТУ», ГОСТ 5471—83 «Масла растительные. Правила приемки и методы отбора проб», ГОСТ 27262 «Корма растительного происхождения. Методы отбора проб», ГОСТ 10852—86 «Семена масличные. Правила приемки и методы отбора проб» и ГОСТ 8988—2002 «Масло рапсовое. ТУ».

Пробы зеленой массы хранятся в полиэтиленовых пакетах в холодильнике при температуре 0—4 °C в течение суток. Для длительного хранения пробы замораживаются и хранятся в морозильной камере при температуре -18 °C.

Пробы зерна кукурузы и семян рапса подсушивают до стандартной влажности и хранят в бумажных или тканевых мешочках в сухом, хорошо проветриваемом шкафу, недоступном для грызунов.

Пробы масла кукурузы и рапса хранят в плотно закрытой стеклянной или полиэтиленовой таре в холодильнике при температуре 0—4 °C не более 2 недель.

9. Подготовка проб и выполнение измерений

9.1. Зеленая масса кукурузы

9.1.1. Экстракция и очистка полученного экстракта

Образец измельченной зеленой массы кукурузы массой $10~\mathrm{r}$ помещают в полипропиленовую банку для экстракции, прибавляют $50~\mathrm{cm}^3$ подкисленного ацетонитрила и помещают на механический встряхиватель на $30~\mathrm{muh}$. Экстракт фильтруют в делительную воронку объемом $250~\mathrm{cm}^3$ через фильтр «красная лента». Экстракцию повторяют еще два раза, используя каждый раз по $40~\mathrm{cm}^3$ подкисленного ацетонитрила и помещая на $15~\mathrm{muh}$ на механический встряхиватель. Экстракты объединяют в делительной воронке объемом $250~\mathrm{cm}^3$.

К полученному экстракту добавляют $30~{\rm cm}^3$ гексана и интенсивно встряхивают воронку $2~{\rm mun}$. После полного разделения фаз в делительной воронке верхний слой (гексан) отбрасывают, а ацетонитрил собирают в концентратор объемом $250~{\rm cm}^3$ через слой безводного сульфата натрия, и выпаривают досуха на ротационном вакуумном испарителе при температуре не выше $30~{\rm ^{\circ}C}$.

9.1.2. Очистка экстракта концентрированной серной кислотой

(Внимание! Последующий этап анализа следует проводить только в выгляжном шкафу!).

К сухому остатку в концентраторе, полученному в п. 9.1.1, прибавляют 4 см³ концентрированной серной кислоты и тщательно обмывают стенки концентратора. Концентратор оставляют при комнатной температуре на 20 мин. По истечении этого времени в концентратор осторожно прибавляют 20 см³ дистиллированной воды, перемешивают и охлаждают полученную смесь до комнатной температуры. Затем в концентратор добавляют 10 М раствор щелочи до рН 3, перемешивают и охлаждают до комнатной температуры. Помещают концентратор в ультразвуковую ванну на 1—2 мин, а затем содержимое фильтруют в чистый

концентратор объемом $250~{\rm cm}^3$ через фильтр «красная лента». Исходный концентратор обмывают $10~{\rm cm}^3$ дистиллированной воды, выдерживают в ультразвуковой ванне $1-2~{\rm muh}$ и фильтруют в тот же концентратор. Объединенный раствор выпаривают досуха на ротационном вакуумном испарителе при температуре не выше $30~{\rm ^oC}$.

К сухому остатку в концентраторе добавляют 10 см³ метанола, тщательно обмывают стенки концентратора и помещают на 1 мин в ультразвуковую ванну. Содержимое концентратора фильтруют в чистый концентратор объемом 250 см³ через слой безводного сульфата натрия. Во избежание потерь исходный концентратор тщательно обмывают еще двумя порциями по 10 см³ каждая 1 %-м раствором уксусной кислоты в метаноле и 10 см³ метанола, каждый раз помещая концентратор в ультразвуковую ванну. Все порции фильтруют через слой безводного сульфата натрия в концентратор, а затем выпаривают досуха на ротационном вакуумном испарителе при температуре не выше 30 °C.

9.1.3. Очистка экстракта на концентрирующих патронах Диапак С16

К остатку в концентраторе, полученному по п. 9.1.2, добавляют 2 cm^3 ацетонитрила, обмывая стенки концентратора, затем в концентратор прибавляют 8 cm^3 очищенной воды, тщательно перемешивают, выдерживают концентратор в ультразвуковой ванне 1-2 мин и отфильтровывают содержимое через фильтр «красная лента» в емкость для элюента. Элюат собирают в концентратор объемом 100 cm^3 .

Исходный концентратор обмывают 2 см³ ацетонитрила, прибавляют 8 см³ воды, перемешивают, вносят на патрон. Элюаты объединяют в концентраторе объемом 100 см³ и выпаривают до объема 1—2 см³ на ротационном вакуумном испарителе при температуре не выше 30 °C.

К остатку после упаривания добавляют 5 см^3 очищенной воды, перемешивают содержимое концентратора и помещают на 1-2 мин в ультразвуковую ванну.

Далее проводят очистку экстракта на концентрирующих патронах Диапак Π .

$9.1.4.\ Очистка$ экстракта на концентрирующих патронах Диапак Π

Раствор, полученный по п. 9.1.3 наносят на заранее подготовленный патрон Диапак Π , элюат отбрасывают. Исходный концентратор обмывают последовательно $20~{\rm cm}^3$ очищенной воды, затем $20~{\rm cm}^3$ 1~%-го водного раствора уксусной кислоты. Полученные растворы последовательно вносят на патрон, элюаты отбрасывают

Аминопиралид элюируют с патрона 20 см³ 1 %-го раствора уксусной кислоты в метаноле. Элюат собирают в концентратор объемом

 $100~{\rm cm}^3$ и выпаривают досуха на ротационном вакуумном испарителе при температуре не выше $30~{\rm ^{\circ}C}.$

9.1.5. Бутилирование экстракта

К сухому остатку в концентраторе, полученному по п. 9.1.2 добавляют 4 см 3 бутилирующей смеси, проводят бутилирование, как указано в п. 7.3.1 «Бутилирование экстракта».

Полученный бутиловый эфир Аминопиралида подвергают дополнительной очистке на колонках с Флоризилом.

9.1.6. Очистка бутилированного экстракта на колонках с Флоризилом

Из верхнего (гексанового) слоя в виале, полученного в п. 9.1.5, отбирают 2 см 3 и наносят на заранее подготовленную колонку с Флоризилом.

Исходную колбу обмывают сначала 10 см³ гексана, затем 10 см³ смеси гексана с ацетоном в соотношении 9:1, последовательно наносят на колонку и элюаты отбрасывают.

Аминопиралид элюируют с колонки $15~{\rm cm}^3$ смеси гексана с ацетоном в соотношении 1:1. Элюат собирают в концентратор объемом $100~{\rm cm}^3$ и выпаривают досуха на ротационном вакуумном испарителе при температуре не выше $30~{\rm ^{\circ}C}$.

Сухой остаток растворяют в 5 см³ гексана и 1 мм³ пробы вводят в хроматограф.

9.2. Зерно кукурузы

9.2.1. Экстракция

Образец измельченного зерна кукурузы массой 20 г помещают в полипропиленовую банку для экстракции и центрифугирования объемом 200 см³, прибавляют 75 см³ водно-спиртового раствора щелочи и помещают на 30 мин на механический встряхиватель. Пробу центрифугируют в течение 15 мин при скорости 4 000 об./мин и экстракт фильтруют в концентратор объемом 250 см³ через фильтр «красная лента». Экстракцию повторяют еще два раза, используя каждый раз по 40 см³ водноспиртового раствора щелочи и помещая каждый раз на 30 мин на механический встряхиватель. Пробы центрифугируют в течение 15 мин при скорости 4 000 об./мин, супернатант фильтруют. Экстракты объединяют в концентраторе объемом 250 см³. К объединенному экстракту прибавляют 5 см³ 2 М соляной кислоты и упаривают до водного остатка на ротационном вакуумном испарителе при температуре не выше 30 °C.

Далее проводят очистку экстракта по схеме, указанной в пунктах пп. 9.1.2—9.1.6.

Сухой остаток после упаривания растворяют в $5 \, \text{cm}^3$ гексана и $1 \, \text{mm}^3$ пробы вводят в хроматограф.

9.3. Семена рапса

9.3.1. Экстракция

Образец измельченных семян рапса массой 20 г помещают в полипропиленовую банку для экстракции и центрифугирования объемом 200 см³, прибавляют 75 см³ водно-спиртового раствора щелочи и помещают на 30 мин на аппарат для встряхивания проб. Пробу центрифугируют в течение 15 мин при скорости 4 000 об./мин и экстракт фильтруют в концентратор объемом 250 см³ через фильтр «красная лента». Экстракцию повторяют еще два раза, используя каждый раз по 40 см³ водноспиртового раствора щелочи и помещая 30 мин на аппарат для встряхивания проб. Пробы центрифугируют в течение 15 мин при скорости 4 000 об./мин, супернатант фильтруют. Экстракты объединяют в концентраторе объемом 250 см³. К объединенному экстракту прибавляют 5 см³ 2 М соляной кислоты и упаривают до маслянистого остатка на ротационном вакуумном испарителе при температуре не выше 30 °C.

9.3.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

К водному остатку в концентраторе, полученному в п. 9.3.1, прибавляют 25 см³ ацетонитрила, обмывают стенки концентратора и добавляют 25 см³ дистиллированной воды, переносят в делительную воронку объемом 250 см³. Полученную водную фракцию промывают двумя порциями гексана по 30 см³ каждая, встряхивая делительную воронку 2 мин. После полного разделения фаз в делительной воронке верхний слой (гексан) отбрасывают, а водную фракцию переносят в чистый концентратор объемом 250 см³ и выпаривают досуха на ротационном вакуумном испарителе при температуре не выше 35 °C.

Далее проводят очистку экстракта по схеме, указанной в пунктах 9.1.2—9.1.6.

Сухой остаток после упаривания растворяют в 5 см^3 гексана и 1 мм^3 пробы вводят в хроматограф.

9.4. Масло кукурузы и рапса

9.4.1. Экстракция

Из пробы кукурузного (или рапсового) масла отбирают в полипропиленовую банку для экстракции объемом $250~{\rm cm}^3$ навеску массой $20~{\rm r}$, добавляют $50~{\rm cm}^3$ гексана и $75~{\rm cm}^3$ подкисленного ацетонитрила и поме-

щают на 30 мин на механический встряхиватель, а затем на 10 мин в ультразвуковую ванну. Содержимое банки переносят в делительную воронку объемом 250 см³, после разделения слоев нижний слой (ацетонитрил) фильтруют через фильтр «красная лента» в концентратор объемом 250 см³, а верхний (гексановый) слой возвращают в банку для экстракции. Экстракцию повторяют еще два раза, используя каждый раз по 50 и 50 см³ подкисленного ацетонитрила и помещая на 30 мин на механический встряхиватель, а затем на 10 мин в ультразвуковую ванну.

Объединенный ацетонитрильный экстракт выпаривают досуха на ротационном вакуумном испарителе при температуре не выше 35 °C.

Далее проводят очистку экстракта по схеме, указанной в пунктах 9.1.2—9.1.6.

Сухой остаток после упаривания растворяют в 5 cm^3 гексана и 1 mm^3 пробы вводят в хроматограф.

9.5. Условия хроматографирования

Хроматограф газовый «Кристалл 2000 м» с электроннозахватным детектором с пределом детектирования по Линдану $4 \times 10^{-14} \, \text{г/см}^3 \,$ и приспособлениями для капиллярной колонки. Номер в государственном реестре средств измерений 14516-95.

Колонка хроматографическая капиллярная кварцевая HP-1 (Crosslinked Methyl Siloxane), длина 30 м, внутренний диаметр 0,25 мм, толщина пленки 0,25 мкм.

Температура термостата программированная. Начальная температура – $180\,^{\circ}$ С, выдержка 2 мин; нагрев колонки по $10\,$ град./мин до температуры $240\,^{\circ}$ С, выдержка 7 мин.

Температура: детектора – 340 °C; испарителя – 260 °C.

Газовый режим – Splitless.

Газ-носитель – гелий (Г1): тип регулятора расхода газа – РРГ 11, линейная скорость – 22 см/с, давление на входе 102,9 кПа.

Газ 2 ($\overline{\Gamma 2}$) — гелий, расход 1 см³/мин, сброс 1 : 50, начало сброса — 20 с, длительность сброса — 2 мин.

Газ 3 (Г3) – азот (поддув в детектор), расход во время анализа – $45~{\rm cm}^3/{\rm muh}$.

Продувка системы после анализа при температуре 260 °C в течение 4 мин: продувка испарителя гелием -50 см^3 /мин; продувка детектора азотом -65 см^3 /мин.

Абсолютное время удерживания Аминопиралида — 10 мин 11 с \pm 2 %. Объем вводимой пробы: 1 мм³.

Линейность детектирования сохраняется в пределах 0,01—0,1 нг.

10. Обработка результатов анализа

Содержание Аминопиралида в образцах зеленой массы, зерна и масла кукурузы, семян и масла рапса рассчитывают по формуле:

$$X = \frac{S_{r\delta} \cdot \grave{A} \cdot V}{100 \cdot S_{\rho_{\lambda}} \cdot m} \cdot P$$
 , где

X – содержание Аминопиралида в пробе, мг/кг;

 S_{cm} – высота (площадь) пика стандарта, мВ;

 S_{np} – высота (площадь) пика образца, мВ;

A – концентрация стандартного раствора, мкг/см³;

V – объем экстракта, подготовленного для хроматографирования, см 3 ;

m — масса анализируемого образца, г;

P – содержание Аминопиралида в аналитическом стандарте, %.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot \left| X_1 - X_2 \right| \cdot 100}{\left(X_1 + X_2 \right)} \le r , \text{ где} \tag{1}$$

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости (табл. 1), при этом r = 2,8 × σ_r .

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг при вероятности $P = 0.95$, где

 \overline{X} — среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

 Δ – граница абсолютной погрешности, мг/кг;

$$\Delta = \frac{\mathcal{S} \cdot \overline{X}}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, табл. 1), %.

В случае если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе менее 0,02 мг/кг»* *-0,02 мг/кг – предел обнаружения.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—2002 «Точность (правильность и прецизионность) методов и результатов измерений».

- 13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится методом добавок.

Величина добавки C_{δ} должна удовлетворять условию:

$$C_{a} = \Delta_{e, \overline{\mathcal{O}}} + \Delta_{e, \overline{\mathcal{O}}'}$$
, где

 $\pm \Delta_{\ell,\bar{\mathcal{O}}} \ (\pm \Delta_{\ell,\bar{\mathcal{O}}'})$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно), мг/кг, при этом:

$$\Delta_n = \pm 0.84 \Delta$$
, где

 Δ – граница абсолютной погрешности, мг/кг;

$$\Delta = \frac{\delta \cdot \overline{X}}{100}$$
, где

 δ — граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, табл. 1), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_{\kappa} = \overline{X}' - \overline{X} - C_{\partial_{\gamma}}$$
 где

 \overline{X}' , \overline{X} , C_{δ} — среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 11), содержания компонента в образце с добавкой, испытуемом образце и концентрация добавки соответственно, мг/кг.

Норматив контроля К рассчитывают по формуле:

$$\hat{E} = \sqrt{\Delta_{\vec{e},\vec{O}'}^2 + \Delta_{\vec{e},\vec{O}}^2}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию:

$$|\mathcal{K}_{\kappa}| \le \mathcal{K},\tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости.

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R):

$$\frac{2 \cdot \left| \tilde{O}_1 - \tilde{O}_2 \right| \cdot 100}{(\tilde{O}_1 + \tilde{O}_2)} \le R, \text{ где}$$
 (3)

 X_1, X_2 – результаты измерений в двух разных лабораториях, мг/кг; R – предел воспроизводимости (в соответствии с диапазоном концентраций, табл. 1), %.

14. Разработчики

Калинин В. А., профессор, канд. с-х. наук., Калинина Т. С., ст. н. сотр., канд. с.-х. наук.

Российский государственный аграрный университет – МСХА имени К. А. Тимирязева. Учебно-научный консультационный центр «Агроэкология пестицидов и агрохимикатов». 127550, Москва, Тимирязевская ул., д. 53/1. Телефон: (499) 976-37-68, факс: (499) 976-43-26.