4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пирафлуфен-этила в воде, почве, зерне и соломе хлебных злаков методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3266—15

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пирафлуфен-этила в воде, почве, зерне и соломе хлебных злаков методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3266—15 ББК 51.23 О62

Об2 Определение остаточных количеств пирафлуфен-этила в воде, почве, зерне и соломе хлебных злаков методом высокоэффективной жидкостной хроматографии: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2015.—15 с.

ISBN 978-5-7508-1413-8

- 1. Разработаны сотрудниками ФГБНУ Всероссийский НИИ защиты растений и ООО «Инновационный центр защиты растений» (В. И. Долженко, И. А. Цибульская, А. С. Комарова, Т. Д. Черменская, В. В. Человечкова, А. А. Далинова).
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 22 мая 2015 г. № 1).
- 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия населения, Главным государственным санитарным врачом Российской Федерации А. Ю. Поповой 9 июня 2015 г.
 - 4. Введены впервые.

ББК 51.23

ISBN 978-5-7508-1413-8

[©] Роспотребнадзор, 2015

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2015

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А. Ю. Попова

9 июня 2015 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пирафлуфен-этила в воде, почве, зерне и соломе хлебных злаков методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3266—15

Свидетельство о метрологической аттестации № 01.5.04.190/ 01.00043/2015 от 12.02.2015.

Настоящие методические указания устанавливают порядок применения метода высокоэффективной жидкостной хроматографии для определения остаточных количеств пирафлуфен-этила в диапазоне: в воде -0.001—0.01 мг/дм³, в почве и зерне -0.01—0.1 мг/кг, в соломе -0.05—0.5 мг/кг.

Методические указания носят рекомендательный характер.

Пирафлуфен-этил

Ethyl 2-chloro-5-(4-chloro-5-difluoromethoxy-1-methylpyrazol-3-yl)-4-fluorophenoxyacetate (ΜЮΠΑΚ).

Структурная формула:

Брутто формула: $C_{13}H_9Cl_2F_3N_2O_4$.

Молекулярная масса: 413,2.

Химически чистое вещество представляет собой белые кристаллы.

Температура плавления: 126,8 °C.

Давление пара при 25 °C: $4,3 \times 10^{-6}$ МПа.

Растворимость в воде: 0,082 мг/дм³ (при 20 °C).

Растворимость в органических растворителях (г/дм³, при 20 °C): ацетон – 175, метанол – 7,39, этилацетат – 108, ксилол – 43.

Стабильность к гидролизу: стабилен при pH 4, неустойчив при pH 7, $DT_{50} = 13$ дней, при pH 9 быстро разрушается.

Период полураспада в почве: $DT_{50} =$ от 0,5 до 4 дней.

Краткая токсическая характеристика. Острая пероральная токсичность LD_{50} для млекопитающих для крыс $> 5\,000$ мг/кг, острая дермальная токсичность LD_{50} для млекопитающих превышает $2\,000$ мг/кг. Ингаляционная LC_{50} для крыс более 5,03 мг/м³. Оказывает раздражающее действие на кожу и слизистую глаз. Умеренно токсичен для пчел и почвенных червей.

Область применения препарата. Контактный гербицид; при попадании на растение легко проникает в ткани растения и в присутствии света вызывает быстрый некроз или высушивание стеблей и листьев.

Механизм действия. Ингибитор протопорфириноген-IX оксидазы.

Гигиенические нормативы для пирафлуфен-этила в России не установлены.

1. Погрешность измерений

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности P=0.95 не превышает значений, приведенных в табл. 1 для соответствующих диапазонов концентраций.

Таблица 1 Метрологические параметры

Объ- ект анали- за	Диапазон опреде- ляемых концен- траций, мг/кг (мг/м ³ , мг/дм ³)	Показатель точности*) (границы относительной погрешности $(P=0.95)$, $\pm \delta$, %	средне- квадрати- ческое отклоне-	мости (от-	Предел повторяе- мости (зна- чение до- пустимого расхожде- ния между двумя ре- зультатами параллель- ных опреде- лений), r, %	Предел воспроизводимости (значение допустимого расхождения между двумя результатами измерений, полученных в разных лабораториях), R , % (P = 0,95)
Вода	0,001 0,01	23	7	11	20	31
Почва	0,01-0,1	24	9	12	25	34
Зерно	0,01-0,1	24	9	12	25	34
Солома	0,050,5	23	7	11	20	31

Таблица 2 Полнота извлечения пирафлуфен-этила, стандартное отклонение, доверительный интервал среднего результата

	Метрологические параметры, $P = 0.95$, $n = 20$						
Анализируе- мый объект	предел количественного определения, мг/кг (мг/м³, мг/дм³)	диапазон определяемых концентраций, мг/кг (мг/м³, мг/дм³)	полнота извлечения вения вения вения вения вения вения вения вения в магати в магат	стан- дартное откло- нение, %	доверительный интервал среднего результата, ±, %		
Вода	0,001	0,0010,01	88,8	3,65	5,12		
Почва	0,01	0,010,1	87,0	3,39	4,75		
Зерно	0,01	0,010,1	86,2	3,68	5,15		
Солома	0,05	0,05—0,5	87,4	2,26	3,16		

2. Метод измерений

Метод основан на определении пирафлуфен-этила методом ВЭЖХ с использованием УФ-детектора после его экстракции из образцов ацетонитрилом и очистки на патронах для твердофазной экстракции.

Идентификация пирафлуфен-этила проводится по времени удерживания, количественное определение — методом абсолютной калибровки.

Избирательность метода обеспечивается сочетанием условий подготовки проб и хроматографирования.

3. Средства измерений, реактивы, вспомогательные устройства и материалы

3.1. Средства измерений

Жидкостный хроматограф с быстросканирующим ультрафиолетовым детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки Весы аналитические с пределом взвешивания до 210 г и пределом допускаемой погрешности 0,1 мг ГОСТ Р 53228---08 Весы технические с пределом взвешивания до 150 г и пределом допускаемой погрешности 0,1 г ГОСТ Р 53228—08 Колбы мерные на $10, 100 \text{ см}^3$ ГОСТ 23932—90 Микродозаторы одноканальные переменного объема от 100 до 1 000 мм³ и от 1 до 5 см³ Цилиндры мерные на 50 и 100 см³ ГОСТ 23932—90

Примечание. Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Ацетонитрил для ВЭЖХ	ТУ 2634-002-0471528512
Вода для лабораторного анализа (бидистилли-	
рованная. деионизованная)	ГОСТ Р 5250105
Кислота ортофосфорная, хч	ГОСТ 6552—80
Кислота уксусная, ледяная	ГОСТ 61—69
Натрий серно-кислый безводный, хч	ГОСТ 4166—76
Натрий уксусно-кислый, ч	ГОСТ 199—68
Натрий хлористый, чда	ГОСТ 4233—77
н-Гексан, хч	ТУ 2631-003-05807999—98
Пирафлуфен-этил с содержанием основного вещества 99,3 %	
Подвижная фаза для ВЭЖХ: смесь ацетонит-	
рила и 0,005 M H ₃ PO ₄ в соотношении 50 : 50	
Смесь № 1: ацетонитрил-вода в соотношении	
1:2 по объему	
Смесь № 2: ацетонитрил-вода в соотношении	
2:1 по объему	
Смесь № 3: гексан-этилацетат в соотношении	
4:1 по объему	

Смесь № 4: гексан-этилацетат в соотношении 2:1 по объему Этилацетат, хч

ΓΟCT 22300--76

Примечание. Допускается использование реактивов с более высокой квалификацией, не требующих дополнительной очистки растворителей.

3.3. Вспомогательные устройства и материалы

Аналитическая колонка, заполненная сорбентом с привитыми монофункциональными полярными группами С18, полностью закрытыми и связанными этилен гибридными мостиками, $(100 \times 2,1)$ мм, 1,7 мкм Вакуумный манипулятор для работы с патронами для твердофазной экстракции Колбы круглодонные на шлифе вместимостью $10,25~{\rm cm}^3$

ГОСТ 9737---93

Патроны для твердофазной экстракции: № 1—заполненные гидрофильным слабокислотным сорбентом на основе силикагеля и № 2—гидрофобным сорбентом с привитыми гексадецильными группами, по 0,4 г

TY 4215-002-0545-931---94

Пробирки полипропиленовые центрифужные с крышками объемом 50 см³

Ротационный вакуумный испаритель с мембранным насосом, с пределом вакуума до 10 мбар

Центрифуга с максимальной рабочей частотой вращения 4 000 об./мин Устройство перемешивающее (50—200 колебаний в минуту)

TV 4389-007-44330709---11

Примечание. Допускается применение оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007—76, требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019—09, а также требования, изложенные в технической документации на жидкостный хроматограф.

4.2. Помещение лаборатории должно быть оборудовано приточновытяжной вентиляцией, соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004—91 и иметь средства пожаротушения по ГОСТ 12.4.009—83. Содержание вредных веществ в воздухе не должно превышать ПДК (ОБУВ), установленных ГН 2.2.5.1313—03 и 2.2.5.2308—07.

Организация обучения работников безопасности труда – по ГОСТ 12.0.004—90.

5. Требования к квалификации операторов

Измерения в соответствии с настоящей методикой может выполнять специалист-химик, имеющий опыт работы методом высокоэффективной жидкостной хроматографии, ознакомленный с руководством по эксплуатации хроматографа, освоивший данную методику и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений по п. 13.

6. Условия измерений

При выполнении измерений выполняют следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 ± 5) °C и относительной влажности не более 80 %;
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к определению

7.1. Кондиционирование колонки

Перед началом анализа колонку кондиционируют в потоке подвижной фазы (0,1--0,2 см 3 /мин) до стабилизации нулевой линии.

7.2. Кондиционирование патронов

7.2.1. Кондиционирование патрона № 1 с гидрофобным слабокислотным сорбентом с постоянной активностью

Патрон последовательно промывают 3 см 3 смеси № 4, затем 3 см 3 гексана.

7.2.2. Кондиционирование патрона № 2 с гидрофобным сорбентом с привитыми гексадецильными группами

Патрон промывают 3 см 3 ацетонитрила, затем 3 см 3 воды.

7.3. Приготовление растворов

- 7.3.1. 0.005 М раствор ортофосфорной кислоты: (0.5 ± 0.01) г 98 %-й ортофосфорной кислоты помещают в мерную колбу объемом 1 дм³, растворяют в бидистиллированной воде и доводят объем до метки.
- 7.3.2. Для приготовления подвижной фазы смешивают ацетонитрил с 0,005 М раствором ортофосфорной кислоты в соотношении 50:50 по объёму, используя мерные цилиндры.

7.4. Приготовление основного и градуировочных растворов

- 7.4.1. Основной раствор с концентрацией 0.5 мг/см^3 : точную навеску пирафлуфен-этила $(50\pm0.5 \text{ мг})$ помещают в мерную колбу вместимостью 100 см^3 , растворяют в ацетонитриле и доводят объем до метки ацетонитрилом.
 - 7.4.2. Приготовление градуировочных растворов.

Градуировочные растворы с концентрациями пирафлуфен-этила 0,05; 0,1; 0,2; 0,5 и 1,0 мкг/см³ готовят методом последовательного разбавления по объему, используя раствор подвижной фазы (смесь ацетонитрила и 0,005 М ортофосфорной кислоты в соотношении 43: 57).

- 7.4.2.1. Раствор № 1 с концентрацией 1,0 мкг/см³: в мерную колбу вместимостью 100 см^3 вносят 0,2 см³ основного раствора и доводят до метки подвижной фазой.
- 7.4.2.2. Раствор № 2 с концентрацией 0,5 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 5,0 см³ раствора № 1 и доводят объем до метки подвижной фазой.
- 7.4.2.3. Раствор № 3 с концентрацией 0,2 мкг/см³: в мерную колбу вместимостью $10~{\rm cm}^3$ помещают $2~{\rm cm}^3$ раствора № 1 и доводят объем до метки подвижной фазой.
- 7.4.2.4. Раствор № 4 с концентрацией 0,1 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 1 см³ раствора № 1 и доводят объем до метки подвижной фазой.
- 7.4.2.5. Раствор № 5 с концентрацией 0,05 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 0,5 см³ раствора № 1 и доводят объем до метки подвижной фазой.

Основной раствор можно хранить в холодильнике при температуре 0—4 °C в течение 7 дней, градуировочные растворы использовать в день приготовления.

При изучении полноты определения пирафлуфен-этила используют ацетонитрильные растворы вещества, приготовленные из основного раствора методом последовательного разбавления по объему ацетонитрилом.

7.5. Построение градуировочного графика

Для установления градуировочной характеристики (площадь пика — концентрация пирафлуфен-этила в растворе) в хроматограф вводят по 10 мм³ градуировочных растворов (не менее 3 параллельных измерений для каждой концентрации, не менее 4 точек по диапазону измеряемых концентраций). Затем измеряют площади пиков и строят график зависимости среднего значения площади пика от концентрации пирафлуфенэтила в градуировочном растворе.

Методом наименьших квадратов рассчитывают градуировочный коэффициент (*K*) в уравнении линейной регрессии:

$$C = KS$$
, где

S — площадь пика градуировочного раствора.

Градуировку признают удовлетворительной, если значение коэффициента линейной корреляции оказывается не ниже 0,99.

Градуировочную характеристику необходимо проверять при замене реактивов, хроматографической колонки или элементов хроматографической системы, а также при отрицательном результате контроля градуировочного коэффициента.

Градуировочную зависимость признают стабильной при выполнении следующего условия:

$$\frac{\left|C-C_{K}\right|}{C}\cdot100\leq\lambda_{_{KOHMP.}}$$
, где

 С – аттестованное значение массовой концентрации пирафлуфенэтила в градуировочном растворе;

 C_{κ} — результат контрольного измерения массовой концентрации пирафлуфен-этила в градуировочном растворе;

 $\hat{\lambda}_{\text{контр.}}$ — норматив контроля градуировочного коэффициента, %. $(\lambda_{\text{контр.}} = 10~\%$ при P = 0,95).

7.6. Проверка хроматографического поведения пирафлуфен-этила на патроне № 1

В круглодонную колбу емкостью 10 см^3 отбирают 1 см^3 стандартного раствора пирафлуфен-этила с концентрацией 1 мкг/см^3 . Растворитель удаляют в вакууме. Остаток растворяют в 1 см^3 гексана и переносят на подготовленный патрон (п. 7.2). Колбу обмывают 1 см^3 гексана и смыв тоже переносят на патрон. Промывают патрон 5 см^3 смеси № 3, элюат отбрасывают. Затем элюируют пирафлуфен-этил смесью № 4 со скоростью 1-2 капли в секунду. Отбирают фракции по 2 см^3 , упаривают досуха, растворяют в 1 см^3 подвижной фазы и анализируют по п. 9.5.

Фракции, содержащие пирафлуфен-этил, объединяют и вновь анализируют.

Устанавливают уровень вещества в элюате, определяют полноту смывания с патрона и необходимый для очистки объем элюата.

7.7. Проверка хроматографического поведения пирафлуфен-этила на патроне № 2

В круглодонную колбу емкостью 10 см³ отбирают 1 см³ стандартного раствора пирафлуфен-этила с концентрацией 1 мкг/см³. Растворитель удаляют в вакууме. Остаток растворяют в 1 см³ ацетонитрила, добавляют 9 см³ воды и переносят на подготовленный патрон (п. 7.2). Промывают патрон 5 см³ смеси № 1, элюат отбрасывают. Затем элюируют пирафлуфен-этил смесью № 2 со скоростью 1—2 капли в секунду. Отбирают фракции по 2 см³, упаривают досуха, растворяют в 1 см³ подвижной фазы и анализируют по п. 9.5.

Фракции, содержащие пирафлуфен-этил, объединяют и вновь анализируют.

Устанавливают уровень вещества в элюате, определяют полноту смывания с патрона и необходимый для очистки объем элюата.

Примечание. Проверку хроматографического поведения пирафлуфенэтила следует проводить обязательно, поскольку профиль вымывания может изменяться при использовании новой партии патронов и растворителей.

8. Отбор проб и хранение

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, продуктов питания и объектов окружающей среды для определения микроколичеств пестицидов» (№ 2051—79 от 21.08.79), а также в соответствии с ГОСТ Р 31861—12 «Вода. Общие требования к отбору проб»; ГОСТ 28168—89 «Почвы. Отбор проб»; ГОСТ Р 50436—92 (ИСО 950—79) «Зерновые. Отбор проб зерна». Пробы зерна и соломы для определения остатков в урожае хранят в бумажной или тканевой упаковке при комнатной температуре. Перед анализом пробы зерна доводят до стандартной влажности и измельчают.

Для длительного хранения пробы почвы подсушиваются при комнатной температуре в отсутствие прямого солнечного света. Сухие почвенные образцы могут храниться в течение года. Перед анализом сухую почву доводят до стандартной влажности, просеивают через сито с отверстиями диаметром 1 мм.

9. Проведение определения

9.1. Экстракция пирафлуфен-этила из воды

На предварительно кондиционированный патрон № 2 наносят 50 см³ воды, патрон промывают 5 см³ смеси № 1. Пирафлуфен-этил элюируют 5 см³ ацетонитрила, элюат собирают в круглодонную колбу и упаривают досуха на ротационном вакуумном испарителе при температуре бани не выше 30 °C. Сухой остаток растворяют в 1 см³ подвижной фазы и 10 мм³ вводят в хроматограф.

9.2. Экстракция пирафлуфен-этила из почвы, зерна и соломы

Навеску измельченного зерна (10 г), почвы (10 г) или соломы (2 г) помещают в полипропиленовую центрифужную пробирку вместимостью 50 см³, добавляют 10 см³ ацетонитрила, воду (для почвы – 5 см³, для зерна и соломы – 10 см³), 4 г безводного серно-кислого натрия, 1 г безводного уксусно-кислого натрия, 1 г натрия хлористого, 0,1 см³ ледяной уксусной кислоты, пробирку плотно закрывают и помещают в перемешивающее устройство на 10 мин, затем центрифугируют. От верхнего ацетонитрильного слоя отбирают аликвоту 5 см³, переносят в круглодонную колбу и упаривают досуха на ротационном вакуумном испарителе при температуре бани не выше 30 °C. Сухой остаток подвергают очистке на патронах по пп. 9.3—9.4.

9.3. Очистка на патроне № 2

Сухой остаток, полученный по п. 9.2, растворяют в 1 см³ ацетонитрила, добавляют 9 см³ воды и наносят на предварительно кондиционированный патрон (п. 7.2). Патрон промывают 5 см³ смеси № 1, элюат отбрасывают. Пирафлуфен-этил элюируют 5 см³ смеси № 2, элюат собирают, упаривают досуха на ротационном вакуумном испарителе при температуре бани не выше 30 °C, остаток подвергают очистке на патроне № 1 по п. 9.4.

9.4. Очистка на патроне № 1

Сухой остаток, полученный по п. 9.3, растворяют в 1 см³ гексана, наносят на предварительно кондиционированный патрон (п. 7.2). Колбу ополаскивают еще 1 см³ гексана, который также наносят на патрон. Патрон промывают 5 см³ смеси № 3, элюат отбрасывают. Пирафлуфенэтил элюируют 4 см³ смеси № 4, элюат собирают, упаривают досуха на ротационном вакуумном испарителе при температуре бани не выше 30 °C, остаток растворяют в 1 см³ подвижной фазы и 10 мм³ вводят в хроматограф.

9.5. Условия хроматографирования

Ультраэффективный жидкостный хроматограф с УФ-детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки.

Аналитическая колонка, заполненная сорбентом с привитыми монофункциональными полярными группами C18, полностью закрытыми и связанными этиленгибридными мостиками, (100 × 2,1) мм, 1,7 мкм.

Температура колонки: (30 ± 1) °C.

Подвижная фаза: ацетонитрил и 0,005 М ортофосфорная кислота в соотношении 50:50.

Скорость потока элюента: 0,2 cm³/мин.

Рабочая длина волны УФ-детектора: 242 нм.

Объем вводимой пробы: 10 мм³.

Время удерживания пирафлуфен-этила: 11.8 ± 0.1 мин.

10. Обработка результатов анализа

Количественное определение проводят методом абсолютной калибровки. Содержание пирафлуфен-этила в пробе (X, мг/кг) вычисляют по формуле:

$$X = \frac{S_x \cdot K \cdot V \cdot n \cdot 100}{P \cdot f}$$
, где

 S_{x} — площадь пика пирафлуфен-этила на хроматограмме испытуемого образца, (AU);

K – градуировочный коэффициент, найденный на стадии построения соответствующей градуировочной зависимости;

V – объём пробы, подготовленной для хроматографического анализа, см 3 ;

Р - навеска анализируемого образца, г;

f— полнота извлечения пирафлуфен-этила, приведенная в табл. 2, %;

n – коэффициент, учитывающий отбор аликвоты экстракта.

Содержание остаточных количеств пирафлуфен-этила в образце вычисляют как среднее из двух параллельных определений.

Образцы, дающие пики большие, чем стандартный раствор пирафлуфен-этила с концентрацией 1,0 мкг/см³, разбавляют подвижной фазой для ВЭЖХ.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости:

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r, \text{ где}$$
 (1)

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости ($r = 2.8\sigma_r$).

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\, \overline{X} \pm \Delta)\,$$
мг/кг при вероятности $P=0.95,$ где

 \overline{X} — среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

 Δ — граница абсолютной погрешности, мг/кг:

$$\Delta = \frac{\delta \cdot X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Если содержание компонента меньше нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе «менее нижней границы определения» (например: менее 0.01 мг/кг*, где * -0.01 мг/кг предел обнаружения пирафлуфен-этила в зерне).

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—02 «Точность (правильность и прецизионность) методов и результатов измерений».

- 13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки C_{∂} должна удовлетворять условию:

$$C_a = \Delta_{a,x} + \Delta_{a,x'}$$
, где

 $\pm \Delta_{s,X} \ (\pm \Delta_{s,X'})$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компо-

нента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно), мг/кг, при этом:

$$\Delta_n = \pm 0,84 \Delta$$
, где

Δ – граница абсолютной погрешности, мг/кг:

$$\Delta = \frac{\delta \cdot X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_r = X' - X - C_{\partial_r}$$
 где

X', X, C_{∂} — среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки соответственно, мг/кг.

Норматив контроля К рассчитывают по формуле:

$$K = \sqrt{\Delta_{n,X'}^2 + \Delta_{n,X}^2} \tag{2}$$

Проводят сопоставление результата контроля процедуры (K_k) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K,\tag{3}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (3) процедуру контроля повторяют. При повторном невыполнении условия (3) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры к их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости.

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R, \, \text{где}$$
 (4)

 X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг; R — предел воспроизводимости (в соответствии с диапазоном концентраций), %.