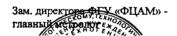
МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ

УТВЕРЖДАЮ Директор ФГУ «Федеральный научно-методический центр анализа — этомиторинга окружающея при МПР России»

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ АТМОСФЕРНОГО ВОЗДУХА И ВЫБРОСОВ В АТМОСФЕРУ


МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ ДОЛИ МАРГАНЦА В ПРОБАХ ПЫЛИ ПРОМЫШЛЕННЫХ ВЫБРОСОВ ФОТОМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 13.1.47-04

Методика допущена для целей государственного экологического контроля

МОСКВА 2004 г. Право тиражирования и реализации принадлежит разработчику.

Методика рассмотрена и одобрена ФГУ «Федеральный научнометодический центр анализа и мониторинга окружающей среды МПР России» (ФГУ «ФЦАМ МПР России»)

С.А. Струков

Разработчик: ФГУ «Федеральный научно-методический центр анализа и мониторинга окружающей среды МПР России» (ФГУ «ФЦАМ МПР России»)

Адрес: 115114, г. Москва, Кожевнический проезд, 4/5

Телефон/факс: (095) 235-84-02, 235-62-28.

ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий документ устанавливает методику выполнения измерений концентрации марганца в промвыбросах при массовой доле в пыли (0,02 – 2)% фотометрическим методом.

Методика неприменима при наличии в выбросах окрашенных веществ.

1 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в таблице 1,2.

Таблица 1

Значения показателя точности при определении содержания пыли в промышленных выбросах при и вероятности P=0,95

Показатели точности (граница относительной погрешности) $\pm\delta,\%$	
25	

Таблица 2 Значения показателей точности, повторяемости и воспроизводимости методики

Диапазон	Показатель	Показатель	Показатель
измерений	повторяемости	воспроизводимости	точности
массовой доли	(относительное	(относительное средне-	(границы относи-
в пыли, %	среднеквадратиче-	квадратическое откло-	тельной погреш-
	ское отклонение по-	нение воспроизводимо-	ности при вероят-
1	вторяемости), от, %	сти). _{ОR} , %	ности Р=0,95).
			±δ, %
от 0,02 до 2 вкл.	6	8	16

Значения показателя точности методики используют при:

- оформлении результатов измерений, выдаваемых лабораторией,

ПНД Ф 13.1.47-04

- оценке деятельности лабораторий на качество проведения испытаний;
- оценке возможности использования результатов измерений при реализации методики выполнения измерений в конкретной лаборатории.

2 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, РЕАКТИВЫ И МАТЕРИАЛЫ

2.1 Средства измерений

Спектрофотометр или фотоэлектроколориметр, позволяющий измерять оптическую плотность при длине волны 530-550 нм

Кюветы с толщиной оптического слоя 50 мм

Аспирационные устройства типа ПУ ТУ 4215-000-11696625

Пневмометрические трубки ГОСТ 17.2.4.06-90

Манометры ТУ 4212-002-40001819

Колбы мерные вместимостью 50, 250, 1000 см³ ГОСТ 1770-74

Пипетки градуированные вместимостью ГОСТ 29227-91

5, 10 см², 2 класса точности

ГСО с аттестованным содержанием ионов марганца и погрещностью не более 1% при Р=0,95

 Весы лабораторные, например ВЛР-200
 ГОСТ 24104-2001

 Гири
 ГОСТ 7328-2001

 Реометр
 ГОСТ 9932-75

 Барометр-анероил
 ТУ 25-11.1513

Термометры ТЦМ-9210 ТУ 4210-0021328-2997

Термометр стеклянный жидкостной от 0 до ГОСТ 28498-90

250 ℃

2.2 Вспомогательные устройства

Tembers to transferring a viction of transferrence	ГОСТ Р 50820-95		
Трубки пылезаборные с набором наконечников	10011 30020-73		
Фильтровальные патроны			
Патроны с тканевыми и бумажными фильтрами			
Держатель для фильтров			
Стекловолокно	ΓOCT 10727-74		
Вата медицинская	ΓΟCT 5556-81		
Фильтры АФА	ТУ 95-743-80		
Электроплитка	ΓΟCT 14919-83		
Трубка резиновая полувакуумная, тип 1	ГОСТ 5496-77		
Сушильный шкаф			
Стаканы термостойкие В-1-150, 300 ТС	ГОСТ 25336-82		
Воронки для фильтрования, стеклянные	:		
B-25-50- XC	ΓOCT 25336-82		
Эксикатор	ΓOCT 25336-82		
Чашки платиновые и тигли	ΓOCT 6563-75		
Фильтры "белая лента" диаметром 9 см	ТУ 6-09-1678-77		
Универсальная индикаторная бумага рН	ТУ 09-1181-76		
2.3 Реактивы			
Кислота азотная, х.ч.	ГОСТ 4461-77		
Кислота соляная, х.ч.	ΓΟCT 3118-77		
Кислота серная, х.ч.	ΓΟCT 4204-77		
Кислота ортофосфорная, х.ч.	ΓΟCT 6552-80		
Кислота фтористоводородная, чда.	ΓΟCT 10484-78		
Калий йоднокислый (периодат), чда.	ТУ 6-09-02-364-83		
Водорода пероксид, чда.	ГОСТ 10929-76		
Калий марганцовокислый, хч.	ΓΟCT 20490-75		
Вода дистиллированная	ГОСТ 6709-72		

Примечание. Допускается использование средств измерения, оборудования, реактивов и материалов с метрологическими и техническими характеристиками не хуже указанных.

3 МЕТОД ИЗМЕРЕНИЯ

Метод основан на измерении интенсивности окраски раствора марганцевой кислоты, полученной при окислении ионов двухвалентного марганца до семивалентного йоднокислым калием (периодатом) в сернокислой среде. Оптическую плотность раствора измеряют с помощью фотоэлектроколориметра при длине волны 530-550 нм в кюветах с толщиной поглощающего слоя 50 мм.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При выполнении измерений необходимо соблюдение требований техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76.
- 4.2 Электробезопасность при работе с электроустановками по ГОСТ 12.1.019-79.
- 4.3 Организация обучения работников безопасности труда по ГОСТ 12.0.004-90.
- 4.4 Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротутения по ГОСТ 12.4.009-83.
- **4.5** При отборе проб все исполнители должны быть проинструктированы по условиям безопасной работы на предприятии.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К выполнению измерений и обработке результатов допускаются лица, имеющие специальное химическое образование или опыт работы в химической лаборатории, прошедшие соответствующий инструктаж, освоившие технику фотометрического анализа и уложившиеся в нормативы при выполнении процедур контроля точности результатов измерений.

6 УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура воздуха (20±5) °С;

атмосферное давление (97,3-104,6) кПа, (730-780 мм рт.ст.);

влажность воздуха не более 80 % при температуре 25°C;

частота переменного тока (50+1) Γ ц; напряжение в сети (220 ± 22) В.

7 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

7.1 Подготовка прибора

Подготовку прибора к работе и оптимизацию условий измерения проводят в соответствии с инструкцией по эксплуатации прибора.

7.2 Приготовление растворов

7.2.1 Приготовление основного и рабочего градуировочных растворов марганца с концентрацией 0,1 мг/см³ и 0,02 мг/см³

Основной градуировочный раствор готовят из ГСО с аттестованным содержанием ионов марганца в соответствии с прилагаемой инструкцией. Помещают 5 см³ ГСО раствора состава марганца с концентрацией 1 мг/см³ в мерную колбу вместимостью 50 см³ и доводят до метки дистиллированной водой.

Концентрация основного граду ировочного раствора равна 0,1 мг/см³.

Срок хранения раствора 3 месяца при температуре 3-4 ^оС.

Рабочий градуировочный раствор с концентрацией 0,02 мг/см³ готовят путем разбавления основного градуировочного раствора в 5 раз.

Раствор готовят в день проведения анализа.

7.2.2 Приготовление градуировочных растворов марганца из соли

При отсутствии ГСО градуировочные растворы можно приготовить из соли.

Помещают 0,2877 г марганцовокислого калия в стакан вместимостью 300 см³, прибавляют 20 см³ серной кислоты (1:4) и по каплям при перемешивании пероксид водорода до обесцвечивания раствора. Раствор выпаривают до начала кристаллизации. Остаток растворяют в 20-30 см³ дистиллированной воды, охлаждают, переносят в мерную колбу вместимостью 1 дм³, доводят до метки дистиллированной водой и перемешивают.

Полученная массовая концентрация основного градуировочного раствора по марганцу равна $0,1~{\rm mr/cm^3}$.

Раствор хранят в течение 3-х месяцев при температуре 3-4 °C.

Для получения рабочего градуировочного раствора марганца 10,0 см³ основного градуировочного раствора помещают в мерную колбу вместимостью 50 см³ и доводят до метки дистиплированной водой.

Полученная массовая концентрация рабочего градуировочного раствора марганца равна 0,02 мг/см³. Раствор готовят в день проведения анализа.

7.2.3 Приготовление раствора серной кислоты (1:4)

Для приготовления раствора одну часть концентрированной серной кислоты (ρ =1,84 г/см³) осторожно, при перемешивании приливают к четырем частям дистиллированной воды. Раствор готовят в термостойкой посуде.

7.2.4 Приготовление раствора соляной кислоты (1:1)

Для приготовления раствора смешивают равные количества концентрированной соляной кислоты (ρ =1,19 г/см³) и дистиллированной воды.

7.3 Построение градуировочного графика

Для построения градуировочного графика необходимо приготовить образцы для градуировки с массовой концентрацией ионов марганца от 0,02 до 0,2 мг в 50 см³ раствора. Условия анализа, его проведение должны соответствовать п.п. 6 и 10.

Состав и количество образцов для градуировки приведены в таблице 3.

Таблина 3

Cottab I Komi teethe copandon Ami Pang Iponkii			
Номер образца	Аликвотная часть рабочего градуировочного раствора (С=0,02 мг/см³), помещаемая в мерную колбу вместимостью 50 см³, (см³)	ца в градуировочных	
0	0	0	
11	1	0,02	
2	2	0,04	
3	4	0,08	
4	6	0,12	
5	8	0,16	
6	10	0,20	

Состав и количество образцов для градуировки

Анализ градуировочных образцов проводят в порядке возрастания их концентрации. Каждую искусственную смесь необходимо фотометрировать 3 раза с целью исключения случайных результатов и усреднения данных. По результатам полученных измерений может быть рассчитано уравнение линейной зависимости по методу «наименьших квадратов». При построении градуировочного графика по оси ординат откладывают значения оптической плотности, а по оси абщисе — массу ионов марганца в мг/50 см³ пробы.

7.4 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят не реже одного раза в месяц или при смене реактивов. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в таблице 2).

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

$$|X-C| \leq 1,96\sigma_{R_{\bullet}}$$

где X – результат контрольного измерения массовой концентрации ионов марганца в образце для градуировки;

C – аттестованное значение массовой концентрации ионов марганца в образце для градуировки;

 $\sigma_{R_{\rm A}}$ — среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: $\sigma_{R_A}=0.84\,\sigma_R$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения о приведены в таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

8 ОТБОР ПРОБ

Отбор проб и измерение параметров газопылевых потоков проводят в соответствии с требованиями ГОСТ Р 50820-95 «Оборудование газоочистное и пылеулавливающее. Методы определения запыленности газопылевых потоков» и ПНД Ф 12.1.2-99 «Методические рекомендации при определении концентраций взвешенных частиц (пыли) в выбросах промышленных предприятий» при установившемся технологическом режиме работы обследуемого оборудования.

Место отбора выбирают на прямолинейных, предпочтительней вертикальных участках газохода, в которых крупные фракции пыли не оседают на стенках газохода под воздействием силы тяжести. Участок должен быть на достаточном удалении от задвижек, дросселей, диффузоров, колен и вентиляторов. К стенке газохода приваривается штуцер с отверстием по размеру пробоотборной (пылезаборной) трубки.

Отбор проб осуществляется при фиксированном расходе газа, обеспечивающем условия изокинетичности во входном сечении пылезаборного устройства.

При определении запыленности газа методом внешней фильтрации в качестве пылеуловителя применяют патрон с гильзой из фильтровальной бумаги, с тканевым фильтром или фильтр типа АФА. Для предотвращения конденсации влаги патрон снабжают теплоизоляцией.

При определении запыленности газов с высоким исходным содержанием влаги (температура точки росы более 200°С) применяют метод внутренней фильтрации.

Необходимый объемный расход (V_r , дм³/мин) газа при отборе из газохода с соблюдением правила изокинетического отбора определяют по формуле:

$$V_{r} = \frac{3,14 \cdot d \cdot 10^{-4} \cdot W_{r} \cdot 10 \cdot 60}{4} = 4,71 \cdot 10^{-2} \cdot d^{2} \cdot W_{r} , \qquad (1)$$

где d – диаметр сменного наконечника (от 3 до 10 мм); W_r – скорость газа в газоходе, м/с.

После прохождения газа через всю пробоотборную систему его объем (V_p дм³/мин) изменяется за счёт изменения температуры и сопротивления у ротаметра. Объемный расход газа, проходящий через ротаметр, рассчитывают по формуле:

$$V_{p} = \frac{V_{r} \cdot (273 + t_{p}) \cdot (P \pm \Delta P_{r})}{(273 + t_{r}) \cdot (P - \Delta P_{p})}, \qquad (2)$$

```
где t_p – температура газа у ротаметра, °C; 
 P – атмосферное давление, кПа; 
 \Delta P_r – избыточное давление (+), разрежение (-) в газоходе, кПа; 
 t_r – температура газа в газоходе, °C; 
 \Delta P_n – разрежение у ротаметра, кПа.
```

Продолжительность отбора пробы устанавливают в зависимости от запыленности газа, производительности аспирационного устройства и типа пылеуловителя.

После удаления фильтров пробоотборную трубку прочищают тонкой проволокой с узелком на конце. Пыль, вычищенную из трубки, необходимо собрать и взвесить, чтобы в дальнейшем ввести поправку при расчете запыленности. Вынутый из патрона бумажный фильтр с пылью закрывают так, чтобы пыль из него не могла высыпаться. Перед взвещиванием фильтр выдерживают в эксикаторе не менее 2-3 часов.

9 ПОДГОТОВКА ПРОБ К АНАЛИЗУ

Фильтры озоляют в тигле, отбирают навеску пыли массой 0,2-0,5 г и разлагают одним из следующих способов.

Способ 1. Пробу помещают в стакан вместимостью 100-150 см³, прибавляют 10-15 см³ соляной кислоты (1:1), 5 см³ концентрированной азотной кислоты и растворяют при нагревании. После растворения прибавляют 20 см³ серной кислоты (1:4) и выпаривают до начала выделения паров серной кислоты.

После охлаждения прибавляют 50 см³ дистиллированной воды, растворяют соли при нагревании и отфильтровывают осадок через фильтр «белая лента» диаметром 9 см, промывая его горячей водой. Фильтрат собирают в мерную колбу вместимостью 100 см³, доводят до метки дистиллированной водой и перемешивают.

Способ 2. Пробу помещают в платиновую чашку, смачивают водой, прибавляют 1-3 см³ серной кислоты (1:4), 5-7 см³ фтористоводородной кислоты и выпаривают до выделения паров серной кислоты. К остатку прибавляют 50-60 см³ дистиллированной воды, 7-8 см³ серной кислоты (1:4) и

нагревают до растворения солей. После охлаждения раствор переводят в мерную колбу вместимостью 100 см³, доводят до метки дистиллированной водой и перемешивают.

10 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Аликвоту раствора 5 – 25 см³ помещают в стакан вместимостью 100 - 150 см³, разбавляют до 30 см³ дистиллированной водой, прибавляют 10 см³ ортофосфорной кислоты, 10 см³ азотной кислоты, 0,3-0,4 г периодата калия, доводят до кипения и продолжают нагревание при температуре 60-90°С в течение 15-20 мин. Охлаждают, переносят в мерную колбу на 50 см³, и доводят до метки дистиллированной водой.

Оптическую плотность измеряют при длине волны 530-550 нм в кювете с толщиной оптического слоя 50 мм. В качестве раствора сравнения используют раствор холостой пробы, проведенный через весь ход анализа.

11 ОБРАБОТКА (ВЫЧИСЛЕНИЕ) РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

11.1 Объем отобранной пробы газа (V_г, дм³) вычисляют по формуле:

$$V_r = V_p \cdot \tau$$
 , (3)

где V_p — объемный расход газа, проходящий через ротаметр, дм 3 /мин; τ — время отбора пробы, мин.

Объем отобранной пробы газа, приведенный к нормальным условиям $(V_0, \, дм^3)$ приводят по формуле:

$$V_0 = \frac{273 \cdot V_r (P \pm \Delta P_p)}{101,3 \cdot (273 + t)},$$
 (4)

где Р – атмосферное давление, кПа;

 ΔP_p — разрежение (-), избыточное давление (+) перед аспиратором, кПа;

t – температура газовой пробы перед аспиратором, ${}^{\circ}C$.

11.2 Концентрацию пыли (В, г/м³) в газовом потоке при нормальных условиях определяют по формуле:

$$B = \frac{(m_1 \pm a + b)}{V_0} \cdot 1000, \tag{5}$$

где т - увеличение массы фильтра, г;

 а – изменение массы пустого (контрольного) фильтра, при повторном взвешивании, г;

 V_0 – объем отобранного газа, приведенный к нормальным условиям, дм³;

b - количество пыли, осевшей в пробоотборной трубке, г.

11.3 Массовую долю марганца в пыли (X, %) вычисляют по формуле:

$$X = \frac{y \cdot V \cdot 100}{m \cdot V_1},$$
 (6)

где у - масса марганца, найденная по градуировочному графику, г,

V – общий объем раствора, см³;

 V_1 – аликвота раствора, см³;

т - масса навески, г.

За результат анализа X_{cp} принимают среднее арифметическое значение двух параллельных определений аликвоты поглотительного раствора X_1 и X_2

$$X_{cp} = \frac{X_1 + X_2}{2},$$

для которых выполняется следующее условие:

$$|X_1 - X_2| \le r \cdot (X_1 + X_2)/200$$
, (7)

где г - предел повторяемости, значения которого приведены в таблице 4.

Таблица 4
Значения предела повторяемости при вероятности Р=0,95

Диапазон измерений, %	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений), г, %
от 0,02 до 0,2 вкл.	17

При невыполнении условия (7) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами анализа, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата анализа и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в таблице 5.

Таблица 5
Значения предела воспроизводимости при вероятности Р=0,95

%	Предел воспроизводимости (относительное значение допускаемого расхождения между двумя результатами измерений, полученными в разных лабораториях), R, %	
от 0,02 до 2 вкл.	22	

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

12 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат анализа X_{cp} в документах, предусматривающих его использование, может быть представлен в виде: $X_{cp} \pm \Delta$, P=0,95,

где Δ - показатель точности методики.

Значение Δ рассчитывают по формуле: Δ = 0,01· δ : X_{cp} : Значение δ приведено в таблице 1.

Допустимо результат анализа в документах, выдаваемых лабораторией, представлять в виде: $X_{cs} \pm \Delta_s$, P=0.95, при условии $\Delta_s < \Delta$, где

 X_{cp} – результат анализа, полученный в соответствии с прописью методики;

 \pm Δ_n - значение характеристики погрешности результатов анализа, установленное при реализации методики в лаборатории и обеспечиваемое контролем стабильности результатов анализа.

Примечание. При представлении результата анализа в документах, выдаваемых лабораторией, указывают:

- количество результатов параллельных определений, использованных для расчета результата анализа;
- способ определения результата анализа (среднее арифметическое значение или медиана результатов параллельных определений).

13. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ АНАЛИЗА ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

Контроль качества результатов анализа при реализации методики в лаборатории предусматривает:

- оперативный контроль процедуры анализа (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов анализа (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм оперативного контроля процедуры анализа с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры К, рассчитывают по формуле

$$K_{\kappa} = \left| C_{cp} - C \right| \tag{8}$$

где C_{φ} — результат анализа массовой концентрации ионов марганца в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (7) раздела 11.3;

C – аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

$$K = \Delta_{\bullet}$$

где $\pm \Delta_n$ - характеристика погрешности результатов анализа, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов анализа при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_n = 0.84 \cdot \Delta_n$ с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Процедуру анализа признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (10)

При невыполнении условия (10) контрольную процедуру повторяют. При повторном невыполнении условия (10) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры анализа, а также реализуемые процедуры контроля стабильности результатов анализа регламентируют в Руководстве по качеству лаборатории.

ГОСУЛАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕЛЕРАЦИИ ПО СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

ΦΓΥΠ «ΥΡΑΙΙΚΟΚΙΚΙ ΠΑΥЧΗΩ» **ИССЛЕДОВАТЕЛЬСКИЙ** институт метрологии» -ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ МЕТРОЛОГИЧЕСКИЙ ЦЕНТР

√THE URALS RESEARCH INSTITUTE POR METROLOGY >-STATE SCIENTIFIC METROLOGICAL CENTRE

620219, Екаторынбург, TCI1-824. ул. Красповрыейская, 4, лаб. 224

Parc: (3432) 302-117 Телефов: (3432) 502-295 E-mail: paneva@uniim.ru

Dept. 224, 4, Krasnoermeyskays Str., 620219, GSP-824, Eksterizburg, Russia

Fax: (3432) 502-117 Phone: (3432) 502-295 E-mail: peneva@unlim.ru

СВИДЕТЕЛЬСТВО № 224.02.03.047/2004 CERTIFICATE

об аттестации методики выполнения измерений

Методика «Определение содержания пыли в промышленных выбросих. Определение массовой доли марганца в пыли фотометрическим методом».

разработанная $\phi \Gamma V$ «Центр экологического контроля и анализа» МПР России (г. Москва).

аттестована в соответствии с ГОСТ Р 8.563-96.

Аттестация осуществлена по результатам метрологической экспертизы материалов

разработке методики выполнения измерений. В результате аттестации установлено, что методика соответствует предъявляемым к ней требованиям и обладает следующими основными метрологическими характеристиками:

1. Значения показателя точности при определении содержания пыли в промышленных выбросах при вероятности Р=0.95

Показатель точности (границы относительной погрешности) ±6, %

Диапазон измерений, значения показателей точности, воспроизводимости и повторяемости при

определении жасоовой доли марганца в паши			
Диапазон	Показатель	Показатель	Показатель точности
измерений, %	повторяемости	воспроизводимости	(гравины относительной
	(относительное	(относительное	погрешности для
1	среднеквалратическое	среднеквадратическое	вероятности Р=0.95),
	отклонение повторяемости),	откионение воспроизводимости),	±δ, %
	G _r , %	σ _R , %	
от 0.02 до 2 вкл.	6	8	16

3. Диапазон измерений, значения пределов повторяемости и воспроизводимости при определении массовой доли марганца в пыли (для доверительной вероятности Р=0.95)

от 0.02 до 2 вкл.		пабораторнях), R, %
	расхождения между двумя результатами параллельных определений), г. %	расхождения между двумя результатамы измерений, полученными в развых
измерений, %	(отвосительное значение допусквемого	(относительное значение допускаемого
Диапазон	Предел повторяемости	Предел воспроизводимости

- 4. При реализации методики в лаборатории обеспечивают:
- контроль исполнителем процедуры выполнения измерений массовой доли марганца в пыли (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений массовой доли марганца в пыли (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

Алгоритм контроля исполнителем процедуры выполнения измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результаться у примот в замерений измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности Руководстве по качеству лаборатории.

тируют в

5. Дата выдачи свидетельства 02.02

Зам. директора по научной работе

ЭОВИНСКИЙ