ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 56647— 2015/ ISO/TS 80004-6:2013

НАНОТЕХНОЛОГИИ

Часть 6

Характеристики нанообъектов и методы их определения. Термины и определения

(ISO/TS 80004-6:2013, IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ) на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 441 «Нанотехнологии»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 20 октября 2015 г. № 1586-ст
- 4 Настоящий стандарт идентичен международному документу ИСО/TC 80004-6:2013 «Нанотехнологии. Словарь. Часть 6. Характеристики нанообъектов» (ISO/TS 80004-6:2013 «Nanotechnologies Vocabulary Part 6: Nano-object characterization», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного международного документа для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5)

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1	Область применения	1
	Основные термины и определения	
3	Термины и определения понятий, относящихся к размерам нанообъектов и методам их определения	3
	3.1 Термины и определения понятий, относящихся к размерам и форме нанообъектов	3
	3.2 Термины и определения понятий, относящихся к методам рассеяния света	4
	3.3 Термины и определения понятий, относящихся к устройствам, применяемым для определения характеристик аэрозольных нанообъектов	!
	3.4 Термины и определения понятий, относящихся к методам разделения веществ	6
	3.5 Термины и определения понятий, относящихся к методам микроскопии	7
	3.6 Термины и определения понятий, относящихся к площади поверхности нанообъектов и методам ее определения	. 11
4	Термины и определения понятий, относящихся к методам химического анализа	. 12
5	Термины и определения понятий, относящихся к методам определения других характеристик нанообъектов	. 16
	5.1 Термины и определения понятий, относящихся к методам измерений массы	. 16
	5.2 Термины и определения понятий, относящихся к методам определения характеристик кристаллических нанообъектов	. 17
	5.3 Термины и определения понятий, относящихся к методам определения характеристик нанообъектов в суспензиях	.17
A	фавитный указатель терминов на русском языке	.19
	фавитный указатель эквивалентов терминов на английском языке	
Бі	блиография	.27

Введение

Методы измерений и современные приборы позволили открыть мир нанотехнологий. Определив характеристики, можно понять свойства и функциональную направленность применения нанообъектов.

Для определения характеристик нанообъектов важно взаимодействие специалистов и ученых, осуществляющих свою деятельность в различных областях, например материаловедении, биологии, химии, физике, а также имеющих различный опыт работы, как экспериментальной, так и теоретической. Информация о характеристиках нанообъектов и возможности их определения необходима и для представителей проверяющих органов, и специалистов в области токсикологии. С целью обеспечения правильного понимания специалистами информации о характеристиках нанообъектов, а также для обмена сведениями о результатах измерений необходимо уточнение понятий и установление стандартизованных терминов и соответствующих определений.

В настоящем стандарте термины распределены по следующим разделам:

- раздел 2 «Основные термины и определения»;
- раздел 3 «Термины и определения понятий, относящихся к размерам нанообъектов и методам их определения»;
 - раздел 4 «Термины и определения понятий, относящихся к методам химического анализа»;
- раздел 5 «Термины и определения понятий, относящихся к методам определения других характеристик нанообъектов».

Наименования этих разделов сформулированы только для своеобразного руководства по поиску терминов в настоящем стандарте, так как некоторые термины относятся к методам, с помощью которых можно определить более одной характеристики нанообъектов, и их можно поместить в другие разделы стандарта. В подразделе 3.1 приведены основные термины раздела 3, которые использованы в определениях других терминов данного раздела, в том числе терминов, относящихся к устройствам, применяемым для определения характеристик нанообъектов.

Большинство методов предусматривает проведение измерений в специальных условиях, включая и соответствующую подготовку исследуемых объектов, например необходимость размещения нанообъектов на специальной поверхности, в жидкой среде или вакууме, что может повлечь за собой изменение характеристик нанообъектов.

Порядок расположения терминов, относящихся к методам определения характеристик нанообъектов, в настоящем стандарте не указывает на преимущественное применение определенных методов, и перечень этих терминов не является исчерпывающим. Методы, термины которых установлены в настоящем стандарте, более распространены, и их чаще применяют для определения тех или иных характеристик нанообъектов, чем другие. В таблице 1 приведены наиболее распространенные методы, применяемые для определения характеристик нанообъектов.

Таблица 1 — Наиболее распространенные методы, применяемые для определения характеристик нанообъектов

Характеристика	Методы
Размер	Атомно-силовая микроскопия (АСМ), центробежное осаждение частиц в жидкости (ЦОЖ), система анализа дифференциальной электрической подвижности частиц (САДЭП), динамическое рассеяние света (ДРС), растровая электронная микроскопия (РЭМ), анализ траекторий движения частиц (АТДЧ), просвечивающая электронная микроскопия (ПЭМ)
Форма	Атомно-силовая микроскопия (ACM), растровая электронная микроскопия (PЭM), просвечивающая электронная микроскопия (ПЭМ)
Площадь поверхности	Метод Брунауэра, Эммета и Теллера (метод БЭТ)
Химические характеристи- ки поверхности объекта	Масс-спектрометрия вторичных ионов (МСВИ), рентгеновская фотоэлектронная спектроскопия (РФЭС)
Химический состав объекта	Масс-спектрометрия с индуктивно связанной плазмой (ИСП-МС), спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия)
Электрокинетический по- тенциал частиц в суспензии	Определение дзета-потенциала

Настоящий стандарт предназначен для применения в качестве основы для разработки других стандартов на термины и определения в области нанотехнологий, затрагивающих вопросы определения характеристик нанообъектов.

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий в области нанотехнологий, относящуюся к характеристикам нанообъектов и методам их определения.

Для каждого понятия установлен один стандартизованный термин.

Нерекомендуемые к применению термины-синонимы приведены в круглых скобках после стандартизованного термина и обозначены пометой «Нрк».

Термины-синонимы без пометы «Нрк» приведены в качестве справочных данных и не являются стандартизованными.

Приведенные определения можно при необходимости изменять, вводя в них произвольные признаки, раскрывая значения используемых в них терминов, указывая объекты, относящиеся к определенному понятию. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском языке.

В стандарте приведен алфавитный указатель терминов на русском языке, а также алфавитный указатель эквивалентов терминов на английском языке.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, и иноязычные эквиваленты — светлым, синонимы — курсивом.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАНОТЕХНОЛОГИИ

Часть 6

Характеристики нанообъектов и методы их определения. Термины и определения

Nanotechnologies. Part 6. Characteristics of nano-objects and methods for determination. Terms and definitions

Дата введения — 2016—04—01

1 Область применения

Настоящий стандарт является частью серии стандартов ИСО/ТС 80004 и устанавливает термины и определения понятий в области нанотехнологий, относящихся к характеристикам нанообъектов и методам их определения.

2 Основные термины и определения

2.1

нанодиапазон: Диапазон линейных размеров приблизительно от 1 до 100 нм.

nanoscale

Примечания

- 1 Верхнюю границу этого диапазона принято считать приблизительной, так как, в основном, уникальные свойства нанообъектов за ней не проявляются.
- 2 Нижнее предельное значение в этом определении (приблизительно 1 нм) введено для того, чтобы исключить из рассмотрения в качестве нанообъектов или элементов наноструктур отдельные атомы или небольшие группы атомов.

[ИСО/ТС 27687:2008, статья 2.1]

2.2

нанообъект: Материальный объект, линейные размеры которого по одному, nano-object двум или трем измерениям находятся в нанодиапазоне (2.1).

Примечание — Данный термин распространяется на все дискретные объекты, линейные размеры которых находятся в нанодиапазоне.

[ИСО/ТС 80004-1:2010, статья 2.5]

2.3

наночастица: Нанообъект (2.2), линейные размеры которого по всем трем nanoparticle измерениям находятся в нанодиапазоне (2.1).

Примечание — Если по одному или двум измерениям размеры нанообъекта значительно больше, чем по третьему измерению (как правило, более чем в три раза), то вместо термина «наночастица» можно использовать термины «нановолокно» (2.6) или «нанопластина» (2.4).

[ИСО/ТС 27687:2008, статья 4.1]

2.4

нанопластина: Нанообъект (2.2), линейные размеры которого по одному измерению находятся в нанодиапазоне (2.1), а размеры по двум другим измерениям значительно больше.

nanoplate

Примечания

- 1 Наименьший линейный размер толщина нанопластины.
- 2 Размеры по двум другим измерениям значительно больше и отличаются от толщины более чем в три раза.
- 3 Наибольшие линейные размеры могут находиться вне нанодиапазона.

[ИСО/ТС 27687:2008, статья 4.2]

2.5

наностержень: Твердое нановолокно (2.6). [ИСО/ТС 27687:2008, статья 4.5]

nanorod

2.6

нановолокно: Нанообъект (2.2), линейные размеры которого по двум измерениям находятся в нанодиапазоне (2.1), а по третьему измерению значительно больше.

nanofibre

Примечания

- 1 Нановолокно может быть гибким или жестким.
- 2 Два сходных линейных размера по двум измерениям не должны отличаться друг от друга более чем в три раза, а размеры по третьему измерению должны превосходить размеры по первым двум измерениям более чем в три раза.
- 3 Наибольший линейный размер может находиться вне нанодиапазона.

[ИСО/ТС 27687:2008, статья 4.3]

2.7

нанотрубка: Полое нановолокно **(2.6)**. [ИСО/ТС 27687:2008, статья 4.4]

nanotube

2.8

квантовая точка: Нанообъект, линейные размеры которого по трем измерениям близки длине волны электрона в материале данного нанообъекта и внутри которого потенциальная энергия электрона ниже, чем за его пределами, при этом движение электрона ограничено во всех трех измерениях. [ИСО/ТС 27687:2008, статья 4.7]

quantum dot

2.9

частица: Мельчайшая часть вещества с определенными физическими границами.

Примечания

- 1 Физическая граница также может быть описана как межфазная область взаимодействия (интерфейс).
- 2 Частица может перемещаться как единое целое.
- 3 Настоящее общее определение частицы применимо к нанообъектам (2.2).

[ИСО 14644-6:2007, статья 2.102; ИСО/ТС 27687:2008, статья 3.1]

2.10

агломерат: Совокупность слабо связанных между собой частиц (2.9), или их агрегатов (2.11), или тех и других, площадь внешней поверхности которой равна сумме площадей внешних поверхностей ее отдельных компонентов.

agglomerate

Примечания

- 1 Силы, скрепляющие агломерат в одно целое, являются слабыми и обусловленными, например силами взаимодействия Ван-дер-Ваальса или простым физическим переплетением частиц друг с другом.
- 2 Агломераты также называют «вторичные частицы», а их исходные составляющие называют «первичные частицы».

[ИСО/ТС 27687:2008, статья 3.2]

2.11

агрегат: Совокупность сильно связанных между собой или сплавленных частиц (2.9), общая площадь внешней поверхности которой может быть значительно меньше вычисленной суммарной площади поверхности ее отдельных компонентов.

aggregate

Примечания

- 1 Силы, удерживающие частицы в составе агрегата, являются более прочными и обусловленными, например ковалентными связями, или образованными в результате спекания или сложного физического переплетения частиц друг с другом.
- 2 Агрегаты также называют «вторичные частицы», а их исходные составляющие «первичные частицы»,

[ИСО/ТС 27687:2008, статья 3.3]

2.12

аэрозоль: Дисперсная система, состоящая из твердых или жидких частиц aerosol (2.9), взвешенных в газе.

[ИСО 15900:2009, статья 2.1]

2.13

суспензия: Жидкая неоднородная система, в которой дисперсной фазой являются мелкие частицы твердого вещества.

[ИСО 4618:2006, статья 2.243]

3 Термины и определения понятий, относящихся к размерам нанообъектов и методам их определения

3.1 Термины и определения понятий, относящихся к размерам и форме нанообъектов

3.1.1

размер частицы: Линейный размер частицы (2.9), определенный соответствующими методом и средствами измерений в заданных условиях.

Примечание — Разные методы анализа основаны на измерении различных физических характеристик частиц. Независимо от характеристик частицы всегда можно определить ее линейные размеры, например эквивалентный диаметр сферической частицы.

[ИСО 26824:2013, статья 1.5]

3.1.2

распределение частиц по размерам: Распределение частиц (2.9) в зависимости от их размеров (3.1.1). particle size distribution

Примечание — Термин «распределение частиц по размерам» обозначает то же понятие, что и термины «функция распределения частиц по размерам» и «распределение концентрации частиц в зависимости от их размеров» (количественное распределение частиц по размерам получают число измеренных частиц определенного размерного класса к общему количеству измеренных частиц).

[ИСО 14644-1:1999, статья 2.2.4, определение термина изменено]

3.1.3

форма частицы: Внешнее геометрическое очертание частицы (2.9).	particle shape
[ИСО 3252:1999, статья 1401]	

3.1.4

аспектное соотношение: Отношение длины частицы (2.9) к ее ширине.	aspect ratio
[ИСО 14966:2002, статья 2.8]	

3.1.5

эквивалентный диаметр: Диаметр сферического объекта, оказывающий equivalent такое же воздействие на средство измерения для определения распределения частиц по размерам, что и измеряемая частица (2.9).

Примечания

- 1 Физические свойства, к которым относят эквивалентный диаметр, обозначают с помощью соответствующего индекса (ИСО 9276-1:1998 [2]).
- 2 Для дискретного счета частиц приборами, работающими на принципе рассеяния света, используют эквивалентный оптический диаметр.
- 3 Другие характеристики материала, такие как плотность, используют для расчета эквивалентного диаметра частицы, например в уравнении Стокса при определении зависимости между размером частицы и временем ее осаждения в жидкости. Значения характеристик материала, используемых для расчета, должны быть представлены дополнительно.
- 4 С помощью измерительных приборов инерционного типа определяют аэродинамический диаметр. Аэродинамический диаметр это диаметр сферы плотностью 1000 кг/м³, которая имеет такую же скорость осаждения, что и частица с неровной поверхностью.

[ИСО/ТС 27687:2008, статья А.З.З., определение термина изменено]

3.2 Термины и определения понятий, относящихся к методам рассеяния света

3.2.1

радиус инерции: Мера распределения массы объекта вокруг оси, проходящей через его центр, выраженная отношением квадратного корня из момента инерции относительно данной оси к массе объекта.

Примечание — Для определения характеристик нанообъектов (2.2), например размеров частиц (3.1.1), необходимо определить значение радиуса инерции с помощью методов статического рассеяния света, например малоуглового нейтронного рассеяния (3.2.2) или малоуглового ренттеновского рассеяния (3.2.4).

[ИСО 14695:2003, статья 3.4]

3.2.2 **малоугловое нейтронное рассеяние; МНР**: Метод исследования объекта, основанный на измерении интенсивности рассеянного пучка нейтронов на объекте при малых значениях углов рассеяния.

small angle neutron scattering; SANS

П р и м е ч а н и е — Рекомендуемый диапазон углов рассеяния составляет от 0,5° до 10° и соответствует возможности определения структуры материала, а также определения размеров рассеивающих неоднородностей в диапазоне от 1 до 100 нм. Метод позволяет получать информацию о размерах частиц (2.9) и форме диспергированных в однородной среде частиц.

3.2.3 **дифракция нейтронов:** Явление упругого рассеяния нейтронов, применяемое для исследования атомной или магнитной структуры вещества. diffraction

П р и м е ч а н и е — В методах измерений, основанных на дифракции нейтронов, регистрируют нейтроны с энергией, примерно совпадающей с энергией падающих нейтронов. С помощью сформированной в процессе исследования дифракционной картины получают информацию о структуре вещества.

3.2.4

малоугловое рентгеновское рассеяние; MPP: Метод исследования объекта, основанный на измерении интенсивности рассеянного рентгеновского излучения, проходящего через объект, при малых значениях углов рассеяния.

small angle X-ray scattering; SAXS

Примечание — Рекомендуемый диапазон углов рассеяния составляет от 0,1° до 10° и соответствует возможности определения структуры макромолекул, а также определения размеров рассеивающих неоднородностей в диапазоне от 5 до 200 нм.

[ИСО 18115-1, статья 3.18]

3.2.5

рассеяние света: Преобразование распределения светового потока на границе раздела двух сред, имеющих разные оптические свойства. [ИСО 13320:2009, статья 3.1.17]

light scattering

3.2.6 гидродинамический диаметр: Эквивалентный диаметр (3.1.5) частицы (2.9), имеющей то же значение коэффициента диффузии в жидкой среде, что и реальная частица в этой среде.

hydrodynamic diameter

3.2.7 динамическое рассеяние света; ДРС; фотонная корреляционная спектроскопия; ФКС; квазиупругое рассеяние света; КРС: Метод определения размеров частиц (3.1.1) в суспензии (2.13), основанный на анализе изменения интенсивности рассеянного света частицами (2.9), находящихся в броуновском движении, при зондировании исследуемого объекта лазерным лучом.

dynamic light scattering; DLS; photon correlation spectroscopy; PCS; quasi-elastic light scattering; QELS

Примечания

- 1 Проведя анализ временной зависимости интенсивности рассеянного света, можно определить коэффициент диффузии и, следовательно, размеры частиц, например гидродинамический диаметр (3.2.6), по формуле Стокса—Эйнштейна.
- 2 Данный метод применяют для определения размеров наночастиц (2.3) и частиц в диапазоне от 1 до 6000 нм. Верхний предел диапазона ограничен наличием броуновского движения и осаждением частиц.
- 3.2.8 анализ траекторий движения наночастиц; АТДН; анализ траекторий движения наночастиц; АТДН: Метод определения размеров частиц (3.1.1), основанный на исследовании траекторий перемещения облученных сфокусированным пучком лазера частиц (2.9), находящихся в броуновском движении в суспензии (2.13).

nanoparticle tracking analysis; NTA; particle tracking analysis; PTA

Примечания

- 1 Проведя анализ временной зависимости интенсивности рассеянного света движущихся частиц, можно определить коэффициент диффузии и, следовательно, размеры частиц, например гидродинамический диаметр (3.2.6), по формуле Стокса—Эйнштейна.
- 2 Данный метод применяют для определения размеров наночастиц (2.3) и частиц в диапазоне от 10 до 2000 нм. Нижний предел диапазона ограничен показателем преломления частиц, а верхний предел диапазона наличием броуновского движения и осаждением частиц.

3.3 Термины и определения понятий, относящихся к устройствам, применяемым для определения характеристик аэрозольных нанообъектов

3.3.1

счетчик конденсированных частиц; СКЧ: Устройство, измеряющее счетную концентрацию частиц (2.9) в аэрозоле (2.12).

condensation particle counter; CPC

Примечания

- 1 Диапазон размеров частиц, регистрируемых СКЧ, от нескольких нанометров до нескольких сотен нанометров.
- 2 СКЧ можно использовать совместно с классификатором дифференциальной электрической подвижности (КДЭП) (3.3.2).
- 3 В некоторых случаях СКЧ называют счетчиком ядер конденсации (СЯК).

[ИСО 15900:2009, статья 2.5]

3.3.2

классификатор дифференциальной электрической подвижности частиц; КДЭП: Устройство, распределяющее аэрозольные частицы (2.9) по размерам в соответствии с их электрической подвижностью и регистрирующее частицы только определенных размеров.

differential electrical mobility classifier; DEMC

П р и м е ч а н и е — Принцип распределения частиц по размерам в КДЭП основан на уравновешивании электрического заряда каждой частицы с силой ее аэродинамического сопротивления при прохождении через электрическое поле. Электрическая подвижность частиц зависит от их размеров, режимов работы и формы КДЭП. Размер частицы можно определить по числу зарядов на ней.

[ИСО 15900:2009, статья 2.7]

3.3.3

система анализа дифференциальной электрической подвижности частиц; САДЭП: Система, применяемая для измерения распределения субмикронных частиц (2.9) аэрозоля по размерам, состоящая из КДЭП, нейтрализатора, счетчика частиц, соединительных трубок, компьютера и программного обеспечения.

differential mobility analysing system; DMAS

[ИСО 15900:2009, статья 2.8]

3.3.4

электрометр с цилиндром Фарадея; ЭЦФ: Устройство для измерения электрических зарядов аэрозольных частиц (2.9).

Faraday-cup aerosol electrometer; FCAE

П р и м е ч а н и е — Цилиндр Фарадея состоит из приемника заряженных аэрозольных частиц, помещенного в экранирующий заземленный каркас и соединенного с электрометром и счетчиком частиц.

[ИСО 15900:2009, статья 2.12, определение термина изменено]

3.4 Термины и определения понятий, относящихся к методам разделения веществ

3.4.1 проточное фракционирование в силовом поле; ПФП: Метод разделения и анализа частиц (2.9), основанный на явлении распределения частиц суспензии (2.13), пропускаемой через узкий канал, в соответствии с их размерами и подвижностью под действием внешнего силового поля.

field flow fractionation; FFF

Примечания

- 1 Силовое поле может быть различной природы, например гравитационным, центробежным, электрическим, магнитным.
- 2 В процессе ПФП или после его завершения с помощью соответствующего устройства определяют размеры нанообъектов (2.2) и их распределение по размерам.
- 3.4.2 **центробежное осаждение частиц в жидкости**; ЦОЖ; дифференциальное центрифугирование; ДЦ: Метод разделения частиц жидкости в зависимости от их размеров и плотности под действием центробежных сил в сепарирующем роторе центрифуги.

centrifugal liquid sedimentation; CLS; differential centrifugal sedimentation; DCS Примечание — В зависимости от плотности частиц (2.9) с помощью ЦОЖ можно выделить частицы размером от 2 нм до 10 мкм для дальнейшего определения их размеров и распределения частиц по размерам (3.1.2). ЦОЖ обеспечивает одновременное выделение частиц, отличающихся друг от друга по размерам не более чем на 2 %.

3.4.3

гель-проникающая хроматография; ГПХ: Вид жидкостной хроматографии, в котором разделение веществ основано на элюировании молекул определенного гидродинамического объема в колонке хроматографа, заполненной пористым неадсорбирующим материалом, размеры пор которого соответствуют размерам этих молекул.

size-exclusion chromatography; SEC

[ИСО 16014-1:2012, статья 3.1]

Примечание — ГПХ можно применять совместно с методом для определения размеров и распределения по размерам объектов по динамическому рассеянию света (ДРС) (3.2.7).

3.4.4 метод электрочувствительной зоны; метод Коултера: Метод определения распределения частиц по размерам и размеров частиц (2.9), находящихся в растворе электролита, основанный на измерении импульса электрического напряжения, возникающего при прохождении частицы через отверстие малого диаметра в непроводящей перегородке (стенке ампулы).

electrical zone sensing; Coulter counter

Примечания

- 1 Амплитуда импульса напряжения пропорциональна объему частицы, прошедшей через отверстие.
- 2 Прохождение частицы через отверстие происходит под действием давления потока жидкости (электролита) или электрического поля.
- 3 Для определения размеров нанообъектов (2.2) необходимо, чтобы размер отверстия соответствовал размерам нанодиапазона (2.1).

3.5 Термины и определения понятий, относящихся к методам микроскопии

В данном подразделе в кратких формах терминов, представленных аббревиатурой, буква «М» означает «микроскопия» или «микроскоп» в зависимости от контекста.

3.5.1

сканирующая зондовая микроскопия; C3M: Метод исследования объекта с помощью микроскопа, формирующего изображение объекта путем механического перемещения зонда и регистрации взаимодействия между зондом и поверхностью объекта.

scanning probe microscopy; SPM

[ИСО 18115-2, статья 3.30]

Примечания

- 1 Термин «сканирующая зондовая микроскопия» является общим термином для таких понятий, как «атомносиловая микроскопия» (АСМ) (3.5.2), «сканирующая оптическая микроскопия ближнего поля» (СОМБП) (3.5.4), «сканирующая микроскопия ионной проводимости» (СМИП) и «сканирующая туннельная микроскопия» (СТМ) (3.5.3).
- 2 С помощью микроскопов, применяемых в различных методах СЗМ, можно получать изображения объектов с пространственным разрешением от атомарного, например в СТМ, до 1 мкм, например в сканирующей термо-микроскопии.

3.5.2

атомно-силовая микроскопия; АСМ (Нрк. *сканирующая силовая микроскопия*; *ССМ*): Метод исследования объекта с помощью микроскопа, формирующего изображение объекта в результате регистрации силы взаимодействия зондового датчика (кантилевера) с поверхностью объекта в процессе сканирования.

[ИСО 18115-2, статья 3.2]

atomic force microscopy; AFM; scanning force microscopy (deprecated); SFM (deprecated)

Примечания

- 1 С помощью АСМ можно исследовать объекты из проводниковых и диэлектрических материалов.
- 2 В процессе работы в некоторых атомно-силовых микроскопах (ACM) перемещают образец в направлении осей x, y, z, а кантилевер остается неподвижным, в других ACM перемещают кантилевер, оставляя неподвижным образец.
- 3 С помощью АСМ можно выполнять измерения в вакуумной, жидкой или контролируемой газовой средах, и исследовать объекты с атомарным разрешением в зависимости от образца, размера кантилевера и кривизны его острия, а также соответствующих настроек для получения изображений.
- 4 С помощью АСМ в процессе сканирования регистрируют силы, действующие на кантилевер, например продольные и поперечные силы, силы трения и сдвига. Методы АСМ имеют наименования в зависимости от регистрируемой силы, например поперечно-силовая микроскопия. Термин «атомно-силовая микроскопия» является общим термином для всех понятий методов силовой микроскопии.
- 5 АСМ регистрирует в конкретных точках силы, действующие на кантилевер со стороны поверхности объекта, и из массива пикселей генерирует изображение объекта.
- 6 Для исследования нанообъектов применяют АСМ с эффективным радиусом острия кантилевера менее 100 нм. В зависимости от материала исследуемого объекта суммарная сила между острием и объектом должна быть приблизительно 0,1 мкН, в противном случае может произойти необратимая деформация поверхности объекта и повреждение острия кантилевера.

3.5.3

сканирующая туннельная микроскопия; СТМ: СЗМ (3.5.1), применяемая для исследования рельефа поверхности объекта с помощью микроскопа, формирующего изображение путем регистрации данных о туннелировании носителей заряда сквозь промежуток между исследуемым токопроводящим объектом и сканирующим его поверхность токопроводящим зондом.

scanning tunnelling microscopy; STM

Примечания

- 1 С помощью СТМ можно выполнять измерения в вакуумной, жидкой или контролируемой газовой средах, исследовать объекты с атомарным разрешением в зависимости от образца и кривизны острия зонда и получать информацию о плотности состояний атомов поверхности объекта.
- 2 Изображения могут быть сформированы на основе данных о высоте рельефа поверхности объекта при постоянных значениях туннельного тока или о туннельном токе при постоянных значениях высоты рельефа поверхности объекта, а также на основе других данных в зависимости от режимов взаимодействия зонда и поверхности исследуемого объекта.
- 3 С помощью СТМ можно получить информацию о локальной туннельной проводимости (туннельной плотности состояний) исследуемого объекта. Следует учитывать, что при изменении положения зонда относительно поверхности объекта получают отличные друг от друга изображения рельефа одной и той же поверхности.

[ИСО 18115-2, статья 3.34]

3.5.4

сканирующая оптическая микроскопия ближнего поля; СОМБП; ближнепольная сканирующая оптическая микроскопия; БСОМ: Метод исследования объекта с помощью светового микроскопа, формирующего изображение объекта путем регистрации взаимодействия электромагнитного поля между объектом и оптическим зондом, сканирующим его поверхность, радиус острия которого меньше длины излучаемой световой волны. near-field scanning optical microscopy; NSOM; scanning near-field optical microscopy; SNOM

Примечания

- 1 Зонд микроскопа размещают вблизи поверхности исследуемого объекта и удерживают на постоянном расстоянии. Зонд совершает колебательное движение параллельно поверхности объекта, при этом регистрируют изменения амплитуды и фазы отраженных сигналов и получают информацию о рельефе поверхности объекта.
- 2 Размер оптического зонда микроскопа зависит от размера отверстия (апертуры) диафрагмы, расположенной на конце зонда. Отверстие диафрагмы имеет размеры в диапазоне от 10 до 100 нм, что и определяет разрешающую способность микроскопа. В зависимости от наличия или отсутствия диафрагмы на конце зонда СОМБП разделяют на апертурные и безапертурные. В безапертурном СОМБП зонд представляет собой заостренное оптическое волокно, покрытое слоем металла, с радиусом на конце от 10 до 100 нм.

3 С помощью СОМБП получают не только растровое изображение объекта, но и информацию о характеристиках рельефа его поверхности, аналогичные тому, которые можно получить с помощью АСМ (3.5.2) и других методов зондовой микроскопии.

[ИСО 18115-2, статья 3.17]

3.5.5

растровая электронная микроскопия; РЭМ (Нрк. сканирующая электронная микроскопия; СЭМ): Метод исследования структуры, состава и формы объекта с помощью микроскопа, формирующего изображение объекта путем сканирования его поверхности электронным зондом (электронным пучком) и регистрации характеристик вторичных процессов, индуцируемых электронным зондом (например, вторичная электронная эмиссия, обратное рассеяние электронов и рентгеновское излучение).

scanning electron microscopy; SEM

[ИСО 17751, статья 4.10, определение термина изменено]

356

просвечивающая электронная микроскопия; ПЭМ: Метод исследования объекта с помощью микроскопа, формирующего изображение объекта или его дифракционной картины электронным пучком (электронным зондом), проходящим сквозь этот объект и взаимодействующим с ним. [ИСО 29301:2010, статья 3.37, определение термина изменено]

transmission electron microscopy; TEM

3.5.7

просвечивающая растровая электронная микроскопия; ПРЭМ: Метод исследования объекта с помощью микроскопа, формирующего изображение объекта или его дифракционной картины сфокусированным электронным пучком (электронным зондом), проходящим сквозь этот объект и взаимодействующим с ним.

scanning transmission electron microscopy; STEM

Примечания

- 1 Диаметр сфокусированного электронного пучка (электронного зонда) должен быть менее 1 нм.
- 2 С помощью ПРЭМ получают изображение поверхности и внутренней микроструктуры тонких образцов [или мелких частиц (2.9)] объекта с высоким разрешением, а также исследуют особенности химических и структурных характеристик участков микронных или субмикронных размеров объекта путем регистрации, например спектров рентгеновского излучения, и формирования дифракционной картины.

[ИСО/ТС 10797, статья 3.10, определение термина изменено]

3.5.8 микроскопия медленных электронов; ММЭ: Метод исследования объекта с помощью микроскопа, формирующего изображение объекта или его дифракционной картины упруго отраженными электронами низких энергий, генерируемыми электронным пучком без сканирования поверхности объекта.

low energy electron microscopy; LEEM

Примечания

- 1 ММЭ обычно применяют для получения информации об объектах, имеющих ровные чистые поверхности.
- 2 В ММЭ первичные электроны энергией от 1 до 100 эВ попадают на исследуемый объект, а отраженные электроны формируют увеличенное изображение поверхности этого объекта.
- 3.5.9 растровая ионная микроскопия: Метод исследования объекта с помощью микроскопа, формирующего изображение путем сканирования поверхности объекта сфокусированным ионным пучком диаметром от 0,1 до 1 нм.

scanning ion microscopy

Примечание — В качестве источника ионов используют гелий, неон и аргон.

3.5.10

конфокальная световая микроскопия: Метод исследования объекта с помощью светового микроскопа, имеющего диафрагму с малым отверстием, расположенную перед фокальной плоскостью и позволяющую регистрировать только те световые лучи, которые исходят из анализируемой точки объекта, блокируя свет от остальных точек.

confocal optical microscopy

Примечания

- 1 Полное изображение исследуемого объекта в конфокальном световом микроскопе получают путем последовательного сканирования точек объекта. Формирование изображения происходит либо благодаря свойству инерционности зрения при быстром сканировании, либо посредством использования фотоприемников и электронных запоминающих устройств.
- 2 Метод конфокальный световой микроскопии позволяет получать изображение объекта с улучшенными контрастом и пространственным разрешением за счет блокирования внефокусных лучей.

[ИСО 10934-2:2007, статья 2.11, определение термина изменено]

3.5.11 эллипсометрическая микроскопия с усилением контраста изображения; ЭМУК: Метод исследования объекта с помощью светового микроскопа с широкоугольной оптической системой, формирующего изображение путем усиления контраста изображения объекта скрещенными поляризаторами, позволяющими фиксировать отраженный от объекта свет и блокировать отраженный свет от подложки или предметного стекла.

surface enhanced ellipsometric contrast microscopy; SEEC microscopy

П р и м е ч а н и е — В микроскопе применяют специальные антиотражающие подложки, усиливающие контраст изображения и улучшающие разрешающую способность микроскопа в 100 раз.

3.5.12

флуоресценция: Явление поглощения излучения объектом с последующим выделением поглощенной энергии в виде излучения с большей длиной волны.
[ИСО 18115-2:2010, статья 5.52]

3.5.13 флуоресцентная микроскопия: Метод исследования объекта с помощью светового микроскопа, формирующего изображение объекта путем регистрации испускаемой им флуоресценции (3.5.12).

fluorescence microscopy

Примечания

- 1 В данном методе применяют микроскоп, в котором для возбуждения флуоресценции объекта предусмотрен источник света, а длина волны, испускаемой объектом флуоресценции, всегда больше длины волны света возбуждения. Для разделения света возбуждения и испускаемой объектом флуоресценции в микроскопе предусмотрены специальные фильтры.
- 2 К методам флуоресцентной микроскопии относят эпифлуоресцентную микроскопию, конфокальную микроскопию, флуоресцентную микроскопию полного внутреннего отражения (ФМПВО) (3.5.14) и микроскопию сверхвысокого разрешения (3.5.15).
- 3 В данном методе для исследования объектов применяют флуоресцирующие красители. Для объектов, демонстрирующих при облучении автофлуоресценцию, красители не требуются.

3.5.14

флуоресцентная микроскопия полного внутреннего отражения; ФМПВО:
Метод исследования объекта с помощью светового микроскопа, формирующего изображение объекта путем регистрации испускаемой им флуоресценции (3.5.12), возбуждаемой затухающей волной в тонком пограничном слое раздела двух сред с разными показателями преломления.

[ИСО 10934-2:2007, статья 2.51, определение термина изменено] total internal reflection fluorescence microscopy;

ТПКР

3.5.15 **микроскопия сверхвысокого разрешения**: Метод исследования объекта с помощью микроскопа, формирующего его изображение с пространственным разрешением выше дифракционного предела.

super-resolution microscopy

Примечания

- 1 Наиболее распространены следующие виды микроскопии сверхвысокого разрешения: микроскопия локализованных флуоресцентных молекул (3.5.16), микроскопия снижения стимулированной эмиссии (МССЭ) и микроскопия структурированного облучения (МСО).
- 2 Большинство видов микроскопии сверхвысокого разрешения основаны на явлении флуоресценции (3.5.12).
- 3.5.16 микроскопия локализованных флуоресцентных молекул: Вид микроскопии сверхвысокого разрешения (3.5.15), с помощью которой реконструируют изображение объекта по зарегистрированной с высокой точностью и сохраненной информации о распределении в нем флуоресцентных молекул (флуорофоров).

localization microscopy

Примечания

- 1 В настоящее время существуют различные виды микроскопии локализованных молекул, которые отличаются типами применяемых флуорофоров, флуоресцирующих в зависимости от вида действующего возбуждения. К микроскопии локализованных молекул относят, например, микроскопию локализованной фотоактивации (МЛФ) (в качестве флуорофоров применяют флуоресцентные белки) и микроскопию стохастической оптической реконструкции (МСОР), которые основаны на контролируемом «включении» и «выключении» флуорофоров и их последовательной регистрации.
- 2 Для получения картины распределения флуорофоров в объекте (изображение объекта) необходимо наличие достаточного числа последовательных кадров, позволяющих определить точные координаты всех флуорофоров. При этом должны быть созданы такие условия, чтобы флуорофоры флуоресцировали не одновременно, а по очереди, и изображения флуорофоров в различных кадрах не были перекрыты.

3.6 Термины и определения понятий, относящихся к площади поверхности нанообъектов и методам ее определения

3.6.1

удельная площадь поверхности, вычисляемая по массе: Отношение общей (внутренней и внешней) площади поверхности вещества к его массе.

Примечание — Единица измерения удельной площади поверхности, вычисляемой по массе, — м²/кг.

[ИСО 9277:2010, статья 3.11, наименование и определение термина изменено]

3.6.2

удельная площадь поверхности, вычисляемая по объему: Отношение volume specific общей (внутренней и внешней) площади поверхности вещества к его объему.

Примечание — Единица измерения удельной площади поверхности, вычисляемой по объему, — м²/м³. [ИСО 9277:2010, статья 3.11, наименование и определение термина изменено]

3.6.3 метод Брунауэра, Эммета и Теллера; метод БЭТ: Метод определения общей (внутренней и внешней) удельной площади поверхности дисперсных порошков и/или пористых твердых тел путем экспериментального получения данных о количестве адсорбированного газа и вычисления по формуле, выведенной С. Брунауэром, П. Эмметом и Э. Теллером.

Brunauer— Emmett—Teller Method; BET method

Примечания

1 Определение термина соответствует определению, изложенному в статье С. Брунауэра, П. Эммета и Э. Теллера «Адсорбция газов в полимолекулярных слоях», опубликованной в журнале Американского химического общества, том 60, 1938, с. 309.

2 Метод БЭТ применяют для анализа веществ по изотерме адсорбции типов II (адсорбция на непористых или макропористых адсорбентах) и IV (адсорбция на мезопористых твердых адсорбентах, имеющих поры диаметром от 2 до 50 нм). Закрытые поры, недоступные для проникновения молекул газа, при анализе не учитывают. Метод БЭТ не применяют для твердых адсорбентов, поглощающих газ, используемый при измерениях.

4 Термины и определения понятий, относящихся к методам химического анализа

В данном подразделе в кратких формах терминов, представленных аббревиатурой, буква «С» означает «спектроскопия» или «спектрометр» в зависимости от контекста.

4.1 **оптическая спектроскопия**: Метод исследования объекта, основанный на изучении спектров электромагнитного излучения в видимом, ультрафиолетовом или инфракрасном диапазонах длин волн.

optical spectroscopy

4.2

люминесценция: Излучение атомов, молекул или ионов вещества, находящихся в неравновесном (возбужденном) состоянии за счет энергии внешнего воздействия или энергии внутреннего происхождения, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний.

luminescence

[МЭК 60050-845:1987, статья 04-18]

4.3

фотолюминесценция: Люминесценция (4.2), возникающая при поглощении photoluminescence веществом возбуждающего оптического излучения.
[МЭК 60050-845:1987, статья 04-19]

4.4 фотолюминесцентная спектроскопия; *ФЛ-спектроскопия*: Метод исследования объекта, основанный на изучении спектров электромагнитного излучения, возникающего в результате поглощения и испускания фотонов исследуемым объектом.

photoluminescence spectroscopy; PL spectroscopy

4.5 флуоресцентная спектроскопия: Метод исследования объекта, основанный на изучении спектров электромагнитного излучения, возникающего в результате явления фотолюминесценции, вызванного в изучаемом объекте посредством возбуждения его светом.

fluorescence spectroscopy

4.6 спектроскопия в ультрафиолетовой и видимой областях спектра: Метод исследования объекта, основанный на изучении спектров электромагнитного излучения в видимом и ультрафиолетовом диапазонах длин волн.

UV—Vis spectroscopy

4.7 флуоресцентная корреляционная спектроскопия; ФКС: Метод исследования объекта, основанный на корреляционном анализе флуктуаций интенсивности флуоресценции (3.5.12).

fluorescence correlation spectroscopy; FCS

Примечание — С помощью ФКС определяют среднее число люминесцирующих частиц (2.9), среднее время их диффузии в исследуемом объеме вещества, концентрацию и размер частиц (молекул).

4.8

инфракрасная спектроскопия с преобразованием Фурье; Фурье-ИКС: Метод исследования, основанный на регистрации спектра поглощения при облучении исследуемого объекта инфракрасным излучением с получением интерферограммы, обрабатываемой математическим методом, называемым преобразованием Фурье.

Fourier transform infrared spectroscopy; FTIR

[ИСО 13943:2008, статья 4.158, определение термина изменено]

4.9

комбинационное рассеяние света: Явление неупругого рассеяния оптического излучения на молекулах вещества, облученного моноэнергетическим ионизирующим излучением, сопровождающееся переходом рассеивающих молекул на другие колебательные и вращательные уровни энергии. [ИСО 18115-2. статья 5.128]

Raman effect

4.10

спектроскопия комбинационного рассеяния света: Метод исследования энергетических уровней молекул вещества, основанный на явлении комбинационного рассеяния света (4.9). [ИСО 18115-2, статья 5.129]

Raman spectroscopy

4.11 спектроскопия поверхностно-усиленного комбинационного рассеяния света; СПУКР: Метод исследования объекта, основанный на эффекте усиления явления комбинационного рассеяния света (4.9), проявляющемся благодаря молекулам или нанообъектам (2.2), адсорбированным на металлической поверхности (подложке), имеющей неровности размером в нанодиапазоне (2.1), и облученным соответствующим светом.

surface enhanced Raman spectroscopy; SERS

Примечания

- 1 Для получения эффекта усиления явления комбинационного рассеяния света нанообъекты должны быть адсорбированы на подложке из золота, серебра, меди или алюминия.
- 2 Для получения эффекта усиления явления комбинационного рассеяния света размеры неровностей поверхности должны быть более 10 нм.

4.12

спектроскопия локально усиленного комбинационного рассеяния света; СЛУКР: Метод исследования объекта, основанный на облучении его поляризованным светом и анализе единичного активного участка поверхностно-усиленного комбинационного рассеяния света (4.9) с помощью металлического зонда, расположенного в непосредственной близости от поверхности исследуемого объекта.
[ИСО 18115-2, статья 3.42]

tip enhanced Raman spectroscopy; TERS

4.13

электронный спектрометр: Устройство, предназначенное для определения числа электронов или регистрации их энергетических спектров в виде зависимости интенсивности электронного потока от кинетической энергии регистрируемых электронов.

electron spectrometer

Примечание — Термин «электронный спектрометр» может быть использован взамен термина «анализатор энергии электронов» или применен для понятия, обозначающего устройство, состоящее из нескольких узлов, включая анализатор энергии электронов и дополнительные функциональные электронно-оптические части. Термин «электронный спектрометр» также может быть применен для понятия, обозначающего измерительную систему (спектрометрическую установку), включающую анализатор энергии электронов, функциональные электронно-оптические части, источник возбуждения спектров излучения, электронный детектор, вакуумный насос, персональный компьютер с управляющей программой, обеспечивающей управление оборудованием, обработку и выдачу результатов измерений.

[ИСО 18115-1, статьи 4.187, 4.190, определение термина изменено]

4.14

спектроскопия характеристических потерь энергии электронами; СХПЭЭ: Метод исследования объекта с помощью электронного спектрометра (4.13), основанный на регистрации энергетических спектров неупруго рассеянных электронов, испускаемых моноэнергетическим источником и потерявших фиксированные порции энергии в процессе взаимодействия с объектом.

electron energy loss spectroscopy; EELS Примечания

- 1 Значения энергетических спектров электронов, полученные с помощью СХПЭЭ, будут близки к значениям, полученным с помощью электронной Оже-спектроскопии (ЭОС) (4.16) или рентгеновской фотоэлектронной спектроскопии (РФЭС) (4.18), а пики характеристических потерь энергии электронов расположены вблизи пика упруго отраженных электронов.
- 2 Значения энергетических спектров неупруго рассеянных электронов зависят от энергии электронного пучка, угла его падения на поверхность исследуемого объекта, угла рассеяния электронов и свойств исследуемого объекта.

[ИСО 18115-1, статья 4.197, наименование и определение термина изменены]

4.15

Оже-электрон: Электрон, покидающий атом под действием ионизирующего излучения и высвобождающий место (вакансию) на одной из его внутренних оболочек.

Auger electron

Примечание — Энергия Оже-электрона характерна для конкретного элемента. Анализ энергии Оже-электронов позволяет определить элементный состав исследуемых объектов.

[ИСО 18115-1, статья 4.37, определение термина изменено]

4.16

электронная Оже-спектроскопия; ЭОС: Метод исследования объекта с помощью электронного спектрометра (4.13), основанный на регистрации энергетических спектров Оже-электронов (4.15), испускаемых с поверхности объекта.

Auger electron spectroscopy; AES

Примечание — В ЭОС в качестве ионизирующего излучения используют электронные пучки с энергией от 2 до 30 каВ. В ЭОС объект также облучают ионами или применяют рентгеновское излучение. В случае применения в ЭОС рентгеновского излучения энергию Оже-электронов отсчитывают относительно уровня Ферми, а при применении электронного пучка — уровня Ферми или уровня вакуума. В ЭОС регистрируют энергетические спектры Оже-электронов и осуществляют дифференцирование электрическими методами непосредственно в процессе записи спектров.

[ИСО 18115-1, статья 3.1]

4.17

ультрафиолетовая фотоэлектронная спектроскопия; УФЭС: Метод исследования объекта с помощью электронного спектрометра (4.13), основанный на регистрации энергетических спектров фотоэлектронов, испускаемых с поверхности объекта, облученного ультрафиолетовым излучением.

ultraviolet photoelectron spectroscopy; UPS

Примечание — В лабораторных электронных спектрометрах для УФЭС в качестве источника ультрафиолетового излучения используют газоразрядные лампы, чаще всего гелиевые. В этих источниках, в зависимости от давления газа и тока разряда, генерируется одна из двух интенсивных линий с энергией фотонов 21,2 эВ (He I) и 40,8 эВ (He II). Также в УФЭС применяют источники синхротронного излучения.

[ИСО 18115-1, статья 3.22]

4.18

рентгеновская фотоэлектронная спектроскопия; РФЭС: Метод исследования объекта с помощью электронного спектрометра (4.13), основанный на регистрации энергетических спектров фотоэлектронов и Оже-электронов (4.15), испускаемых с поверхности объекта, облученного рентгеновским излучением.

X-ray photoelectron spectroscopy; XPS

Примечание — В лабораторных электронных спектрометрах для РФЭС рентгеновское излучение создается бомбардировкой мишени высокоэнергетическими электронами. Обычные материалы мишени — это магний (Mg) и алюминий (Al), обеспечивающие излучение фотонов с энергией 1253,6 и 1486,6 эВ соответственно. В настоящее время существуют электронные спектрометры, в которых используют мишени из других материалов. Также в РФЭС применяют источники синхротронного излучения.

[ИСО 18115-1, статья 3.23]

4.19 **рентгеновская спектроскопия поглощения**; РСП: Метод исследования объекта, основанный на определении зависимости коэффициента поглощения объектом рентгеновского излучения от энергии падающего на него излучения.

X-ray absorption spectroscopy; XAS

Примечания

- 1 РСП применяют для получения информации о локальной атомной и/или электронной структуре исследуемого объекта
- 2 РСП подразделяют на следующие виды: спектроскопию тонкой структуры рентгеновского спектра поглощения (СТСРСП), спектроскопию околопороговой структуры рентгеновского спектра поглощения (СОСРСП) и спектроскопию протяженной тонкой структуры рентгеновского спектра поглощения (СПТСРСП).

4.20

рентгеновская флуоресценция; РФ: Вторичное излучение, возникающее в результате облучения исследуемого объекта пучком высокоэнергетического рентгеновского излучения.

X-ray fluorescence; XRF

Примечание — Длина волны РФ является индивидуальной характеристикой конкретного элемента.

[ИСО 3497:2000, статья 2.1]

4.21

энергодисперсионная рентгеновская спектроскопия; ЭДРС: Метод исследования объекта, основанный на регистрации энергетических спектров отдельных фотонов и их числа и построении цифровой гистограммы, описывающей распределение интенсивности рентгеновского излучения по энергии фотонов.

energydispersive X-ray spectroscopy; EDS: EDX

[ИСО 22309:2011, статья 3.11, определение термина изменено]

4.22

масс-спектрометрия с индуктивно связанной плазмой; ИСП-МС: Метод исследования объекта с помощью масс-спектрометра, основанный на регистрации отдельных ионов и их потоков, испускаемых объектом, пропущенным в виде аэрозоля через индуктивно связанную аргоновую плазму, образованную специальной горелкой и проходящую внутри высокочастотной катушки индуктивности.

inductively coupled plasma mass spectrometry; ICP-MS

[ИСО 15202-3:2004, статья 3.3.7, определение термина изменено]

4.23

масс-спектрометрия вторичных ионов; МСВИ: Метод исследования объекта с помощью масс-спектрометра, основанный на регистрации совокупности распределенных в пространстве и/или во времени вторичных ионов объекта, разделенных по значениям отношения массы иона к его заряду, и возникающих при бомбардировке поверхности объекта потоком первичных ионов.

secondary-ion mass spectrometry; SIMS

П р и м е ч а н и е — МСВИ подразделяют на динамическую, применяемую для определения элементного состава нескольких слоев исследуемого объекта как функции глубины, и статическую, применяемую для элементного анализа поверхностного монослоя исследуемого объекта (с целью предотвращения повреждения поверхности исследуемого объекта плотность потока первичных ионов должна быть не более 10¹⁶ ионов/м²).

[ИСО 18115-1, статья 3.17]

4.24 **атомно-зондовая томография**: Метод исследования объекта с помощью масс-спектрометра, основанный на регистрации отдельных атомов или молекул, вылетающих из импульсно распыляемого нановолокна (2.6) (исследуемого объекта).

atom-probe tomography

П р и м е ч а н и е — При исследовании объекта методом атомно-зондовой томографии применяют позиционночувствительный детектор, позволяющий определить координаты ударения ионов, с помощью которых рассчитывают изначальное положение атомов на поверхности нановолокна.

4.25

анализ выделяемых веществом газов; АВВГ: Метод исследования объекта, основанный на регистрации измерения состава и/или количества выделяемого газа при нагревании объекта в зависимости от заданной температуры.

evolved-gas analysis; EGA

[ИСО 472:2013, статья 2.345, определение термина изменено]

4.26 спектроскопия ядерного магнитного резонанса; ЯМР-спектроскопия: Метод исследования физических и химических свойств атомов и молекул объекта, основанный на явлении ядерного магнитного резонанса.

nuclear magnetic resonance spectroscopy; NMR spectroscopy

4.27 электронный парамагнитный резонанс; ЭПР: Резонансное поглощение электромагнитной энергии в радиочастотном диапазоне парамагнитными частицами, помещенными в постоянное магнитное поле, лежащее в основе метода исследования систем с ненулевым электронным спиновым магнитным моментом (нечетным числом электронов).

electron paramagnetic resonance; EPR

Примечание — Метод, основанный на явлении ЭПР, аналогичен методу ЯМР-спектроскопии. Но в отличие от ЯМР-спектроскопии в данном методе измеряют спиновые магнитные моменты электронов парамагнитных частиц.

4.28

гамма-резонансная спектроскопия; мёссбауэровская спектроскопия: Метод исследования объекта, основанный на эффекте резонансного поглощения без отдачи атомным ядром моноэнергетического гамма-излучения, испускаемого радиоактивным источником.

Mössbauer spectroscopy

[ИСО 921:1997, статья 764]

4.29 **интерферометрия двойной поляризации**; ИДП: Метод исследования на молекулярном уровне слоев вещества, адсорбированного на поверхности световода интерферометра, основанный на регистрации степени затухания волн лазерного луча при смене направлений поляризации.

dual polarization interferometry; DPI

Примечания

- 1 Быстрое переключение направлений поляризации позволяет в режиме реального времени исследовать химические реакции, происходящие в определенном слое вещества, адсорбированного на поверхности световода. 2 ИДП применяют для исследования конформационных изменений белков или биомолекул в процессе их взаимодействия с окружающей средой.
 - **5** Термины и определения понятий, относящихся к методам определения других характеристик нанообъектов
 - 5.1 Термины и определения понятий, относящихся к методам измерений массы
- 5.1.1 **метод пьезоэлектрического микровзвешивания**; МПМ: Метод измерения массы вещества с помощью кварцевых микровесов, основанный на зависимости частоты колебаний кварцевого резонатора (датчика микровесов) от количества вещества, нанесенного на его поверхность.

quartz crystal microbalance; QCM

Примечание — С помощью кварцевых микровесов измерения можно проводить в условиях вакуума, в газовой или жидкой средах.

5.1.2

термогравиметрия; ТГ: Метод измерения массы вещества, основанный на thermogravimetry; регистрации изменения его массы в зависимости от температуры или времени при нагревании в заданной среде с регулируемой скоростью.

[ИСО 472:2013, статья 2.1173, определение термина изменено]

5.1.3

дифференциально-сканирующая калориметрия; ДСК: Метод определения характеристик вещества, основанный на регистрации энергии, необходимой для выравнивания температур исследуемого вещества и вещества, используемого в качестве эталона, в зависимости от температуры или времени.

differential scanning calorimetry; DSC

[ИСО 472:2013, статья 2.278, определение термина изменено]

5.2 Термины и определения понятий, относящихся к методам определения характеристик кристаллических нанообъектов

5.2.1 дифракция рентгеновского излучения: Явление рассеяния рентгеновского излучения в результате взаимодействия с электронами вещества, лежащее в основе метода рентгеноструктурного анализа, в котором из сформированной дифракционной картины получают информацию о структуре исследуемого объекта.

X-ray diffraction

Примечание — С помощью метода рентгеноструктурного анализа можно определить размеры области когерентного рассеяния объекта.

5.2.2

дифракция отраженных электронов; ДОЭ: Явление обратного рассеяния электронов, возникающее вследствие взаимодействия электронов с атомными плоскостями кристаллической решетки объекта, при облучении объекта электронным пучком.
[ИСО 24173:2009, статья 3.7]

electron backscatter diffraction; EBSD

5.3 Термины и определения понятий, относящихся к методам определения характеристик нанообъектов в суспензиях

5.3.1

электрофоретическая скорость: Скорость частиц (2.9) во время электрофореза.

electrophoretic velocity

Примечание — Единица измерения электрофоретической скорости — м/с.

ГИСО 13099-1:2012, статья 2.2.61

5.3.2

электрофоретическая подвижность: Отношение электрофоретической скорости к напряженности электрического поля.

electrophoretic mobility

Примечания

- 1 Положительно заряженные частицы (2.9) перемещаются к отрицательному электроду (катоду), а отрицательно заряженные частицы к положительному электроду (аноду).
- 2 Единица измерения электрофоретической подвижности м²/(B·c).

ГИСО 13099-1:2012. статья 2.2.51

5.3.3

плоскость скольжения; плоскость сдвига: Абстрактная плоскость, представляющая собой границу раздела твердой и жидкой фаз, относительно которой происходит движение жидкой фазы под внешним воздействием.
[ИСО 13099-1:2012, статья 2.1.11]

slipping plane; shear plane

5.3.4

электрокинетический потенциал; дзета-потенциал: Разность между электрическими потенциалами жидкой фазы и плоскости скольжения.

electrokinetic potential; zeta potential

П р и м е ч а н и е $\ --$ Единица измерения электрокинетического потенциала $\ --$ В.

[ИСО 13099-1:2012, статья 2.1.8]

5.3.5

поверхностная плотность электрического заряда: Величина, характеризующая распределение электрического заряда по поверхности объекта вследствие удельной адсорбции ионов из жидкой массы или диссоциации поверхностных групп ионов.

electric surface charge density

П р и м е ч а н и е — Единица измерения поверхностной плотности электрического заряда — Кл/м^2 .

[ИСО 13099-1:2012, статья 2.1.6]

Алфавитный указатель терминов на русском языке

АВВГ	4.25
агломерат	2.10
агрегат	2.11
анализ выделяемых веществом газов	4.25
анализ траекторий движения наночастиц	3.2.8
анализ траекторий движения частиц	3.2.8
ACM	3.5.2
АТДН	3.2.8
АТДЧ	3.2.8
аэрозоль	2.12
<i>BCOM</i>	3.5.4
ГПХ	3.4.3
дзета-потенциал	5.3.4
диаметр гидродинамический	3.2.6
диаметр эквивалентный	3.1.5
дифракция нейтронов	3.2.3
дифракция отраженных электронов	5.2.2
дифракция рентгеновского излучения	5.2.1
доэ	5.2.2
дрс	3.2.7
дск	5.1.3
ДЦ	3.4.2
идп	4.29
интерферометрия двойной поляризации	4.29
ИСП-МС	4.22
калориметрия дифференциально-сканирующая	5.1.3
кдэп	3.3.2
классификатор дифференциальной электрической подвижности частиц	3.3.2
KPC	3.2.7
люминесценция	4.2
масс-спектрометрия вторичных ионов	4.23
масс-спектрометрия с индуктивно связанной плазмой	4.22
метод Брунауэра, Эммета и Теллера	3.6.3
метод БЭТ	3.6.3
метод Коултера	3.4.4
метод пьезоэлектрического микровзвешивания	5.1.1
метод электрочувствительной зоны	3.4.4
микроскопия атомно-силовая	3.5.2
микроскопия ближнего поля сканирующая оптическая	3.5.4
микроскопия ближнепольная сканирующая оптическая	3.5.4
микроскопия конфокальная световая	3.5.10
микроскопия локализованных флуоресцентных молекул	3.5.16
микроскопия медленных электронов	3.5.8

микроскопия полного внутреннего отражения флуоресцентная	3.5.14
микроскопия растровая ионная	3.5.9
микроскопия сверхвысокого разрешения	3.5.15
микроскопия сканирующая зондовая	3.5.1
микроскопия сканирующая силовая	3.5.2
микроскопия сканирующая туннельная	3.5.3
микроскопия флуоресцентная	3.5.13
микроскопия электронная просвечивающая	3.5.6
микроскопия электронная растровая	3.5.5
микроскопия электронная сканирующая	3.5.5
микроскопия электронная растровая просвечивающая	3.5.7
микроскопия эллипсометрическая с усилением контраста изображения	3.5.11
ММЭ	3.5.8
MHP	3.2.2
МПМ	5.1.1
MPP	3.2.4
МСВИ	4.23
нановолокно	2.6
нанодиапазон	2.1
нанообъект	2.2
нанопластина	2.4
наностержень	2.5
нанотрубка	2.7
наночастица	2.3
Оже-спектроскопия электронная	4.16
Оже-электрон	4.15
осаждение частиц в жидкости центробежное	3.4.2
плоскость сдвига	5.3.3
плоскость скольжения	5.3.3
плотность электрического заряда поверхностная	5.3.5
площадь поверхности удельная, вычисляемая по массе	3.6.1
площадь поверхности удельная, вычисляемая по объему	3.6.2
подвижность электрофоретическая	5.3.2
потенциал электрокинетический	5.3.4
ПРЭМ	3.5.7
ПФП	3.4.1
ПЭМ	3.5.6
радиус инерции	3.2.1
размер частицы	3.1.1
распределение частиц по размерам	3.1.2
рассеяние нейтронное малоугловое	3.2.2
рассеяние рентгеновское малоугловое	3.2.4
рассеяние света	3.2.5
рассеяние света динамическое	3.2.7

рассеяние света квазиупругое	3.2.7
рассеяние света комбинационное	4.9
резонанс электронный парамагнитный	4.27
РСП	4.19
РФ	4.20
РФЭС	4.18
РЭМ	3.5.5
САДЭП	3.3.3
C3M	3.5.1
система анализа дифференциальной электрической подвижности частиц	3.3.3
скорость электрофоретическая	5.3.1
СКЧ	3.3.1
СЛУКР	4.12
СОМБП	3.5.4
соотношение аспектное	3.1.4
спектрометр электронный	4.13
спектроскопия в ультрафиолетовой и видимой областях спектра	4.6
спектроскопия гамма-резонансная	4.28
спектроскопия инфракрасная с преобразованием Фурье	4.8
спектроскопия комбинационного рассеяния света	4.10
спектроскопия корреляционная фотонная	3.2.7
спектроскопия локально усиленного комбинационного рассеяния света	4.12
спек троскопия м ессбауэ ровская	4.28
спектроскопия оптическая	4.1
спектроскопия поверхностно-усиленного комбинационного рассеяния света	4.11
спектроскопия поглощения рентгеновская	4.19
спектроскопия флуоресцентная	4.5
спектроскопия флуоресцентная корреляционная	4.7
спектроскопия фотолюминесцентная	4.4
спектроскопия фотоэлектронн <mark>ая ре</mark> нтгеновская	4.18
спект <mark>роскоп</mark> ия фотоэлектронная ультрафиолетовая	4.17
спектроскопия характеристических потерь энергии электронами	4.14
спектроскопия энергодисперсионная рентгеновская	4.21
спектроскопия ядерного магнитного резонанса	4.26
СПУКР	4.11
CCM	3.5.2
CT M	3.5.3
суспензия	2.13
схпээ	4.14
счетчик конденсированных частиц	3.3.1
СЭМ	3.5.5
тг	5.1.2
термогравиметрия	5.1.2
томография атомно-зондовая	4.24

точка квантовая	2.8
УФЭС	4.17
ФКС	3.2.7
ФКС	4.7
ФЛ-спектроскопия	4.4
флуоресценция	3.5.12
флуоресценция рентгеновская	4.20
ФМПВО	3.5.14
форма частицы	3.1.3
фотолюминесценция	4.3
фракционирование проточное в силовом поле	3.4.1
Фурье-ИКС	4.8
хроматография гель-проникающая	3.4.3
центрифугирование дифференциальное	3.4.2
жор	3.4.2
частица	2.9
ЭДРС	4.21
электрометр с цилиндром Фарадея	3.3.4
ЭМУК	3.5.11
900	4.16
ЭПР	4.27
ЭЦФ	3.3.4
ЯМР-спектроскопия	4.26

Алфавитный указатель эквивалентов терминов на английском языке

aerosol	2.12
AES	4.16
AFM	3.5.2
agglomerate	2.10
aggregate	2.11
aspect ratio	3.1.4
atomic force microscopy	3.5.2
atom-probe tomography	4.24
Auger electron	4.15
Auger electron spectroscopy	4.16
BET method	3.6.3
Brunauer—Emmett—Teller Method	3.6.3
centrifugal liquid sedimentation	3.4.2
CLS	3.4.2
condensation particle counter	3.3.1
confocal optical microscopy	3.5.10
Coulter counter	3.4.4
CPC	3.3.1
DCS	3.4.2
DEMC	3.3.2
differential centrifugal sedimentation	3.4.2
differential electrical mobility classifier	3.3.2
differential mobility analysing system	3.3.3
differential scanning calorimetry	5.1.3
DLS	3.2.7
DMAS	3.3.3
DPI	4.29
DSC	5.1.3
dual polarization interferometry	4.29
dynamic light scattering	3.2.7
EBSD	5.2.2
EDS	4.21
EDX	4.21
EELS	4.14
EGA	4.25
electric surface charge density	5.3.5
electrical zone sensing	3.4.4
electrokinetic potential	5.3.4
electron backscatter diffraction	5.2.2
electron energy loss spectroscopy	4.14
electron paramagnetic resonance	4.27
electron spectrometer	4.13

electrophoretic mobility	5.3.2
electrophoretic velocity	5.3.1
energy-dispersive X-ray spectroscopy	4.21
EPR	4.27
equivalent diameter	3.1.5
evolved-gas analysis	4.25
Faraday-cup aerosol electrometer	3.3.4
FCAE	3.3.4
FCS	4.7
FFF	3.4.1
field flow fractionation	3.4.1
fluorescence	3.5.12
fluorescence correlation spectroscopy	4.7
fluorescence microscopy	3.5.13
fluorescence spectroscopy	4.5
Fourier transform infrared spectroscopy	4.8
FTIR	4.8
hydrodynamic diameter	3.2.6
ICP-MS	4.22
inductively coupled plasma mass spectrometry	4.22
LEEM	3.5.8
light scattering	3.2.5
localization microscopy	3.5.16
low energy electron microscopy	3.5.8
luminescence	4.2
mass specific surface area	3.6.1
Mössbauer spectroscopy	4.28
nanofibre	2.6
nano-object	2.2
nanoparticle	2.3
nanoparticle tracking analysis	3.2.8
nanoplate	2.4
nanorod	2.5
nanoscale	2.1
nanotube	2.7
near-field scanning optical microscopy	3.5.4
neutron diffraction	3.2.3
NMR spectroscopy	4.26
NSOM	3.5.4
NTA	3.2.8
nuclear magnetic resonance spectroscopy	4.26
optical spectroscopy	4.1
particle	2.9
particle shape	3.1.3

particle size	3.1.1
particle size distribution	3.1.2
particle tracking analysis	3.2.8
PCS	3.2.7
photoluminescence	4.3
photoluminescence spectroscopy	4.4
photon correlation spectroscopy	3.2.7
PL spectroscopy	4.4
PTA	3.2.8
QCM	5.1.1
QELS	3.2.7
quantum dot	2.8
quartz crystal microbalance	5.1.1
quasi-elastic light scattering	3.2.7
radius of gyration	3.2.1
Raman effect	4.9
Raman spectroscopy	4.10
SANS	3.2.2
SAXS	3.2.4
scanning electron microscopy	3.5.5
scanning force microscopy	3.5.2
scanning ion microscopy	3.5.9
scanning near-field optical microscopy	3.5.4
scanning probe microscopy	3.5.1
scanning transmission electron microscopy	3.5.7
scanning tunnelling microscopy	3.5.3
SEC	3.4.3
secondary-ion mass spectrometry	4.23
SEEC microscopy	3.5.11
SEM	3.5.5
SERS	4.11
SFM	3.5.2
shear plane	5.3.3
SIMS	4.23
size-exclusion chromatography	3.4.3
slipping plane	5.3.3
small angle neutron scattering	3.2.2
small angle X-ray scattering	3.2.4
SNOM	3.5.4
SPM	3.5.1
STEM	3.5.7
STM	3.5.3
super-resolution microscopy	3.5.15
surface enhanced ellipsometric contrast microscopy	3.5.11

surface enhanced Raman spectroscopy	4.11
suspension	2.13
TEM	3.5.6
TERS	4.12
TG	5.1.2
thermogravimetry	5.1.2
tip enhanced Raman spectroscopy	4.12
TIRF microscopy	3.5.14
total internal reflection fluorescence microscopy	3.5.14
transmission electron microscopy	3.5.6
ultraviolet photoelectron spectroscopy	4.17
UPS	4.17
UV—Vis spectroscopy	4.6
volume specific surface area	3.6.2
XAS	4.19
XPS	4.18
XRF	4.20
X-ray absorption spectroscopy	4.19
X-ray diffraction	5.2.1
X-ray fluorescence	4.20
X-ray photoelectron spectroscopy	4.18
zeta potential	5.3.4

Библиография

[1]	ISO/TS 80004-1:2010	Nanotechnologies — Vocabulary — Part 1: Core terms (Нанотехнологии. Словарь. Часть 1. Основные термины)
[2]	ISO/TS 27687:2008	Nanotechnologies — Terminology and definitions for nano-objects — Nanoparticle, nano-fibre and nanoplate (Нанотехнологии. Термины и определения нанообъектов. Наночастица, нановолокно и нанопластина)
[3]	ISO 14644-6:2007	Cleanrooms and associated controlled environments — Part 6: Vocabulary (Помещения чистые и связанные с ними контролируемые среды. Часть 6. Словарь)
[4]	ISO 15900:2009	Determination of particle size distribution — Differential electrical mobility analysis for aerosol particles (Определение гранулометрического состава. Анализ дифференциальной подвижности частиц аэрозолей в электрическом поле)
[5]	ISO 4618	Paints and varnishes — Terms and definitions (Краски и лаки. Термины и определения)
[6]	ISO 26824:2013	Particle characterization of particulate systems — Vocabulary (Определение характеристик частиц систем макрочастиц. Словарь)
[7]	ISO 14644-1:1999	Cleanrooms and associated controlled environments — Part 1: Classification of air cleanliness (Помещения чистые и связанные с ними контролируемые среды. Часть 1. Классификация чистоты воздуха)
[8]	ISO 3252:1999	Powder metallurgy — Vocabulary (Порошковая металлургия. Словарь)
[9]	ISO 14966:2002	Ambient air — Determination of numerical concentration of inorganic fibrous particles — Scanning electron microscopy method (Воздух окружающий. Определение концентрации неорганических волокнистых частиц. Метод растровой электронной микроскопии)
[10]	ISO 9276-1:1998	Representation of results of particle size analysis — Part 1: Graphical representation (Гранулометрический анализ. Представление результатов. Часть 1. Графическое представление)
[11]	ISO 14695:2003	Industrial fans — Method of measurement of fan vibration (Вентиляторы промышленные. Метод измерения вибрации вентилятора)
[12]	ISO 18115-1:2010	Surface chemical analysis — Vocabulary — Part 1: General terms and terms used in spectroscopy (Химический анализ поверхности. Словарь. Часть 1. Общие термины и термины, используемые в спектроскопии)
[13]	ISO 13320:2009	Particle size analysis — Laser diffraction methods (Гранулометрический анализ. Методы лазерной дифракции)
[14]	ISO 16014-1:2012	Plastics — Determination of average molecular mass and molecular mass distribution of polymers using size-exclusion chromatography — Part 1: General principles (Пластмассы. Определение средней молекулярной массы и молекулярно-массового распределения полимеров с использованием вытеснительной (по размеру) хроматографии. Часть 1. Общие принципы)
[15]	ISO 18115-2:2010	Surface chemical analysis — Vocabulary — Part 2: Terms used in scanningprobe microscopy (Химический анализ поверхности. Словарь. Часть 2. Термины, используемые в растровой микроскопии)
[16]	ISO 17751:2007	Textiles — Quantitative analysis of animal fibres by microscopy — Cashmere, wool, speciality fibres and their blends (Текстиль. Количественный анализ волокон животного происхождения с использованием микроскопа. Кашемир, шерсть, специальные волокна и их смеси)
[17]	ISO 29301:2010	Microbeam analysis — Analytical transmission electron microscopy — Methods for calibrating image magnification by using reference materials having periodic structures (Микропучковый анализ. Аналитическая трансмиссионная электронная микроскопия. Методы калибрующего увеличения изображения с применением стандартных материалов с периодической структурой)

[18]	ISO/TS 10797:2012	Nanotechnologies — Characterization of single-wall carbon nanotubes using transmission electron microscopy (Нанотехнологии. Характеристика одностеночных углеродных нанотрубок с использованием трансмиссионного электронного микроскопа)
[19]	ISO 10934-2:2007	Optics and optical instruments — Vocabulary for microscopy — Part 2: Advanced techniques in light microscopy (Оптика и оптические приборы. Словарь по микроскопии. Часть 2. Передовые технологии в оптической микроскопии)
[20]	ISO 9277:2010	Determination of the specific surface area of solids by gas adsorption — BET method (Определение удельной площади поверхности твердых тел по адсорбции газа с применением метода Брункера, Эммета и Теллера (ВЕТ-метод))
[21]	IEC 60050-845:1987	International Electrotechnical Vocabulary — Chapter 845: Lighting (Международный электротехнический словарь — Глава 845: Освещение)
[2 2]	ISO 13943:2008	Fire safety — Vocabulary (Пожарная безопасность. Словарь)
[23]	ISO 3497:2000	Metallic coatings — Measurement of coating thickness — X-ray spectrometric methods (Покрытия металлические. Измерение толщины покрытия. Спектрометрические рентгеновские методы)
[24]	ISO 22309:2011	Microbeam analysis — Quantitative analysis using energy-dispersive spectrometry (EDS) for elements with an atomic number of 11 (Na) or above (Анализ с использованием микропучка. Количественный анализ с использованием энергодисперсионной спектрометрии для элементов с атомным числом 11 (Na) или выше)
[25]	ISO 15202-3:2004	Workplace air — Determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry — Part 3: Analysis (Воздух рабочей зоны. Определение концентрации металлов и металлоидов в твердых частицах аэрозоля с помощью эмиссионной атомной спектрометрии с индуктивно связанной плазмой. Часть 3. Анализ)
[26]	ISO 472:2013	Plastics — Vocabulary (Пластмассы. Словарь)
[27]	ISO 921:1997	Nuclear energy — Vocabulary (Ядерная энергия. Словарь)
[28]	ISO 24173:2009	Microbeam analysis — Guidelines for orientation measurement using electron backscatter diffraction (Микропучковый анализ. Руководящие указания по измерению ориентации с использованием дифракции при обратном рассеянии электронов)
[29]	ISO 13099-1:2012	Colloidal systems — Methods for zeta-potential determination — Part 1:Electroacoustic and electrokinetic phenomena (Системы коллоидные. Методы определения зета-по-тенциала. Часть 1. Электроакустические и электрокинетические явления)

УДК 53.04:006.354 OKC 07.030 01.040.07

Ключевые слова: нанотехнологии, характеристики нанообъектов, методы определения характеристик, термины, определения

Редактор *Н.А. Шламкова* Технический редактор *В.Н. Прусакова* Корректор *Л.С. Лысенко* Компьютерная верстка *Е.Е. Кругова*

Сдано в набор 12.01.2016. Подписано в печать 14.03.2016. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 4,18. Уч.-изд. л. 3,50. Тираж 32 экз. Зак. 725.