МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ТОРГОВЛИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАСХОДОМЕТРИИ (ФГУП «ВНИИР»)
ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ МЕТРОЛОГИЧЕСКИЙ ЦЕНТР

РЕКОМЕНДАЦИЯ

Государственная система обеспечения единства измерений

МАССА И ОБЪЕМ НЕФТЕПРОДУКТОВ

Методика измерений в горизонтальных резервуарах

МИ 3242-2009

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАНА ОАО «Нефтяная компания «Роснефть»

(ОАО «НК «Роснефть»)

2 ИСПОЛНИТЕЛИ М.П. Естин, С.А. Абрамов, С.Г. Башкуров

3 УТВЕРЖДЕНА ФГУП «ВНИИР» ГНМЦ 07 декабря 2009 г.

4 ATTECTOBAHA ФГУП «ВНИИР» ГНМЦ

Свидетельство об аттестации № 23207-09

от 10 декабря 2009 г.

5 ЗАРЕГИСТРИРОВАНА ФГУП «ВНИИМС» ГНМЦ 18 декабря 2009 г.

Код регистрации методики измерений в Федеральном

реестре методик измерений ФР.1.29.2009.06687

6 ВВЕДЕНА ВПЕРВЫЕ

СОДЕРЖАНИЕ

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	2
4	Обозначения и сокращения	3
5	Общие требования к методам измерений и вычислений и порядок применения	3
	методики измерений	
6	Требования к погрешности измерений	4
7	Средства измерений и вспомогательные устройства	5
8	Условия измерений	7
9	Квалификация операторов. Требования охраны труда и окружающей среды	7
10	Подготовка к выполнению измерений	8
11	Выполнение измерений и вычислений	9
12	Определение массы нефтепродукта, отпущенного из резервуара или принятого в	14
	резервуар	
13	Оценивание погрешности измерений	14
14	Обработка результатов измерений	17
15	Оформление результатов аттестации методики измерений	17
	Библиография	19
	Приложение А. Соотношение допустимых значений уровней нефтепродукта в РГС	20
	при приеме и отпуске, при которых обеспечиваются погрешности измерения	
	массы по ГОСТ Р 8.595	
	Приложение Б. Расчет плотности с учётом поправки на температурное расширение	21
	стекла ареометра	
	Приложение В. Примеры расчета объема, массы и оценки погрешности	22
	Приложение Г. Алгоритмы приведения объема и плотности к стандартным и	30
	рабочим условиям	

РЕКОМЕНДАЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ	
МАССА И ОБЪЁМ НЕФТЕПРОДУКТОВ	МИ 3242-2009
Методика измерений в вертикальных резервуарах	

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая Рекомендация распространяется на массу и объем нефтепродуктов и устанавливает методику измерений в резервуарах горизонтальных стальных.

Методика измерений разработана в соответствии с положениями ГОСТ Р 8.563 и ГОСТ Р 8.595.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей Рекомендации использованы ссылки на следующие стандарты:

ΓΟCT 8.346-2000	ГСИ. Резервуары стальные горизонтальные цилиндрические.
TOOT 0 0 15 000 1	Методика поверки
ΓΟCT 8.247-2004	ГСИ. Метроштоки для измерений уровня нефтепродуктов в
	горизонтальных резервуарах. Методика поверки
Γ OC T 12.0.004-90	Система стандартизации безопасности труда. Организация
TO ST 10 1 00 5 00	обучения безопасности труда. Общие положения
ΓOCT 12.1.005-88	Система стандартизации безопасности труда. Общие
	санитарно-гигиенические требования к воздуху рабочей зоны
ΓOCT 12.4.111-82	Система стандартизации безопасности труда. Костюмы
	мужские для защиты от нефти и нефтепродуктов. Технические
	условия
ΓOCT 12.4.112-82	Система стандартизации безопасности труда. Костюмы
	женские для защиты от нефти и нефтепродуктов. Технические
	условия
Γ OC T 12.4.137-84	Обувь специальная кожаная для защиты от нефти,
	нефтепродуктов, кислот, щелочей, нетоксичной и
	взрывоопасной пыли. Технические условия
Γ OC T 400-80	Термометры стеклянные для испытаний нефтепродуктов.
	Технические условия
ГОСТ 2517-85	Технические условия Нефть и нефтепродукты. Методы отбора проб
ГОСТ 3900-85	Технические условия Нефть и нефтепродукты. Методы отбора проб Нефть и нефтепродукты. Методы определения плотности
ГОСТ 3900-85 ГОСТ 7502-98	Технические условия Нефть и нефтепродукты. Методы отбора проб Нефть и нефтепродукты. Методы определения плотности Рулетки измерительные металлические. Технические условия
ГОСТ 3900-85	Технические условия Нефть и нефтепродукты. Методы отбора проб Нефть и нефтепродукты. Методы определения плотности Рулетки измерительные металлические. Технические условия Резервуары стальные горизонтальные для нефтепродуктов.
ГОСТ 3900-85 ГОСТ 7502-98	Технические условия Нефть и нефтепродукты. Методы отбора проб Нефть и нефтепродукты. Методы определения плотности Рулетки измерительные металлические. Технические условия Резервуары стальные горизонтальные для нефтепродуктов. Типы и основные размеры
ГОСТ 3900-85 ГОСТ 7502-98	Технические условия Нефть и нефтепродукты. Методы отбора проб Нефть и нефтепродукты. Методы определения плотности Рулетки измерительные металлические. Технические условия Резервуары стальные горизонтальные для нефтепродуктов.
ГОСТ 3900-85 ГОСТ 7502-98 ГОСТ 17032-71 ГОСТ 18481-81	Технические условия Нефть и нефтепродукты. Методы отбора проб Нефть и нефтепродукты. Методы определения плотности Рулетки измерительные металлические. Технические условия Резервуары стальные горизонтальные для нефтепродуктов. Типы и основные размеры Ареометры и цилиндры стеклянные. Общие технические условия
ГОСТ 3900-85 ГОСТ 7502-98 ГОСТ 17032-71	Технические условия Нефть и нефтепродукты. Методы отбора проб Нефть и нефтепродукты. Методы определения плотности Рулетки измерительные металлические. Технические условия Резервуары стальные горизонтальные для нефтепродуктов. Типы и основные размеры Ареометры и цилиндры стеклянные. Общие технические

ГОСТ Р 8.563-96 ГСИ.	Методики выполнения измерений
ГОСТ Р 8.595-2004 ГСИ.	Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений
ГОСТ Р 8.596-2002	Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем.
ГОСТ Р 51069-97	Основные положения Нефть и нефтепродукты. Метод определения плотности, относительной плотности и плотности в градусах API ареометром
ГОСТ Р 51330.0-99 (МЭК 60079-0-98)	Электрооборудование взрывозащищенное. Часть 0. Общие требования
ΓΟCT P 51330.9-99	Электрооборудование взрывозащищенное. Часть 10. Классификация взрывоопасных зон

Примечание — при пользовании настоящей Рекомендацией целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящей Рекомендацией следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяют в части, не затрагивающей эту ссылку.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящей Рекомендации использованы следующие термины с соответствующими определениями:

- 3.1 **измерительная система:** совокупность **измери**тельных, **связующих**, вычислительных компонентов, образующих измерительные каналы, и вспомогательных устройств (компонентов измерительной системы), функционирующих как единое целое.
- 3.2 испытательная лаборатория (испытательный центр): химико-аналитическая лаборатория, выполняющая контроль качества (параметров).
- 3.3 **методика измерений**: совокупность конкретно описанных операций, выполнение которых обеспечивает получение результатов измерений с установленными показателями точности.
- 3.4 **персональный компьютер:** универсальная ЭВМ, предназначенная для индивидуального использования.
- 3.5 **программное обеспечение:** совокупность программ, системы обработки информации и программных документов, необходимых для эксплуатации этих программ.
- 3.6 **система обработки информации:** вычислительное устройство, принимающее и обрабатывающее информацию о количественно-качественных параметрах продукта, измеренных первичными преобразователями, и включающие в себя блоки индикации и регистрации результатов измерений.

- 3.7 средство измерений: техническое средство, предназначенное для измерений.
- 3.8 **стандартные условия:** условия, соответствующие температуре нефтепродукта 15 °C или 20 °C и избыточному давлению, равному нулю.
- 3.9 **температура измерения объема:** температура нефтепродукта в мере вместимости, мере полной вместимости при измерении уровня.
- 3.10 условия измерений объема (при косвенном методе статических измерений): условия, соответствующие температуре нефтепродукта в мере вместимости при измерении уровня и избыточному давлению, равному нулю.

4 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящей Рекомендации приняты следующие сокращения:

- ИЛ (ИЦ) испытательная лаборатория (испытательный центр);
- ИС измерительная система;
- ПК персональный компьютер;
- ПО программное обеспечение к методикам измерений объёма и массы нефти и нефтепродуктов;
- РГС резервуар горизонтальный стальной;
- СИ средство измерений;
- СОИ система обработки информации.

5 ОБЩИЕ ТРЕБОВАНИЯ К МЕТОДАМ ИЗМЕРЕ**НИЙ И ВЫЧИСЛЕНИЙ И** ПОРЯДОК ПРИМЕНЕНИЯ МЕТОДИКИ ИЗМЕРЕНИЙ

- 5.1 Определение объема и массы нефтепродукта в настоящей Рекомендации выполняется в соответствии с ГОСТ Р 8.595.
- 5.2 Массу нефтепродукта в РГС вычисляют как произведение объема и плотности нефтепродукта, приведенных или к стандартным условиям, или к условиям измерений объема.
- 5.3 Объем нефтепродукта определяют, используя результат измерений уровня нефтепродукта в РГС, по градуировочной таблице, составленной по ГОСТ 8.346.
- 5.4 Объём, плотность и температуру нефтепродукта определяют по результатам измерений с использованием СИ, согласно требованиям раздела 7 настоящей Рекомендации.

- 5.5 Массу нефтепродукта, отпущенного из резервуара или принятого в резервуар, вычисляют как разность результатов измерений массы нефтепродукта в резервуаре, полученных до и после отпуска (приема) нефтепродукта.
- 5.6 Измерения должны проводиться в соответствии с требованиями настоящей Рекомендации.
- 5.7 Алгоритмы методики измерений реализованы в программном обеспечении¹. Вычисления должны выполняться с помощью ПО.
- 5.8 В исключительных случаях, до инсталляции ПО на персональные компьютеры или до переинсталляции в случае выхода из строя ПО, допускается выполнение вычислений без применения ПО.

Вычисления массы для таких случаев выполняются на основе примеров, приведенных в приложении Б настоящей Рекомендации. При этом следует руководствоваться следующими требованиями:

- 5.8.1 Результаты измерения плотности и объема нефтепродукта приводят к стандартным условиям или результат измерений плотности приводят к условиям температуры измерения его объема.
- 5.8.2 Приведение плотности и объема к стандартным условиям выполняется по следующим таблицам²:

— плотности: к 15 °C по таблице 53B АСТМ Д 1250 [7];

к 20 °C по таблице 59В ИСО 91/2 [6];

- объема: к 15 °C по таблице 54В [7];

к 20 °C по таблице 60В [6].

5.8.3 При температуре измерения объема нефтепродукта измерение плотности должно осуществляться в лабораторных условиях в термостате при температуре измерения его объема. Иные методы определения плотности для данного случая не допустимы.

6 ТРЕБОВАНИЯ К ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

6.1 Пределы допускаемой относительной погрешности измерений массы и объема нефтепродукта в резервуаре не должны превышать значений, приведенных в таблице 1.

Таблица 1

Метод	Пределы допускаемой относительной погрешности измерений		
измерений	массы нефтепродукта, %	объема нефтепродукта, приведенного к стандартным условиям, %	
Косвенный метод статических измерений до 120 т	± 0,65	± 0,60	
Косвенный метод статических измерений от 120 т и выше	± 0,50	± 0,40	

Программное обсспечение к методикам измерений объёма и массы нефти и нефтепродуктов разработано ОАО «НК «Роснефть» и аттестовано ФГУП «ВНИИМС».

² Таблицы в электронном виде входят в поставочный комплект методик измерений.

6.2 Пределы допускаемой относительной погрешности измерений массы нефтепродукта, отпущенного из резервуара или принятого в резервуар, не должны превышать значений, приведенных в таблице 2.

Таблица 2

Метод измерений	Пределы допускаемой относительной погрешности измерений массы нефтепродукта, отпущенного из резервуара или принятого в резервуар, %
Косвенный метод статических измерений до 120 т	± 0,65
Косвенный метод статических измерений от 120 т и выше	± 0,50

7 СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

- 7.1 При выполнении измерений массы и объема нефтепродукта применяют следующие меры вместимости, СИ и технические средства:
 - резервуары горизонтальные стальные цилиндрические (далее РГС) по ГОСТ 17032 с относительной погрешностью определения вместимости по ГОСТ 8.346.
 - 7.2 СИ и технические средства, не образующие измерительные системы:

7.2.1 Неавтоматизированные СИ:

- метрошток с пределами допускаемой абсолютной погрешности ± 1 мм по ГОСТ 8.247 или рулетка измерительная с грузом (лотом) 2-го класса точности по ГОСТ 7502;
- термометры ртутные стеклянные по ГОСТ 28498 или ГОСТ 400 с пределами допускаемой абсолютной погрешности не более ± 0,5 °C, используемые для определения температуры нефтепродукта в РГС;
- СИ и технические средства, используемые для определения плотности нефтепродукта по ГОСТ 3900 или по ГОСТ Р 51069. Требования к ним изложены в 7.6.

7.2.2 Автоматизированные СИ:

- переносной электронный измеритель уровня (электронная рулетка) с пределами допускаемой абсолютной погрещности не более ± 3 мм;
- переносной погружной электронный термометр с разрешающей способностью 0,1 °C и пределами допускаемой абсолютной погрешности не более ± 0,5 °C;
- переносной погружной измеритель плотности нефтепродуктов с пределами допускаемой абсолютной погрешности не более \pm 0,5 кг/м 3 ;
- комбинированные СИ, обеспечивающие выполнение функций, указанных в 7.2.2, в любых комбинациях, предусмотренных конструкцией данных СИ.
- 7.2.3 Персональные компьютеры или технические средства для обработки и вычисления результатов измерений.
 - 7.3 Водочувствительная лента или паста.
 - 7.4 Переносной пробоотборник по ГОСТ 2517.
 - 7.5 Измерительные системы в составе:

- канала (каналов) измерения уровня с использованием уровнемеров с пределами допускаемой абсолютной погрешности не более ± 3 мм;
- канала (каналов) измерения температуры с пределами допускаемой абсолютной погрешности не более ± 0,5 °C;
- канала (каналов) измерения плотности нефтепродукта в РГС;
- СОИ с пределом допускаемой относительной погрешности не более ± 0,05 %.

7.6 СИ и технические средства в ИЛ (ИЦ):

- 7.6.1 При определении плотности ареометром по ГОСТ 3900:
- пробоотборник по ГОСТ 2517;
- ареометры для нефтепродукта по ГОСТ 18481 типа АН, АНТ-1. Допускается применять аналогичные ареометры, отградуированные по нижнему мениску;
- цилиндры для ареометров стеклянные по ГОСТ 18481 или металлические соответствующих размеров;
- термометры ртутные стеклянные типа ТЛ-4 № 4 по техническим условиям ТУ 25-2021.003 [15] или термометры стеклянные для испытаний нефтепродуктов типа ТИН-5 по ГОСТ 400 при использовании ареометров типа АН. Термометр должен быть откалиброван на полное погружение с ценой деления 0,1 °C и пределами допускаемой абсолютной погрешности не более ± 0,2 °C;
- термостат или водяная баня для поддержания температуры с пределами допускаемой абсолютной погрешности не более ± 0,2 °C.

7.6.2 При определении плотности ареометром по ГОСТ Р 51069:

- пробоотборник по ГОСТ 2517;
- ареометры для нефтепродукта по ГОСТ 18481;
- цилиндры для ареометров стеклянные по ГОСТ 18481 или металлические соответствующих размеров;
- термометры ртутные стеклянные типа ТЛ-4 № 2 и № 3 по техническим условиям [15] или термометры стеклянные для испытаний нефтепродуктов типа ТИН-5 по ГОСТ 400 при использовании ареометров типа АН. Термометр должен быть откалиброван на полное погружение с ценой деления 0,1 °C и пределами допускаемой абсолютной погрешности не более ± 0,2 °C;
- термостат или водяная баня для поддержания температуры с пределами допускаемой абсолютной погрешности не более ± 0,2 °C.

<u>Примечание</u> — Метрологические характеристики ареометров и термометров выбираются по таблицам № 1 и № 2 $\Gamma OCTP$ 51069.

- 7.7 Допускается применять другие аналогичные по назначению СИ, ИС и технические средства, допущенные к применению в установленном порядке, если их характеристики не уступают указанным в настоящей Рекомендации.
- 7.8 СИ и ИС, участвующие в измерении массы нефтепродуктов, должны иметь сертификаты об утверждении типа в соответствии с ПР 50.2.009 [9].

Измерительные системы, собираемые на месте эксплуатации (ИС-2 согласно ГОСТ Р 8.596), должны быть внесены в Государственный реестр, как СИ единичного типа.

7.9 СИ и ИС, участвующие в измерении массы нефтепродукта, подлежат поверке в соответствии с ПР 50.2.006 [8] и должны иметь действующие свидетельства о поверке или оттиски поверительных клейм. Метроштоки поверяются в соответствии с ГОСТ 8.247.

- 7.10 Программное обеспечение, применяемое в составе СОИ ИС, должно быть аттестовано в установленном порядке в соответствии с МИ 2955 [11], МИ 2676 [12], МИ 2174 [13].
- 7.11 Периодичность поверки СИ, применяемых при измерениях массы нефтепродукта в РГС, должна соответствовать межповерочному интервалу, установленному при утверждении типа. Изменение межповерочного интервала проводится органом Государственной метрологической службы по согласованию с метрологической службой юридического лица.
 - 7.12 Поверку резервуаров проводят не реже одного раза в пять лет.
- 7.13 Технологические трубопроводы должны быть отградуированы (определена вместимость) в соответствии с МИ 2800 [14]. Градуировочную таблицу на технологический трубопровод составляют суммированием вместимостей отдельных трубопроводов. Градуировочную таблицу на отдельный трубопровод составляют суммированием вместимостей его участков. Периодичность градуировки не реже одного раза в десять лет.

8 УСЛОВИЯ ИЗМЕРЕНИЙ

- 8.1 При выполнении измерений соблюдают следующие условия:
- температура окружающего воздуха

от – 40 °C до + 50 °C.

- скорость ветра

не более 12,5 м/с.

<u>Примечание</u> — Технические характеристики применяемых СИ и технических средств должны соответствовать вышеуказанным условиям.

- 8.2 Измерение плотности нефтепродукта в отобранной пробе должно проводиться в лаборатории или специально оборудованном помещении.
- 8.3 Измерение уровня нефтепродукта и подтоварной воды проводят измерительной рулеткой с лотом или метроштоком только через измерительный люк. Во время опускания рулетки, метроштока внутрь резервуара операторы находятся с наветренной стороны люка и не должны наклоняться над измерительным люком. Лента измерительной рулетки должна плавно и непрерывно скользить по направляющему пазу планки измерительного люка. Метрошток опускают (поднимают) строго вертикально.
- 8.4 Для обеспечения указанных в 6.2 настоящей Рекомендации пределов допускаемой относительной погрешности измерений массы принятого и отпущенного нефтепродукта значения уровней нефтепродукта в резервуаре до и после приема, до и после отпуска должны соответствовать допустимым значениям, приведенным в таблицах A.1, A.2 приложения A.

9 КВАЛИФИКАЦИЯ ОПЕРАТОРОВ, ТРЕБОВАНИЯ ОХРАНЫ ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ

9.1 К выполнению измерений и обработке их результатов допускают лиц, достигших 18 лет, имеющих квалификацию оператора не ниже 4-го разряда, прошедших обучение и проверку знаний требований охраны труда в соответствии с ГОСТ 12.0.004, годных по состоянию здоровья и ознакомленных с настоящей Рекомендацией.

Лица, выполняющие измерения, должны:

- соблюдать требования по охране труда, промышленной и экологической безопасности и правила пожарной безопасности, распространяющиеся на объект, на котором проводят измерения;
- выполнять измерения в специальной одежде и обуви в соответствии с ГОСТ 12.4.111, ГОСТ 12.4.112, ГОСТ 12.4.137.

Выполнение измерений проводят в соответствии с утвержденными действующими правилами и нормативными документами:

- в области охраны труда и промышленной безопасности ПБ 09-560 [1],
 ПОТ РМ 021 [2];
- в области соблюдения безопасной эксплуатации электроустановок
 ПОТ Р М-016 [3];
- в области охраны окружающей среды и атмосферного воздуха Федеральными законами «Об охране окружающей среды» [4], «Об охране атмосферного воздуха» [5] и другими действующими законодательными актами на территории РФ.
- 9.2 Содержание вредных веществ в воздухе рабочей зоны не должно превышать предельно допустимых концентраций, установленных в ГОСТ 12.1.005.
- 9.3 Площадка, на которой установлены резервуары, должна содержаться в чистоте, без следов нефтепродукта, и быть оборудована первичными средствами пожаротушения. Не допускается выбросов и выделений нефтепродуктов в окружающую среду.
- 9.4 Для освещения применяют светильники во взрывозащищенном исполнении. Переносные светильники включают и выключают за земляным валом или ограждением резервуарного парка. Защита от статического электричества должна соответствовать требованиям правил [16].
- 9.5 При выполнении работ по отбору проб следует соблюдать требования безопасности, регламентируемые ГОСТ 2517, в том числе:
 - переносные пробоотборники должны быть изготовлены из материала, не образующего искр при ударе (алюминия, бронзы, латуни и др.);
 - для крепления переносного пробоотборника используют гибкие, не дающие искр, металлические тросики. При применении шнуров (веревок и т.д.) из неэлектропроводных материалов на их поверхности должен быть закреплен многожильный, не дающий искр, неизолированный металлический проводник, соединенный с пробоотборником. Перед отбором проводник должен заземляться с элементами РГС.
- 9.6 Электрооборудование (СИ, ИС и вспомогательные устройства), применяемое при выполнении измерений, должно быть изготовлено во взрывозащищенном исполнении, соответствующем классу взрывоопасной зоны по ГОСТ Р 51330.9 места применения, отвечать требованиям ГОСТ 22782.0, ГОСТ Р 51330.0, иметь разрешение Ростехнадзора, полученное на основании заключения экспертизы промышленной безопасности на применение во взрывоопасных зонах.

10 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

10.1 Подготовка к выполнению измерений проводится в соответствии с технической документацией на СИ и другие технические средства, применяемые при измерениях.

При подготовке к выполнению измерений выполняют следующее:

- 10.1.1 Проверяют включенное состояние оборудования и наличие напряжения питания.
- 10.1.2 Проверяют исправность пробоотборника и его комплектность. При наличии загрязнения переносной пробоотборник протирают бензином и просушивают.
- 10.1.3 Проверяют состояние оборудования, герметичность фланцевых соединений, контролируют отсутствие утечек нефтепродукта, отсутствие посторонних шумов и вибраций на измерительных линиях, исправность СИ, целостность пломб и клейм.
- 10.1.4 При приеме нефтепродукта в резервуар измерения выполняют после 2-х часового отстоя нефтепродукта по завершении приема. При несоблюдении сроков отстоя в установленных на предприятии формах по учету движения нефтепродуктов делается отметка о фактическом времени отстоя.

11 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ И ВЫЧИСЛЕНИЙ

<u>Примечание</u> — В случае, если плотность измеряется ареометром, в результат измерения плотности вносится поправка на температурное расширение стекла для ареометров, рассчитываемая по формулам Б.2 или Б.3 приложения Б.

11.1 Измерение массы нефтепродукта неавтоматизированными средствами измерений.

11.1.1 Определение объема нефтепродукта в резервуаре.

Объем нефтепродукта в резервуаре определяют по градуировочной таблице резервуара с использованием результата измерения уровня нефтепродукта и уровня подтоварной воды.

11.1.1.1 Измерение уровня нефтепродукта.

Проверяют базовую высоту (высотный трафарет) резервуара, как расстояние по вертикали между днищем резервуара в точке касания лота рулетки и риски планки измерительного люка. Полученный результат сравнивают с величиной базовой высоты, указанной в градуировочной таблице резервуара или в последнем акте ее ежегодного измерения и нанесенной на трафарете.

Если измеренное значение базовой высоты отличается от значения, нанесенного на трафарете, более чем на 0,1 %, выявляют причину изменения базовой высоты и устраняют ее. На период, необходимый для выяснения и устранения причин изменения базовой высоты, измерения уровня нефтепродукта проводят по высоте пустоты резервуара.

<u>Примечание</u> — Измерение уровня нефтепродукта в резервуаре по высоте пустоты резервуара проводят также в случае, если в резервуаре образовался лед.

Измерения уровня нефтепродукта по высоте пустоты резервуара проводят в следующей последовательности:

- опускают рулетку с лотом ниже уровня нефтепродукта. Первый отсчет (верхний) по рулетке проводят на уровне риски планки измерительного люка. Затем рулетку с лотом поднимают строго вверх без смещения в стороны и проводят второй отсчет (нижний) по линии смачивания с точностью до 1 мм;
- определяют высоту пустоты как разность верхнего и нижнего отсчетов;
- определяют уровень нефтепродукта в резервуаре как разность величины базовой высоты (высотного трафарета) данного резервуара и полученного значения высоты пустоты резервуара.

Если измеренное значение базовой высоты совпадает со значением, нанесенным на трафарете, или отличается от него менее чем на 0,1 %, измерения уровня нефтепродукта в резервуаре проводят в следующей последовательности:

- опускают ленту рулетки с лотом медленно до касания лотом днища или опорной плиты, не допуская отклонения лота от вертикального положения, не задевая за внутреннее оборудование резервуара, не допуская волн на поверхности нефтепродукта и ударов о днище резервуара. Лента рулетки должна находиться все время в натянутом состоянии, а место касания лота о днище резервуара горизонтальное и жесткое;
- поднимают ленту рулетки строго вертикально, не допуская смещения в сторону, чтобы избежать искажения линии смачивания;
- показания рулетки отсчитывают с точностью до 1 мм сразу после появления смоченной части над измерительным люком.

Измерения уровня нефтепродукта в резервуаре (высоты пустоты) проводят дважды. Если результаты измерений отличаются не более чем на 1 мм, то в качестве результата измерений уровня принимают большее значение. Если полученное расхождение измерений более 1 мм, измерения повторяют ещё дважды и берут среднее по трём наиболее близким измерениям с округлением до 1 мм.

Ленту рулетки до и после измерений протирают мягкой тряпкой насухо.

<u>Примечание</u> - Измерения уровня нефтепродукта и уровня подтоварной воды проводят измерительной рулеткой с лотом только через измерительный люк. Во время опускания рулетки внутрь резервуара операторы находятся с наветренной стороны люка и не должны наклоняться над измерительным люком. Лента измерительной рулетки должна плавно и непрерывно скользить по направляющему пазу планки измерительного люка.

11.1.1.2 Измерение уровня подтоварной воды.

Уровень подтоварной воды измеряют с помощью метроштока или рулетки с лотом с применением водочувствительной ленты или пасты.

- водочувствительную ленту в натянутом виде прикрепляют к нижнему концу метроштока или лоту рулетки с двух противоположных сторон;
- водочувствительная паста тонким слоем наносится на поверхность нижнего конца метроштока или лота рулетки с двух противоположных сторон;
- для резкого выделения грани между слоями воды и нефтепродукта метрошток или рулетку выдерживают неподвижно в резервуаре в течение времени, рекомендуемого инструкцией по применению водочувствительной ленты или пасты. Отсчет уровня подтоварной воды проводят с точностью до 1 мм;
- если межслойный уровень на ленте или пасте обозначается нечетко, косой линией или на неодинаковой высоте с обеих сторон, то измерение следует повторить, нанеся новый слой пасты или прикрепив новую ленту;
- наличие размытой границы раздела «вода-нефтепродукт» свидетельствует о наличии водоэмульсионного слоя. В этом случае необходимо повторить измерение после отстоя и расслоения эмульсии.

11.1.1.3 Определение объема нефтепродукта при температуре его измерения.

По измеренному уровню нефтепродукта (см. 11.1.1.1) по градуировочной таблице резервуара определяют общий объем нефтепродукта и подтоварной воды в резервуаре. По измеренному уровню подтоварной воды (см. 11.1.1.2) по градуировочной таблице определяют объем подтоварной воды в резервуаре.

Объем нефтепродукта при температуре его измерения в резервуаре (V), м 3 , вычисляют по формуле:

$$V = V_{n} \cdot [1 + (2\alpha_{cm} + \alpha_{s}) \cdot (t_{v} - 20)], \tag{1}$$

где $V_{\scriptscriptstyle H}$ - объем нефтепродукта в резервуаре, м³. Вычисляют по формуле: $V_{\scriptscriptstyle H} = V_{\scriptscriptstyle O} - V_{\scriptscriptstyle S} \tag{2}$

 V_o - общий объем нефтепродукта и подтоварной воды в резервуаре м³;

 V_6 - объем подтоварной воды, м³;

 α_{cm} - температурный коэффициент линейного расширения материала стенки резервуара, значение которого принимают равным 12,5·10⁻⁶, 1/°C;

- $\alpha_{\rm s}$ температурный коэффициент линейного расширения материала рулетки, значение которого принимают равным 12,5·10⁻⁶ для нержавеющей стали и 23·10⁻⁶ для алюминия, 1/°C;
- t_{v} температура измерения объема, °С.
- 11.1.2 Измерение температуры нефтепродукта в РГС для определения массы.
- 11.1.2.1 Отбор проб нефтепродукта из РГС проводят в соответствии с ГОСТ 2517.
- 11.1.2.2 Температуру нефтепродукта измеряют стеклянным ртутным термометром в каждой точечной пробе. Термометр выдерживают в пробе в течение 1-3 минут после ее извлечения до принятия столбиком ртути постоянного положения. Отсчет температуры проводят, не вынимая термометр из нефтепродукта.
 - 11.1.2.3 Среднюю температуру нефтепродукта в резервуаре (t_v) вычисляют по формулам: При диаметре резервуара более 2500 мм:

$$t_{v} = \frac{t_{n} + 6 \cdot t_{cp} + t_{e}}{8}, \tag{3}$$

- где $t_{\rm H}$ температура нефтепродукта, измеренная на нижнем уровне на 250 мм выше днища резервуара (при измерении стеклянным термометром температура нефтепродукта в точечной пробе, отобранной по ГОСТ 2517 с нижнего уровня), °С;
 - t_{cp} температура нефтепродукта, измеренная на среднем уровне с середины высоты столба нефтепродукта (при измерении стеклянным термометром температура нефтепродукта в точечной пробе, отобранной по ГОСТ 2517 со среднего уровня), °С;
 - t_* температура нефтепродукта, измеренная на верхнем уровне на 250 мм ниже поверхности нефтепродукта (при измерении стеклянным термометром температура нефтепродукта в точечной пробе, отобранной по ГОСТ 2517 с верхнего уровня), °C.

При диаметре резервуара менее 2500 мм независимо от степени заполнения, а также для резервуара диаметром более 2500 мм, заполненного до высоты, равной половине диаметра, и менее:

$$t_{\nu} = \frac{t_{\kappa} + 3t_{op}}{4} \,. \tag{4}$$

При высоте уровня нефтепродукта менее 500 мм за температуру принимают температуру нефтепродукта, измеренную на нижнем уровне:

$$t_{v} = t_{u}. ag{5}$$

11.1.3 Определение плотности нефтепродукта в резервуаре.

11.1.3.1 Отбор проб нефтепродукта из РГС при измерении плотности проводят в соответствии с ГОСТ 2517.

Плотность нефтепродукта измеряют ареометром в объединенной или точечной пробах, согласно ГОСТ 2517. Измерение проводят по ГОСТ Р 51069 или по ГОСТ 3900 в лаборатории или в специально оборудованном месте, защищенном от ветра, осадков, солнечной радиации и оснащенном столиком с ровной горизонтальной поверхностью. По результатам измерений фиксируют, в том числе, значение температуры, при которой проведено измерение плотности.

11.1.4 Вычисление массы нефтепродукта в резервуаре.

При приведении плотности и объема нефтепродукта к 20 °C массу нефтепродукта, кг, вычисляют по формуле:

$$\mathbf{m} = V_{20} \cdot \rho_{20} \,, \tag{6}$$

где V_{20} - объем нефтепродукта, приведенный к 20 °C, м³;

 ρ_{20} - плотность нефтепродукта, приведенная к 20 °C, кг/м³.

При приведении плотности и объема нефтепродукта к 15 °C массу нефтепродукта, кг, вычисляют по формуле:

$$m = V_{15} \cdot \rho_{15}, \tag{7}$$

где V_{15} - объем нефтепродукта, приведенный к 15 °C, м³;

 ρ_{15} - плотность нефтепродукта, приведенная к 15 °C, кг/м³.

При приведении плотности к температуре измерений объёма массу нефтепродукта, кг, вычисляют по формуле:

$$m = V \cdot \rho_{in}, \tag{8}$$

где V - объем нефтепродукта, при температуре его измерений, м³, рассчитанный по формуле (1);

 ho_{tv} - плотность нефтепродукта, приведённая к температуре измерений объёма, кг/м 3 .

Приме<mark>чания</mark>:

- 1. Алгоритмы вычислений объема и плотности реализованы в ΠO и изложены приложении $\Gamma.$
- 2. При проведении измерений плотности ареометром вместо значения плотности (ρ_{tv}) в формуле (8) используется значение плотности (ρ^*), определяемое по формуле E.1.
- 3. Значение (ρ_{tv}) автоматически рассчитывается в ПО или определяется в лабораторных условиях в термостате при температуре измерения объема, кг/м³.

11.2 Измерение массы нефтепродукта автоматизированными средствами измерений, не образующими измерительные системы.

11.2.1 Определение объема нефтепродукта в резервуаре.

Объем нефтепродукта в резервуаре определяют по градуировочной таблице резервуара с использованием результата измерения уровня нефтепродукта и уровня подтоварной воды.

Измерения уровня проводят с использованием переносного электронного измерителя уровня (электронной рулетки) в соответствии с инструкцией по эксплуатации прибора по высоте пустоты резервуара с учетом требований 11.1.1.1.

Объем нефтепродукта при температуре измерения объема определяют по формуле (1) настоящей Рекомендации.

11.2.2 Измерение температуры нефтепродукта в резервуаре.

Температуру нефтепродукта измеряют переносным погружным электронным термометром непосредственно через каждые 50 см, начиная от верхней границы нефтепродукта.

Среднюю температуру нефтепродукта в резервуаре (t_v) вычисляют по формуле:

$$t_{v} = \frac{t_{1} + t_{2} + \dots + t_{n}}{n},\tag{9}$$

где $t_{l,}, t_{n}$ - температура нефтепродукта, измеренная на соответствующих уровнях, °С; - число измерений для конкретного взлива.

Измерение температуры проводят в соответствии с инструкцией по эксплуатации термометра.

11.2.3 Определение плотности нефтепродукта в резервуаре.

Плотность нефтепродукта измеряют переносным погружным электронным плотномером непосредственно в РГС через каждые 50 см, начиная от верхней границы нефтепродукта.

Плотность нефтепродукта в резервуаре (ρ_{ν}) вычисляют по формуле:

$$\rho_{v} = \frac{\rho_{1} + \rho_{2} + \ldots + \rho_{n}}{n}, \tag{10}$$

Измерение плотности проводят в соответствии с инструкцией по эксплуатации плотномера.

11.2.4 Вычисление массы нефтепродукта в резервуаре.

Массу нефтепродукта в резервуаре вычисляют согласно 11.1.4.

11.3 Измерение массы нефтепродукта измерительными системами.

11.3.1 Определение объема нефтепродукта в резервуаре.

- 11.3.1.1 Объем нефтепродукта в резервуаре определяют с использованием градуировочной таблицы резервуара по результатам измерений уровня нефтепродукта и уровня подтоварной воды с помощью канала измерения уровня в составе измерительной системы.
- 11.3.1.2 При отсутствии канала измерения уровня в составе ИС, уровень нефтепродукта и подтоварной воды измеряют в соответствии с 11.1.1.1 или 11.2.1.
- 11.3.1.3 Объем нефтепродукта при температуре измерения объема определяют по формуле (1) настоящей Рекомендации.

- 11.3.2 Измерение температуры нефтепродукта в резервуаре.
- 11.3.3 Температуру нефтепродукта в резервуаре измеряют каналом (каналами) измерения температуры с использованием термопреобразователей, установленных в трубопроводе.
- 11.3.3.1 При отсутствии канала измерения температуры в составе ИС, температуру нефтепродукта измеряют в соответствии с 11.1.2 или 11.2.2.
 - 11.3.4 Определение плотности нефтепродукта в резервуаре.
- 11.2.1 Плотность нефтепродукта в резервуаре измеряют каналом (каналами) измерения плотности с использованием поточных плотномеров, установленных в трубопроводе.

При отсутствии канала измерения плотности в резервуаре плотность нефтепродукта измеряют в соответствии с 11.1.3 для ручных СИ или 11.2.3 для автоматизированных СИ.

11.3.5 Вычисление массы нефтепродукта в резервуаре. Массу нефтепродукта в резервуаре вычисляют согласно 11.1.4.

12 ОПРЕДЕЛЕНИЕ МАССЫ НЕФТЕПРОДУКТА, ОТПУЩЕННОГО ИЗ РЕЗЕРВУАРА ИЛИ ПРИНЯТОГО В РЕЗЕРВУАР

12.1 При проведении отпуска/приема нефтепродукта массу отпущенного (принятого) нефтепродукта вычисляют как разность результатов измерений массы нефтепродукта в резервуаре, полученных до и после отпуска (приема) нефтепродукта, по формуле:

$$M = m_1 - m_2, \tag{11}$$

- где M масса нефтепродукта, отпущенного из резервуара или принятого в резервуар, кг;
 - резервуар, кг; m_1, m_2 массы нефтепродукта в резервуаре до/после отпуска нефтепродукта из резервуара или до (после) приема нефтепродукта из резервуара, соответственно, кг.
- 12.2 Вычисление массы нефтепродукта в резервуаре до/после отпуска нефтепродукта из резервуара или до/после приема нефтепродукта из резервуара (m₁, m₂) осуществляется:
 - согласно 11.1 при использовании неавтоматизированных СИ;
 - согласно 11.2 при использовании автоматизированных СИ, не образующих ИС;
 - согласно 11.3 при использовании ИС.

13 ОЦЕНИВАНИЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

13.1 Пределы относительной погрешности измерений массы нефтепродукта (δm) в РГС, %, вычисляются по формуле:

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2},$$
 (12)

где δK - относительная погрешность составления градуировочной таблицы РГС, %;

 K_{ϕ} - коэффициент, учитывающий геометрическую форму РГС, вычисляется по формуле:

$$K_{\phi} = \frac{\Delta V \cdot H}{V_{\triangle}}; \tag{13}$$

 ΔV - объем нефтепродукта, приходящийся на 1 мм высоты наполнения РГС на измеряемом уровне наполнения по градуировочной таблице, м³/мм;

 V_0 - объем нефтепродукта в резервуаре на измеряемом уровне (H), M^3 ;

 δH погрешность измерений относительная уровня нефтепродукта (величина уровня жидкости в РГС за вычетом величины уровня подтоварной воды), %:

$$\delta H = \sqrt{\left(\frac{\Delta H''}{H} \cdot 100\right)^2 + \left(\frac{\Delta H''}{H} \cdot 100\right)^2}; \tag{14}$$

Hуровень нефтепродукта (величина уровня жидкости в РГС за вычетом величины уровня подтоварной воды), мм:

$$H = H_o - H_e; (15)$$

- уровень жидкости в РГС (уровень нефтепродукта + уровень H_{α} подтоварной воды), мм;

- уровень подтоварной воды, мм; H_{e}

абсолютная погрешность измерений уровня жидкости в РГС (уровень нефтепродукта + уровень подтоварной воды), мм;

 ΔH^e - абсолютная погрешность измерений уровня подтоварной воды, мм; G

- коэффициент, вычисляемый по формуле:

$$G = \frac{1 + 2\beta t_v}{1 + 2\beta t_o};\tag{16}$$

β - коэффициент объемного расширения нефтепродукта по таблице А.1 ΓΟCT P 8.595;

- температура нефтепродукта при измерении объема и при измерении плотности соответственно, °С;

 Δt_{ν} , Δt_{ν} - абсолютные погрешности измерений температуры нефтепродукта при измерениях его плотности и объема соответственно, °С;

 $\delta \rho$ относительная погрешность измерений плотности нефтепродукта, %, вычисляют по формуле:

$$\delta \rho = \frac{\Delta \rho}{\rho} \cdot 100 \,; \tag{17}$$

 абсолютная погрешность определения плотности, кг/м³; Δρ

 значение результата измерения плотности нефтепродукта, кг/м³; ρ

- предел допускаемой относительной погрешности средства обработки δN результатов измерений, %.

Примечания:

I Если для применяемых СИ и каналов ИС заданы как абсолютные, так и относительные погрешности, то для вычисления относительной погрешности измерений массы нефтепродукта применяют формулу (12).

2 Если заданы только относительные погрешности (как правило, для ИС), то для вычисления относительной погрешности измерений массы нефтепродукта применяют следующую формулу:

$$\delta m = \pm 1.1 \sqrt{\delta V^2 + \delta \rho^2 + \delta t^2 + \delta N^2}.$$

Пределы относительной погрешности измерений объема нефтепродукта (δV) в РГС при условиях измерений объема, %, вычисляют по формуле:

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^2} \ . \tag{18}$$

13.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям (δV_{α}), %, вычисляют по формуле:

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2}$$
 (19)

13.4 Пределы допускаемой относительной погрешности измерений массы отпущенного/принятого нефтепродукта (δM), %, вычисляют по формуле:

$$\delta M = \pm 1.1 \sqrt{\frac{m_1^2}{M^2} \cdot (A_1^2 + B_1^2) + \frac{m_2^2}{M^2} \cdot (A_2^2 + B_2^2) + \delta N^2} , \qquad (20)$$

где

$$A_{1} = \sqrt{(\delta K)^{2} + (K_{\phi 1} \delta H_{1}^{2}) + (G_{1} \cdot \delta \rho_{1})^{2}};$$
(21)

$$B_1 = \sqrt{(G_1 \cdot \beta \cdot 10^2 \cdot \Delta t_{\rho_1})^2 + (\beta \cdot 10^2 \cdot \Delta t_{V_1})^2};$$
 (22)

$$A_2 = \sqrt{(\delta K)^2 + (K_{\phi 2} \delta H_2^2) + (G_2 \cdot \delta \rho_2)^2};$$
 (23)

$$B_2 = \sqrt{(G_2 \cdot \beta \cdot 10^2 \cdot \Delta t_{\rho 2})^2 + (\beta \cdot 10^2 \cdot \Delta t_{\nu_2})^2},$$
 (24)

где δK

- относительная погрешность составления градуировочной таблицы РГС, %;

 $K_{\Phi 1}, K_{\Phi 2}$

- коэффициенты, учитывающие геометрическую форму РГС при измеряемых уровнях наполнения резервуара H_1 и H_2 ,

$$K_{\phi 1} = \frac{\Delta V \cdot H_1}{V_0}, \quad K_{\phi 2} = \frac{\Delta V \cdot H_2}{V_0},$$
 (25)

 $\delta H_1, \, \delta H_2$ - относительные погрешности измерений уровней нефтепродукта в резервуаре (величина уровня жидкости в РГС за вычетом величины уровня подтоварной воды), вычисляют по формулам:

$$\delta H_1 = \sqrt{\left(\frac{\Delta H^n}{H_1^n} \cdot 100\right)^2 + \left(\frac{\Delta H^n}{H_1^n} \cdot 100\right)^2},$$
 (26)

$$\delta H_2 = \sqrt{\frac{\Delta H^n}{H_2^n} \cdot 100}^2 + \left(\frac{\Delta H^n}{H_2^n} \cdot 100\right)^2}, \qquad (27)$$

 ΔH^{H}

абсолютная погрешность измерений уровня жидкости в РГС (уровень нефтепродукта + уровень подтоварной воды), мм;

 ΛH^B

- абсолютная погрешность измерений уровня подтоварной воды, мм;

 H_I^H

 уровень нефтепродукта (величина уровня жидкости в РГС за вычетом величины уровня подтоварной воды) до отпуска/приёма, мм.

 H_2^H

 уровень нефтепродукта (величина уровня жидкости в РГС за вычетом величины уровня подтоварной воды) после отпуска/приёма нефтепродукта из резервуара, мм:

$$H_i^n = H_i^o - H_i^s, i=1, 2;$$
 (28)

- уровень жидкости в РГС (уровень нефтепродукта + уровень $H_{1,2}^{O}$ подтоварной воды) до отпуска/приёма, после отпуска/приёма соответственно мм;

- уровень подтоварной воды отпуска/приёма, $H_{1,2}^{B}$ до после отпуска/приёма соответственно, мм;

- относительные погрешности измерения плотности нефтепродукта до и после отпуска соответственно, %, вычисляют по формулам:

$$\delta \rho_1 = \frac{\Delta \rho}{\rho_1} \cdot 100,$$

$$\delta \rho_2 = \frac{\Delta \rho}{\rho_2} \cdot 100;$$
(29)

Δρ - абсолютная погрешность измерений плотности нефтепродукта ареометром, $\kappa r/m^3$;

ареометром, кг/м³; ρ_l, ρ_2 - результаты измерений плотности нефтепродукта до и после отпуска соответственно, кг/м³;

 G_1, G_2 - коэффициенты, вычисляют по формулам:

$$G_{1} = \frac{1 + 2\beta \cdot t_{\nu_{1}}}{1 + 2\beta \cdot t_{\rho_{1}}},$$

$$G_{2} = \frac{1 + 2\beta \cdot t_{\nu_{2}}}{1 + 2\beta \cdot t_{\rho_{2}}};$$
(30)

- коэффициент объемного расширения нефтепродукта по таблице А.1 β **ΓΟCT P 8.595**:

 $t_{VI},\ t_{V2}$ - температура нефтепродукта при измерении объема до и после отпуска соответственно, °C; $\Delta t_{vI},\ \Delta t_{v2}$ - абсолютные погрешности измерения температуры нефтепродукта

при измерении ее объема, °С;

 $t_{\rho l}, t_{\rho 2}$ - температура соответствен нефтепродукта при измерении плотности соответственно, °С;

соответственно, °С; $\Delta t_{pl}, \Delta t_{p2}$ - абсолютные погрешности измерения температуры нефтепродукта при измерении ее плотности, °С;

- предел допускаемой относительной погрешности δN средства обработки результатов измерений. %.

14 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- Значение массы нефтепродукта, кг, округляют до целых значений. Значение объема нефтепродукта, ${\rm M}^3$, округляют до трех знаков после запятой.
- 14.2 Для учета нефтепродукта принимается значение массы в килограммах с округлением до целых значений.

15 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ АТТЕСТАЦИИ МЕТОДИКИ ИЗМЕРЕНИЙ

- 15.1 Аттестацию методики измерений проводят в соответствии с ГОСТ Р 8.563.
- 15.2 Аттестация методики измерений осуществляется на основе результатов метрологической экспертизы материалов разработки методики измерений, включающих документ (раздел, часть документа), регламентирующий методику измерений, применяемую

предприятием на конкретной учетной операции, и результаты экспериментального или расчетного оценивания характеристик погрешности методики измерений (относительных погрешностей измерений массы и объема нефтепродукта).

15.3 Аттестацию методик измерений, применяемых в сфере государственного регулирования обеспечения единства измерений, осуществляют метрологические службы предприятий, аккредитованные на право проведения аттестации методик измерений в соответствии с ПР 50.2.13 [10], государственные научные метрологические центры, органы Государственной метрологической службы.

При положительных результатах аттестации:

- оформляют свидетельство об аттестации методики измерений согласно форме ГОСТ Р 8.563;
- регистрируют методику измерений в Федеральном реестре методик измерений;
- документ, регламентирующий методику измерений, утверждают в порядке, установленном на предприятии (приказ, распоряжение);
- в документе, регламентирующем методику измерений, указывают «методика измерений аттестована» с обозначением предприятия, метрологическая служба которого осуществляла аттестацию, либо государственного научного метрологического центра или органа Государственной метрологической службы, выполнивших аттестацию методики измерений.

Примечания:

- 1. При разработке методик измерений на основе настоящей Рекомендации не допускается внесение изменений в формулы и алгоритмы расчета.
- 2. Допускается разработка одного документа на методику измерений для нескольких мест проведения учетных операций при использовании в них:
- идентичных мер вместимости (PГС);
- СИ одного типа;
- ИС одного типа, реализующих один физический принцип измерений, с идентичным перечнем и составом измерительных каналов, идентичным программным обеспечением.

БИБЛИОГРАФИЯ

- [1] ПБ 09-560-03 Правила промышленной безопасности нефтебаз и складов нефтепродуктов
- [2] ПОТ РМ 021-2002 Межотраслевые правила по охране труда при эксплуатации нефтебаз, складов ГСМ, стационарных и передвижных автозаправочных станций, утвержденные Постановлением Минтруда РФ от 6 мая 2002 г. № 33
- [3] ПОТ Р М-016-2001 РД 153-34.0-03.150-00 Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (с изменениями 2003 г.)
- [4] Федеральный закон «Об охране окружающей среды» от 10 января 2002 г. № 7-ФЗ
- [5] Федеральный закон «Об охране атмосферного воздуха» от 04 мая 1999 г. № 96-ФЗ
- [6] ИСО 91/2-1991 Рекомендация ИСО по применению таблиц измерения параметров нефти и нефтепродуктов, основанных на измерении при 20 °C
- [7] АСТМ Д 1250-2007 Стандартное руководство по применению таблиц измерения параметров нефти и нефтепродуктов
- [8] ПР 50.2.006-94 Правила по метрологии. ГСИ. Порядок проведения поверки средств измерений (с изменениями № 1)
- [9] ПР 50.2.009-94 Правила по метрологии. ГСИ. Порядок проведения испытаний и утверждения типа средств измерений
- [10] ПР 50.2.013-97 Правила по метрологии. ГСИ. Порядок аккредитации метрологических служб юридических лиц на право аттестации методик выполнения измерений и проведения метрологической экспертизы документов
- [11] МИ 2955-2005 Рекомендация. ГСИ. Типовая методика аттестации программного обеспечения средств измерений и порядок её проведения
- [12] МИ 2676-2001 Рекомендация. ГСИ. Методика метрологической аттестации алгоритмов и программ обработки данных результатов измерений при определении объёма и массы нефти и нефтепродуктов. Общие положения
- [13] МИ 2174-91 Рекомендация. ГСИ. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения
- [14] МИ 2800-2003 Рекомендация. ГСИ. Вместимость технологических нефтепроводов. Методика выполнения измерений геометрическим методом
- [15] ТУ 25-2021.003-88 Термометры ртутные стеклянные лабораторные
- [16] Правила защиты от статического электричества в производстве химической, нефтехимической и нефтеперерабатывающей промышленности, утвержденные Министерством нефтеперерабатывающей и нефтехимической промышленности 31.01.72 г.

Приложение А

Соотношение допустимых значений уровней нефтепродукта в РГС при приеме и отпуске, при которых обеспечиваются погрешности измерения массы по ГОСТ Р 8.595

Таблица А.1 Соотношения допустимых значений уровней нефтепродукта при приеме

Уровень		
до приема нефтепродукта, мм	после приема нефтепродукта, не менее, мм	
200	1200	
400 500	1500 1600	
700	1700 1800	
800	1900	

Уровень	
до приема нефтепродукта, мм	после приема нефтепродукта, не менее, мм
900	2000
1000	2200
1100	2300
1200	2400
1300	2500
1400	2700
1500	2800
1600	2900

Таблица А.2 Соотношения допустимых значений уровней нефтепродукта при отпуске

Уровень		
до отпуска нефтепродукта, мм	после отпуска нефтепродукта, не более,	
1100	мм 100	
1200	200	
1300	300	
1500	400	
1600	500	
1700	600	
1800	700	
1900	800	

Уровень		
до отпуска нефтепродукта, мм	после отпуска нефтепродукта, не более, мм	
2000	900	
2200	1000	
2300	1100	
2400	1200	
2500	1300	
2700	1400	
2800	1500	
2900	1600	

Приложение Б

Расчет плотности с учётом поправки на температурное расширение стекла ареометра

Б.1 При проведении измерений плотности ареометром значение плотности (ρ^*) вычисляется по формуле:

$$\rho^* - \rho \cdot K_a, \tag{5.1}$$

где ρ^* - плотность с учётом поправки на температурное расширение стекла ареометра;

 ρ - плотность нефтепродукта, измеренная ареометром, кг/м³;

 К_а - поправочный коэффициент на температурное расширение стекла ареометра, определяемый по формулам Б.2 или Б.3.

Б.2 Для ареометров, отградуированных при 15 °C, поправочный коэффициент вычисляют по формуле:

$$K_a=1-0,000023 (t_0-15)-0,00000002 (t_0-15) (t_0-15).$$
 (B.2)

Для ареометров, отградуированных при 20 °C, поправочный коэффициент вычисляют по формуле:

$$K_a=1-0,000025 (t_0-20),$$
 (B.3)

где t_0 - температура продукта в рабочих условиях, °С.

Приложение В

Примеры расчетов объёма, массы и оценки погрешностей

В.1 Пример 1

Вычисление массы нефтепродукта в РГС, при измерении плотности в лаборатории с приведением к стандартным условиям.

В.1.1 Исходные данные:

PCC-70	
базовая высота РГС	2740 мм
объем РГС	63784,00 дм ³
уровень нефтепродукта в РГС	$H_o = 2600 \text{ MM}$
уровень подтоварной воды в РГС	$H_{e} = 0$ mm
общий объем нефтепродукта и подтоварной воды в РГС,	$V_o = 62900,00$
определенный по измеренному уровню и градуировочной таблице	$\underline{\mathbf{д}}\mathbf{M}^3 = 62,90 \ \mathbf{M}^3$
объем подтоварной воды	$V_y = 0 \text{ m}^3$
объем нефтепродукта	$V_n = 62,90 \text{ m}^3$
температурный коэффициент линейного расширения материала стенки РГС	$\alpha_{cm} = 12,5 \cdot 10^{-6} \text{ 1/°C}$
температурный коэффициент линейного расширения материала рулетки с лотом (метроштока)	$a_s = 12,5 \cdot 10^{-6} \text{ 1/°C}$
температура нефтепродукта в РГС	$t_v = 25$ °C
температура нефтепродукта при измерении плотности	$t_{\rho} = 22 ^{\circ}\text{C}$
плотность нефтепродукта, измеренная ареометром,	$\rho_{tv} = 709 \text{ kg/m}^3$
плотность нефтепродукта, измеренная ареометром, отградуированным при 15 °C, в термостате при температуре	, ,,
измерения объема в РГС	
коэффициент объемного расширения нефтепродукта по таблице A.1 ГОСТ Р 8.595	β = 0,00123 1/°C
относительная погрешность составления градуировочной таблицы РГС (объемный метод поверки)	$\delta K = 0.25 \%;$
предел допускаемой относительной погрешности средства обработки результатов измерений	$\delta N = 0 \%$
объем нефтепродукта, приходящийся на 1 мм высоты наполнения РГС на измеряемом уровне наполнения, м ³ /мм, по градуировочной таблице	$\Delta V = 13,70 \text{ дм}^3/\text{мм} = 0,01370 \text{ м}^3/\text{мм}$
абсолютная погрешность измерений уровня жидкости в РГС (уровень	$\Delta H^{H} = 2 \text{ MM}$
нефтепродукта + уровень подтоварной воды)	
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^{\circ} = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта	$\Delta \rho = 0.5 \text{ kg/m}^3$
ареометром, отградуированным при 15 °C	
абсолютная погрешность измерений температуры нефтепродукта при	$\Delta tv = 0.5$ °C
измерении его объема	
абсолютная погрешность измерений температуры нефтепродукта при измерении его плотности	$\Delta t \rho = 0.5 ^{\circ}\text{C}$

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

- В.1.2 Проведение расчета:
- В.1.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_v \cdot \left[1 + (2\alpha_{cm} + \alpha_s) \cdot (t_v - 20) \right] = 62.90 \cdot \left[1 + (2 \cdot 12.5 \cdot 10^{-6} + 12.5 \cdot 10^{-6}) \cdot (25 - 20) \right] = 62.912 \,\text{m}^3.$$

- В.1.2.2 Определение массы при приведении плотности и объема нефтепродукта к 15 °C:
- В.1.2.2.1 Плотность вычисляют по формуле (Б.1) с учётом:
- поправки на температурное расширение стекла ареометра;
- условия, что $t_{\theta} = l_{\rho}$:

$$\rho^* = \rho \cdot K_a = 709 (1 - 0.000023 (22 - 15) - 0.00000002 (22 - 15) (22 - 15)) = 708.9 \text{ kg/m}^3$$
.

- В.1.2.2.2 Плотность и объем нефтепродукта приводят к 15 °C по таблицам 53В и 54В [7] в следующей последовательности:
- В.1.2.2.3 По таблице 53В в строке «плотность при температуре измерения» находят величину 709,0 и на уровне температуры 22 °C отмечают соответствующую ей плотность при 15 °C: ρ_{15} = 715,4 кг/м³.

<u>Примечание</u> – При использовании таблицы 53В допускается проводить математическую интерполяцию.

В.1.2.2.4 По таблице 54В в строке «плотность при 15 °С» находят ближайшее к полученному по таблице 53В значению плотности 715,4 кг/м 3 значение 716,0 кг/м 3 и на уровне температуры 25 °С находят поправочный коэффициент на объем нефтепродукта (K) – 0,9871.

<u>Примечание</u> – При использовании таблицы 54В проводить математическую интерполяцию между температурой и плотностью не допускается.

В.1.2.3 Объем нефтепродукта, приведенный к 15 °C, вычисляют по формуле:

$$V_{15} = V \cdot K = 62,912 \cdot 0,9871 = 62,100 \,\mathrm{m}^3$$
.

В.1.2.4 Массу нефтепродукта вычисляют по формуле (7):

$$m = V_{15} \cdot \rho_{15} = 62,100 \cdot 715,4 = 44427 \text{ kg}.$$

- В.1.3 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта.
- В.1.3.1 Пределы относительной погрешности измерений массы нефтепродукта в РГС вычисляют по формуле (12):

$$\begin{split} \mathcal{S} \textit{m} &= \pm 1{,}1\sqrt{\mathcal{S}\!K^2 + \! (K_\phi \cdot \mathcal{S}\!H)^2 + \! G^2(\mathcal{S}\!\rho^2 + \! \beta^2 \cdot \! 10^4 \cdot \! \Delta\!t_\rho^2) + \! \beta^2 \cdot \! 10^4 \cdot \! \Delta\!t_v^2 + \! \delta\,N^2} \;, \\ K_\phi &= \frac{\Delta V \cdot H}{V_0} = \frac{0{,}01370 \cdot 2600}{62{,}90} = 0{,}57 \;, \\ H &= H_o - H_s = 2600 - 0 = 2600 \; \text{mm}, \end{split}$$

$$\delta H = \sqrt{\left(\frac{\Delta H^{s}}{H} \cdot 100\right)^{2} + \left(\frac{\Delta H^{s}}{H} \cdot 100\right)^{2}} = \sqrt{\left(\frac{2}{2600} \cdot 100\right)^{2}} = 0,077\%,$$

$$G = \frac{1 + 2 \cdot \beta t_{v}}{1 + 2 \cdot \beta t_{\rho}} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 22} = 1,007,$$

$$\delta \rho = \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0.5}{709} \cdot 100 = 0,07\%,$$

$$\delta m = \pm 1,1\sqrt{0,25^2 + (0,57 \cdot 0,077)^2 + 1,007^2 \cdot (0,0705^2 + 0,00123^2 \cdot 10^4 \cdot 0,5^2) + (0,00123)^2 \cdot 10^4 \cdot 0,5^2 + 0}$$

$$\Delta m = \pm 0,31\%.$$

В.1.3.2 Пределы относительной погрешности измерений объема нефтепродукта в РГС при условиях его измерений вычисляют по формуле (18):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^2} = \pm \sqrt{0.25^2 + 0.077^2} = \pm 0.26\%.$$

В.1.3.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (19):

$$\delta V_{cy} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2} = \pm 1.1 \sqrt{0.26^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.29\%$$

В.2 Пример 2

Вычисление массы нефтепродукта в РГС при измерении плотности в лаборатории с использованием термостата (для приведения результатов измерения к условиям измерения объема).

Б.2.1 Исходные данные:

DEC 70	
PΓC-70	
базовая высота РГС	2740 мм
объем РГС	63784,00 дм ³
уровень нефтепродукта в РГС	Ho = 2600 MM
общий объем нефтепродукта и подтоварной воды в РГС,	Vo = 62900,00
определенный по измеренному уровню и градуировочной таблице	$\text{дм}^3 = 62,90 \text{ M}^3$
объем подтоварной воды	$Ve = 0 \text{ M}^3$
объем нефтепродукта	$V_H = 62,90 \text{ m}^3$
температурный коэффициент линейного расширения материала	$\alpha_{cm} = 12,5 \cdot 10^{-6} \text{ 1/°C}$
стенки РГС	
температурный коэффициент линейного расширения материала	$\alpha_s = 12,5 \cdot 10^{-6} \text{ 1/°C}$
рулетки с лотом (метроштока)	
температура нефтепродукта в РГС	$t_v = 25 ^{\circ}\mathrm{C}$
температура нефтепродукта при измерении плотности (с	$t_{\rho} = 25 ^{\circ}\mathrm{C}$
использованием термостата)	
плотность нефтепродукта, измеренная ареометром,	$\rho_{tv} = 706,5 \text{ KF/M}^3$
отградуированным при 15 °C, в термостате при температуре	
измерения объема в РГС	
коэффициент объемного расширения продукта нефтепродукта по	$\beta = 0.00123 \ 1/^{\circ}C$

таблице А.1 ГОСТ Р 8.595	
относительная погрешность составления градуировочной таблицы РГС (объемный метод поверки)	$\delta K = 0.25 \%$
предел допускаемой относительной погрешности средства обработки результатов измерений	$\delta N = 0 \%$
объем нефтепродукта, приходящийся на 1 мм высоты наполнения РГС на измеряемом уровне наполнения, м ³ /мм, по градуировочной таблице	$\Delta V = 13,70 \text{ дм}^3/\text{мм} = 0,01370 \text{ м}^3/\text{мм}$
абсолютная погрешность измерений уровня жидкости в РГС (уровень нефтепродукта + уровень подтоварной воды)	$\Delta H^n = 2 \text{ MM}$
абсолютная погрешность измерений уровня подтоварной воды	$\Delta H^6 = 0 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта ареометром	$\Delta \rho = 0.5 \text{ KeV/M}^3$
абсолютная погрешность измерений температуры нефтепродукта при измерении его объема	$\Delta t_v = 0.5 ^{\circ}\text{C}$
абсолютная погрешность измерений температуры нефтепродукта при измерении его плотности	$\Delta t_{\rho} = 0.5 ^{\circ}\text{C}$

В.2.2 Проведение расчета:

В.2.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_{H} \cdot \left[1 + (2\alpha_{cm} + \alpha_{s}) \cdot (\ell_{v} - 20) \right] = 62,90 \cdot \left[1 + (2 \cdot 12,5 \cdot 10^{-6} + 12,5 \cdot 10^{-6}) \cdot (25 - 20) \right] = 62,912 \text{ m}^{3},$$

$$V^{*} = V = 62.912 \text{ m}^{3}.$$

- В.2.2.2 Плотность вычисляют по формуле (Б.1) с учётом:
- поправки на температурное расширение стекла ареометра;
- условия, что $t_0 = t_0$:

$$\rho^* - \rho \cdot K_a = 706,5 (1 - 0,000023 (25 - 15) - 0,00000002 (25 - 15) (25 - 15)) = 704,9 \text{ kg/m}^3$$
.

В.2.2.3 Массу при приведении плотности к условиям измерения объема вычисляют по формуле:

$$m = V^* \cdot \rho^* = 62,912 \cdot 704,9 = 44347 \text{ KG}.$$

- В.2.2.4 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта:
- В.2.2.4.1 Пределы относительной погрешности измерений массы нефтепродукта в РГС вычисляют по формуле (12):

$$\delta m = \pm 1.1 \sqrt{\delta K^2 + (K_{\phi} \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_{\rho}^2) + \beta^2 \cdot 10^4 \cdot \Delta t_{\nu}^2 + \delta N^2},$$

$$K_{\phi} = \frac{\Delta V \cdot H}{V_0} = \frac{0.01370 \cdot 2600}{62.90} = 0.57,$$

$$H = H_0 - H_0 = 2600 \cdot 0 = 2600 \text{ MM},$$

$$\delta H = \sqrt{\left(\frac{\Delta H''}{H} \cdot 100\right)^2 + \left(\frac{\Delta H''}{H} \cdot 100\right)^2} = \sqrt{\left(\frac{2}{2600} \cdot 100\right)^2} = 0,077 \%,$$

$$G = \frac{1 + 2 \cdot \beta t_v}{1 + 2 \cdot \beta t_\rho} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 25} = 1 ,$$

$$\delta \rho = \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0,5}{706,5} \cdot 100 = 0,0707 \% ,$$

 $\delta m = \pm 1.1 \sqrt{0.25^2 + (0.57 \cdot 0.077)^2 + (0.0707^2 + 0.00123^2 \cdot 10^4 \cdot 0.5^2) + 0.00123^2 \cdot 10^4 \cdot 0.5^2 + 0} = \pm 0.31 \%.$

В.2.2.4.2 Пределы относительной погрешности измерений объема нефтепродукта в РГС при условиях его измерений вычисляют по формуле (18):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^2} = \pm \sqrt{0.25^2 + 0.077^2} = \pm 0.26 \%.$$

В.2.2.4.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле (19):

$$\delta V_{\sigma v} = \pm 1.1 \sqrt{\delta V^2 + (\beta \cdot 100)^2 \cdot \Delta t_V^2} = \pm 1.1 \sqrt{0.26^2 + (0.00094 \cdot 100)^2 \cdot 0.5^2} = \pm 0.29\%$$

В.З Пример 3

Вычисление массы нефтепродукта при измерении плотности автоматизированными СИ или измерительным каналом плотности в составе ИС (при температуре измерения объема).

В.3.1 Исходные данные:

PCC-70	
базовая высота РГС	2740 мм
объем РГС	63784,00 дм ³
уровень нефтепродукта в РГС	Ho = 2600 MM
общий объем нефтепродукта и подтоварной воды в РГС,	Vo = 62900,00
определенный по измеренному уровню и градуировочной таблице	$дм^3 = 62,90 \text{ м}^3$
объем подтоварной воды	$V_{\mathbf{g}} = 0 \mathbf{M}^3$
плотность нефтепродукта при температуре измерения объема	$\rho_{tv} = 709 \text{ kg/m}^3$
температурный коэффициент линейного расширения материала	$\alpha_{cm} = 12,5 \cdot 10^{-6} \text{ 1/°C}$
стенки РГС	
температурный коэффициент линейного расширения материала	$a_s = 12,5 \cdot 10^{-6} \text{ 1/°C}$
рулетки с лотом	
температура нефтепродукта в РГС	$t_v = 25$ °C
коэффициент объемного расширения нефтепродукта по таблице А.1 ГОСТ Р 8.595	$\beta = 0.00123 \text{ 1/°C}$
относительная погрешность составления градуировочной таблицы	$\delta K = 0.25 \%$
РВС (геометрический метод поверки)	
объем нефтепродукта, приходящийся на 1 мм высоты наполнения	$\Delta V = 13,70$
РГС на измеряемом уровне наполнения, м ³ /мм, по градуировочной	$дм^3/мм=0,01370$
таблице	M^3/MM
абсолютная погрешность измерений уровня нефтепродукта	$\Delta H = 2 \text{ MM}$

относительная погрешность канала измерения плотности нефтепродукта	$\delta = 0.03\%$
абсолютная погрешность измерений температуры нефтепродукта при измерении объема	$\Delta t_v = 0.5 ^{\circ}\text{C}$
абсолютная погрешность измерений температуры нефтепродукта при измерении плотности	$\Delta t_{\rho} = 0.5 ^{\circ}\mathrm{C}$
предел допускаемой относительной погрешности средств обработки результатов измерений	$\delta N = 0.05 \%$

<u>Примечание</u> — При использовании ИС с каналом измерений уровня температурный коэффициент линейного расширения материала рулетки с лотом (α_s) принимается равным нулю.

- В.3.2 Проведение расчета:
- В.3.2.1 Объем нефтепродукта при температуре измерения объема вычисляют по формуле (1):

$$V = V_n \cdot \left[1 + (2\alpha_{cm} + \alpha_s) \cdot (t_v - 20) \right] = 62,90 \cdot \left[1 + (2 \cdot 12,5 \cdot 10^{-6} + 0) \cdot (25 - 20) \right] = 62,908, \, \text{m}^3,$$

$$V^* = V = 62,908 \, \text{m}^3.$$

- В.3.2.2 Плотность вычисляют по формуле (Б.1) с учётом:
- поправки на температурное расширение стекла ареометра;
- условия, что $t_{\theta} = t_{\rho}$:

$$\rho^* = \rho \cdot K_a = 709 (1 - 0.000023 (25 - 15) - 0.00000002 (25 - 15) (25 - 15)) = 707.4 \text{ kg/m}^3$$

В.3.2.3 Массу при приведении плотности к условиям измерения объема вычисляют по формуле:

$$m = V^* \cdot \rho^* = 62,908 \cdot 707,4 = 44501$$
 Kr.

- В.3.2.4 Вычисление пределов относительной погрешности измерений массы и объема нефтепродукта:
- В.3.2.4.1 Пределы относительной погрешности измерений массы нефтепродуктов вычисляют по формуле (12):

$$\begin{split} \delta \, \mathbf{m} &= \pm \, 1, \! 1 \sqrt{\delta K^2 + (K_\phi \cdot \delta H)^2 + G^2 (\delta \rho^2 + \beta^2 \cdot 10^4 \cdot \Delta t_\rho^2) + \beta^2 \cdot 10^4 \cdot \Delta t_\nu^2 + \delta \, N^2} \;, \\ K_\phi &= \frac{\Delta V \cdot H}{V_0} = \frac{0,01370 \cdot 2600}{62,90} = 0,57 \;, \\ H &= H_o - H_\sigma = 2600 - 0 = 2600 \; \mathrm{mm} \;, \\ \delta H &= \sqrt{\left(\frac{\Delta H^n}{H} \cdot 100\right)^2 + \left(\frac{\Delta H^\sigma}{H} \cdot 100\right)^2} = \sqrt{\left(\frac{2}{2600} \cdot 100\right)^2} = 0,077 \; \% \;, \\ G &= \frac{1 + 2 \cdot \beta t_\nu}{1 + 2 \cdot \beta t_\rho} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 25} = 1 \;, \\ \delta \rho &= 0,03 \; \% \;, \end{split}$$

$$\delta m = \pm 1.1 \sqrt{0.25^2 + (0.57 \cdot 0.077)^2 + 0.03^2 + 0.00123^2 \cdot 10^4 \cdot 0.05^2 + 0.05^2} = \pm 0.29 \%.$$

В.3.2.4.2 Пределы относительной погрешности измерений объема нефтепродукта в РГС при условиях его измерений вычисляют по формуле (18):

$$\delta V = \pm \sqrt{\delta K^2 + \delta H^2} = \pm \sqrt{0.25^2 + 0.077^2} = \pm 0.26 \%$$
.

В.3.2.4.3 Пределы относительной погрешности измерений объема нефтепродукта, приведенного к стандартным условиям, вычисляют по формуле:

$$\delta V_{cv} = \pm 1, 1\sqrt{\delta V^2 + \delta \rho^2} = \pm 1, 1\sqrt{0,26^2 + 0,03^2} = \pm 0,29 \%$$
.

В.4 Пример 4

Расчет массы нефтепродукта, отпущенного из резервуара, и относительной погрешности измерения массы отпущенного нефтепродукта.

В.4.1 Исходные данные:

<u>Примечание</u> — Для примера приняты допущения, что температура и плотность нефтепродукта до и после отпуска не изменились и подтоварная вода отсутствует.

масса нефтепродукта в РГС до отпуска	$m_1 = 50149 \text{ кг}$
масса нефтепродукта в РГС после отпуска	$m_2 = 16276 \text{ кг}$
температура нефтепродукта в РГС (до отпуска и после отпуска)	<i>t</i> _v =25 °C
температура нефтепродукта при измерении плотности	$t_{\rho} = 22 ^{\circ}\text{C}$
плотность нефтепродукта (до отпуска и после отпуска),	$\rho = 709 \text{ kg/m}^3$
измеренная ареометром при 22 °C	
	$\beta = 0.00123 \text{ 1/°C}$
таблице А.1 ГОСТ Р 8.595	
коэффициенты, учитывающие геометрическую форму РГС при	U 0,01370 · 2600
измеряемых уровнях наполнения резервуара H_1 и H_2	$K_{\phi 1} = \frac{0.01370 \cdot 2600}{62.90} = 0.57$
	0.0293.970
	$K_{\phi 2} = \frac{0.0293 \cdot 970}{20.417} = 1.392$
относительная погрешность составления градуировочной	$\delta K = 0,1\%$
таблицы РГС	<u> </u>
предел допускаемой относительной погрешности средства	$\delta N = 0 \%$
обработки результатов измерений	
уровень нефтепродукта в РГС при измерении (уровень	
наполнения) – H , объем нефтепродукта в РГС – V и объем	
нефтепродукта, приходящийся на 1 мм высоты наполнения	
РГС на измеряемом уровне – ΔV :	
до отпуска	$H_1 = 2600 \text{ MM},$
	$V_{0I} = 62,900 \text{ m}^3,$
	$\Delta V_l = 13,70 \text{ дм}^3$
после отпуска	$H_2 = 970 \text{ MM},$
	$V_{02} = 20,413 \text{ m}^3,$
	$\Delta V_2 = 29,30 \text{ дм}^3$
абсолютная погрешность измерений уровня нефтепродукта	$\Delta H = 2 \text{ MM}$
абсолютная погрешность измерений плотности нефтепродукта	$\Delta \rho = 0.5 \text{ KG/M}^3$

ареометром				
абсолютная	погрешность	измерений	температуры	<i>∆tv</i> =0,5 °C
нефтепродукта	при измерении ег	о объема		<u> </u>
абсолютная	погрешность	измерений	температуры	Δtρ=0,5 °C
нефтепродукта	ı при измерении ег	о плотности		
предел допус	каемой относите.	тьной погрешт	ности средства	$\delta N = 0.05 \%$
обработки резу	льтатов измерени	й		

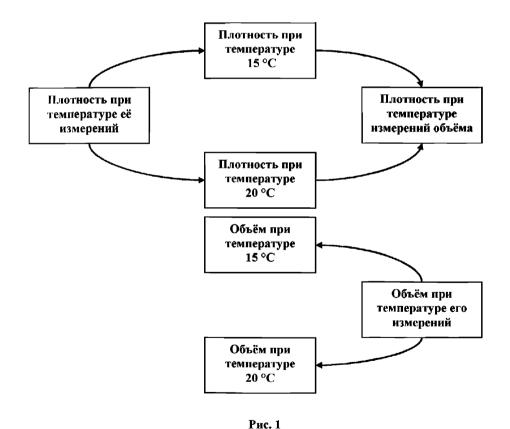
В.4.2 Проведение расчета:

В.4.2.1 Массу отпущенного нефтепродукта вычисляют по формуле (11):

$$M = m_1 - m_2 = 50149 - 16276 = 33873$$
 KT.

В.4.2.2 Пределы относительной погрешности измерений массы отпущенного нефтепродукта вычисляют по формуле (20):

$$\begin{split} \delta M &= \pm 1.1 \sqrt{\frac{m_1^2}{M^2}} \cdot (A_1^2 + B_1^2) + \frac{m_2^2}{M^2} \cdot (A_2^2 + B_2^2) + \delta N^2 \ , \\ \delta H_1 &= \sqrt{\left(\frac{\Delta H^n}{H_1^n} \cdot 100\right)^2} + \left(\frac{\Delta H^n}{H_1^n} \cdot 100\right)^2 = \sqrt{\left(\frac{2}{2600} \cdot 100\right)^2} = 0,077 \, , \\ \delta H_2 &= \sqrt{\left(\frac{\Delta H^n}{H_2^n} \cdot 100\right)^2} + \left(\frac{\Delta H^n}{H_2^n} \cdot 100\right)^2 = \sqrt{\left(\frac{2}{970} \cdot 100\right)^2} = 0,206 \, , \\ G_1 &= G_2 = \frac{1 + 2\beta \cdot t_p}{1 + 2\beta \cdot t_p} = \frac{1 + 2 \cdot 0,00123 \cdot 25}{1 + 2 \cdot 0,00123 \cdot 22} = 1,005 \, , \\ \delta \rho_1 &= \delta \rho_2 = \frac{\Delta \rho}{\rho} \cdot 100 = \frac{0.5}{709} \cdot 100 = 0,07 \, \% \, , \\ A_1 &= \sqrt{\left(\delta K\right)^2 + \left(K_{\phi 1} \delta H_1^2\right) + \left(G_1 \cdot \delta \rho_1\right)^2} = \sqrt{0,25^2 + \left(0,57 \cdot 0,077^2\right) + \left(1,005 \cdot 0,07\right)^2} = 0,264 \, , \\ B_1 &= \sqrt{\left(\delta K\right)^2 + \left(K_{\phi 2} \delta H_2^2\right) + \left(\beta \cdot 10^2 \cdot \Delta t_{\nu_1}\right)^2} = \sqrt{\left(1,005 \cdot 0,00123 \cdot 10^2 \cdot 0,5\right)^2 + \left(0,00123 \cdot 10^2 \cdot 0,5\right)^2} = 0,089 \, , \\ A_2 &= \sqrt{\left(\delta K\right)^2 + \left(K_{\phi 2} \delta H_2^2\right) + \left(G_2 \cdot \delta \rho_2\right)^2} = \sqrt{0,25^2 + \left(1,392 \cdot 0,206^2\right) + \left(1,005 \cdot 0,07\right)^2} = 0,354 \, , \\ B_2 &= B_1 = 0,089 \, , \\ \delta M &= \pm 1,1\sqrt{\frac{50149^2}{33873^2} \cdot \left(0,264^2 + 0,089^2\right) + \frac{16276^2}{33873^2} \cdot \left(0,354^2 + 0,089^2\right) + 0,05^2} = \pm 0,49\% \, . \end{split}$$


Приложение Г (справочное)

Алгоритмы приведения объёма и плотности к стандартным и рабочим условиям

Настоящее приложение содержит алгоритмы, реализованные в ΠO^3 :

- приведение плотности продукта от рабочих условий к стандартным условиям (температура продукта 15 °С или 20 °С, избыточное давление продукта 0 Па);
- приведение объема продукта от рабочих условий к стандартным условиям (температура продукта 15 °С или 20 °С, избыточное давление продукта 0 Па);
- приведение плотности продукта от стандартных условий (температура продукта 15 °С или 20 °С, избыточное давление продукта 0 Па) к рабочим условиям;
- приведение плотности продукта от рабочих условий к условиям измерений объёма.

Схема приведения объёма и плотности к стандартным и рабочим условиям представлена на рис. 1:

³ Алгоритмы не предназначены для расчётов вручную.

Г.1 Приведение плотности продукта от рабочих условий к стандартным условиям (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па).

Для выполнения вычислений используются значения следующих величин:

 t_0 - температура продукта в рабочих условиях, °С;

 P_{θ} - избыточное давление продукта в рабочих условиях, кПа;

 ρ_{θ} - плотность продукта в рабочих условиях, кг/м³;

T - стандартная температура (15 °C или 20 °C), °C;

P - стандартное избыточное давление (0 Па), кПа.

<u>Примечание</u> — В случае, если плотность продукта измеряется ареометром, в результат измерения плотности вносится поправка на температурное расширение стекла для ареометров, рассчитываемая по формуле:

— для ареометров, отградуированных при 15 °C, поправочный коэффициент вычисляют по формуле:

$$K_a=1-0.000023 (t_0-15)-0.00000002 (t_0-15) (t_0-15),$$
 (\Gamma.1)

для ареометров, отградуированных при 20 °C, поправочный коэффициент вычисляют по формуле:

$$K_a = 1 - 0,000025 (t_0 - 20).$$
 (Γ.2)

В результате расчёта получают значения следующих величин:

 ρ_T - плотность продукта при стандартных условиях (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па), кг/м³;

 C_{TL} - корректирующий фактор на температуру продукта;

 C_{PL} - корректирующий фактор на давление продукта;

 F_P - фактор сжимаемости продукта, кПа⁻¹;

 C_{TPL} - корректирующий фактор на температуру и давление продукта.

Ниже приведён алгоритм вычислений.

Γ .1.8 Температура продукта приводится к °F:

$$t_{O,F} = 1.8t_O + 32$$
. (Γ .3)

Проверяют выполнение условий по температуре:

$$-58 \le t_{O.F} \le 302$$
. ($\Gamma.4$)

Если условия не выполняются, то расчет завершается.

Г.1.9 Рассчитывается избыточное давление продукта в psig:

$$P_{PSI} = \frac{P_O}{6.894757}. ag{(\Gamma.5)}$$

Проверяют выполнение условий по давлению:

$$0 \le P_{PSI} \le 1500$$
. ($\Gamma.6$)

Если условия не выполняются, то расчет завершается.

Г.1.10 Проверяют выполнение условий по плотности:

$$\rho_{\min} \le \rho_{\Omega} \le \rho_{\max}, \tag{\Gamma.7}$$

где значения максимального и минимального значения плотности:

$ ho_{\min}$, $_{\mathrm{K}\Gamma}\!/_{\mathrm{M}}{}^{3}$	$\rho_{\rm max}$, $_{\rm K\Gamma/M}^3$	
470,4	1209,5	

Если условия не выполняются, то расчет завершается.

Γ .1.11 Определяют максимальное и минимальное значение плотности при стандартных условиях (60 °F):

$ ho_{ m 60min}$, $_{ m K\Gamma/M}^3$	ρ _{60 max} , _{ΚΓ} /м ³	
610,6	1163,5	

Г.1.12 Определяют первое приближение плотности при стандартных условиях (60 °F):

$$\rho_{60}^{(m)} = \rho_O, \tag{\Gamma.8}$$

$$\rho_{60}^{(0)} = \begin{cases}
\rho_{60,\text{min}} & \text{if} \quad \rho_O < \rho_{60,\text{min}} \\
\rho_{60,\text{max}} & \text{if} \quad \rho_O > \rho_{60,\text{max}}
\end{cases}$$
(Γ.9)

Г.1.13 Пересчитывают температуру продукта из температурной шкалы ITS-90 в температурную шкалу ITS-68:

$$t = t_0 - \Delta . \tag{\Gamma.10}$$

Значение 4, рассчитывают по формуле:

$$\Delta_{1} = (a_{1} + (a_{2} + (a_{3} + (a_{4} + (a_{5} + (a_{6} + (a_{7} + a_{8}\tau)\tau)\tau)\tau)\tau)\tau)\tau)\tau,$$
 (\Gamma.11)

где

$$\tau = \frac{t_o}{630} \,. \tag{\Gamma.12}$$

Значения коэффициентов a_i :

i	a_{i}
1	- 0,148759
2	- 0,267408
3	1,080760
4	1,269056
5	- 4,089591
6	- 1,871251
7	7,438081
8	- 3,536296

 Γ .1.14 Рассчитывают плотность продукта при стандартных условиях (60°F) соответствующую температурной шкале ITS-68:

$$\rho^{*(m)} = \rho_{60}^{(m)} \left\{ 1 + \frac{exp[A(1+0.8A)-1]}{1+A(1+1.6A)B} \right\}, \tag{\Gamma.13}$$

где

$$A = \frac{\delta_{60}}{2} \left[\left(\frac{K_0}{\rho_{60}^{(m)}} + K_1 \right) \frac{1}{\rho_{60}^{(m)}} + K_2 \right], \tag{\Gamma.14}$$

$$B = \frac{2K_0 + K_1 \cdot \rho_{60}^{(m)}}{K_0 + (K_1 + K_2 \cdot \rho_{60}^{(m)})\rho_{60}^{(m)}}.$$
 (\Gamma.15)

Значение $\delta_{60} = 0,0134979547.$

Значения K_0 , K_1 , K_2 определяют по таблице $\Gamma.1$.

Таблица Г.1

Продукт	Плотность	K_{θ}	K_I	K_2
Дизельное топливо	$838,3127 \le \rho_{60} \le 1163,5$	103,8720	0,2701	0,0
Авиационное топливо	787,5195≤ ρ ₆₀ < 838,3127	330,3010	0,0	0,0
Переходная зона	770,3520≤ p ₆₀ < 787,5195	1489,0670	0,0	- 0,00186840
Бензины	$610,6 \le \rho_{60} < 770,3520$	192,4571	0,2438	0,0

Г.1.15 Рассчитывают коэффициент объемного расширения продукта при 60 °F:

$$\alpha_{60}^{(m)} = \left(\frac{K_0}{\rho^{*(m)}} + K_1\right) \frac{1}{\rho^{*(m)}} + K_2.$$
 (Γ.16)

Г.1.16 Рассчитывают корректирующий фактор на температуру продукта:

$$C_{77}^{(m)} = exp\left\{-\alpha_{60}^{(m)} \cdot \Delta t \Big| 1 + 0.8\alpha_{60}^{(m)} \cdot (\Delta t + \delta_{60}) \right\}, \tag{\Gamma.17}$$

где

$$\Delta t = t - 60.0068749. \tag{\Gamma.18}$$

Значение δ_{60} берут по Γ .1.7.

Г.1.17 Рассчитывают коэффициент сжимаемости продукта:

$$F_{P,PSI}^{(m)} = exp\left(-1,9947 + 0,00013427t + \frac{793920 + 2326,0t}{\left(\rho^{*(m)}\right)^2}\right). \tag{\Gamma.19}$$

Г.1.18 Рассчитывают корректирующий фактор на избыточное давление продукта:

$$C_{PL}^{(m)} = \frac{1}{1 - 10^{-5} F_{P,PSI}^{(m)} \cdot P_{PSI}}.$$
 (Γ.20)

Г.1.19 Рассчитывают корректирующий фактор на температуру и избыточное давление продукта:

$$C_{TPL}^{(m)} = C_{TL}^{(m)} \cdot C_{PL}^{(m)}$$
 (Γ .21)

Γ .1.20 Рассчитывают $\delta \rho_{\Omega}^{(m)}$:

$$\delta \rho_Q^{(m)} = \rho_Q - \rho_{60}^{(m)} \cdot C_{TPI}^{(m)}. \tag{\Gamma.22}$$

Проверяют выполнение условия:

$$\left|\delta \rho_O^{(m)}\right| < 0,000001. \tag{\Gamma.23}$$

Если условие выполняется, то переходят к Г.1.17.

Г.1.21 Рассчитывают поправку к плотности при стандартных условиях:

$$\Delta \rho_{60}^{(m)} = \frac{E^{(m)}}{1 + D_{T}^{(m)} + D_{P}^{(m)}},\tag{\Gamma.24}$$

где

$$E^{(m)} = \frac{\rho_O}{C_{TL}^{(m)} \cdot C_{PL}^{(m)}} - \rho_{60}^{(m)}, \tag{\Gamma.25}$$

$$D_P^{(m)} = \frac{2C_{PL}^{(m)} \cdot P_O \cdot F_P^{(m)} (7,93920 + 0,02326t_O)}{\left(\rho_{60}^{(m)}\right)^2},\tag{\Gamma.26}$$

$$D_T^{(m)} = D_a^{(m)} \cdot \alpha_{60}^{(m)} \cdot \Delta t \Big(1 + 1.6 \alpha_{60}^{(m)} \cdot \Delta t \Big), \tag{\Gamma.27}$$

где

$$\Delta t = t_o - 60. \tag{\Gamma.28}$$

Значения D_a приведены в таблице Γ .2.

Таблина Г.2

Продукт	Плотность	D_a
Дизельное топливо	$838,3127 \le \rho_{60} \le 1163,5$	1,3
Авиационное топливо	$787,5195 \le \rho_{60} < 838,3127$	2,0
Переходная зона	$770,3520 \le \rho_{60} < 787,5195$	8,5
Бензины	$610,6 \le \rho_{60} \le 770,3520$	1,5

Γ .1.22 Рассчитывают значение $\rho_{60}^{(m+1)}$:

$$\rho_{60}^{(m+1)} = \rho_{60}^{(m)} + \Delta \rho_{60}^{(m)}, \tag{\Gamma.29}$$

Если
$$\rho_{60}^{(m)} + \Delta \rho_{60}^{(m)} < \rho_{60min}$$
, тогда $\Delta \rho_{60}^{(m)} = \rho_{60min} - \rho_{60}^{(m)}$. (Г.30)

Если
$$\rho_{60}^{(m)} + \Delta \rho_{50}^{(m)} > \rho_{60max}$$
, тогда $\Delta \rho_{60}^{(m)} = \rho_{60max} - \rho_{60}^{(m)}$. (Г.31)

Г.1.23 Рассчитывают номер итерации:

$$m = m + 1. (\Gamma.32)$$

Проверяют выполнение условия:

$$m \le 15$$
. $(\Gamma.33)$

Если условие выполняется, то переходят к 1.7.

Если условие не выполняется, то расчет завершается.

Г.1.24 Проверяют выполнение условия:

$$\rho_{60\,\text{min}} \le \rho_{60} \le \rho_{60\,\text{max}} \,.$$
(Γ .34)

Если условие не выполняется, то расчет завершается.

Значения максимальной плотности $\rho_{60_{
m max}}$ и минимальной плотности $\rho_{60_{
m min}}$ приведены в $\Gamma.1.4.$

 Γ .1.25 Рассчитывают корректирующий фактор по температуре при приведении плотности продукта от ho_{60} к ho_{7} .

Корректирующий фактор по температуре $C_{TI,60}$ при приведении плотности продукта от ρ_{60} к ρ_{T} рассчитывают по $\Gamma.1.6$ - $\Gamma.1.9$ при $t_0 = T$ и $P_0 = P$.

Г.1.26 Рассчитывают плотность при стандартных условиях:

$$\rho_r = \rho_{60} \cdot C_{TPL60}. \tag{\Gamma.35}$$

Г.1.27 Рассчитывают корректирующий фактор по температуре:

$$C_{TL} = \frac{C_{TL}^{(m)}}{C_{TL 60}}$$
 (Γ .36)

Г.1.28 Рассчитывают корректирующий фактор избыточному давлению:

$$C_{PL} = \frac{C_{PL}^{(m)}}{C_{PL,60}} = C_{PL}^{(m)}. \tag{\Gamma.37}$$

Г.1.29 Рассчитывают корректирующий фактор по температуре и избыточному давлению:

$$C_{TPL} = \frac{C_{TL}^{(m)} \cdot C_{PL}^{(m)}}{C_{TL,60}}.$$
 (Γ.38)

- Г.1.30 Округляют корректирующий фактор по температуре до 0,00001.
- Г.1.31 Рассчитывают коэффициент сжимаемости продукта:

$$F_{P} = \frac{F_{P,PSI}}{6,894757} \,. \tag{\Gamma.39}$$

Г.2 Приведение объема продукта от рабочих условий к стандартным условиям (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па).

Для выполнения вычислений необходимы значения следующих величин:

 ρ_T - плотность продукта при стандартных условиях (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па), кг/м³;

T - стандартная температура (15 °C или 20 °C), °C;

Р - стандартное избыточное давление (0 Па), кПа;

V - объем продукта, м³;

 t_V - температура продукта в рабочих условиях при измерении объема, °С;

 P_{V} - избыточное давление продукта в рабочих условиях при измерении объема, кПа.

В результате расчёта получают значения следующих величин:

 C_{77} - корректирующий фактор на температуру продукта при приведении объема продукта к стандартной температуре;

*С*_{PL} - корректирующий фактор на давление продукта при приведении объема продукта к стандартной температуре;

 C_{TPL} - корректирующий фактор на температуру и давление продукта при приведении объема продукта к стандартной температуре;

V - объем продукта при стандартных условиях, м³.

Ниже приведён алгоритм вычислений.

Г.2.1 Рассчитывают плотность продукта при стандартных условиях (60 °F) и корректирующий фактор на температуру продукта при приведении плотности при стандартных условиях (60 °F) к плотности при стандартных условиях (15 °C или 20 °C) $C_{77.60}$.

Расчет проводится по $\Gamma.1.1 - \Gamma.1.17$.

При этом за значения плотности, температуры и избыточного давления принимают:

$$\rho_O = \rho_T,$$

$$t_O = T,$$

$$P_O = 0.$$

Г.2.2 Рассчитывают температуру продукта в °F:

$$t_{\nu,F} = 1.8 t_{\nu} + 32$$
 ($\Gamma.40$)

Проверяют выполнение условий:

$$-58 \le t_{\nu, \pi} \le 302. \tag{\Gamma.41}$$

Если условия не выполняются, то расчет завершается.

Г.2.3 Рассчитывают избыточное давление продукта в psig:

$$P_{PSI} = \frac{P_{\nu}}{6.894757}. (\Gamma.42)$$

Проверяют выполнение условий:

$$0 \le P_{PSI} \le 1500. \tag{\Gamma.43}$$

Если условия не выполняются, то расчет завершается.

Г.2.4 Пересчитывают температуру продукта из температурной шкалы ITS-90 в температурную шкалу ITS-68:

$$t = t_{\nu} - \Delta . \tag{\Gamma.44}$$

Значение 4, рассчитывают по формуле:

$$\Delta_{t} = (a_{1} + (a_{2} + (a_{3} + (a_{4} + (a_{5} + (a_{6} + (a_{7} + a_{8}\tau)\tau)\tau)\tau)\tau)\tau)\tau)\tau,$$
 (\Gamma.45)

где

$$\tau = \frac{t_O}{630} \,. \tag{\Gamma.46}$$

Значения коэффициентов (a_i) приведены в Γ .1.6.

Г.2.5 Рассчитывают плотность продукта при стандартных условиях (60 °F) соответствующую температурной шкале ITS-68:

$$\rho^* = \rho_{60} \left\{ 1 + \frac{exp[A(1+0.8A)-1]}{1+A(1+1.6A)B} \right\}, \tag{\Gamma.47}$$

гле

$$A = \frac{\delta_{60}}{2} \left[\left(\frac{K_0}{\rho_{60}} + K_1 \right) \frac{1}{\rho_{60}} + K_2 \right], \tag{\Gamma.487}$$

$$B = \frac{2K_0 + K_1 \cdot \rho_{60}}{K_0 + (K_1 + K_2 \cdot \rho_{60})\rho_{60}}.$$
 (Γ.49)

Значения $\delta_{60} = 0.01374979547$.

Значения K_0 , K_1 , K_2 определяют по таблице $\Gamma.1$.

Г.2.6 Рассчитывают коэффициент объемного расширения продукта при 60 °F:

$$\alpha_{60} = \left(\frac{K_0}{\rho^*} + K_1\right) \frac{1}{\rho^*} + K_2. \tag{\Gamma.50}$$

 Γ .2.7 Рассчитывают корректирующий фактор на температуру продукта при приведении плотности от стандартной плотности (60 °F) к рабочей температуре:

$$C_{TL}^* = exp\left\{-\alpha_{60} \cdot \Delta t \left[1 + 0.8\alpha_{60}(\Delta t + \delta_{60})\right]\right\},\tag{\Gamma.51}$$

где

$$\Delta t = t - 60,0068749. \tag{\Gamma.52}$$

Значение δ_{60} берут по Γ .1.7.

 Γ .2.8 Рассчитывают корректирующий фактор на температуру продукта при приведении плотности от стандартной плотности (15 °C или 20 °C) к рабочей температуре:

$$C_{TL} = \frac{C_{TL}^*}{C_{TL,60}}$$
 (T.53)

Г.2.9 Рассчитывают коэффициент сжимаемости продукта:

$$F_{P,PSI} = exp\left(-1,9947 + 0,00013427t + \frac{793920 + 2326t}{(\rho^*)^2}\right). \tag{\Gamma.54}$$

Г.2.10 Рассчитывают корректирующий фактор на избыточное давление продукта:

$$C_{PL} = \frac{1}{1 - 10^{-5} F_{P,PM} \cdot P_{PM}} \,. \tag{\Gamma.55}$$

Г.2.11 Рассчитывают коэффициент сжимаемости продукта:

$$F_{P} = \frac{F_{P,PSI}}{6.894757} \,. \tag{\Gamma.56}$$

Г.2.12 Рассчитывают корректирующий фактор на температуру и избыточное давление продукта:

$$C_{TPL} = C_{TL} \cdot C_{PL} . \tag{\Gamma.57}$$

- Г.2.13 Округляют корректирующий фактор по температуре до 0,00001.
- Г.2.14 Рассчитывают объем при стандартных условиях:

$$V_{\tau} = C_{\tau p_I} \cdot V \,. \tag{\Gamma.58}$$

Г.3 Приведение плотности продукта от стандартных условий (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па) к рабочим условиям.

Для выполнения вычислений необходимы значения следующих величин:

 ρ_T - плотность продукта при стандартных условиях (температура продукта 15 °C или 20 °C, избыточное давление продукта 0 Па), кг/м³;

T - стандартная температура (15 °C или 20 °C), °C;

- стандартное избыточное давление (0 Па), кПа;

 t_V - температура продукта в рабочих условиях, °С;

 P_{V} - избыточное давление продукта в рабочих условиях, кПа.

В результате расчёта получают значения следующих величин:

 C_{TL} - корректирующий фактор на температуру продукта при приведении плотности продукта к рабочей температуре;

 C_{PL} - корректирующий фактор на давление продукта при приведении плотности продукта к рабочей температуре;

 C_{TPL} - корректирующий фактор на температуру и давление продукта при приведении плотности продукта к рабочей температуре;

 ρ - плотность продукта при рабочих условиях, кг/м³.

Ниже приведён алгоритм вычислений.

 Γ .3.1 Рассчитывают значения корректирующих коэффициентов по температуре и давлению $C_{\tau \iota}$, $C_{P \iota}$, $C_{T P \iota}$.

Значения корректирующих коэффициентов по температуре и давлению C_{TL} , C_{PL} , C_{TPL} рассчитывают по $\Gamma.2.1$ - $\Gamma.2.13$.

Г.З.2 Рассчитывают значения плотности при рабочих условиях:

$$\rho = C_{TPL} \cdot \rho_T \,. \tag{\Gamma.59}$$

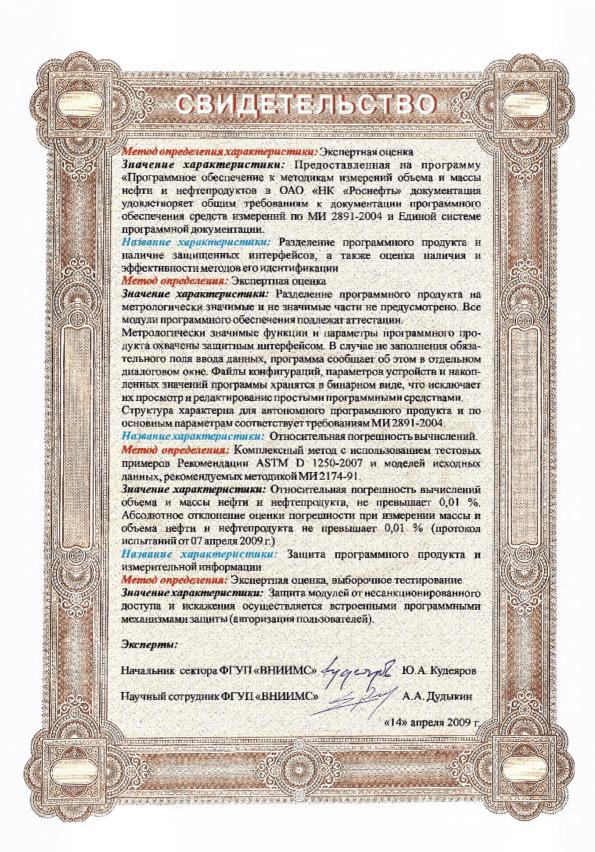
Г.4 Приведение плотности продукта от рабочих условий к условиям измерений объёма

Приведение плотности продукта от рабочих условий к условиям измерений объёма выполняется в два этапа:

- решается задача приведения плотности от рабочих к стандартным условиям согласно
 Г.1 настоящего приложения;
- решается задача приведения плотности от стандартных условий к условиям измерений объёма согласно Г.З настоящего приложения.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ ВСЕРОССИЙСКИЙ НАУЧНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАСХОДОМЕТРИИ


ГОСУДАРСТВЕННЫЙ НАУЧНО-МЕТРОЛОГИЧЕСКИЙ ЦЕНТР

СВИДЕТЕЛЬСТВО № **23207-09** об аттестации МИ

Методика измерений	масса и объем нефтеп	гродуктов		
	наименование измеряемой величины			
разработанная	ОАО «НК «Роснефть», г. Москва			
	наименование организации (предприятия), разработавшей МИ в рекомендации «Государственная система обеспечения			
и регламентированная в	рекомендации «г осударственная систе обозначение и наименование		я единства	
измерений Масса и объем	и нефтепродуктов. Методика измерений		ьных пезеп-	
вуарах»	n new remposit west market name permi	т в торизонтал	bribit pesep	
<u> </u>				
аттестована в соответств	ни с ГОСТ Р 8.563-96.			
Аттестация осуществлен	а по результатам метрологической э	жспертизы мат	ериалов	
	вид работ, метрологич		периалов	
	их и экспериментальных исследований 1			
по разравотке МИ,	теоретическое или экспериментальное исследование МИ,	, оругие виоы раоот		
	IИ было установлено, что МИ соответст иям и обладает следующими основными			
метрологическим требован теристиками: пределы относительной по		и метрологичес ефтепродуктов	кими харак	
метрологическим требован теристиками: пределы относительной по	иям и обладает следующими основными грешности измерений массы и объема не	и метрологичес ефтепродуктов	кими харак	
метрологическим требован теристиками: пределы относительной по диапазон измерения	иям и обладает следующими основными грешности измерений массы и объема не	и метрологичес ефтепродуктов: пость измерений)	±0,65 %;	
метрологическим требован теристиками: пределы относительной по дианазон измерения а) массы нефтепродуктов:	иям и обладает следующими основными грешности измерений массы и объема не й, характеристики погрешности измерений (пеопределен	и метрологичес ефтепродуктов пость измерений) до 120 т 120 т и более	±0,65 %;	
метрологическим требован теристиками: пределы относительной по дианазон измерения а) массы нефтепродуктов:	иям и обладает следующими основными грешности измерений массы и объема не	и метрологичес ефтепродуктов пость измерений) до 120 т 120 т и более	±0,65 %; ±0,50 %; ±0,60 %;	

СИСТЕМА ДОБРОВОЛЬНОЙ СЕРТИФИКАЦИИ СРЕДСТВ ИЗМЕРЕНИЙ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы»

СЕРТИФИКАТ СООТВЕТСТВИЯ

№ 09.000.0337

Срок действия с

18.05.2009 г.

по 18.05.2014 г.

No 00337

ОРГАН ПО СЕРТИФИКАЦИИ ФГУП «ВНИИМС» ПРОДУКЦИЯ

Программное обеспечение к методикам выполнения измерений объема и массы нефти и пефтепродуктов

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ код ОК 005 (ОКП): ДОКУМЕНТОВ 50 5000

МИ 2955-2005; МИ 2891-2004, МИ 2676-2001, МИ 2174-91

ИЗГОТОВИТЕЛЬ

Открытое акционерное общество «Нефтиная компания «Роспефть»

115035, г. Москва, Софийская набережная, д. 26/1

СЕРТИФИКАТ ВЫДАН

Открытое акционерное общество «Пефтиная компания «Роспефть»

115035, г. Москва, Софийская набережная, д. 26/1

НА ОСНОВАНИИ

Методика сертификационных испытаний от 15.10.2008 г. Протокол сертификационных испытаний от 07.04.2009 г., выданный ГЦИ СИ ФГУП «ВНИИМС»

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

- Алгоритмы и формулы программного продукта «Программное обеспечение к методикам выполнения измерений объема и массы пефти и пефтепродуктов» соответствуют алгоритмам и формулам методих измерений ОАО «НК «Росцефть».
- Документация удовлетворяет общим требовациям к документации программного обеспечения средств измерений по МИ 2891-2004.
- Структура программного продукта «Программное обеспечение к методикам выполнения измерений объема и массы нефти и нефтепродуктов» является структурой автономного программного обеспечения и соответствует требованиям МИ 2891-2004.
- Относительная погрешность вычислений объема и массы нефти и нефтепродуктов не превышает 0,01%, абсолютное отклонение оценки погрешности при измерсиии массы и объема нефти и нефтепродуктов не превышает 0,01%.

 Для защиты ПП, представленного на сертификацию, от несаниционированного доступа и исканувнай реализованы механизмы визиризации пользователей.

Руководитель органа,

подпись

В. Н. Яншии

инициалы, фамилия

M.M

Эксперт

Ю.А.Кудеяров

полпись

инициалы, фамилия

СИСТЕМА ДОБРОВОЛЬНОЙ СЕРТИФИКАЦИИ СРЕДСТВ ИЗМЕРЕНИЙ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы»

№ 00001

ПРИЛОЖЕНИЕ

к сертификату соответствия № 09.000.0337

Перечень методик измерений ОАО «НК «Роснефть»

Масса и объем нефти. Методика измерений прямым методом динамических измерений.

Масса и объем нефти. Методика измерений косвенным методом динамических измерений.

Масса и объем нефти. Методика измерений в вертикальных резервуарах.

Масса и объем нефти. Методика измерений в горизонтальных резервуарах.

Масса и объем нефти. Методика измерений в железнодорожных цистернах.

Масса и объем нефти. Методика измерений в автомобильных цистернах.

Масса и объем нефтепродуктов. Методика измерений прямым методом динамических измерений.

Масса и объем нефтепродуктов. Методика измерений косвенным методом дипамических измерений.

Масса и объем нефтепродуктов. Методика измерений в вертикальных резервуарах,

Масса и объем нефтепродуктов, Методика измерений в горизонтальных резервуарах.

Масса и объем пефтепродуктов. Методика измерений в железнодорожных цистернах.

Масса и объем нефтепродуктов. Методика измерений в автомобильных цистернах.

Руководитель органа

2001.04CE00

Agenepa ...

подпись

В.Н. Яншин

инициалы, фамилия

Ю.А. Кудеяров

инициалы, фамилия

action action to the task as a contraction