## ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 56502— 2015

### СИСТЕМЫ ОБЕСПЕЧЕНИЯ МИКРОКЛИМАТА НОВЫХ ЗДАНИЙ

Оценка энергетической эффективности при проектировании

> ISO 23045:2008 (NEQ)

Издание официальное



#### Предисловие

- 1 РАЗРАБОТАН Федеральным государственным бюджетным образовательным учреждением высшего профессионального образования «Московский государственный строительный университет» (ФГБОУ ВПО «МГСУ»)
  - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 июня 2015 г. № 836-ст
- 4 Настоящий стандарт соответствует международному стандарту ИСО 23045:2008 «Проектирование с учетом экологических требований. Руководящие указания по оценке энергетического КПД новых зданий» (ISO 23045:2008 «Building environment design Guidelines to assess energy efficiency of new buildings», NEQ) в части используемой терминологии, применяемых методов и справочных данных
  - 5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в годовом (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соотвебудет опубликовано тствующее уведомление в ближ**айшем** выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

### Содержание

| 1 | Область применения                                                               | 1 |
|---|----------------------------------------------------------------------------------|---|
| 2 | Нормативные ссылки                                                               | 1 |
| 3 | Термины и определения                                                            | 1 |
| 4 | Основные нормативные положения                                                   | 1 |
|   | 4.1 Общие положения                                                              | 1 |
|   | 4.2 Методика оценки энергетической эффективности систем обеспечения микроклимата | 2 |
| П | риложение А (справочное) Выделение тепловой энергии человеком                    | 7 |
| П | риложение Б (справочное) Энергопотребление систем освещения                      |   |
| П | риложение В (справочное) Энергопотребление оборудования                          | 2 |
| П | риложение Г (справочное) Характеристики видов топлива                            | 1 |

#### Введение

Настоящий стандарт соответствует требованиям федеральных законов № 184-Ф3 от 27 декабря 2002 г. «О техническом регулировании», № 261-Ф3 от 23 ноября 2009 г. «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты» и № 384-Ф3 от 30 декабря 2009 года «Технический регламент о безопасности зданий и сооружений». Стандарт содержит методические указания и процедуры расчета энергетических показателей инженерных решений в области проектирования окружающей среды здания и способы оценки их абсолютной и относительной энергетической эффективности. Кроме того, в документе представлены методы достижения энергоэффективности. Стандарт является одним из базовых стандартов для обоснования наиболее целесообразного с энергетической точки зрения варианта реализации энергосберегающих мероприятий в здании и выбора их оптимального сочетания. В стандарте использованы некоторые положения рекомендаций СТО 175 32043-001—2005 «Нормы теплотехнического проектирования ограждающих конструкций и оценки энергоэффективности зданий. Стандарт общественной организации — РНТО строителей».

#### СИСТЕМЫ ОБЕСПЕЧЕНИЯ МИКРОКЛИМАТА НОВЫХ ЗДАНИЙ

#### Оценка энергетической эффективности при проектировании

Environment design systems of new buildings. Energy efficiency assessment in the design

Дата введения — 2015—09—01

#### 1 Область применения

Настоящий стандарт устанавливает требования и правила расчетов энергетической эффективности вариантов энергосберегающих мероприятий в зданиях и выбора наиболее целесообразного варианта реализации таких мероприятий.

Требования настоящего стандарта распространяются на жилые и общественные здания нового строительства и реконструируемые, а также на оборудование систем обеспечения микроклимата в данных зданиях.

#### 2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты: ГОСТ Р 30494—2011 Здания жилые и общественные. Параметры микроклимата в помещениях СП 30.13330.2012 СНиП 2.04.01—85 Внутренний водопровод и канализация зданий

СП 50.13330.2012 СНиП 23-02—2003 Тепловая защита зданий

СП 131.13330.2012 СНиП 23-01—99\* Строительная климатология

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячно издаваемого информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде технических регламентов и стандартов.

#### 3 Термины и определения

В настоящем стандарте применены термины и определения в соответствии со статьей 2 Федерального закона от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений», а также по ГОСТ Р 30494, СП 50.13330, СП 60.13330, СП 131.13330.

#### 4 Основные нормативные положения

#### 4.1 Общие положения

Расчет энергетической эффективности вариантов энергосберегающих мероприятий в зданиях может быть осуществлен на стадии предпроектных проработок или на стадии проекта при установле-

нии уровня теплозащитных показателей ограждающих конструкций здания и разработке энергосберегающих мероприятий для обслуживающих здание инженерных систем. При этом учитывают затраты тепловой и электрической энергии и воды на обеспечение жизнедеятельности здания системами отопления, вентиляции и кондиционирования воздуха, холодного водоснабжения и горячего водоснабжения (ГВС), на электроосвещение, работу электробытовых приборов и оргтехники, мусороудаление. Допускается принимать во внимание технологических потребителей энергии в качестве источников теплопоступлений в здание. Результаты расчета используют для выбора целесообразного варианта проектного решения при его технико-экономическом обосновании.

#### 4.2 Методика оценки энергетической эффективности систем обеспечения микроклимата

#### 4.2.1 Выбор параметров внутреннего и наружного климата

Параметры внутреннего микроклимата в здании принимают по имеющимся санитарно-гигиеническим нормам в зависимости от категории основных функциональных помещений или их групп и требований заказчика к качеству обеспечения микроклимата при выполнении условий санитарно-гигиенической безопасности. При оценке уже принятого проектного решения данные параметры принимаются по рабочему проекту, при расчете энергоэффективности на стадии проекта и (или) при предварительных многовариантных расчетах допускается выбирать единые значения по характерному (представительному) помещению.

В отопительный период устанавливают следующие параметры по ГОСТ Р 30494:

 $t_{\rm B}$  — расчетная температура внутреннего воздуха в рабочее время, °C;

 $t_{\rm B,hpa6}$  — минимально-допустимая температура внутреннего воздуха в нерабочее время, °C;

 $\phi_{\rm B}$  — относительная влажность внутреннего воздуха в рабочее время, %.

В охладительный период устанавливают следующие параметры по ГОСТ Р 30494:

 $t_{\rm B,OXJ}$  — расчетная температура внутреннего воздуха в рабочее время, °C;

 $\phi_{\text{в.охл}}$  — относительная влажность внутреннего воздуха в рабочее время, %.

Расчетные параметры наружного климата принимают по СП 131.13330 в зависимости от района строительства и требований заказчика к качеству обеспечения микроклимата.

В отопительный период используют следующие параметры:

 $t_{\rm H,p}$  — расчетная температура наружного воздуха, °C, для проектирования наружных ограждений, систем отопления, вентиляции и кондиционирования воздуха;

ф — относительная влажность наружного воздуха, %;

т.... — средняя температура наружного воздуха за отопительный период, °C;

 $z_{o,n}$  — продолжительность отопительного периода, сут.

В охладительный период используют следующие параметры:

 $t_{
m H^{+}OXJ}$  — расчетная температура наружного воздуха, °C, для проектирования систем кондиционирования воздуха;

 $I_{
m H \cdot oxn}$  — расчетная энтальпия наружного воздуха, кДж/кг, для проектирования систем кондиционирования воздуха.

#### 4.2.2 Определение годового теплопотребления системами отопления

При предварительных многовариантных расчетах годовое теплопотребление, МВт · ч/г, оценивают по формуле

$$Q_{\text{oT}}^{\Gamma} = \beta M \Sigma (n_i A_i / R_i) \cdot 10^{-3} + 0.33 M V_{\text{oT}} K p_{\text{Hpa6}} k \cdot 10^{-3} - Q_{\text{noct}}^{\Gamma},$$
 (1)

где β— коэффициент запаса на добавочные потери теплоты и округление поверхности отопительных приборов, рекомендуется принимать в пределах 1,1—1,13;

M = 0,024 · ГСОП — характеристика отопительного периода, тыс. К · ч (°С · ч), где ГСОП —  $(t_{\rm B}-t_{\rm o.n})z_{\rm o.n}$  — градусо-сутки отопительного периода, К · сут (°С · сут).

В зданиях, где поддерживают пониженную температуру в нерабочее время, вместо  $t_{\rm B}$  при расчете M для формулы (1) следует принимать условную внутреннюю температуру  $t_{\rm B.ycn}$  =  $|t_{\rm B}(168-z_{\rm деж})k_{\rm har}$  +  $t_{\rm B.hpa6}z_{\rm деж}|/168$ , где 168 — число часов в неделе;  $z_{\rm деж}$  — продолжительность функционирования системы отопления в дежурном режиме, часов в неделю;  $k_{\rm har}$  > 1 — коэффициент натопа, учитывающий повышенную теплоотдачу отопительных приборов в период натопа;

 $n_i$  — коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху по таблице 1;

 $A_i$  и  $R_i$  — площадь, м $^2$ , и сопротивление теплопередаче, м $^2$  · К/Вт, соответственно ограждающих конструкций оболочки здания: наружных стен, окон, балконных дверей, перекрытия над неотапливаемым подвалом или техническим подпольем, пола по грунту, чердачного перекрытия или покрытия и др. Значения  $A_i$  и  $R_i$  принимают по проекту с учетом требований СП 50.13330.

#### Таблица 1

| Ограждающие конструкции                                                                                                                                                                                                                                       | Коэффициент <i>п</i> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1 Наружные стены и покрытия, перекрытия чердачные и над проездами, перекрытия над хо-<br>лодными подвалами и подпольями в Северной строительно-климатической зоне                                                                                             | 1                    |
| 2 Перекрытия над холодными подвалами, сообщающимися с наружным воздухом, перекрытия чердачные (с кровлей из рулонных материалов), перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне | 0,9                  |
| 3 Перекрытия над неотапливаемыми подвалами со световыми проемами в стенах                                                                                                                                                                                     | 0,75                 |
| 4 Перекрытия над неотапливаемыми подвалами без световых проемов в стенах, расположенных выше уровня земли                                                                                                                                                     | 0,6                  |
| 5 Перекрытия над неотапливаемыми техническими подпольями, расположенными ниже уровня земли                                                                                                                                                                    | 0,4                  |

 $V_{\rm от}$  — отапливаемый объем здания, м<sup>3</sup>;

Кр<sub>нраб</sub> — средняя по зданию кратность воздухообмена для неорганизованного притока, ч<sup>-1</sup>. При расчете по укрупненным показателям допускается принимать величину для жилых зданий и дошкольных учреждений по таблице 2, а для нежилых зданий — в диапазоне 0,2—0,5/

Таблица 2

| Наименование здания                            | Кр <sub>мех</sub> , ч <sup>−1</sup> | Наименование здания                            | Кр <sub>мех,</sub> , ч <sup>−1</sup> |
|------------------------------------------------|-------------------------------------|------------------------------------------------|--------------------------------------|
| Спортивные и зрелищные                         | 3,3                                 | Административные                               | 1,33                                 |
| Медицинские, предприятий бытового обслуживания | 2,5                                 | Магазины                                       | 1,2                                  |
| Образовательные                                | 2,2                                 | Жилые (Кр <sub>мех</sub> или Кр <sub>е</sub> ) | 0,67                                 |

П р и м е ч а н и е —  $\mathsf{Kp}_\mathsf{e}$  — кратность воздухообмена естественной вентиляции;  $\mathsf{Kp}_\mathsf{mex}$  — то же, механической.

*k* — коэффициент учета встречного теплового потока при естественном воздухообмене здания; принимается равным 0,7 для стыков панелей стен и окон с тройными переплетами, 0,8 — для окон и балконных дверей с раздельными переплетами и 1,0 — для одинарных окон, окон и балконных дверей со спаренными переплетами и открытых проемов:

 $Q_{\text{пост}}^{\text{г}}$ , МВт · ч/г — теплопоступления в здание за отопительный период, учитываемые только при установке автоматических терморегуляторов у отопительных приборов или иных решениях по автоматическому регулированию поддержания заданной температуры помещения в зависимости от отклонения величины  $t_{\text{в}}$  от принятого уровня.

Величину  $Q_{\text{пост}}^{\Gamma}$ , МВт · ч/г, вычисляют по формуле

$$Q_{\text{noct}}^{\Gamma} = (Q_{\text{u}}^{\Gamma} + Q_{\text{c}}^{\Gamma} + Ez_{\text{off}}/365) \cdot k_{\text{noct}}, \tag{2}$$

здесь  $Q_4^\Gamma$  и  $Q_c^\Gamma$  — теплопоступления от людей и солнечной радиации соответственно в течение отопительного периода, МВт · ч/г, определяемые по формулам:

$$Q_{\rm u}^{\Gamma} = q_{\rm u,g} n_{\rm u} \sum z_{\rm u} (z_{\rm opt}/7) \cdot 10^{-6}; \ Q_{\rm G}^{\Gamma} = \sum (\tau_{\rm opt} k_{\rm opt} A_{\rm opt} \cdot I_i/3600), \tag{3}$$

где  $q_{\rm u, g}$  — удельные поступления явной теплоты от людей, Вт/чел., принимаемые в зависимости от параметров внутреннего микроклимата в здании и уровня физической нагрузки, указанного в приложении А; при расчете по укрупненным показателям допускается принимать  $q_{\rm u, g}$  = 90 Вт/чел.;

 $n_{\rm q}$  — среднее число людей в здании в течение рабочего времени;

 $\Sigma z_{
m q}$  — средняя продолжительность пребывания людей в здании, часов в неделю; как правило,  $\Sigma z_{
m q} = \Sigma z_{
m pa6}$ , где  $\Sigma z_{
m pa6}$  — продолжительность рабочего времени в здании, часов в неделю. В жилых и подобных им непрерывно функционирующих зданиях  $\Sigma z_{
m pa6} = 168$ ;

7 — число дней недели;

 $au_{\text{ок}i}$  — коэффициент затенения i-го светового проема окон непрозрачными элементами принятого заполнения;

 $k_{\text{отн}i}$  — коэффициент относительного проникания солнечной радиации для i-го заполнения светопроемов;

 $A_{\text{ок}i}$  — площадь *i*-го светопрозрачного ограждения, м<sup>2</sup>;

 $I_i$  — интенсивность солнечной радиации за отопительный период через i-е светопрозрачное ограждение. МДж/м<sup>2</sup>, с учетом его ориентации по сторонам горизонта и средних условий облачности, по СП 131.13330. Для учета облачности значения, принятые по СП 131.13330 и соответствующие безоблачному небу, необходимо брать с понижающим коэффициентом 0,6;

E — годовое электропотребление систем электроснабжения здания, МВт  $\cdot$  ч/г, определяемое по формуле (7) 4.2.5;

 $k_{\mathsf{noct}}$  — коэффициент учета теплопоступлений, связанный с вероятностью их превышения над теплопотерями и невозможностью вследствие этого их полного использования. Допускается принимать  $k_{\text{пост}} = 0.8-0.85$ . При ориентировочных расчетах допускается величину  $\mathbf{Q}_{\text{пост}}^{\text{г}}$ , МВт ·ч/г, определять по формуле

$$Q_{\text{nort}}^{\Gamma} = q_{\text{nort}} A_{\text{or}} \sum z_{\text{nafo}} (z_{\text{on}}/7) \cdot 10^{-6}, \tag{4}$$

где  $q_{\text{пост}}$  — удельные теплопоступления, Вт/м $^2$ , на 1 м $^2$  отапливаемой площади  $A_{\text{от}}$ , принимаемые в зависимости от категории основных функциональных помещений или их групп и требований заказчика к качеству обеспечения микроклимата методом экспертной оценки.

#### 4.2.3 Определение годового теплопотребления системами вентиляции и (или) кондиционирования воздуха

При предварительных многовариантных расчетах годовое теплопотребление, МВт · ч/г, оценивают по формуле

$$Q_{\text{BeHT}(KB)}^{\Gamma} = 0.33 M V_{\text{oT}} K p_{\text{Mex}} (1 - k_{3\Phi}) (\Sigma z_{\text{pa6.BeHT}} / 168) \cdot 10^{-3},$$
 (5)

где Σz<sub>раб.вент</sub> — продолжительность работы механической системы приточной вентиляции и (или) кондиционирования воздуха, часов в неделю; как правило,  $\Sigma z_{\text{раб.вент}} = \Sigma z_{\text{раб}};$  0,33 =  $\rho c/3600$  = 1,2 · 1005/3600 — коэффициент ( $\rho$  — плотность, c — удельная теплоемкость воз-

Кр<sub>мех</sub> — средняя по зданию кратность воздухообмена приточной механической вентиляции и (или) центрального кондиционирования воздуха, ч<sup>–1</sup>. При расчете по укрупненным показателям при предварительных многовариантных расчетах допускается принимать величину Кр<sub>мех</sub> по таблице 2;

 $k_{
m ach}$  — коэффициент температурной эффективности устройств утилизации теплоты и (или) рециркуляции при наличии механической вентиляции, принимаемый равным 0 в случае отсутствия рециркуляции и утилизации теплоты вытяжного воздуха. При наличии утилизации коэффициент принимают по проектным данным, а при их отсутствии — в размере 0,4—0,5 при использовании утилизаторов с промежуточным теплоносителем; 0,5—0,55 при использовании рекуперативных утилизаторов; 0,6—0,85 при использовании вращающихся регенераторов; при использовании теплонасосных установок (ТНУ) — до 1. При использовании рециркуляции  $k_{
m o t}$  считается равным доле рециркуляционного воздуха в смеси, при совместном использовании рециркуляции и утилизации  $k_{
m sh}$  определяют по

M и  $V_{\text{от}}$  — то же, что и в формуле (1) для  $Q_{\text{от}}^{\Gamma}$ , однако здесь параметр M для любых зданий, в том числе и там, где проводят снижение температуры в нерабочее время, рассчитывают с использованием

#### 4.2.4 Определение годового теплопотребления системами горячего водоснабжения (ГВС)

При предварительных многовариантных расчетах годовое энергопотребление, МВт · ч/г, оценивают по формуле

$$Q_{\rm IB}^{\rm r} = g_{u,m}^{h} U[z_{\rm on} + k_1 k_2 (365 - z_{\rm on} - n)] \cdot 1,163 \cdot 10^{-6} \cdot \Delta t \cdot k_h, \tag{6}$$

где  $g_{H\,m}^h$  — норма расхода горячей воды в средние сутки, л/сут на водопотребителя (в зависимости от назначения здания — на одного жителя, работающего, койку, посетителя, блюдо и т. п.), принимают по C∏ 30.13330:

U — количество потребителей горячей воды в здании, ед.;

 $k_1$  — коэффициент снижения расхода горячей воды в теплый период года, принимают в размере 0,8, кроме городов Южного федерального округа РФ и курортов, для которых  $k_1 = 1$ ;

 $k_2$  — коэффициент снижения разности температур в системе ГВС в теплый период года при отсутствии использования вторичных энергоресурсов (ВЭР) для подогрева воды, принимают равным 0,82. При использовании ВЭР  $k_2 = 1$ ;

n — продолжительность отключения ГВС для профилактических работ, сут/год;

 $1,163 \cdot 10^{-6} = (4,19/3,6) \cdot 10^{-6} \text{ MBT} \cdot 4/(кг \cdot K)$  — удельная теплоемкость воды;

 $\Delta t$  — разность температур, К, холодной и нагретой воды в системе ГВС, при отсутствии использования ВЭР для подогрева воды принимают равной 55; при использовании ВЭР принимают равной 60 - $-t_{\mathsf{B} \ni \mathsf{P}}$ , где  $t_{\mathsf{B} \ni \mathsf{P}}$  — температура нагреваемой воды после устройства, использующего ВЭР (ТНУ и др.);

 $k_h$  — коэффициент снижения расхода горячей воды за счет применения мероприятий по снижению водопотребления. При отсутствии данных его допускается принимать равным 1  $-\Delta k_{h,r}$  где  $\Delta k_{h\,i}$  — относительное снижение расхода воды за счет того или иного мероприятия, в том числе: 0,05 при установке поквартирных водосчетчиков; 0,03 — при использовании смесителей с левым расположением крана горячей воды или кранов с регулируемым напором воды. При отсутствии специальных мероприятий  $k_h$  принимают равным 1.

#### 4.2.5 Определение годового электропотребления системами электроснабжения здания

Установленная мощность N<sub>v</sub>, кВт, и годовое энергопотребление E, МВт · ч/г, систем электроснабжения здания, в том числе для освещения, электробытовых приборов и оргтехники, а также для приводов инженерных систем здания, определяют по данным проекта. При оценке энергоэффективности при предварительных многовариантных расчетах для технико-экономического обоснования значение Е может быть вычислено по формуле

$$E = \Sigma (N_{vi}k_{cni} \Sigma z_{pi}) \cdot 52 \cdot 10^{-3}, \tag{7}$$

где  $N_{vi}$  — максимальная установленная мощность соответствующего потребителя, кВт, принимаемая по проектным данным или, при их отсутствии, по укрупненным измерителям (приложения Б, В);

 $k_{\text{сп}i}$  < 1 — коэффициент спроса на электроэнергию (приложение В);

Σz<sub>pi</sub> — продолжительность работы *i*-го потребителя, часов в неделю; 52 — число недель в году. Для электроприводов систем отопления вместо 52 нужно принимать  $z_{0.\Pi}/7$ .

В жилых зданиях величину Е можно определить по удельному годовому энергопотреблению на одного человека  $E_{V\!D}$  (приложение В).

#### 4.2.6 Расчет показателей энергопотребления и энергоэффективности здания и выбор варианта проектного решения

После определения годового энергопотребления инженерными системами здания вычисляют суммарное удельное годовое энергопотребление здания на 1 м $^3$  отапливаемого объема  $V_{
m or}$ , кВт · ч/(м<sup>3</sup> · г):

$$q_{\text{общ}}^{p} = (Q_{\text{от}}^{r} + Q_{\text{вент(кв)}}^{r} + Q_{\text{гв}}^{r} + E) \cdot 10^{3} / V_{\text{от}}.$$
 (8)

Далее вычисляют коэффициент полезного использования энергии зданием:

$$\eta_{\rm 3d} = [Q_{\rm ot}^{\rm r} + Q_{\rm noct}^{\rm r} + Q_{\rm BeHT(KB)}^{\rm r}/(1 - k_{\rm 3d}) + Q_{\Sigma,\rm rB} \cdot 55/\Delta t + E]/Q_{\rm nepB}, \tag{9}$$

где  $Q_{\text{перв}} = (Q_{\text{от}}^{\Gamma} + Q_{\text{вент(кв)}}^{\Gamma} + Q_{\text{гв}}^{\Gamma})/\eta_{\text{тепл}} + E/\eta_{\text{эл}}$  — расход энергии зданием за год в пересчете на первичное топливо, МВт - ч/г.

Здесь  $\eta_{\text{тепл}}$  и  $\eta_{\text{эл}}$  — коэффициенты полезного действия источников соответственно тепловой и электрической энергии, обслуживающих здание, при принятых способах производства данных видов энергии. При подключении к источникам, не использующим первичное органическое топливо (гидро- и атомные электростанции, солнечные, ветровые и другие установки) соответствующее слагаемое в скобках формулы (9) игнорируют.

При необходимости вычисляют расход первичного топлива:

$$B_{\rm p} = 10^3 \ Q_{\rm neps} / Q_{\rm Hu3}^{\rm pa6},$$
 (10)

где  $Q_{\text{низ}}^{\text{pa6}}$  — низшая удельная теплота сгорания применяемого газового топлива в расчете на рабочую массу, кВт · ч/ед.кол-ва, принимаемая по приложению Г.

Размерность получаемого количества топлива ( ${\sf M}^3$ , кг, л) зависит от вида топлива в соответствии с данными приложения  $\Gamma$ . Величина  $B_{\rm p}$  может быть также использована для определения выбросов  ${\rm CO_2}$ также по данным приложения Г. Результаты вычисления годового энергопотребления допускается

#### **FOCT P 56502-2015**

применять при технико-экономическом сравнении вариантов проектного решения и выборе оптимального варианта.

Для определения фактического энергопотребления здания и проверки выполнения проектных показателей через 1-2 года после введения его в эксплуатацию проводится освидетельствование по показаниям счетчиков тепловой и электрической энергии на вводах в здание. Показания счетчика тепловой энергии Q,  $MBT \cdot v/r$ , сравнивают с суммой  $Q_{ot}^r + Q_{gent(kB)}^r + Q_{fB}^r$  для окончательного варианта проекта, приведенной к фактическому значению температуры наружного воздуха пересчетом по формуле

$$(Q_{\text{OT}}^{\Gamma} + Q_{\text{BeHT}(KB)}^{\Gamma} + Q_{\text{FB}}^{\Gamma})_{\text{ND}} = (Q_{\text{OT}}^{\Gamma} + Q_{\text{BeHT}(KB)}^{\Gamma}) \cdot \left(\frac{t_{\text{B}} - t_{\text{O.I}}^{\Gamma}}{t_{\text{B}} - t_{\text{O.II}}}\right) + Q_{\text{FB}}^{\Gamma}, \tag{11}$$

где  $t'_{\text{о.п}}$  — фактическая средняя температура наружного воздуха за рассматриваемый отопительный период, °C, принимаемая по данным метеорологической станции. В зданиях, где поддерживается пониженная температура в нерабочее время, вместо  $t_{\text{в}}$  следует принимать условную внутреннюю температуру  $t_{\text{в.усл}}$  [см. пояснения к формуле (1) для  $Q_{\text{от}}^{\text{r}}$ ].

Показания счетчика электрической энергии E' сравнивают с величиной E, МВт · ч/г, для окончательного варианта. В случае превышения фактических значений Q' и E' над проектными разрабатывают рекомендации по дополнительному снижению энергопотребления.

# Приложение A (справочное)

#### Выделение тепловой энергии человеком

Процессы жизнедеятельности человека являются источником выделения двух видов теплоты: явной (за счет излучения и конвекции) и скрытой (испарения). В качестве повышающей температуру в помещении рассматривается только явная теплота.

Таблица А.1 содержит значения поступлений теплоты от людей. Здесь принимается, что температура воздуха плюс 24 °C является оптимальным значением для сидячей деятельности. При более высоких температурах суммарный поток выделяющейся теплоты остается практически неизменным, но доля явной составляющей уменьшается.

Таблица А.1

|                                                                                                            | Полная                   | Явная теплота,                         |                          |
|------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|--------------------------|
| Деятельность                                                                                               | Мет <sup>а)</sup>        | Мет <sup>а)</sup> Вт/чел <sup>6)</sup> |                          |
| Лежачее положение                                                                                          | 0,8                      | 80                                     | 55                       |
| Сидячее положение (отдых)                                                                                  | 1,0                      | 100                                    | 70                       |
| Сидячее положение, легкая работа (умственный труд, учеба)                                                  | 1,2                      | 125                                    | 75                       |
| Стоячее положение, легкая работа (поход в магазин, легкая производственная деятельность)                   | 1,6                      | 170                                    | 85                       |
| Стоячее положение, работа средней тяжести (работа консультантом в магазине, механизированное производство) | 2,0                      | 210                                    | 105                      |
| Пешеходное движение при скорости, км/ч 2 3 4 5                                                             | 1,9<br>2,4<br>2,8<br>3,4 | 200<br>250<br>300<br>360               | 100<br>105<br>110<br>120 |

а) 1 мет = 58 Вт/м<sup>2</sup>, внесистемная единица интенсивности метаболического теплообмена.

б) Среднее значение в расчете на человека с площадью поверхности тела, равной 1,8 м<sup>2</sup>.

# Приложение Б (справочное)

#### Энергопотребление систем освещения

Системы вентиляции и кондиционирования воздуха должны быть спроектированы с учетом энергопотребления предлагаемой системы освещения.

Типичные значения освещенности при проектировании систем освещения приведены в таблице Б.1. Указанные значения являются усредненными по площади помещения.

Таблица Б.1

| Назначение помещения       | Стандартный уровень освещенности, лк |
|----------------------------|--------------------------------------|
| Офисное помещение с окнами | 300—750                              |
| Офисное помещение без окон | 300—750                              |
| Магазины                   | 300—500                              |
| Школьные классы            | 300—500                              |
| Больничные палаты          | 200—300                              |
| Комнаты в гостиницах       | 200—300                              |
| Рестораны                  | 200—300                              |
| Нежилые помещения          | 50—100                               |

Расход электроэнергии, необходимый для данного уровня освещенности, зависит от конкретных технических, объемно-планировочных и цветовых решений. Типичные значения удельного электропотребления системами освещения приведены в таблице Б.2.

Таблица Б.2

|                          | Необходимая мощнос  | ть системы освещения, Вт/м²                                |
|--------------------------|---------------------|------------------------------------------------------------|
| Уровень освещенности, лк | Стандартный уровень | Максимальный уровень для низкоэффективных систем освещения |
| 50                       | 2,5—3,2             | 6                                                          |
| 100                      | 3,5—4,5             | 8                                                          |
| 200                      | 5,5—7,0             | 12                                                         |
| 300                      | 7,5—10,0            | 16                                                         |
| 400                      | 9,0—12,5            | 20                                                         |
| 500                      | 11,0—15,0           | 24                                                         |

## Приложение В (справочное)

#### Энергопотребление оборудования

Перед началом проектирования систем отопления, вентиляции и кондиционирования воздуха необходимо определить все виды оборудования, от которых осуществляется поступление теплоты в вентилируемые помещения

В офисных зданиях уровень энергопотребления оборудования, как правило, составляет от 25 до 200 Вт на человека. При 8-часовом рабочем дне усредненное значение принимают равным 100 Вт на человека. Коэффициент спроса  $k_{\rm cn}$  на электроэнергию приведен в таблице В.1 по СТО 175 32043-001—2005<sup>1)</sup>, удельное годовое энергопотребление  $E_{\rm уд}$  освещения и бытовых электроприборов в жилых зданиях — в таблице В.2 (также по СТО 175 32043-001—2005).

Таблица В.1

| Потребитель                                                            |                                          |             |                            | К                                       | оэфф                 | ициент (      | спроса                   | k <sub>cn</sub>           |                            |                             |                            |
|------------------------------------------------------------------------|------------------------------------------|-------------|----------------------------|-----------------------------------------|----------------------|---------------|--------------------------|---------------------------|----------------------------|-----------------------------|----------------------------|
| а) Лифты:                                                              | Для домов высотой, этажей                |             |                            |                                         |                      |               |                          |                           |                            |                             |                            |
| При числе лифтовых установок:                                          |                                          | Į           | до 12                      |                                         |                      |               | 1                        | 2 и св                    | ыше                        |                             |                            |
| 2—3<br>4—5<br>6<br>10<br>20<br>25 и свыше                              | 0,8<br>0,7<br>0,65<br>0,5<br>0,4<br>0,35 |             |                            | 0,9<br>0,8<br>0,75<br>0,6<br>0,5<br>0,4 |                      |               |                          |                           |                            |                             |                            |
| б) Освещение в организациях, предприятиях:                             |                                          |             | При і                      | иощн                                    | ости ј               | абоче         | го осве                  | ещени                     | я, кВт                     |                             |                            |
|                                                                        | До 5                                     | 10          | 1                          | 5                                       | 25                   | 50            | 100                      | 200                       | 400                        | Св                          | . 500                      |
| Гостиницы, санатории, дома отдыха                                      | 1                                        | 0,8         | 0                          | ,7                                      | 0,6                  | 0,5           | 0,4                      | 0,35                      | 0,3                        | (                           | 0,3                        |
| Предприятия общественного питания, детские ясли-сады                   | 1                                        | 0,9         | 0,                         | 85                                      | 0,8                  | 0,75          | 0,7                      | 0,65                      | 0,6                        | (                           | ),5                        |
| Офисные и учебные здания, предприятия бытового обслуживания и торговли | 1                                        | 0,9         | 5 0                        | ,9 (                                    | 0,85                 | 0,8           | 0,75                     | 0,7                       | 0,6                        | 5 (                         | 0,6                        |
| Проектно-конструкторские и научно-исследова-<br>тельские организации   | 1                                        | 1           | 0,                         | 95                                      | 0,9                  | 0,85          | 0,8                      | 0,75                      | 0,7                        | 0                           | ,65                        |
| Актовые и конференц-залы, спортзалы                                    | 1                                        | 1           |                            | 1                                       | 1                    | 1             | 1                        | _                         | _                          |                             |                            |
| Клубы                                                                  | 1                                        | 0,9         | 0                          | ,8 (                                    | 0,75                 | 0,7           | 0,65                     | 0,55                      |                            |                             |                            |
| Кинотеатры                                                             | 1                                        | 0,9         | 0                          | ,8                                      | 0,7                  | 0,65          | 0,6                      | 0,5                       | _                          |                             | _                          |
| в) Механическая вентиляция, кондиционеры,<br>насосы:                   |                                          | •           | ·                          | •                                       |                      |               |                          |                           | •                          |                             |                            |
| При удельном весе мощности инженерного обо-                            |                                          |             |                            | При ч                                   | исле                 | электр        | оприе                    | иников                    | 3                          |                             |                            |
| рудования в общей мощности силовых электроприемников, %:               | 2                                        | 3           | 5                          | 8                                       | 10                   | 15            | 20                       | 30                        | 50                         | 100                         | 200                        |
| 100—85<br>при единичной мощности >30 кВт                               | 1<br>0,8                                 | 0,9<br>0,75 | 0,8<br>0,7                 | 0,75                                    | 0,7                  | 0,65          | 0,65                     | 0,6                       | 0,55                       | 0,55                        | 0,5                        |
| 84—75<br>74—50<br>49—25<br>24 и менее                                  | _                                        | _           | 0,75<br>0,7<br>0,65<br>0,6 | 0,7<br>0,65<br>0,6<br>0,6               | 0,65<br>0,65<br>0,55 | 5 0,6<br>0,55 | 0,6<br>0,6<br>0,5<br>0,5 | 0,6<br>0,55<br>0,5<br>0,5 | 0,55<br>0,5<br>0,5<br>0,45 | 0,55<br>0,5<br>0,45<br>0,45 | 0,5<br>0,45<br>0,45<br>0,4 |

<sup>1)</sup> СТО 175 32043-001—2005 «Нормы теплотехнического проектирования ограждающих конструкций и оценки энергоэффективности зданий. Стандарт общественной организации — PHTO строителей».

## **ΓΟCT P 56502—2015**

Таблица В.2

| Оборудование жилого фонда |       | <i>Е<sub>уд</sub>,</i> МВт√ч | /(чел · г.), при кс | оличестве челог | зек в семье |       |
|---------------------------|-------|------------------------------|---------------------|-----------------|-------------|-------|
| Ооорудование жилого фонда | 1     | 2                            | 3                   | 4               | 5           | 6     |
| Газовые плиты             | 0,921 | 0,56                         | 0,439               | 0,379           | 0,343       | 0,318 |
| Электроплиты              | 1,541 | 0,94                         | 0,719               | 0,639           | 0,579       | 0,538 |
| Плиты на твердом топливе  | 1,447 | 0,795                        | 0,578               | 0,470           | 0,405       | 0,361 |

# Приложение Г (справочное)

#### Характеристики видов топлива

Количество энергии и  ${\rm CO}_2$ , выделяемых при сжигании различных видов топлива, приведены в таблице  $\Gamma$ .1.

Таблица Г.1

| Топливо                                    | Единица измерения<br>количества топлива | Низшая теплота<br>сгорания Q <sub>низ</sub> ,<br>МДж/ед. кол-ва | Низшая теплота<br>сгорания Q <sup>раб</sup><br>кВт · ч/ед. кол-ва | Выделение СО <sub>2</sub> ,<br>г/кВт ⋅ ч |
|--------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|
| Природный газ                              | м <sup>3</sup> в нормальных<br>условиях | 36,3                                                            | 10,0                                                              | 205                                      |
| Пропан/бутан                               | КГ                                      | 46,0                                                            | 12,8                                                              | 205                                      |
| Легкие нефтепродукты/<br>дизельное топливо | Л                                       | 42,0                                                            | 10,0                                                              | 266                                      |
| Мазут                                      | Л                                       | 40,2                                                            | 11,2                                                              | 282                                      |
| Кокс                                       | кг                                      | 29,3                                                            | 8,1                                                               | 343                                      |
| Бурый уголь                                | КГ                                      | 8,4                                                             | 2,3                                                               | 360                                      |
| Дерево                                     | м <sup>3</sup>                          | 7800,0                                                          | 2150,0                                                            | 331                                      |
| Электричество                              | кВт∙ч                                   | 3,6<br>(тепловыделение)                                         | 1,0<br>(тепловыделение)                                           | <u>-</u>                                 |

П р и м е ч а н и е — При производстве электроэнергии выделение CO<sub>2</sub> зависит от вида топлива, используемого для производства электроэнергии. Тем не менее, информация об экологических аспектах производства электроэнергии должна быть доступна в открытых источниках информации или по запросу у поставщика.

УДК 697.1:006.354

OKC 91.040

Ключевые слова: энергоэффективность, здания, энергетическая, системы, проектирование

Редактор *Т.Т. Мартынова*Технический редактор *В.Ю. Фотиева*Корректор *И.А. Королева*Компьютерная верстка *П.А. Круговой* 

Сдано в набор 18.11.2015. Подписано в печать 16.12.2015. Формат  $60 \times 84 \frac{1}{8}$ . Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,40. Тираж 40 экз. Зак. 4155.