МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ ОРДЕНА "ЗНАК ПОЧЕТА" НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОТИВОПОЖАРНОЙ ОБОРОНЫ»

МЕТОДИКА ИСПЫТАНИЙ ПО ОПРЕДЕЛЕНИЮ ИЗЛУЧАЮЩЕЙ СПОСОБНОСТИ ПЛАМЕНИ ТВЕРДЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ

MOCKBA 2014

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ ОРДЕНА "ЗНАК ПОЧЕТА" НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОТИВОПОЖАРНОЙ ОБОРОНЫ»

МЕТОДИКА ИСПЫТАНИЙ ПО ОПРЕДЕЛЕНИЮ ИЗЛУЧАЮЩЕЙ СПОСОБНОСТИ ПЛАМЕНИ ТВЕРДЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ

УДК 614.841 ББК 38.96 M54

Разработана сотрудниками ФГБУ ВНИИПО МЧС России: д-ром техн. наук, проф. Н.В. Смирновым, д-ром техн. наук, проф. Н.И. Константиновой, канд. техн. наук О.И. Молчадским, А.А. Меркуловым.

Утверждена ФГБУ ВНИИПО МЧС России 23 декабря 2013 г.

Методика испытаний по определению излучающей спо-М54 собности пламени твердых веществ и материалов. М.: ВНИИПО, 2014. 16 с.

Представлены порядок проведения и метод испытаний по определению излучающей способности пламени при горении твердых веществ и материалов. Приведено описание оборудования, необходимого для испытаний. Даны характеристики образцов веществ и материалов, используемых в экспериментах. Показана последовательность оценки результатов и оформления протокола испытаний.

Предназначена для специалистов судебно-экспертных учреждений федеральной противопожарной службы «Испытательная пожарная лаборатория», надзорных органов МЧС России, научно-исследовательских учреждений, предприятий — производителей веществ и материалов, а также организаций, работающих в области обеспечения пожарной безопасности объектов.

УДК 614.841 ББК 38.96

© МЧС России, 2014

© ФГБУ ВНИИПО МЧС России, 2014

Оглавление

1.	Общие положения	4
2.	Нормативные ссылки	4
3.	Термины и определения	5
4.	Оборудование для испытаний	5
5.	Образцы для испытаний	10
6.	Калибровка установки	11
	Проведение испытаний	
8.	Оценка результатов испытаний	13
9.	Оформление протокола испытаний	13
10.	. Требования безопасности	14
	Приложение (рекомендуемое). Форма протокола	
	испытаний излучающей способности пламени твердых	
	веществ и материалов	15

1. Общие положения

Настоящий нормативный документ устанавливает требования к процедуре проведения испытаний по определению излучающей способности пламени при горении горизонтально расположенных образцов твердых веществ и материалов. В качестве испытательного оборудования используется установка, основа конструкции которой соответствует ГОСТ 12.1.044 (п. 4.19 «Метод экспериментального определения индекса распространения пламени»). Настоящая Методика распространяется на горючие твердые вещества и материалы, в том числе строительные, а также на лакокрасочные покрытия и не распространяется на вещества в газообразном и жидком виде, сыпучие материалы и пыли.

Результаты испытаний применимы только для оценки свойств материалов в контролируемых лабораторных условиях и не отражают поведение материалов в реальных условиях пожара.

2. Нормативные ссылки

В настоящей Методике использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.005–88*. ССБТ. Общие санитарногигиенические требования к воздуху рабочей зоны.

ГОСТ Р 12.1.019—2009. ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты.

ГОСТ 12.1.044—89*. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

ГОСТ 12766.1—90. Проволока из прецизионных сплавов с высоким электрическим сопротивлением. Технические условия.

ГОСТ 18124—2012. Листы хризотилцементные плоские. Технические условия.

ГОСТ 20448–90*. Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия.

3. Термины и определения

В настоящей Методике применены следующие термины с соответствующими определениями:

излучающая способность пламени — плотность теплового потока очага пожара непосредственно на поверхности пламени при горении материала в условиях специальных испытаний;

устойчивое пламенное горение — горение материала, продолжающееся до момента исчезновения видимых языков пламени.

4. Оборудование для испытаний

4.1. В состав оборудования входит установка для определения излучающей способности пламени (рис. 1), которая включает в себя следующие элементы: вертикальную стойку на опоре, электрическую радиационную панель, держатели образца и датчика теплового потока, вытяжной зонт, запальную газовую горелку и термоэлектрический преобразователь.

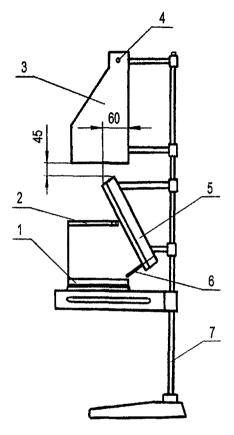


Рис. 1. Общий вид установки:

1 – держатель образца; 2 – держатель датчика теплового потока;
 3 – вытяжной зонт; 4 – термоэлектрический преобразователь;
 5 – электрическая радиационная панель;
 6 – запальная газовая горелка; 7 – вертикальная стойка на опоре

Электрическая радиационная панель состоит из керамической плиты, в пазах которой равномерно закреплен нагревательный элемент (спираль) из проволоки марки

Х20Н80-Н (ГОСТ 12766.1). Параметры спирали (диаметр, шаг намотки, электрическое сопротивление) должны быть такими, чтобы суммарная потребляемая мощность не превышала 8 кВт. Керамическая плита помещена в теплоэлектроизолированный корпус, закрепленный на вертикальной стойке, и подключена к электрической сети с помощью блока питания. Для повышения мощности инфракрасного излучения и уменьшения влияния потоков воздуха перед керамической плитой установлена сетка из жаростойкой стали. Радиационная панель устанавливается под углом 60° к поверхности горизонтально расположенного образца (рис. 2).

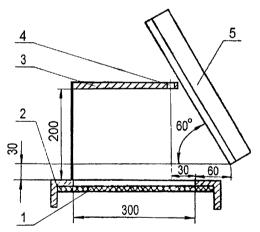


Рис. 2. Взаимное расположение электрической радиационной панели, держателя образца и датчика теплового потока:

 ^{1 –} образец; 2 – держатель образца; 3 – держатель датчика теплового потока;
 4 – датчик теплового потока; 5 – электрическая радиационная панель

Держатель образца состоит из подставки и рамки. Рамку закрепляют горизонтально на подставке таким образом, чтобы нижняя кромка электрической радиационной панели находилась на расстоянии 30 мм по вертикали и 60 мм по горизонтали от верхней плоскости рамки с образцом.

Держатель датчика теплового потока состоит из стойки с закрепленной на ней негорючей плитой толщиной (15 ± 5) мм и размером 220×140 мм. В качестве материала плиты можно использовать хризотилцемент (ГОСТ 18124), асбестоцемент и др. Плиту закрепляют горизонтально на расстоянии 200 мм от поверхности образца. Датчик теплового потока закрепляется таким образом, чтобы его рабочая поверхность находилась в одной плоскости с поверхностью плиты, а центр чувствительного элемента датчика располагался над центральной продольной осью образца на расстоянии 30 мм от края рамки держателя образца (см. рис. 2).

Вытяжной зонт размерами 360×360×700 мм служит для сбора и удаления продуктов горения.

Газовая горелка представляет собой трубку внутренним диаметром $(2,0\pm0,1)$ мм из жаростойкой стали с запаянным концом и пятью отверстиями диаметром 0,6 мм, расположенными на расстоянии 20 мм друг от друга. Горелка в рабочем положении устанавливается горизонтально между радиационной панелью и образцом на расстоянии 15 мм от края держателя образца.

Расстояние от горелки до поверхности испытываемого образца составляет (8 ± 1) мм, а оси пяти отверстий находятся под углом 45° к поверхности образца. Для стабилизации запального пламени горелка помещена в однослойный чехол из металлической сетки. Газовая горелка подсоединяется гибким шлангом через устройство, регулирующее рас-

- ход газа*, к баллону с пропан-бутановой фракцией (ГОСТ 20448). Давление газа должно находиться в диапазоне $10\div50$ кПа.
- 4.2. Кроме установки при испытаниях используют следующие приборы:
- блок питания, который состоит из регулятора напряжения с максимальным током нагрузки не менее 20 A и регулируемым выходным напряжением от 0 до 240 В;
- устройство для измерения времени (секундомер) с диапазоном измерения 0-60 мин и ценой деления 0,2 с;
- термоанемометр, предназначенный для измерения скорости воздушного потока с диапазоном измерения 0,2-5,0 м/с и точностью $\pm 0,1$ м/с;
- датчик Гордона с погрешностью не более ± 8 %, применяемый для контроля плотности теплового потока при нагреве установки и в процессе проведения испытаний;
- термоэлектрический преобразователь типа ТХА с диаметром термоэлектрода не более 0,5 мм, используемый для измерения температуры (справочный показатель) при испытании материалов; изолированный спай с диапазоном измерения $0-500~^{\circ}$ С, не более 2-го класса точности. Термоэлектрический преобразователь должен иметь защитный кожух из нержавеющей стали диаметром (1,6 \pm 0,1) мм и закрепляться таким образом, чтобы изолированный спай находился в центре сечения суженной части вытяжного зонта;
- прибор для регистрации температуры с диапазоном измерения 0–500 °C, не более 0,5 класса точности;

^{*} В качестве устройства, регулирующего расход газа, может использоваться расходомер типа ротаметр или аналогичный прибор с диапазоном, обеспечивающим требования подп. 6.1.2.

- металлическая линейка с диапазоном измерения 0–1000 мм и ценой деления 1 мм, предназначенная для измерения линейных размеров;
- барометр с диапазоном измерения 600-800 мм рт. ст. и ценой деления 1 мм рт. ст. для измерения атмосферного давления;
- гигрометр с диапазоном измерения 20–93 % (15–40 °C) и ценой деления 0.2 °C для измерения влажности воздуха.

5. Образцы для испытаний

- 5.1. Для испытания одного вида материала изготавливают пять образцов длиной (320 \pm 2) мм, шириной (140 \pm 2) мм, фактической толщиной, но не более 20 мм. Если толщина материала составляет более 20 мм, необходимо срезать часть материала с нелицевой стороны. При изготовлении образцов экспонируемая поверхность не должна подвергаться обработке.
- 5.2. Для анизотропных материалов изготавливают два комплекта образцов (например, по утку и по основе). При классификации материала принимается худший результат испытания.
- 5.3. Для слоистых материалов с различными поверхностными слоями изготавливают два комплекта образцов в целях экспонирования обеих поверхностей. При классификации материала принимается худший результат испытания.
- 5.4. Кровельные мастики, мастичные покрытия и лакокрасочные покрытия наносят на ту же основу, которая используется в реальной конструкции. При этом следует наносить не менее четырех слоев лакокрасочных покрытий

с расходом каждого слоя в соответствии с технической документацией на материал.

5.5. Материалы толщиной менее 10 мм испытывают в сочетании с негорючей основой. Способ крепления должен обеспечивать контакт поверхностей материала и основы.

В качестве негорючей основы следует использовать хризотилцементные * листы размерами 320×140 мм, толщиной 10 или 12 мм, изготовленные по ГОСТ 18124.

5.6. Образцы кондиционируют в лабораторных условиях не менее 48 ч.

6. Калибровка установки

- 6.1. Калибровка установки должна проводиться в помещении при температуре (23 \pm 5) °C и относительной влажности воздуха (50 \pm 20) % в следующем порядке:
- 6.1.1. Измеряют скорость воздушного потока в центре сечения суженной части вытяжного зонта. Она должна находиться в диапазоне $0.25 \div 0.35$ м/с.
- 6.1.2. Регулируют расход газа через запальную газовую горелку таким образом, чтобы высота пламени составляла (11 ± 2) мм. После этого запальную горелку выключают и переводят в положение «контроль» (расположение горелки относительно поверхности образца под углом 90°).
- 6.1.3. Включают электрическую радиационную панель и устанавливают держатель образца с тарировочной асбестоцементной плитой, в которой расположены отверстия с датчиками теплового потока в трех контрольных точках. Центры отверстий (контрольные точки) расположены

^{*} Допускается использование листов из асбестоцемента и других негорючих материалов.

по центральной продольной оси от края рамки держателя образца на расстоянии соответственно 15, 150 и 280 мм.

- 6.1.4. Нагревают радиационную панель, обеспечивая плотность теплового потока в стационарном режиме для первой контрольной точки (13,5 \pm 1,5) кВт·м², для второй и третьей точки соответственно (9 \pm 1) и (4,6 \pm 1) кВт·м².
- 6.2. Считается, что радиационная панель вышла на стационарный режим, если показания датчиков теплового потока достигают значений в заданных диапазонах и остаются неизменными в течение 15 мин.

7. Проведение испытаний

- 7.1. Испытания должны проводиться в помещении при температуре (23 \pm 5) °C и относительной влажности воздуха (50 \pm 20) % в следующем порядке:
- 7.1.1. Регулируют скорость воздушного потока в вытяжной системе согласно подп. 6.1.1.
- 7.1.2. Нагревают радиационную панель, обеспечивая условия подп. 6.1.4 и п. 6.2. Размещают плиту с датчиком теплового потока согласно рис. 2 и фиксируют плотность теплового потока $q_{\rm pn}$ без испытываемого образца.
- 7.1.3. Зажигают запальную горелку и регулируют расход газа согласно подп. 6.1.2.
- 7.1.4. Закрепляют испытываемый образец в держателе, помещают держатель в установку, контролируют взаимное расположение радиационной панели и держателя согласно рис. 2, переводят горелку в рабочее положение.
- 7.1.5. Включают секундомер в момент контакта пламени запальной горелки с поверхностью образца, фиксируют время воспламенения образца, размещают плиту с датчиком теплового потока согласно рис. 2 и фиксируют плот-

ность теплового потока (излучающую способность пламени) с интервалом в 30 с до момента прекращения пламенного горения – окончания испытания.

- 7.1.6. Временем воспламенения образца считается момент, когда фронт (или пробежка) пламени достигнет отметки на расстоянии 30 мм от края рамки с образцом.
 - 7.2. В процессе испытания регистрируют:
 - время воспламенения образца, с;
- плотность теплового потока q_i с интервалом 30 с, $\kappa \text{Bt/m}^2$;
- максимальную плотность теплового потока q_{\max} , $\kappa \mathrm{Br/m}^2$;
- время достижения максимальной плотности теплового потока, с.

8. Оценка результатов испытаний

8.1. Для каждого образца вычисляют среднее арифметическое значение плотности теплового потока q_{icp} , кВт/м², по формуле

$$q_{icp} = \sum q_i / i$$
,

где i – количество измерений с интервалом 30 с.

8.2. Излучающую способность пламени исследуемого материала q, кВт/м², вычисляют по формуле

$$q = \sum q_{icp} / 5 - q_{pm}$$
.

8.3. Сходимость и воспроизводимость метода при доверительной вероятности 95 % не должна превышать 25 %.

9. Оформление протокола испытаний

В протоколе испытаний (см. приложение) приводят следующие сведения:

- наименование испытательной лаборатории;

- наименование и адрес заказчика, изготовителя (поставщика) материала;
- условия в помещении (температура, °C; относительная влажность, %; атмосферное давление, мм рт. ст.);
- описание материала или изделия, техническую документацию, торговую марку;
- состав, толщину, плотность, массу и способ изготовления образцов;
- для многослойных материалов толщину и характеристику материала каждого слоя;
 - параметры, регистрируемые при испытаниях:
- среднюю плотность теплового потока (излучающую способность пламени);
- данные дополнительных наблюдений (поведение материала при испытаниях);
 - исполнителей.

10. Требования безопасности

Помещение, в котором проводят испытания, должно быть оборудовано приточно-вытяжной вентиляцией. Рабочее место оператора должно удовлетворять требованиям электробезопасности по ГОСТ Р 12.1.019 и санитарногигиеническим требованиям по ГОСТ 12.1.005. Лица, допущенные в установленном порядке к испытаниям, должны быть ознакомлены с техническим описанием и инструкцией по эксплуатации испытательного и измерительного оборудования.

Приложение (рекомендуемое)

Форма протокола испытаний излучающей способности пламени твердых веществ и материалов

Наименование организации, выполняющей испытания

Γ	ΙP	O	T	o	К	O.	П	№	

определения излучающей способности пламени твердых веществ и материалов

OT	« _	»	20	Γ	
Οī	" _	″		ı	

- 1. Заказчик (изготовитель).
- 2. Наименование материала (марка, ГОСТ, ТУ и т. д.).
- 3. Характеристики материала (плотность, толщина, состав, количество слоев, цвет).
- 4. Условия в помещении (температура, °С; относительная влажность, %; атмосферное давление, мм рт. ст.).
- 5. Наименование методики испытаний.
- 6. Испытательное и измерительное оборудование (заводской номер, марка, свидетельство о поверке, диапазон измерения, срок действия).

Экспериментальные данные

№ опы- та	Плот- ность теплово- го потока $q_{\rm pn}$, кВт/м ²		я, с	мальная плот- ность	Плотность теплового потока с интервалом в 30 с, q_i , кВт/м ²									Средняя плотность	Излучаю- щая
		воспламенения	Достижения 9 мах		1	2	3	4	5	6	7	8	9	теплового потока q_{icp} , к B т/м 2	способ- ность пламени q , к B т/ M ²
1															:
2															
3								ļ							
4															
5															

Примечание.

Вывод.

Исполнители.

Производственно-практическое издание

МЕТОДИКА ИСПЫТАНИЙ ПО ОПРЕДЕЛЕНИЮ ИЗЛУЧАЮЩЕЙ СПОСОБНОСТИ ПЛАМЕНИ ТВЕРДЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ

Редактор *Н.В. Бородина*Технический редактор *М.Г. Завидская*Ответственный за выпуск *А.А. Меркулов*

Подписано в печать 06.06.2014 г. Формат 60×84/16. Печать офсетная. Усл. печ. л. 0,93. Т. − 140 экз. Заказ № 31.

Типография ФГБУ ВНИИПО МЧС России мкр. ВНИИПО, д. 12, г. Балашиха, Московская обл., 143903