

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ИМЕНИ Н.М. ГЕРСЕВАНОВА ГОССТРОЯ СССР

РЕКОМЕНДАЦИИ
ПО ПРИМЕНЕНИЮ
ВСПЕНЕННЫХ
ЦЕМЕНТНЫХ РАСТВОРОВ
ДЛЯ ПОДВОДНОГО
УСТРОЙСТВА ДНИЩ
ПОДЗЕМНЫХ СООРУЖЕНИЙ

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ИМЕНЯ Н.М. ГЕРСЕВАНОВА ГОССТРОЯ ССЕР

РЕКОМЕНДАЦИИ
ПО ПРИМЕНЕНИЮ
ВСПЕНЕННЫХ
ЦЕМЕНТНЫХ РАСТВОРОВ
ДЛЯ ПОДВОДНОГО
УСТРОЙСТВА ДНИЩ
ПОДЗЕМНЫХ СООРУЖЕНИЙ

В Рекомендациях изложена технология подводного устройства дниц подземных сооружений с применением вспененных цементных растворов.

Рекомендации регламентируют технологию и механизацию работ и технику безопасности. Предлагаемая технология позволяет выполнение способом подводного бетонирования днищ подземных сооружений, возводимых методами опускного колодца и " стена в грунте".

Рекомендации могут быть использованы инженерно- техническими работниками строительных и проектных организаций для проектирования и производства работ по подводному устройству днищ подвемных сооружений: maxтных стволов, насосных станций, камер для щитовой проходки тоннелей и других аналогичных объектов.

Рекомендации разработаны НИИ оснований и подвемных сооружений им. Н.М. Герсеванова (д-ры техн. наук Соколович В.Е., Ржаницын Б.А., Смородинов М.И., канд. техн. наук Березницкий D.А., Ибрагимов М.Н., Грачев D.А.), при участии ВО Союзспецстроя (инж. Ротчев В.И., Михайлов В.Б.), одобрены Научно-техническим советом института и рекомендованы к изданию.

Замечания и предложения по содержанию Рекомендаций просьба направлять по адресу: 109389, Москва, 2-я Институтская, 6, НИИОСП.

Ордена Трудового Красного Знамени научно-исследовательский институт оснований и подземных сооружений имени Н.М.Герсеванова, 1984.

RNHAKOROII EMEGO . I

1.1. Настоящие рекомендации составлены в развитие главы СНиП 3.02.01-83 "Основания и фундаменты" и в дополнение к "Инструкции по произъздству работ методом опускных колодцев" местные строительные нормы 151-67 Минмонтажспецстроя СССР.

Рекомендации предназначены для экспериментального строительства подземных сооружений с выполнением днища без откачки воды.

- 1.2. Рекомендации распространяются на подводное устройство днищ подземных сооружений и регламентируют технологию производства работ, механизацию основных производственных процессов и технику безопасности.
- 1.3. Работы по подводному устройству днищ подземных сооружений следует выполнять в последовательности, показанной на рис. І. Для приготовления вспененных цементных растворов необходимо раздельное приготовление воздушно-механической пены и цементной суспенвии.

Воздушно-механическую пену рекомендуется приготовлять генерированием водных растворов поверхностно-активных веществ в специальных пеногенераторах.

Для приготовления цементной суспензии и ее перемешивания с пеной могут быть использованы различные растворосмесители.

При выполнении днища сооружения без откачки воды приготовленный вспененный цементный раствор может быть спущен под воду к месту укладки по трубе или рукаву, при этом подтопления выходного отверстия раствороподающих магистралей в укладываемый материал не

требуется /А.С.992710(СССР).Способ полволного бетонирования. /В.Е.Соколович, А.О.Березнипкий, М.И.Сиоролинов, В.F.Михайлов. -Заявл.5/УШ 1981, № 3326274/29-33; опубл. в Б.И., 1983, № 4/.

В этом заключается основное преимущество настоящей технологии перед способом вертикально-перемещающейся трубы (ВПТ) и способом восхадящего раствора (ВР).

- 1.4. Вспененные цементные растворы стабильны, не расслаиваются при вертикальном перемещении, не размываются водой, легко транспортируются по трубам и перекачиваются насосами. Эти свойства обеспечиваются гидрофобизацией частиц цемента поверхностно-активным веществом.
- 1.5. Настоящий способ подводного устройства днищ целесообразно использовать для сооружений глубиной 20м и более, с площадью сечения в плане до 75 м.

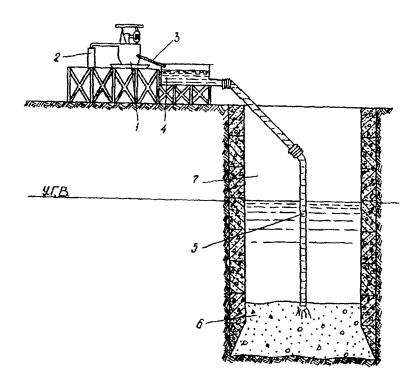


Рис. I. Схема подводного устройства дница вспененными растворами:

I - растворосмеситель;
2 - пеногенератор;
3 - сливной лоток;
4 - резервная смюсть;
5 - трубопровод;
6 - пеноцементное днище;
7 - опускной колодец

- I.6. Указанный способ устройства днищ примении для устройства переходных подушек при пересечении шахтными стволами контакта осадочных и скальных пород, для выполнения подготовки под конструктивную глиту-днище различных подземных сооружений.
- I.7. Пер и проектированием следует составить технические задания, в которых совместно со специализированной строительной организацией и генералиным проектированием определить основные положения производства работ, вазимосвязанные с проектированием.
- 1.8. Инженерные изыскания для сооружений с подводным выполнением днища следует осуществлять в соответствии с главой СНиП П-9-78 "Инженерные изыскания для строительства".

На строительной площадке должны быть пробурены не менее 4 разведочных скважин в пределах контура будущего сооружения. Глубина заложения разведочных скважин должна быть ниже отметки сооружения не менее чем на 10 м. После окончания изысканий разведочные скважины необходимо затампонировать цементным раствором.

- Проект сооружения с подводным устройством днища следует разрабатывать соеместно с проектом производства работ.
- 1.10. При разработке проекта сооружения с подводным устройством днища вспененными цементными растворами должны быть сопоставлены слепующие способы выполнения пниш:

устройство днища насухо;

бетонирование способом ВПТ;

бетонирование способом ВР.

- 1.11. Проект производства работ на строительство подземного сооружения с подводным устройством днища должен разрабатываться в соответствии с "Инструкцией о порядке составления и утверждения проектов организации строительства и проектов производства работ" (СН 47-74) и с настоящими Рекомендациями.
- 1.12. Помимо общих вопросов, проект производства работ должен включать:

детальные технологические карты по приготовлению воздужномеханической пены и вспененных цементных растворов, а также по подаче растворов под воду;

проект пенорастворного узла;

откачку воды после набора днищем сооружения необходимсй прочности;

удаление шлама с поверхности днища;

- рецептуру вспененного раствора и контроль его качества;
- потребность строительства в материалах для приготовления вспененных растворов.
 - ВЫБОР ПОВЕРХНОСТНО-АКТИВНОГО ВЕЩЕСТВА И ОПТИМАЛЬНОГО СОСТАВА ПЕНООБРАЗОВАТЕЛЯ
- 2.1. Вспененные цементные растворы для подводного устройства днищ подвемных сооружений следует изготавливать посредством перемешивания цементной суспензии с технической пеной.
- 2.2. В качестве поверхностно-активных веществ для приготовления технической пены следует использовать:

оксиэтилированный алкилфенол и сульфонал;

пенообразователь "Прогресс";

пасту алкилсульфатов;

алюмосульфонафтеновый пенообразователь;

техническое мыло "Типол 486".

2.3. Исходя из условий обеспечения максимальной пенообразующей способности и механической прочности пены рекомендуются следующие составы водных растворов пенообразователей на I л (табл.I).

Таблина І

Вид ПАВ	Вода, мл	ПАВ, мл
Оксиэтилированный алкилфенол	930	70
Оксиэтилированный сульфонал	920	80
"Прогресс"	960	40
Паста алкилсульфатов	962	38
Алюмосульфонафтеновый пено- образователь	854	I4 6
Техническое мыло "Типол"	910	90

- 2.4. Применение других ПАВ, выпускаемых отечественной химической промышленностью и за рубежом, может быть допустимо только после проведения лабораторных исследований качества получаемой пены.
 - СОСТАВЫ ВСПЕНЕННЫХ ЦЕМЕНТНЫХ РАСТВОРОВ ДЛЯ ПОДВОДНОГ;:)
 УСТРОЙСТВА ЛИМИ ПОДЗЕМНЫХ СООРУЖЕНИЙ
- 3.1. Цементную суспензию для приготовления вспененных растворов следует приготовлять из цемента марки 400-600 при водоцементном отношении (в/ц) 0,5±0,7.
- 3.2. Объемное соотношение пена: цементная суспензия (П:С) при приготовлении вспененных растворов следует обеспечивать в пределах 0,2+0,5, что обеспечивает достижение пеноцементным камнем предела прочности при сжатии в диапазоне 10+20 МПа.
- 3.3. Пригодность для подводной укладки вспененных растворов следует оценивать показателем сохранения подвижности К, за который принимают время, в течение которого расплыв по конусу АзНИИ сохраняется в пределах 16-20 см.

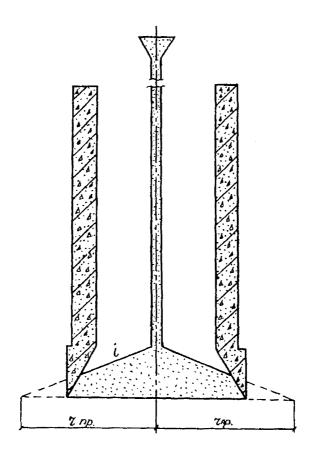
Для подводного устройства днищ подземных сооружений пригодны вспененные растворы, имеющие К-I часа.

- 3.4. Учитывая различное качество выпускаемых промышленностью ПАВ, на которое существенное влияние оказывают срок и условия хранения, показатель К следует определять для каждой партии ПАВ перед началом производства работ.
- З.5. Наибольмая подвижность вспененных цементных растворов достигается при их приготовлении на сульфоалюмонафтеновом пенообразователе.
- 3.6. Величину сцепления со строительными конструкциями в МПа пеноцементного камня из растворов на пасте алкилсульфатов в % от предела прочности при сжатии следует принимать:
 - с бетоном, железобетоном 20:
 - со сталью Т5:
 - с ранее выполненными пеноцементными конструкциями 25.

То же, для пеноцементного камня из растворов на ПАВ "Прогресс", алимосульфонафтеновом ПАВ, оксизтилированном алкилфеноле и сульфонале:

- с бетоном, желевобетоном I8
- co сталью IO
- с ранее выполненными пеноцементными конструкциями - 20
- 3.7. Предел прочности при сжатии пеноцементного камия зависит от водоцементного отношения, марки цемента, соотношения пена : цементная суспеняя и вида пенообразователя.

Для определения состава вспененного раствора, с требуемой прочностью педоцементного намия, следует пользоваться таби.2.


- 4. РЕЖИМ УКЛАДКИ ВСПЕНЕННЫХ ЦЕМЕНТНЫХ РАСТВОРОВ ПОЛ ВОЛУ ПРИ УСТРОЙСТВЕ ЛИИВ ПОЛЗЕМНЫХ СООРУЖЕНИЙ
- 4.1. Правильный выбор режима подводной укладки вспененного раствора, наряду с обеспечением его высоких технологических свойств, определяет качество производства работ.
- 4.2. Определяющими режим подводной укладки вспененного раствора являются следующие параметры:
 - т радиус действия труби, м;
 - ј уклон поверхности укладиваемого раствора;
 - 7 интенсивность укладки, м³/м² час:
 - К показатель сохранения подвижности, час.
- 4.3. Процесс движения вспененного раствора протекает скоями, толенна которых зависит от скорости подъема уровня раствора в сооружении S ж способности раствора сохранять подвижность К (рис.2).
- 4.4. Предельный раджус растемания вспененного раствора в зоне подводной укладки определяется из равенства объема раствора, заливаемого за время К и объема подводного конуса:

$$\mathbf{K}\cdot\mathbf{J}\cdot\mathbf{F}=\frac{\mathbf{I}}{3}\mathbf{F}\cdot\mathbf{I}_{\mathrm{np}}\cdot\dot{\iota}$$
, где \mathbf{F} - площадь дияща сооружения, \mathbf{u}^2 ; $\dot{\iota}$ - уклон растекания.

Таблица 2

Предел		Вид ПАВ																						
проч- ности при	Оксиэтилированный алкилфенол						"Прогресс" Марка цемента						Алкилсульфаты						Алимосульфонафтеновый пенообразователь					
CEA- TUN,	Марка цемента					Марка цемента							\perp	Марка цемента										
Mila	40			00		500		00		00		00		00	500		600		400		500		600	
	в/ц	п/с	в/ц	п/с	B/1	п/с	в/ц	π/c	в/ц	п/с	в/ц	п/с	в/ц	п/с	B/I	п/с	в/г	n/c	в/ц	п/с	в/ц	п/с	в/1	п/с
10	0,7	0,4	0,7	0,42	07	0,44	0,7	0,42	0,7	0,45	0,7	048	0,7	0,41	07	047	0,7	05	0,7	0,38	0,7	0,4	0,7	0,42
12	0,6	0,38	0,6	0,4	0β	0,42	0,6	0,4	0,6	0,42	0,6	0,45	0,6	0,42	oę	0,44	0,6	0,47	0,6	0,35	0,6	0,38	0,6	040
15	0,6	0,31	0,6	0,35	0,6	0,38	0,6	0,33	0,6	0,38	0,6	0,41	0,6	0,35	oʻe	0,40	0,6	044	0,6	027	0,6	0,33	0,6	0,35
20	0,5	0,22	0,5	028	05	15,0	0,5	0,24	0,5	030	0,5	0,33	0,5	027	0,5	0,33	0,5	0,35	0,5	020	0,5	0,24	05	0,28

9

Рмс.2. Схема растекания вспененного раствора

Величину уклона і для расчетов следует принимать равной 0,2. Предельный радиус растекания согласно приведенного равенства:

4.5. С учетом ухудшения качества пеноцементного камия в хвостовых участках подводного конуса следует расчетный радмус растекания принимать:

4.6. Для устройства дниц подземных сооружений, площадь которых охватывается τ_{pac} следует использовать одну растворолитную трубу с расположением ее выходного отверстия на уровне или несколько выде отметки верха дница (п.1.3).

В случаях, когда площадь днища не может быть охвачена τ_{pac} , следует использовать несколько растворолитных труб.

- 4.7. В этих же случаях можно рекомендовать и подводную укладку вспененных растворов через трубу, перемещаемую в двух уровнях (рис.3). Вспененный раствор при этом укладывается лентами с образованием слоев посредством подъема растворолитной трубы на высоту слоя.
- 4.8. При толщине днища подземного сооружения более 2м возможно выполнение каждого слоя отдельной трубой, что создает поточность и дает экономию во времени.
- 4.9. Укладку растворов по одной трубе целесообразно производить при выполнении круглых дниц с площадью сечения до 50 m^2 .
- 4.10. При выполнении круглых днищ большей площади подводную укладку вспененных растворов одной трубой следует вести концентрическими окружностями от стен сооружения к его центру. Возможно выполнение днища с одновременной укладкой кольцевых лент (рис.4).
- 4.II. В растворолитных трубах, перемещаемых при подводной укладке раствора в горизонтальной плоскости, целесообразно выполнение на нижнем торце среза под углом, равным углу естественного откоса укладываемого раствора.
- 4.12. В таких случаях укладки растворов необходимо обеспечивать полную согласованность процессов вытекания раствора из

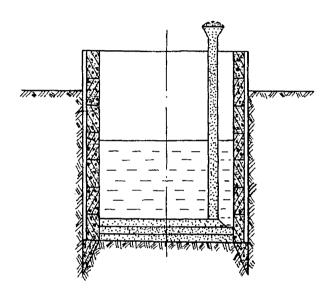


Рис.3. Схема укладки раствора по трубе, перемещаемой в двух уровнях

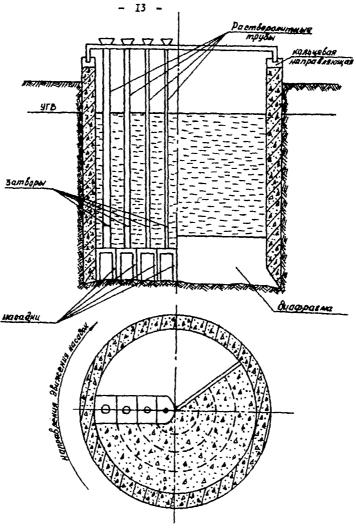


Рис. 4. Скема укладки растворов концентрическими окружностями

трубы и ее перемещения.

- 4.13. Для сокращения расхода цемента возможно втапливать в несхватившийся слой вспененного раствора камень, железобетонный бой и другие отходы строительства, обеспечивая тем самым их утилизацию.
- 4.14. В целях экономии цемента возможно укладывать в тело дница сооружения слои пеноцементного камия разной прочности путем изменения количества вводимой в цементную суспензию пены, достигая этим равнопрочную конструкцию днища.
- 4.15. При приготовлении и укладке под воду вспененных цементных растворов необходимо осуществлять тщательный контроль показателей их качества и интенсивности подачи в тело днища. Для этих целей рекомендуется использовать полевую лабораторию MP-I и водомерные счетчики.

Результаты контроля необходимо фиксировать в специальном журнале и оформлять актами на скрытые работы в порядке, предусмотренном специализированной строительной организацией, ведущей устройство днища.

- 5. КОМПЛЕКСЫ ОБОРУДОВАНИЯ ДЛЯ ПОДВОДНОГО УСТРОЙСТВА ДНИЩ ПОДЗЕМНЫХ СООРУЖЕНИЙ С ПРИМЕНЕНИЕМ ВСПЕНЕН-НЫХ ПЕМЕНТНЫХ РАСТВОРОВ
- 5.1. Оборудование для приготовления воздушно-механической пены и вспененных цементных растворов составляет пенорастворный узел (рис.5).

Пенорастворный узел может быть организован как в непосредственной близости от строящегося подземного сооружения, так и на некотором расстоянии от него.

5.2. Первый вариант целесообразен при устройстве днища на одном сооружении, размещенном на стройплощадке. В этом случае пенорастворный узел может быть размещен непосредственно около устья сооружения или на его перекрытии, устраиваемом в любом уровне. При такой схеме производства работ пенорастворный узел

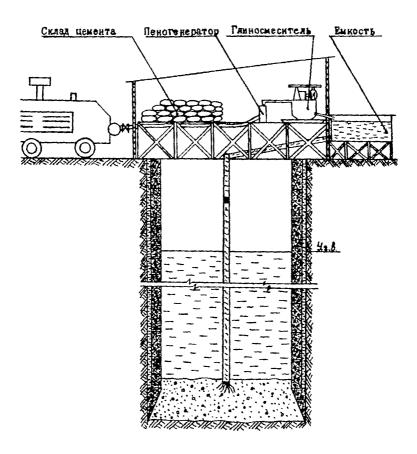


Рис. 5. Схема пенорастворного узла

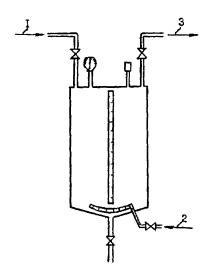


Рис. 6. Пеногенератор конструкции НИИОСП:

- I раствор ПАВ; 2 воздух; 3 пена

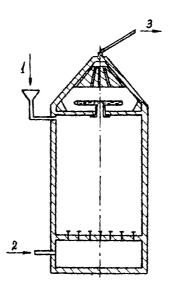


Рис. 7. Пеногенератор с вращающейся насадкой: I - раствор ПАВ; 2 - воздух;

- 3 пена

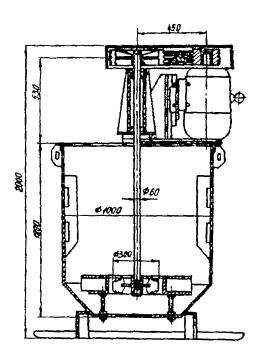


Рис. 8. Глиносмеситель РМ-750

сопрягают с комплексом оборудования для подачи вспененного раствора под воду.

- 5.3. При обслуживании пенорастворным узлом ряда объектов его следует размещать на равном расстоянии от них. Причем транспортирование вспененного раствора в зависимости от расстояния следует производить перекачиванием по трубам насосами или подвовом в емкостях, установленных на автотранспорте.
- 5.4. Пенорастворный узел должен включать пеногенераторы, растворосмесители, резервную емкость и, в случае необходимости, растворонасосы.
- 5.5. Количество пеногенераторов и растворосмесителей следует определять исходя из требуемой интенсивности укладки растворов в тело днижа сооружения.

Они могут работать как по последовательной, так и по паралнельной схеме.

- 5.6. При производстве работ в вимнее время пенорастворные узлы следует монтировать во временных отапливаемых строениях. Однако возможно и приготовление вспененных цементных растворов на горячей воде без утепления пенорастворного узла.
- 5.7. Для приготовления воздушно-механической пены рекомендуется использовать пеногенераторы барбатажного типа, которые позволяют достичь требуемого качества продукции. Им характерны простота изготовления силами подрядных строительных организаций и удобство эксплуатации.

Конструкции пеногенераторов, разработанные в НИИ оснований показаны на рис.6,7.

- 5.8. Для приготовления вспененных цементных растворов рекомендуется использовать механические растворосмесители турбинного типа марок РМ-350,500,750 и 1000 (рис.8), разработанные Всесоюзным объединением Гидроспецстрой Минэнерго СССР, а также растворосмеситель марки БС-2 конструкции Гидропроекта им. С.Я. Мука.
- 5.9. Кроме растворосмесителей следует предусмотреть перемеживающие устройства в резервных емкостях, например, конструкции ВНИИ нефтемаца механического лопастного типа.
- 5.10. Для перекачки вспененных растворов могут быть рекомендованы центробежные насосы марок ВШ-150, Ш-150 и НШ-1, а также грязевые насосы марки ЭМГР и IIMГР.

5.II. Для транспортирования вспененных растворов рекомендуется использовать напорные рукава (тип В по ГОСТ 8318-67).

6. ТЕХНИКА БЕЗОПАСНОСТИ

6.1. Производство работ по подводному устройству днищ подземных сооружений должно осуществляться в соответствии с требованиями настоящих Рекомендаций и следующих нормативных документов:

главы СНиП M-4 II-80° Технчка безопасности в строительстве"; правила устройства и безопасной эксплуатации грузоподъемных кранов Госгортехнадзора СССР;

правила технической эксплуатации электроустановок потребителей (ПТЭ и ПТБ) Госгортехнадзора СССР;

правила пожарной безопасности при производстве строительно-монтажных работ, утвержденные Главным управлением пожарной охраны МВД СССР от 26.03.1968г.;

инструкция Госгортехнадвора СССР по эксплуатации сосудов, находящихся под давлением.

- 6.2. Подвемное сооружение при устройстве днища должно быть ограждено или снабжено настилом перекрытия.
- 6.3. Трубопроводы для горизонтального транспортирования вспененных растворов должны быть заключены в короба.
- 6.4. Предохранительные клапаны и манометры после регулировки должны быть запломбированы.
- 6.5. Работы по подводному устройству днищ подземных сооружений должны производиться под непосредственным наблюдением ИТР.
- 6.6. Персонал, обслуживающий пенорастворные узлы, должен прой-
- 6.7. Находящиеся при производстве работ представители проектных и научных организаций должны пройти специальный инструктаж по технике безопасности в подрядной строительной организации.

Содержание

I.	Общие положения
2.	Выбор поверхностно-активного вещества и оптимального
	состава пенообразователя
3.	Составы вспененных цементных растворов для подводного
	устройства днищ подземных сооружений
4.	Режим укладки вспененных цементных растворов под воду
	при устройстве дниц подземных сооружений 8
б.	Комплексы оборудования для подводного устройства днищ
	подземных сооружений с примением вспененных цементных
	растворов
6.	Техника безопасности
co	Научно-исследовательский институт оснований и подземных оружений имени Н.М. Герсеванова Рекомендации по применению вспененных цементных растворов
дл	я подводного устройства дниц подземных сооружений
	Отдел патентных исследований и научно-технической информации
	Зав.отделом Б.И. Кулачкин
	Техн.редактор Г.Н. Кузнецова
Φ.	I- 60002 Подп. к печати 2/I-85г. Заказ # 268 гормат 60х90 I/I6. Бумага офсетная. Набор машинописный. Сл. печ.л. I,3 Усл. кротт. I,55 . Учиэд.л. I,365 гораж 500. Цена 30 коп.
П	роизводственные экспериментальные мастерские ВНИИИС Госстроя СССР 21471, Москва, Можайское шоссе, 25.