МЕЖГОСУДАРСТВЕННЫЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 29941— 2013

МЕХАНИЧЕСКИЕ ПРОТИВОЗАЧАТОЧНЫЕ СРЕДСТВА ПРЕЗЕРВАТИВЫ ИЗ НАТУРАЛЬНОГО ЛАТЕКСА

Определение содержания нитрозаминов

(ISO 29941:2010, IDT)

Издание официальное

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0–92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2–2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью Научно-испытательный центр «Резина и полимерные изделия» (ООО НИЦ «Резина и полимерные изделия»), Техническим комитетом по стандартизации ТК 160 «Продукция нефтехимического комплекса» на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации по переписке (протокол от 28 августа 2013 г. № 58-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004–97	Код страны по МК (ИСО 3166) 004–97	Сокращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минторгэкономразвития Армении
Беларусь	BY	Госстандарт Республики Беларусь
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

4 Настоящий стандарт идентичен международному стандарту ISO 29941:2010 Condoms – Determination of nitrosamines migrating from natural rubber latex condoms (Презервативы. Определения нитрозаминов, мигрирующих из презервативов из натурального латекса).

Международный стандарт разработан техническим комитетом по стандартизации ISO/TC 157 «Несистемные контрацептивы и барьерная профилактика инфекций, передающихся половым путем» Международной организации по стандартизации (ISO).

Перевод с английского языка (en).

В разделе «Нормативные ссылки» ссылки на международные стандарты актуализированы.

Наименование настоящего стандарта изменено относительно международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

Сведения о соответствии межгосударственного стандарта ссылочному международному стандарту указаны в дополнительном приложении ДА

Степень соответствия - идентичная (IDT)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 28 августа 2013 г. № 760-ст межгосударственный стандарт ГОСТ ISO 29941–2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок – в ежемесячных информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомления и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

МЕХАНИЧЕСКИЕ ПРОТИВОЗАЧАТОЧНЫЕ СРЕДСТВА ПРЕЗЕРВАТИВЫ ИЗ НАТУРАЛЬНОГО ЛАТЕКСА

Определение содержания нитрозаминов

Mechanical contraceptives. Natural rubber latex condoms.

Determination of nitrosamines content

Дата введения – 2015-01-01

1 Область применения

Настоящий стандарт устанавливает метод определения N-нитрозаминов, мигрирующих из презервативов из натурального латекса.

Настоящий метод может быть применим к другим изделиям, таким как колпачки, диафрагмы, женские презервативы и презервативы из синтетических материалов, однако в настоящее время нет практики испытаний таких изделий.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяют только указанное издание ссылочного документа.

ISO 3696:1987 Water for analytical laboratory use – Specification and test methods (Вода для использования в аналитических лабораториях. Технические требования и методы испытаний)

ISO 4074:2002, Natural rubber latex condoms – Requirements and test methods (Презервативы из натурального латекса. Требования и методы испытаний)

ISO/IEC 17025:2005, cor. 1:2006, General requirements for the competence of testing and calibration laboratories (Общие требования к компетентности испытательных и калибровочных лабораторий, поправка 1)

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 презерватив (condom): Используемое потребителями медицинское изделие, предназначенное для защиты пениса во время сексуальной активности с целью контрацепции и профилактики инфекций, передаваемых половым путем.

П р и м е ч а н и е — Изделие считается презервативом, если оно по форме, упаковке и т. д. соответствует требованиям настоящего стандарта.

4 Сущность метода

П р е д о с т е р е ж е н и е — N-нитрозамины токсичны. Испытательные лаборатории должны соблюдать требования стандартов безопасности и здравоохранения.

N-Нитрозамины мигрируют в воду. После насыщения воды N-нитрозамина-ми испытывают воду на содержание N-нитрозаминов методом газовой хроматогра-фии, используя хемилюминесцентный детектор. Испытания проводят при отсутствии летучих N-нитрозаминов.

Содержание мигрирующих N-нитрозаминов выражают в нанограммах на грамм образца.

5 Реактивы и материалы

Предостережение — Так как N-нитрозамины разрушаются под воздействием ультрафиолетового света, при приготовлении стандартизованных растворов для испытаний следует избегать воздействия солнечного и флуоресцентного света. Стандартные растворы,

вытяжки и воду защищают алюминиевой фольгой и хранят в темном месте при температуре ниже $5\,^{\circ}\text{C}.$

Если нет других указаний, используют реактивы класса ч.д.а. и воду класса 3 по ISO 3696.

- 5.1 Дихлорметан, не содержащий N-нитрозаминов.
- 5.2 Диатомовая земля жидкостной экстракции с удельной поверхностной площадью 1 $\text{м}^2/\text{г}$, размером пор от 3000 до 8000 нм и размером частиц от 150 до 650 мкм.

Нагревают диатомовую землю в течение 1 ч при температуре 200 °C, охлаждают и промывают дихлорметаном.

Можно использовать другое разделительное вещество при условии, что оно аналогично диатомовой земле.

- 5.3 *н*-Гексан.
- 5.4 Раствор гидроксида натрия в воде концентрацией c (NaOH)=1 моль/дм³.
- 5.5 Азот чистотой не менее 99,996% об.
- 5.6 Гранулы для кипения.
- 5.7 Стеклоприпой для колонок (6.3 и 6.4).
- 5.8 Ацетон.
- 5.9 Стандартизованные растворы N-нитрозаминов.

Готовят стандартизованные растворы с известным количеством N-нитроз-аминов в *н*-гексане (5.3) в диапазоне концентраций от 100 до 300 нг/дм³.

Для презервативов из эластомеров или латекса важны следующие N-нитрозамины (неполный список):

- N-нитрозодиметиламин (NDMA);
- N-нитрозодиэтиламин (NDEA);
- N-нитрозодибутиламин (NDBA).

Если есть признаки наличия других N-нитрозаминов, имеющих значение для токсикологии, или если характер используемых ускорителей вулканизации также указывает на наличие других N-нитрозаминов, необходимо определять содержание таких N-нитрозаминов, как например:

- N-нитрозодибензоламин (NDBzA);
- N-нитрозодиизонониламин (NDiNA), то есть N-нитрозо-3,3,5-триметил-гексиламин.
- 5.10 Раствор внутреннего стандарта N-нитрозодиизопропиламина (NDiPA) в ацетоне 200 $_{\rm HF/CM}^3$ (5.8).

Раствор не должен содержать других N-нитрозаминов.

5.11 Безводный гранулированный сульфат натрия или подходящий фильтр для разделения фаз на аппарате Ватмана.

Предварительно промывают 30 г сульфата натрия 25 см³ дихлорметана (5.1).

- 5.12 Раствор аммиака в воде концентрацией $c(NH_3)=0,1$ моль/дм³.
- 5.13 Морской песок, промытый кислотой и прокаленный.

6 Оборудование

Обычное лабораторное оборудование, а также следующее.

- 6.1 Стеклянная посуда, перед использованием промытая кислотным моющим средством, обработанная раствором аммиака (5.12), промытая водой и высушенная.
 - 6.2 Сушильный шкаф, поддерживающий температуру (40 ± 2) °C.
- 6.3 Стеклянная колонка длиной (300 ± 10) мм, внутренним диаметром (26 ± 1) мм с выпускным отверстием и пробкой из политетрафторэтилена.
- 6.4 Стеклянная колонка длиной (300 ± 10) мм, внутренним диаметром (15 ± 1) мм с выпускным отверстием и пробкой из политетрафторэтилена.
- 6.5 Испаритель Кудерна-Даниша, снабженный градуированным приемным сосудом и воздушным холодильником.

Может быть использован другой испаритель при условии идентичности испарителю Кудерна-Даниша.

- 6.6 Водяная баня, поддерживающая температуру от 40 °C до 60 °C.
- 6.7 Флаконы с закрывающим горловину уплотнительным кольцом, не содержащим N-нитрозаминов, или мембраной, покрытой политетрафторэтиленом.
 - 6.8 Плоскогубцы для закрытия флаконов.
 - 6.9 Стекловолоконная пробка, промытая дихлорметаном.
 - 6.10 Делительная воронка вместимостью 200 см³.
 - 6.11 Делительная воронка вместимостью 100 см³.

- 6.12 Хемилюминесцентный детектор достаточной чувствительности анали-затор тепловой энергии¹⁾. Может быть использован любой другой аналогичный детектор.
 - 6.13 Хроматографическая система

Хроматографическую систему выбирает испытатель. При этом необходимо убедиться в том, что условия были оптимизированы таким образом, чтобы достичь достаточного разделения пиков со следующими наблюдаемыми точками:

- система должна разделять N-нитрозамины, указанные в 5.9 так, чтобы площади их пиков можно было сравнить с площадью пика раствора внутреннего стандарта (5.10):
- система должна разделять N-нитрозодиметиламин и N-нитрозодиэтиламин от указанных Nнитрозаминов.

При необходимости для разделения всех N-нитрозаминов и для достижения достаточной чувствительности для N-нитрозодибензиламина могут быть использованы две разделительные колонки.

Для определения летучих N-нитрозаминов с использованием газовой хроматографии необходимы следующие условия.

Пример 1 – Набивные колонки.

Температура инжектора – 200 °C.

Температура печи – 200 °C.

Стеклянные колонки длиной от 2.5 до 3.0 м. наружным диаметром 1/8 дюйма. наполненные:

- 15% Carbowax 20 M, TPA на Chromosorb WHP 100/120 меш²⁾
- 10% Carbowax 20 M. 2 % КОН на Chromosorb WHP 100/120 меш.

Или стеклянные колонки длиной от 4,0 до 5,0 м, наружным диаметром 1/8 дюйма, наполненные 15% SP 1220, 1% H₃PO₄ на Chromosorb WAW 100/120 меш.

Температура пиролизной печи – 480 °C.

Газ-носитель: аргон или азот, скорость потока (20 \pm 1) см³/мин.

Соединение - Газохроматографическую колонку соединяют напрямую с пиролизной печью или используют муфту, нагретую до температуры 250 °C.

Для определения алкилфенил-N-нитрозаминов подходят следующие условия:

- температура инжектора 150 °C:
- температура печи от 120 °C до 130 °C.

Стеклянные колонки длиной 2 м, наружным диаметром 1/4 дюйма, внутренним диаметром 2,0 мм, наполненные:

- 10% OV-101 на Chromosorb WHP 80/100 меш:
- 3% OV-225 на Chromosorb WHP 80/100 меш.

Температура пиролизной печи – 480 °C.

Температура муфты – 250 °C.

Пример 2 – Капиллярные колонки

Температура инжектора – 200 °C. Температура печи – 60 °C, 230 °C (10 °C/мин).

Колонка – 25,0 м, кварцевый капилляр диаметром 0,53 мм FFAP 1 мкм.

Температура пиролизной печи – 480 °C.

Температура муфты - 250 °C

Или

Температура инжектора – 50 °C, 1 мин до 200 °C (75 °C/мин).

Температура печи – 40 °C, 7 мин до 60 °C (1 °C/мин), 230 °C (14 °C/мин).

Колонка - 30,0 м, кварцевый капилляр диаметром 0,53 мм, пленка SE-542 мкм.

Температура пиролизной печи – 480 °C.

Температура муфты – 250 °C.

¹⁾ Анализатор тепловой энергии является примером доступного в продаже оборудования. Настоящая информация предоставлена для удобства пользователей настоящего стандарта, а не в качестве поддержки этой продукции ISO.

²⁾ Carbowax и Chromosorb являются примером доступного в продаже оборудования. Настоящая информация предоставлена для удобства пользователей настоящего стандарта, а не в качестве поддержки этой продукции ISO.

7 Проведение испытаний

7.1 Миграция N-нитрозаминов из материала презерватива

7.1.1 Испытывают презервативы, соответствующие требованиям ISO 4074. Для вычислений (см. раздел 8) используют средние значения результатов определения длины и ширины.

Определяют массу трех презервативов.

Среднее значение массы трех целых презервативов определяет количество презервативов для испытания.

Разрезают каждый презерватив пополам.

Взвешивают (5 \pm 1) г подготовленных презервативов с точностью до ближайших 0,05 г и помещают в колбу Эрленмейера вместимостью 50 см³. Добавляют пипеткой 40,0 см³ воды. Закрывают колбу стеклянной пробкой, осторожно перемешивают, чтобы вода закрывала приготовленные презервативы. Колбу выдерживают в сушильном шкафу в течение 10 мин с точностью \pm 30 с при температуре (40 \pm 2) °C.

Если масса материала презерватива превышает 5 г, пропорционально подбирают объемы реактивов и размер оборудования. Объем добавляемого раствора внутреннего стандарта (5.10) всегда равен 1.0 см³.

7.1.2 Переливают раствор из колбы в мерный цилиндр вместимостью **50** см³ со стеклянной пробкой, промывают образцы **4**,0 см³ воды, добавляют к испытуемому раствору, доливают до метки водой и перемешивают не менее 1 мин.

7.2 Выделение N-нитрозаминов в раствор

7.2.1 Общие положения

К раствору, находящемуся в мерном цилиндре, добавляют пипеткой 1,0 см³ раствора внутреннего стандарта и 1,0 см³ раствора гидроксида натрия.

Испытание проводят по методу А или методу В.

7.2.2 Метод А

7.2.2.1 Стеклянную колонку внутренним диаметром 26 мм, дно которой закрыто пробкой из стекловолокна (6.9), наполняют (25,0 ± 0,1) г диатомовой землей или другим разделительным веществом (5.2). Верх колонки закрывают стеклоприпоем (5.7) или слоем песка толщиной 1 см (5.13).

При наполнении колонку осторожно постукивают с внешней стороны для равномерного распределения наполнителя.

7.2.2.2. Закрывают мерный сосуд с раствором (7.2.1) и встряхивают до получения однородного раствора. Затем медленно переносят раствор в подготовленную колонку с диатомовой землей или аналогичным веществом.

Испытуемый раствор должен распространиться по неподвижной фазе в пористой матрице в течение от 10 до 15 мин. В нижней части колонки остается сухая зона шириной от 50 до 70 мм.

7.2.2.3 Наливают в колонку от 60 до 80 см³ дихлорметана, собирают 40 см³ элюата в приемный сосуд испарителя Кудерма-Даниша или аналогичный испаритель (6.5) в течение 15–25 мин со скоростью каплепадения, регулируемой пробкой из политетрафторэтилена.

Примечание – При элюировании с дихлорметаном сухая зона уменьшится до ширины 15–30 мм. Этот процесс хорошо виден из-за разного окрашивания зоны диатомовой земли, смоченной испытуемым раствором, и зоной диатомовой земли, смоченной дихлорметаном. Важно не достичь предела сухой зоны, иначе испытуемый раствор может содержать воду.

7.2.3 Метод В

7.2.3.1 Закрывают мерный цилиндр с раствором (7.2.1), встряхивают до получения однородного раствора, медленно переливают в делительную воронку (6.10).

7.2.3.2 Добавляют не менее 20 см³ дихлорметана и тщательно встряхивают в течение не менее 1 мин. После разделения фаз и возможного центрифугирования для разрушения эмульсии переносят нижнюю фазу, пропуская через предварительно промытые 30 г сульфата натрия или подходящий фильтр для разделения фаз (5.11), в приемный сосуд испарителя Кудерма-Даниша или аналогичный (6.5).

7.2.3.3 Процедуру по 7.2.3.2 повторяют дважды.

7.2.3.4 Сульфат натрия (или аналогичный фильтр для разделения фаз) (5.11) промывают 25 см³ дихлорметана (5.1) и переносят промывочный раствор в приемный сосуд испарителя Кудерма-Дениша или аналогичный (6.5).

7.3 Концентрирование N-нитрозаминов в растворе

7.3.1 Добавляют 2 см³ *н*-гексана и 2 или 3 гранулы в экстракт, находящийся в приемном сосуде испарителя Кудерма-Дениша (или аналогичного испарителя) (6.5), полученный методом А или В.

Помещают воздушный холодильник в аппарат. Выпаривают раствор на водяной бане до объема 4–6 см 3 . Во избежание потерь испытуемого вещества медленно нагревают водяную баню от температуры (40 ± 2) °C до (60 ± 2) °C со скоростью приблизительно 2 °C/мин. После охлаждения раствора промывают стенки испарителя и систему концентрирования (2,0 ± 0,1) см 3 дихлорметана (5.1).

Из-за высокой воспламеняемости *н*-гексана испытания проводят в вытяжном шкафу.

7.3.2 Снимают воздушный холодильник с приемного сосуда испарителя Кудерма-Дениша или аналогичного испарителя (6.5) и выпаривают раствор до объема (1,0 ± 0,1) см 3 пропуская поток азота. Охлаждают раствор до комнатной температуры и переносят во флаконы с закрывающим горловину кольцом и мембраной (6.7).

Для предотвращения перелива жидкости через край и чрезмерного охлаждения экстракта поток азота должен быть таким, чтобы образовалось углубление на поверхности элюата глубиной от 4 до 5 мм.

Из-за летучести N-нитрозаминов объем должен быть не менее объема, указанного в 7.3.1 и 7.3.2. Если время между концентрированием раствора и измерением содержания N-нитрозаминов превышает 1 ч, раствор хранят в темном месте при температуре ниже 5 °C.

7.4 Холостой опыт

Проводят холостой опыт в соответствии с нижеописанной процедурой, без материала презерватива, во время выполнения процедуры по 7.1.2.

7.5 Газохроматографический анализ

В систему газовый хроматограф / хемилюминесцентный детектор впрыскивают от 1 до 10 мкл каждого экстракта при оптимизированных условиях (6.13). Испытывают такие же объемы стандартизованных растворов (5.9) и раствора внутреннего стандарта (5.10).

Для получения достоверных результатов рекомендуется проводить измерения в день подготовки образцов. Если это невозможно, экстракты и стандартизованные растворы хранят в темном месте при температуре ниже 5 °C.

8 Вычисления и оценка результатов содержания N-нитроз-аминов в растворе

8.1 Массовую долю каждого N-нитрозамина w, нг/г, скорректированную с учетом полноты извлечения добавленного раствора внутреннего стандарта NDiPA, вычисляют по формулам 1 и 2

$$w = \frac{F \cdot A_{\text{NA}}}{A_{\text{NDiPA}}^{\text{R}}},\tag{1}$$

где F - коэффициент, вычисляемый по формуле (2);

A_{NA} – площадь пика обнаруженного N-нитрозамина;

 $A_{\mathrm{NDiPA}}^{\mathrm{R}}$ – площадь пика внутреннего стандарта NDiPA.

$$F = \frac{V \cdot \rho}{m} \cdot \frac{A^{1}_{\text{NDiPA}}}{A_{\text{NASTD}}} \cdot \frac{V_{\text{NASTD}}}{V^{1}_{\text{NDiPA}}},$$
(2)

где V – объем добавленного раствора внутреннего стандарта NDiPA. см³:

ho – концентрация идентифицированного N-нитрозамина в стандартизованном растворе, нг/см 3 ;

 A^{1}_{NDiPA} – площадь пика непосредственно введенного раствора внутреннего стандарта NDiPA;

 V_{NASTD} – введенный объем стандартизированного N-нитрозамина, см³;

m - масса материала презерватива, г;

A_{NASTD} – площадь пика идентифицированного N-нитрозамина в стандартизованном растворе;

 $V_{
m NDiPA}^1$ – введенный объем стандартизованного раствора NDiPA, мкл.

8.2 При необходимости вычисляют массу на единицу поверхности ρ_A , нг/дм 2 , каждого обнаруженного N-нитрозамина по формуле 3

$$\rho_{\rm A} = w \frac{m_{\rm avg}}{2bl} \,, \tag{3}$$

где w – массовая доля одного N-нитрозамина, скорректированная с учетом полноты извлечения добавленного раствора внутреннего стандарта NDiPA, нг/г;

 m_{avg} – средняя масса одного презерватива, г;

FOCT ISO 29941-2013

- I длина презерватива, дм;
- b ширина презерватива, дм.
- 8.3 Вычисляют общее содержание N-нитрозаминов, суммируя результаты вычислений по формуле 1 для каждого индивидуально определенного N-нитроз-амина. Если для одного конкретного N-нитрозамина нет определяемого сигнала детектора, то есть высота пика меньше трехкратного уровня фонового сигнала, отмечают «Конкретный N-нитрозамин не определен» и значение считают равным «0».

9 Подтверждение обнаруженных N-нитрозаминов

- 9.1 Обнаруженные N-нитрозамины и их количество необходимо подтвердить по одной из методик:
- а) облучением ультрафиолетом одной аликвоты оставшегося испытуемого раствора в чистом, пропускающем ультрафиолетовое излучение стеклянном сосуде (время 3 ч, дина волны 366 нм). Аналогичным способом обрабатывают стандартный раствор (5.9) в другом сосуде. Из-за разложения газохроматографический анализ или не должен показать пики, или только значительно уменьшенные пики для N-нитрозаминов. Первоначальные сигналы будут ошибочно положительными, если после облучения сигналы образцов значительно не уменьшены. В этом случае нет необходимости дальнейшего определения N-нитрозаминов;
 - b) применением одной колонки с неподвижной фазой другой полярности;
 - с) масс-спектроскопическим анализом.
- 9.2 Если с помощью одной из вышеприведенных методик не удается определить некоторые пики как принадлежащие N-нитрозаминам, необходимо пересчитать общее содержание N-нитрозаминов только по сигналам N-нитрозаминов.

10 Протокол испытаний

- 10.1 В соответствии с ISO/IEC 17025 в протоколе аккуратно, четко и однозначно должны быть описаны все действия испытательной лаборатории, в том числе результаты испытаний и другая необходимая информация.
 - 10.2 Протокол испытаний должен содержать следующую информацию:
- а) наименование и адрес испытательной лаборатории, а также место проведения испытания, если оно отличается от адреса лаборатории;
- b) идентификацию протокола **испытаний** (например, порядковый номер каждой страницы и общее количество станиц в протоколе);
 - с) описание и идентификацию образца;
 - d) описание методики отбора образцов;
- е) дату получения образца и дату (даты) проведения испытания образца, включая для каждого испытуемого образца дату и время начала (7.2.1) и окончания испытания (7.5);
- f) идентификацию метода испытания или описание применяемой методики, включая все отклонения от нее, а также указание применяемого метода A или B;
- g) результаты определения индивидуальных **N**-нитрозаминов и всех **N**-нит-розаминов в нанограммах на грамм;
- h) подпись и расшифровку подписи специалиста, проводившего испытание, подпись и расшифровку подписи лица, ответственного за протокол;
 - і) обозначение настоящего стандарта.

Библиография

[1] EN 12868

Child use and care articles – Methods for determining the release of N-nitrosamines and N-nitrosatable substances from elastomer or rubber teats and soothers (Предметы ухода за детьми. Методы определения миграции N-нитрозаминов и N-нитрозообразующих веществ из эластомерных или резиновых пустышек и сосок)

Приложение ДА (справочное)

Сведения о соответствии межгосударственного стандарта ссылочному международному стандарту

Таблица ДА.1

Обозначение и наименование международного стандарта	Степень соответствия	Обозначение и наименование межгосударственного стандарта
ISO/IEC 17025:2005 Общие требования к компетентности испытательных и калибровочных лабораторий, поправка 1	IDT	ГОСТ ИСО/МЭК 17025-2009 Общие требования к компетентности испытательных и калибровочных лабораторий
Примечание – В насто обозначение степени соответствия ста - IDT – идентичный стандарт		ользовано следующее условное

УДК 615.477.86:006.354

MKC 83.140

IDT

Ключевые слова: механические противозачаточные средства, презервативы из натурального латекса, содержание N-нитрозаминов

Подписано в печать 01.04.2014. Формат 60x84¹/₈. Усл. печ. л. 1,40. Тираж 31 экз. Зак. 1726.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru