РУКОВОДСТВО

ПО ПРОЕКТИРОВАНИЮ
БЕТОННЫХ
И ЖЕЛЕЗОБЕТОННЫХ
КОНСТРУКЦИЙ,
ПРЕДНАЗНАЧЕННЫХ
ДЛЯ РАБОТЫ В УСЛОВИЯХ
ВОЗДЕЙСТВИЯ
ПОВЫШЕННЫХ
И ВЫСОКИХ ТЕМПЕРАТУР

РУКОВОДСТВО

ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР

Рекомендовано к изданию решением секции теории железобетона НТС НИИЖБ Госстроя СССР.

Руководство по проектированию бетонных и железобетонных конструкций, предназначенных для работы в условиях воздействия повышенных и высоких температур. М., Стройиздат, 1978. 345 с. (Науч.-исслед. ин-т бетона и железобетона Госстроя СССР).

Руководство содержит основные положения расчету и проектированию бетонных и железобетонных конструкций, предназначенных для работы в условиях систематического воздействия повышенных (выше 50 до 200° C) и высоких (выше 200° C) технологических температур.

В Руководстве приведены примеры расчета прочности, деформаций, образования и раскрытия трещин от воздействия температуры и нагрузки.

Руководство предназначено для инженерно-технических работников проектных организаций, научных работников, преподавателей строительных вузов, аспирантов и студентов.

предисловие

Настоящее Руководство распространяется на проектирование бетонных и железобетонных конструкций, предназначенных для работы в условиях систематического воздействия повышенных (выше 50 до 200° С) и высоких (выше 200° С) технологических температур.

В Руководстве приведены основные положения по расчету и проектированию бетонных и железобетонных конструкций с ненапрягаемой и предварительно-напряженной арматурой, характеристики бетона и арматуры, практические методы расчета прочности (проверка прочности и подбор арматуры), деформаций, образования и раскрытия трещин в железобетонных элементах при систематическом воздействии повышенной и высокой технологической температуры и нагрузки, рекомендации по расчету некоторых наиболее массовых конструкций (своды, купола, фундаменты и т. д.) печей и других тепловых агрегатов, а также приведены требования главы СНиП II-21-75 «Бетонные и железобетонные конструкции» и «Инструкции по проектированию бетонных и железобетонных конструкций, предских температур» (СН 482-76), необходимые для проектирования бетонных и железобетонных конструкций при нагреве.

В Руководстве даны примеры расчета на наиболее типичные слу-

чаи, встречающиеся в практике проектирования.

Опыт проектирования, строительства и эксплуатации различных сооружений из обычного и жаростойкого железобетона подтверждает, что можно достигнуть длительного срока службы сооружения, если правильно будут учтены неблагоприятные влияния температуры.

Применение сборного жаростойкого бетона и железобетона в виде крупных блоков и панелей дает возможность индустриализации строительства, уменьшение трудозатрат. Кроме того, в ряде случаев

значительно сокращаются сроки строительства.

При составлении Руководства использованы результаты отечественных и зарубежных работ по изучению физико-механических и реологических свойств бетона и арматуры в условиях воздействия повышенных и высоких температур, а также исследования изгибаемых, сжатых и внецентренно-растянутых элементов, круглых и прямоугольных плит, элементов труб, боровов, сводов, рам и куполов из жаростойкого железобетона при воздействии температур.

На основе этих исследований разработаны основы расчета и конструирования бетонных и железобетонных конструкций, работающих в условиях воздействия повышенных и высоких температур.

Руководство разработано Научно-исследовательским институтом бетона и железобетона Госстроя СССР (д-ром техн. наук, проф. А. Ф. Миловановым, кандидатами техн. наук Б. А. Альтшулером, В. М. Милоновым, В. Н. Самойленко и инж. Т. Н. Малкиной). При составлении Руководства использованы материалы институтов Теплопроекта Минмонтажспецстроя СССР, Харьковского Промстройниипроекта Госстроя СССР, КИСИ им. А. И. Микояна Минвуза РСФСР, ДИСИ Минвуза Украины, МИСИ Минвуза Украины, АзИСИ Минвуза Азербайджана и ЭКБ по железобетону Миннефтегазстроя СССР.

Замечания и предложения по Руководству просьба направлять по адресу: 109389, Москва, Ж-389, 2-я Институтская ул., д. 6, НИИ

бетона и железобетона.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

ОБЩИЕ УКАЗАНИЯ

1.1. Настоящее Руководство распространяется на проектирование бетонных и железобетонных конструкций, предназначенных для работы в условиях систематического воздействия повышенных (выше 50 до 200° С) и высоких (выше 200° С) технологических температур ¹.

Проектирование железобетонных дымовых труб, резервуаров и фундаментов доменных печей, работающих при воздействии температуры выше 50°C, должно производиться с учетом дополнительных требований, предъявляемых к этим сооружениям соответствующи-

ми нормативными документами.

1.2. Выбор конструктивных решений должен производиться исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, достигаемого путем:

применения эффективных строительных материалов и конструкций;

снижения веса конструкций;

наиболее полного использования физико-механических свойств материалов;

использования местных строительных материалов;

соблюдения требований по экономному расходованию основных строительных материалов.

- 1.3. При проектировании зданий, сооружений и тепловых агрегатов должны приниматься четкие конструктивные схемы, обеспечивающие необходимую прочность, устойчивость и пространственную неизменяемость конструкции на всех стадиях возведения и эксплуатации.
- 1.4. Элементы сборных конструкций должны отвечать условиям механизированного изготовления на специализированных предприятиях.

При выборе элементов сборных конструкций должны предусматриваться преимущественно предварительно-напряженные конструкции из высокопрочных бетонов и арматуры, а также конструкции из легких бетонов, где их применение не ограничивается требованиями других нормативных документов.

Целесообразно укрупнять элементы сборных конструкций насколько это позволяют грузоподъемность монтажных механизмов,

условия изготовления и транспортирования.

1.5. Для монолитных конструкций следует предусматривать унифицированные размеры, позволяющие применять инвентарную опалубку, а также укрупненные унифицированные пространственные арматурные каркасы.

1.6. В сборных конструкциях особое внимание должно быть об-

ращено на прочность и долговечность соединений.

Конструкции узлов и соединений элементов должны обеспечивать надежную передачу усилий, прочность самих элементов в зоне

¹ В дальнейшем в тексте настоящего Руководства для краткости под термином «воздействие температуры» принято понимать систематическое воздействие технологических температур.

стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции с помощью различных конструктивных и технологических мероприятий.

1.7. Конструкции рассматриваются как бетонные, если их проч-

ность в стадии эксплуатации обеспечивается одним бетоном.

1.8. Численные значения, приведенные в настоящем Руководстве, расчетных характеристик бетона и арматуры, предельных величин ширины раскрытия трещин и прогибов, применяются только при проектировании; для оценки качества конструкции следует руководствоваться требованиями соответствующих стандартов и нормативных документов.

1.9. Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия повышенных температур, следует

предусматривать, как правило, из обычного бетона.

Фундаменты, находящиеся в грунте, которые при эксплуатации постоянно подвергаются воздействию температур до 300° С, допускается принимать из обычного бетона.

Бетонные и железобетонные конструкции, предназначенные для работы в условиях воздействия высоких температур, должны пре-

дусматриваться из жаростойкого бетона.

Несущие элементы конструкций тепловых агрегатов, выполняемые из жаростойкого бетона, все сечение которых может быть нагрето выше 1000° С, допускается принимать только после опытной проверки.

Жаростойкие бетоны в элементах конструкций тепловых агрега-

тов рекомендуется применять по прил. 1.

Предельно допустимые температуры применения жаростойкого бетона в зависимости от вида вяжущего, заполнителей, тонкомолотых добавок и отвердителя, а также напряженного состояния конструкции приведены в табл. 11 настоящего Руководства.

Примечание. В настоящем Руководстве приняты следующие наименования бетонов:

обычный — тяжелый бетон согласно п. 2.1 главы СНиП II-21-75;

а р о с т о $\~{u}$ к и $\~{u}$ — бетон в соответствии с ГОСТ 20910—75 «Классификация».

1.10. Для конструкций, работающих при воздействии температуры выше 50° С, необходимо предусматривать защиту поверхности бетона от периодического замачивания.

Окрашенная поверхность бетона или гидроизоляционные покры-

тия этих конструкций должны быть светлых тонов.

1.11. Циклический нагрев — температурный режим, при котором в процессе эксплуатации конструкция периодически подвергается повторяющемуся нагреву с колебаниями температуры более 30% расчетной величины при частоте циклов от 3 ч до 15 дней.

Постоянный нагрев — температурный режим, при котором в процессе эксплуатации конструкция подвергается нагреву с колеба-

ниями температуры до 30% расчетной величины.

1.12. При проектировании конструкций из жаростойких бетонов необходимо дополнительно учитывать требования к материалам для жаростойких бетонов, технологии приготовления, а также особенности производства работ.

ОСНОВНЫЕ РАСЧЕТНЫЕ ТРЕБОВАНИЯ

1.13. Бетонные и железобетонные конструкции, работающие в условиях воздействия повышенных и высоких температур, должны удовлетворять требованиям расчета по несущей способности (предельные состояния первой группы) и по пригодности к нормальной эксплуатации (предельные состояния второй группы).

а). Расчет по предельным состояниям первой группы должен

обеспечивать конструкции от:

хрупкого, вязкого или иного характера разрушения (расчет по прочности с учетом, в необходимых случаях, прогиба конструкции

перед разрушением);

потери устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно-нагруженных высоких фундаментов, расчет на всплывание заглубленных или подземных резервуаров, насосных станций и т. п.);

усталостного разрушения (расчет на выносливость) конструкций, находящихся под воздействием многократно повторяющейся нагрузки подвижной или пульсирующей; рамных фундаментов и пе-

рекрытий под некоторые неуравновешенные машины и т. п.;

разрушения под совместным воздействием силовых факторов и неблагоприятных влияний внешней среды, периодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и оттаивания и т. п.:

б) Расчет по предельным состояниям второй группы должен

обеспечивать конструкции от:

образования трещин, а также их чрезмерного или длительного раскрытия (если по условиям эксплуатации образование или длительное раскрытие трещин недопустимо):

чрезмерных перемещений (прогибов, углов поворота, углов пере-

коса и колебаний).

1.14. Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов должен, как правило, производиться для всех стадий: изготовления, транспортирования, возведения и эксплуатации, при этом расчетные схемы должны отвечать принятым конструктивным решениям.

1.15. При расчете бетонных и железобетонных конструкций необходимо учитывать изменения физико-механических и упруго-пластических свойств бетона и арматуры в зависимости от температуры воздействия. При этом усилия, деформации, образование, раскрытие и закрытие трещин определяются от воздействия как нагрузки (вклю-

чая собственный вес), так и температуры.

Расчетные схемы и основные предпосылки расчета бетонных и железобетонных конструкций должны устанавливаться в соответствии с условиями их действительной работы в предельном состоянии с учетом в необходимых случаях пластических свойств бетона и арматуры, наличия трещин в растянутом бетоне, а также влияния усадки и ползучести бетона как при нормальной температуре, так и при воздействии повышенных и высоких температур.

1.16. Расчет конструкций, работающих в условиях воздействия повышенных и высоких температур, должен производиться на всевозможные неблагоприятные сочетания нагрузок: собственного веса, внешней нагрузки и воздействия температуры с учетом длительности

их действия.

Расчет конструкций с учетом воздействия повышенных и высоких температур должен производиться для следующих двух основных расчетных стадий работы:

кратковременный нагрев — первый разогрев конструкции до рас-

четной температуры;

длительный нагрев — воздействие расчетной температуры в пе-

риод эксплуатации.

Расчет статически определимых конструкций по предельным состояниям первой и второй группы (за исключением расчета по образованию трещин) следует производить только на длительный нагрев. Расчет по образованию трещин необходимо производить на кратковременный и длительный нагрев, с учетом усилий, возникающих от нелинейного распределения температуры бетона по высоте сечения элемента.

Расчет статически неопределимых конструкций и их элементов по предельным состояниям первой и второй группы должен производиться:

а) на кратковременный нагрев конструкции, когда возникают наибольшие усилия от воздействия температуры (см. п. 1.23 настоящего Руководства). При этом жесткость элемента определяется, согласно указаниям пп. 4.28—4.30 настоящего Руководства, как для кратковременного действия всех нагрузок;

б) на длительный нагрев, когда происходит значительное снижение прочности и жесткости элементов в результате воздействия дли-

тельной нагрузки и длительного нагрева.

При этом жесткость элементов определяется по указаниям пп. 4.28—4.30 настоящего Руководства с учетом кратковременного и длительного действия всех нагрузок.

Расчетная технологическая температура принимается равной температуре среды цеха или рабочего пространства теплового агре-

гата, указанной в задании на проектирование.

Расчетные усилия и деформации от кратковременного и длительного нагревов определяются с учетом коэффициента перегрева согласно п. 1.40 настоящего Руководства.

1.17. Величины нагрузок и воздействий, значения коэффициентов перегрузок, коэффициентов сочетаний, а также подразделение нагрузок на постоянные и временно-длительные, кратковременные, особые следует принимать в соответствии с требованиями главы СНиП по нагрузкам и воздействиям с учетом дополнительных указаний: нагрузки, учитываемые при расчете по предельным состояниям второй группы, должны приниматься согласно указаниям пп. 1.19 и 1.29 настоящего Руководства. При этом к длительным нагрузкам следует относить часть полной величины кратковременных нагрузок, оговоренных в главе СНиП II-6-74, а вводимая в расчет кратковременная нагрузка принимается уменьшенной на величину, учтенную в длительной нагрузке. Коэффициенты сочетаний и другие коэффициенты снижения нагрузок относятся к полной величине кратковременных нагрузок. Нагрузки и воздействия температуры, учитываемые при расчете конструкции по предельным состояниям первой и второй группы, следует принимать согласно указаниям табл. 1 и 2 настоящего Руководства.

При расчете по прочности в необходимых случаях должны учитываться особые нагрузки с коэффициентами перегрузки *п*, принимаемыми по соответствующим нормативным документам. При этом усилия, вызванные воздействием температуры, не учитываются.

Статическая схема конструкции и расчетная	Нагрузки и козффициенты перегрузки n , температурные воздействия и коэффициенты перегрева n_{t} , принимаемые при расчете						
стадия работы	по прочности	на выносливость	по деформациям				
Статически определи- мые конструкции при длительном нагреве	Постоянные, длительные и кратковременные нагрузки при п > 1	Постоянные, длительные и кратковременные нагрузки при $n=1$	Постоянные, длительные и кратковременные нагрузки при $n=1$ и усадочно-температурные деформации от воздействия температуры при $n_t=1$				
Статически неопределимые конструкции при кратковременном нагреве	Постоянные, длительные и кратковременные нагрузки при $n>1$ и наибольшие усилия от воздействия температуры при $n_t>1$	Постоянные, длительные и кратковременвые нагрузки при $n=1$ и наибольшие усилия от воздействия температуры при $n_t=1$	Постоянные, длительные и кратковременные нагрузки при $n=1$ и усадочно-температурные деформации от воздействия температуры, вызывающей наибольшие усилия при $n_t=1$				
Статически неопределимые конструкции при длительном нагреве	Постоянные, длительные и кратковременные нагрузки при $n > 1$ и усилия от воздействия температуры при $n_t > 1$	Постоянные, длительные и кратковременные нагрузки при $n=1$ и усилия от воздействия температуры при при $n_t=1$	Постоянные, длительные и кратковременные нагрузки при $n=1$ и усадочно-температурные деформации от воздействия температуры, вызывающей наибольшие усилия при $n_t=1$				

Примечания: 1. Бетонные конструкции рассчитываются только по прочности.
2. При расчете статически неопределимых конструкций, кроме сочетаний воздействий температуры и нагрузок, указанных в настоящей таблице, в необходимых случаях следует проверить другие возможные неблагоприятные сочетания воздействий, в том числе и при остывании.

- 3. В статически неопределимых конструкциях допускается производить расчет:
- а) при кратковременном нагреве только на наибольшие усилия от воздействия температуры, если усилия от постоянных, длительных и кратковременных нагрузок вызывают напряжения сжатия в бетоне σ₆≤1 кгс/см²; б) при длительном нагреве выше 700° С — на совместное воздействие постоянных, длительных и кратковременных
- нагрузок без учета усилий от длительного нагрева.
 - 4. При расчете на кратковременный нагрев длительная нагрузка учитывается как кратковременная.
 - 5. Коэффициент перегрева n_t должен приниматься по п. 1.40 настоящего Руководства. 6. При расчете прогибов следует учитывать указания п. 1.29 настоящего Руководства.

Таблица 2

Категория требований к	Нагрузки и коэффициент перегрузки n , воздействия температуры и коэффициент перегрева n_t , принимаемые при расчете							
трещиностойкос- ти железобетон-		по раскрытию	трещин	по закрытию				
ных конструкций	по образованию трещин	кратковременному	длительному	трещин				
1-я категория	Постоянные, длительные и кратковременные нагрузки при $n>1^*$ и температурные воздействия от кратковременного и длительного нагрева при $n_t>1^*$		_	_				
2-я категория	Постоянные, длительные и кратковременные нагрузки при $n>1$ * и температурные воздействия от кратковременного и длительного нагрева при $n_t>1$ * (расчет производится для выяснения необходимости проверки	Постоянные, длительные и кратковременные нагрузки при $n=1$ и температурные воздействия от кратковременного и	_	Постоянные и длительны нагрузки пр $n=1$ и темпе ратурные воздействия с				

Категория требований к трещиностой-	Нагрузки и коэффициент перегрузки n , воздействия температуры и коэффициент перегрева n_{t} , принимаемые при расчете							
кости железо- бетонных		по раскрытию	по раскрытию трещин					
конструкций	по образованию трэщин	кратковременному	длительному	по закрытию трещин				
	по раскрытию трещин и их закры- тию)	длительного нагрева при $n_t = 1$		длительного ш а- грева при $n_t =$				
3-я категория	Постоянные, длительные и кратковременные нагрузки при $n=1$ и температурные воздействия от кратковременного и длительного нагрева при $n_1=1$ (расчет производится для выяснения необходимости проверки по раскрытию трещин)	Постоянные, длительные и кратковременные нагрузки при $n=1$ и температурные воздействия от кратковременного и длительного нагрева при $n_t=1$	Постоянные и длительные нагрузки при $n=1$ и температурные воздействия от длительного нагрева при $n_t=1$					

^{*} Коэффициент перегрузки n и коэффициент перегрева n_t принимаются как при расчете по прочности. Примечания: 1. Длительные и кратковременные нагрузки принимаются с учетом указаний п. 1.17 настоящего Руководства.

^{2.} При расчете по образованию трещия на температурные воздействия необходимо учитывать требования п. 4.3 настоящего Руководства.

^{3.} При расчете по раскрытию трещин на температурные воздействия необходимо учитывать различие температурных деформаций бетона и арматуры согласно требованиям п. 4.10 настоящего Руководства.

4. Коэффициент перегрева n_t должен приниматься согласно указаниям п. 1.40 настоящего Руководства.

^{5.} Особые нагрузки учитываются в расчете по образованию трещин в тех случаях, когда наличие трещин приводит к катастрофическому положению (взрыв, пожар и т. п.).

1.18. При расчете элементов сборных конструкций на воздействие усилий, возникающих при их подъеме, транспортировании и монтаже, нагрузку от собственного веса элемента следует вводить в расчет с коэффициентом динамичности, равным 1,8— при транспортировании и 1,5— при подъеме и монтаже.

В этом случае коэффициент перегрузки к нагрузке от собствен-

ного веса элемента не вводится.

Для указанных выше коэффициентов динамичности допускается принимать более низкие значения, если это подтверждено опытом

применения конструкций, но не ниже 1,25.

1.19. К трещиностойкости конструкций (или их частей) предъявляются требования соответствующих категорий в зависимости от условий, в которых работает конструкция, и от вида применяемой арматуры:

а) 1-я категория — не допускается образование трещин;

 б) 2-я категория — допускается ограниченное по ширине кратковременное раскрытие трещин при условии обеспечения их последующего надежного закрытия (зажатия);

в) 3-я категория — допускается ограниченное по ширине крат-

ковременное и длительное раскрытие трещин.

Категории требований к трещиностойкости железобетонных конструкций в зависимости от условий их работы, вида арматуры, а также величины предельно допустимой ширины раскрытия трещин для элементов, эксплуатируемых в условиях неагрессивной среды, приведены в табл. 3. Нагрузки, учитываемые при расчете железобетонных конструкций по образованию трещин, их раскрытию или закрытию, должны приниматься согласно табл. 2 настоящего Руководства. Если в конструкции или ее частях, к которым предъявляются требования 2-й и 3-й категорий трещиностойкости, трещины не образуются при соответствующих нагрузках и температурах, указанных в табл. 2, их расчет по кратковременному раскрытию и закрытию трещин (для 2-й категории) или по кратковременному и длительному раскрытию трещин (для 3-й категории) не производится.

Указанные выше категории требований к трещиностойкости железобетонных конструкций относятся к нормальным и наклонным

к продольной оси элемента трещинам.

Во избежание развития продольных трещин должны приниматься конструктивные меры (установка соответствующей поперечной

арматуры).

Для конструкций в производствах с агрессивными средами ширина раскрытия трещин устанавливается, согласно указаниям главы СНиП II-28-73, с учетом рекомендаций по защите арматуры от коррозии, плотности бетона и толщины защитного слоя.

Примечание. Под кратковременным раскрытием трещин понимается их раскрытие при действии постоянных длительных и кратковременных нагрузок, кратковременного нагрева, а под длительным раскрытием— при действии постоянных и длительных нагрузок и длительного нагрева.

1.20. Для железобетонных слабоармированных элементов, характеризуемых тем, что их несущая способность исчерпывается одновременно с образованием трещин в бетоне растянутой зоны (см. п. 4.4 настоящего Руководства), площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее, чем на 15%.

		Категорин требова допустимая ширин	аний к трещиностойкости а кратковременного и дл при арм:	ительного раскрытия т	рукций и предельно рещин а _{т. кр} и а _{т. дл}	
Условия работы конструкции	Температура нагрева арматуры, °С	стержневой классов А-I, А-II и А-III	стержневой классов A-IV, Aт-IV, A·V и Ат-V, проволочной классов В-I и Вр-I	стержневой класса Ат-VI, проволочной классов В-II, Вр-II и К-7 при диаметре проволоки 4 мм и более	проволочной классов В-II и Вр-II при днаметре проволоки 3 мм, класса К-7 при днаметре проволоки 3 мм и менее	
1. Элементы с полностью растянутым сечением, воспринимающие давление	До 130	3-я категория, $a_{\text{т.кр}} = 0.2 \text{ мм,}$ $a_{\text{т.дл}} = 0.1 \rightarrow$				
жидкостей или газов, а также эксплуати- руемых в грунте ни- же уровня грунтовых вод	Свыше 130	3-я категория, $a_{\text{т.кр}} = 0.25 \text{ мм}, a_{\text{т.д.1}} = 0.15 \text{ »}$	1-я категория	1-я категория	1-я категория	
2. То же, при ча-	До 130	3-я категория, $a_{\text{т.кp}} = 0.3 \text{ мм}, a_{\text{т.дл}} = 0.2 \text{ »}$	3-я категория, $a_{\text{т.кр}} = 0,3$ мм, $a_{\text{т.дл}} = 0,2$ »	2-я категория, $a_{\text{т.кр}} = 0,1$ мм		
стично сжатом сечении	Свыше 130 3-9 аг. аг.		3-я категория, $a_{\text{т.кр}} = 0.4$ мм, $a_{\text{т.кр}} = 0.3$ »		1-я категория	
3. Элементы храни-	До 130	3-я категория,	3-я категория,	2-я категория,	2-я категория,	
лищ сыпучих тел, не- посредственно воспри- нимающие их давле- ние	Carmine 130	$a_{\text{T.KP}} = 0.3 \text{ MM},$ $a_{\text{T.RR}} = 0.2 $	$a_{\text{T.KP}} = 0.3 \text{ MM},$ $a_{\text{T.ДЛ}} = 0.2 \text{ MM},$	$a_{\tau,\kappa p} = 0.1 \text{ MM}$	$a_{\text{T.KP}} = 0.05 \text{ MM}$	
	Свыше 130	3-я категория, $a_{\text{т.кр}} = 0.4 \text{ мм}, a_{\text{т.дл}} = 0.3 \text{ »}$	$a_{\text{т.кр}} = 0.4 \text{ мм},$ $a_{\text{т.дл}} = 0.3 \text{ »}$	$a_{\text{т.кр}} = 0,2$ мм	2-я категория, $a_{\text{т.кр}} = 0.1 \text{ мм}$	
4. Прочие элементы, эксплуатируемые на открытом воздухе,	До 130	3-я категория, $a_{\tau.\kappa p} = 0.4$ мм, $a_{\tau.\pi n} = 0.3$ »	$a_{\text{т.кр}} = 0.4 \text{ мм,} a_{\text{т.дл}} = 0.3 \text{ »}$	2-я категория, $a_{\text{т.кр}} = 0,15$ мм	2-я категория, $a_{\text{т.кр}} = 0.05$ мм	
а также в грунте вы- ше уровня грунтовых вод	Свыше 130	3-я категория, $a_{r.\kappa p} = 0.6$ мм, $a_{r.\pi n} = 0.5$ »	3-я категория, $a_{\text{т.кр}} = 0.6 \text{ мм},$ $a_{\text{т.дл}} = 0.5 \text{ »}$	2-я категория, а _{т.кр} = 0,25 мм	2-я категория, $a_{r,\kappa p} = 0,1$ мм	
5. То же, в закры-	До 130	3-я категория, $a_{\tau,\kappa p} = 0,4$ мм, $a_{\tau,\pi n} = 0,3$ »	$a_{\tau.\kappa p} = 0,4$ мм, $a_{\tau.\pi n} = 0,3$ »	3-я категория, $a_{\text{т.кр}} = 0.15 \text{ мм,}$ $a_{\text{т.дл}} = 0.1$ »	2-я категория, а _{т.кр} =0,15 мм	
том помещении	Свыше 130	3-я категория, $a_{\text{т.кр}} = 0.6 \text{ мм,}$ $a_{\text{т.дл}} = 0.5 \text{ »}$	3-я категория, $a_{\tau.\kappa p}$ = 0,6 мм, $a_{\tau.\pi n}$ = 0,5 »	3-я категория, $a_{\tau.\kappa p} = 0.25$ мм, $a_{\tau.\eta n} = 0.2$ »	2-я категория, а _{т.кр} =0,25 мм	

1.21. Усилия в статически неопределимых железобетонных конструкциях от нагрузок и вынужденных перемещений (вследствие изменения температуры, влажности бетона, смещения опор и т. п.) при расчете по предельным состояниям первой и второй группы следует, как правило, определять с учетом неупругих деформаций бетона и арматуры и наличия трещин, а также с учетом в необходимых случаях деформированного состояния как отдельных элементов, так и конструкции.

1.22. Определение усилий в статически неопределимых конструкциях от внешней нагрузки, собственного веса и от воздействия повышенных и высоких температур производят по правилам строительной механики методом последовательных приближений. При этом жесткость элемента определяется с учетом неупругих деформаций и наличия трещин в бетоне от совместного действия внешней на-

грузки, собственного веса и температуры.

1.23. При кратковременном нагреве усилия от воздействия температуры в элементах статически неопределимых конструкций должны определяться в зависимости от температуры бетона, вызывающей наибольшие усилия:

а) при нагреве выше 50 до 500° С — по расчетной температуре;

б) при нагреве выше 500° С для бетона составов (см. табл. 11 настоящего Руководства):

№ 5—11, 19—21, 23, 24 — при 500° С; № 12—18, 27, 29 — при 600° С.

Для конструкций, находящихся на открытом воздухе, расчет наибольших усилий от воздействия температур производят, принимая расчетные температуры воздуха по п. 1.53 настоящего Руководства.

При длительном нагреве усилия от воздействия температуры следует определять в зависимости от расчетной температуры.

1.24. При расчете по прочности, перемещениям (деформациям), а также раскрытию и закрытию трещин распределение температуры в сечениях конструкций определяется из теплотехнического расчета для установившегося режима теплового потока. При расчете по образованию трещин от нагрева распределение температур в сечениях конструкций определяется для неустановившегося потока тепла согласно требованиям пп. 1.47—1.53 настоящего Руководства.

1.25. При расчете усилий, вызванных воздействием температуры, в сборных элементах конструкций жесткость сечений следует уменьшить на 20%, когда марка раствора в стыке на 100 кгс/см²

меньше марки бетона сборного элемента.

1.26. Расчет элементов бетонных и железобетонных конструкций по прочности, схемы предельных состояний которых при расчете на воздействие температуры еще не установлены или, для которых условия наступления предельного состояния пока не могут быть выражены через усилия, может производиться через напряжения с учетом наличия трещин и развития неупругих деформаций бетона. При этом напряжения в бетоне и арматуре не должны превышать соответствующих расчетных сопротивлений.

1.27. При расчете несущих конструкций, бетон которых неравномерно нагрет по высоте сечения элемента, часть сечения, нагретую

выше 1000° С, допускается не учитывать.

1.28. При расчете элементов, подвергающихся нагреву, положение центра тяжести всего сечения бетона или его сжатой зоны, а также статический момент и момент инерции всего сечения следует

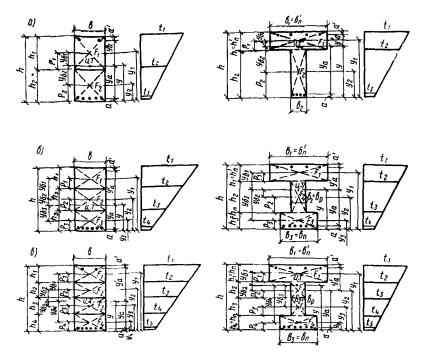


Рис. 1. Схемы разбивки на части по высоте прямоугольного, таврового и двутаврового сечения элементов

a — на две части; b — на три части; a — на четыре части

определять, приводя все сечение к ненагретому, более прочному бетону. Для этой цели при расчете с использованием ЭВМ сечение по высоте разбивается не менее, чем на 4 части.

При расчете по прочности, деформациям и раскрытию или закрытию трещин без использования ЭВМ при прямолинейном распределении температуры бетона по высоте сечения элемента допускается разбивать сечения согласно следующим указаниям:

для элемента, выполненного из одного вида бетона и если температура бетона наиболее нагретой грани не превыщает 400° C, сечение не разбивается на части и момент инерции приведенного сечения I_{π} относительно центра тяжести сечения принимается равным

$$I_{\rm II} = \frac{I\beta_{\rm G} \, \bar{\nu}}{k_{\rm II}} \,, \tag{1}$$

где β_6 — коэффициент, принимаемый в зависимости от температуры бетона в центре тяжести сечения по табл. 16 настоящего Руководства;

коэффициент, принимаемый в зависимости от температуры бетона в центре тяжести сечения по табл. 18 настоящего Руководства для кратковременного нагрева;

 $k_{\rm n}$ — коэффициент, учитывающий влияние кратковременной ползучести бетона и принимаемый для бетона составов (см. табл. 11 настоящего Руководства):

№ 1—3, 6, 7, 13, 20 и 21 — 0,85; № 4, 5, 8—12, 14—19, 23, 24 и 29 — 0,7;

для элемента, сечение которого по высоте состоит из двух видов бетона, а также прямоугольного и таврового сечений, выполненных из одного вида бетона, если температура бетона наиболее нагретой грани превышает 400° C, сечение разбивается по высоте на две части (рис. $1, \alpha$);

для элемента, сечение которого по высоте состоит из трех видов бетона, а также двутаврового сечения, выполненного из одного вида бетона, если температура бетона наиболее нагретой грани превышает 400° С, сечение разбивается на три части (рис. 1, б).

При расчете по образованию трещин определение напряжений от воздействия температуры производится, разбивая сечение не менее, чем на 4 части, независимо от температуры бетона (рис. 1, в).

В прямоугольном сечении элемента, выполненном из одного вида бетона, когда сечение по высоте разбивается на две части, линия раздела должна проходить по бетону, имеющему температуру, равную 400° С. В двутавровых и тавровых сечениях элементов, выполненных из одного вида бетона, линия раздела должна проходить по границе между ребром и полкой. В элементе, сечение которого по высоте состоит из различных видов бетонов, линия раздела должна проходить по границе бетонов.

Во всех случаях расчета арматура рассматривается как самостоятельная часть сечения.

Для каждой части сечения определяют приведенную площадь $F_{\rm II}$, статический момент площади приведенного сечения $S_{\rm II}$ и момент инерции приведенного сечения $I_{\rm II}$ с учетом температуры бетона в центре тяжести сечения.

Приведенная площадь $F_{\pi,i}$ *i*-той части сечения, на которые разбивается все сечение элемента, определяется по формуле

$$F_{\pi t} = \frac{F_t \, \beta_{\delta t} \, \bar{\nu}_t}{k_{\pi}} \,, \tag{2}$$

где

 F_{i} — площадь i-той части сечения;

 β_{6l} , v_l — коэффициенты, принимаемые в зависимости от температуры бетона в центре тяжести площади i-той части сечения, как в формуле (1);

 $k_{\rm n}$ — как в формуле (1);

При расчете без использования ЭВМ величины коэффициентов $\beta_{\delta,i}$ и v_i допускается определять в зависимости от средней температуры бетона i-той части сечения.

Площадь ненапрягаемой нагретой растянутой F_a и сжатой F_a^* арматуры приводится к ненагретому, более прочному бетону:

$$F_{\mathrm{n,a}} = \frac{F_{\mathrm{a}} E_{\mathrm{a}} \beta_{\mathrm{a}}}{E_{\mathrm{b}}}; \tag{3}$$

$$F'_{\text{n.a}} = \frac{F'_{\text{a}} E_{\text{a}} \beta_{\text{a}}}{E_{\text{6}}} \,, \tag{4}$$

где $E_{\rm a}$ — модуль упругости арматуры принимается по табл. 37 настоящего Руководства;

Расстояние от центра тяжести приведенного сечения до наименее нагретой грани определяется по формуле

$$y = \frac{S_{\pi}}{F_{\pi}} \ . \tag{5}$$

Площадь приведенного сечения элемента определяется по формуле

$$F_{n} = \Sigma F_{nt} + F_{n,a} + F'_{n,a}. \tag{6}$$

Статический момент площадей приведенного сечения элемента относительно грани, растянутой внешней нагрузкой и воздействием температуры, определяется по формуле

$$S_{n} = \Sigma F_{ni} y_{i} + F_{n.a} a + F'_{n.a} (h - a'),$$
 (7)

где y_i — расстояние от центра тяжести i-той части сечения бетона до наименее нагретой грани элемента, принимаемое равным

$$y_i = h - \Sigma h_i + p_i, \tag{8}$$

здесь

$$p_{l} = \frac{h_{t} (2\beta_{6l} + \beta_{6l+1})}{3(\beta_{6l} + \beta_{6l+1})}.$$
 (9)

При расчете без использования ЭВМ допускается принимать

$$p_l = 0.5h_l. \tag{10}$$

Момент инерции приведенного сечения определяется по формуле

$$I_{\rm n} = \Sigma I_{\rm n} + \Sigma F_{\rm n} y_{6i}^2 + F_{\rm n} y_{a}^2 + F_{\rm n} (y_{a}')^2, \tag{11}$$

где I_{ni} — момент инерции i-той части сечения бетона, определяемый по формуле

$$I_{\pi i} = \frac{F_{\pi i} h_i^2}{12} \,; \tag{12}$$

убі — расстояние от центра тяжести і-той части сечения бетона до центра тяжести всего приведенного сечения,

$$y_{6i} = y_i - y. \tag{13}$$

Расстояния от центра тяжести сжатой y_a и растянутой y_a арматуры до центра тяжести сечения элемента равны:

$$y_{a} = y - a; (14)$$

$$y_{o}' = h - y - a'. \tag{15}$$

1.29. Прогибы элементов железобетонных конструкций не должны превышать их предельно допустимых величин, устанавливаемых с учетом следующих требований:

а) технологических (условия нормальной работы кранов, тех-

нологических установок, машин и т. п.);

б) конструктивных (влияние соседних элементов, ограничивающих деформации; необходимость выдерживания заданных уклонов и т. п.);

в) эстетических (впечатление людей о пригодности конструкций). Величины предельно допустимых прогибов приведены в табл. 4.

Таблица 4

Элементы конструкций	Предельно допустимые прогибы
 Подкрановые балки при кранах: а) ручных электрических 	l/500 l/600
2. Перекрытия с плоским потолком и элементы по- крытия при пролетах: a) l < 6 м б) 6 м ≤ l ≤ 7,5 м в) l > 7,5 м	1/200 3 cm 1/250
3. Перекрытия с ребристым потолком и элементы лестниц при пролетах: a) $l < 5$ м б) 5 м $\leqslant l \leqslant 10$ м в) $l > 10$ м	1/200 2,5 cm 1/400
4. Навесные стеновые панели (при расчете из плоскости) при пролетах: а) <i>l</i> < 6 м 6) 6 м ≤ <i>l</i> ≤ 7,5 м в) <i>l</i> > 7,5 м	1/200 3 cm 1/250

Обозначения, принятые в табл. 4:

l — пролет балок или плит: для консолей принимают l = $2l_1$, где l_1 — вылет консоли.

Расчет прогибов должен производиться:

при ограничении технологическими или конструктивными требованиями — на действие постоянных, длительных и кратковременных нагрузок с учетом прогиба от кратковременного и длительного нагрева согласно указаниям пп. 4.23—4.27 настоящего Руководства;

при ограничении эстетическими требованиями — на действие постоянных и длительных нагрузок с учетом прогиба от длительного нагрева согласно указаниям пп. 4.23—4.27 настоящего Руководства.

При этом коэффициент перегрузки п и коэффициент перегрева

 n_t принимаются равными единице.

Для железобетонных элементов, выполненных со строительным подъемом, значения предельно допустимых прогибов могут быть уве-

личены на высоту строительного подъема, если это не ограничивается технологическими или конструктивными требованиями. Величины предельно допустимых прогибов для других конструкций, не предусмотренных табл. 4, устанавливаются по специальным требованиям, но при этом они не должны превышать $^{1}/_{150}$ пролета и $^{1}/_{75}$ вылета консоли.

Предельно допустимые деформации от воздействия температуры в элементах конструкций, в которых требуется их ограничение при нагревании и охлаждении, должны устанавливаться нормативными документами по проектированию соответствующих конструкций,

Таблица 5

Конструкции	ду температу швами, допус	асстояния, м, меж- урно-усадочными каемые без расчета ий, находящихся
	внутри отапли- ваемых зданий или в грунте	духе или в неотап-
1. Бетонные конструкции:		
а) сборные	40	30
б) монолитные при конструктив-	3ŏ	20
ном армировании		
в) монолитные без конструктив- ного армирования	20	10
2. Железобетонные конструкции с ненапрягаемой арматурой или предварительно-напряженные, удовлетворяющие требованиям 3-й категории к их трещиностойкости:		
 а) сборно-каркасные, в том чис- ле смешанные с металлически- ми покрытиями 	60	40
б) сборные сплошные	50	30
в) монолитные и сборно-моно- литные каркасные	50	30
г) монолитные и сборно-моно- литные сплошные	40	25

Примечания: 1. Для железобетонных конструкций одноэтажных зданий соответствующие расстояния между температурно-усадочными швами, указанные в настоящей таблице, увеличиваются на 20%.

2. Величины, приведенные в настоящей таблице, относятся к каркасным зданиям при отсутствии связей либо при расположении связей в середине деформационного блока.

3. Величины, приведенные в настоящей таблице, в соответствующих случаях следует умножать на коэффициенты k_t , $k_{\rm H}$ и $k_{\rm B}$, указанные в табл. 6 настоящего Руководства.

Коэффициен				
	Қоэфф	ициент		
Факторы, обусловливающие введение коэффициентов	условное обозначе- ние	величина		
1. Расчетная температура в °C:	k _t	1 0,9 0,8 0,6 0,3 0,2 0,1		
2. Расчетная температура воздуха (наиболее холодная пятидневка): ниже минус 30° С до минус 39° С включительно ниже минус 20° С до минус 30° С включительно ниже минус 10° С до минус 20° С включительно при относительной влажности воздуха: 40% и ниже выше 40% минус 10° С и выше при относительной влажности воздуха: 40% и ниже выше 40% и ниже выше 40%	k _H	1 1,1 1,2 1,1 1,2		
3. Расстояние от верха фундамента до низа подкрановых балок, а при их отсутствии — до низа ферм или балок покрытия в одноэтажных зданиях; оси балок перекрытия в многоэтажных зданиях: 3 м и менее 5 м 7 м 9 м и более	$k_{ m B}$	1 1,3 1,7 2,2		

 Π р и м е ч а н и е. Величины коэффициентов k_t и $k_{\rm B}$ для промежуточных значений соответственно температур и высот принимаются по интерполяции.

а при их отсутствии должны указываться в задании на проектирование.

Для несвязанных с соседними элементами железобетонных плит перекрытий, площадок и т. п. должна производиться дополнительная проверка по зыбкости: добавочный прогиб от кратковременно действующей сосредоточенной нагрузки 100 кгс при наиболее невыгодной схеме ее приложения должен быть не более 0,7 мм.

1.30. При расчете по прочности бетонных и железобетонных элементов на воздействие сжимающей продольной силы N должен приниматься во внимание случайный эксцентрицитет e_0^{cn} , обусловленный неучтенными в расчете факторами. Эксцентрицитет $e_0^{{f cn}}$ в любом случае принимается не менее одного из следующих значений: 1/600 всей длины элемента или длины его части (между точками защемления элемента), учитываемой в расчете, 1/30 высоты сечения элемента или 1 см.

Для элементов статически неопределимых конструкций величина эксцентрицитета продольной силы относительно центра тяжести приведенного сечения e_0 принимается равной эксцентрицитету, полученному из статического расчета конструкций, но не менее $e_0^{\mathbf{c}\mathbf{J}}$. В элементах статически определимых конструкций эксцентрицитет e_0 находится как сумма эксцентрицитетов -- определяемого из статического расчета конструкции и случайного.

При расчете по трещиностойкости и по деформациям эксцентрицитет $e_0^{\mathbf{C}\mathbf{J}}$ не учитывается.

В случае, если величина эксцентрицитета е принята в соответствии с указаниями настоящего пункта, равной $e_0^{{f c}\,{f n}}$, а расчетная длина элемента прямоугольного сечения $l_0 \leqslant 20h$, допускается производить его расчет согласно п. 3.37 настоящего Руководства.

1.31. Расстояния между температурно-усадочными швами долж-

ны устанавливаться расчетом.

Расчет допускается не производить при расчетных зимних температурах наружного воздуха выше минус 40° С для конструкций с ненапрягаемой арматурой, а также для предварительно-напряженных конструкций, к трещиностойкости которых предъявляются требования 3-й категории (см. табл. 3 настоящего Руководства), если принятое расстояние между температурно-усадочными швами не превышает величины, приведенной в табл. 5 настоящего Руководства, умноженной на коэффициенты k_t , k_H и k_B , принимаемые по табл. 6 настоящего Руководства.

Расстояние между температурными швами в фундаментах принимается в соответствии с расположением швов в вышележащих конструкциях.

дополнительные указания по проектированию предварительнонапряженных конструкций

1.32. Расчет предварительно-напряженных железобетонных конструкций, работающих в условиях воздействия повышенных и высоких температур, должен производиться в соответствии с требованиями главы СНиП II-21-75, Руководства по проектированию предварительно-напряженных железобетонных конструкций из тяжелого бетона и с учетом дополнительных указаний пп. 1.33-1.38 на-

стоящего Руководства.

1.33. Температура нагрева предварительно-напряженной арматуры не должна превышать предельно допустимой температуры ее применения, указанной в табл. 24 настоящего Руководства.

1.34. Сжимающие напряжения в бетоне в стадии предваритель-

ного обжатия об.н не должны превышать:

 а) для конструкций из обычного бетона, подвергающихся воздействию повышенных температур при относительной влажности воздуха:

40% и ниже — 0,5 R_0 ;

выше 40% и ниже 70% — 0,4 R₀;

70% и выше — 0,3 R_0 ;

б) для конструкций из жаростойкого бетона при воздействии температур:

до 400° С — $0.3 R_0$;

выше 400° С — 0,2 R_0 ;

1.35. Полная величина потерь предварительного напряжения арматуры, учитываемая при расчете конструкций, работающих в условиях воздействия температуры выше 50° С, определяется как сумма потерь:

основных — без учета воздействия температуры; дополнительных — от воздействия температуры.

Основные потери предварительного напряжения арматуры для конструкций из обычного бетона состава № 1 и жаростойкого бетона составов № 10 и 11 по табл. 11 настоящего Руководства следует определять как для тяжелого бетона по данным табл. 4 главы СНиП II-21-75. Величину потерь от усадки жаростойкого бетона следует принимать на 100 кгс/см² больше указанных в п. 8 «а» табл. 4 главы СНиП II-21-75.

При вычислении коэффициента β по формуле (6) главы СНиП II-21-75 время (в сутках) следует принимать: при определении потерь от ползучести — со дня обжатия бетона и от усадки — со дня окончания бетонирования до нагрева конструкции.

Дополнительные потери предварительного напряжения арматуры должны приниматься согласно табл. 7 настоящего Руководства.

1.36. Величины установившихся напряжений в бетоне σ₆ после проявления всех основных потерь должны определяться по формуле

$$\sigma_{6} = \frac{N_{0}}{F_{\pi}} \pm \frac{N_{0}e_{\text{OH}} y_{\text{H}}}{I_{\pi}} \mp \frac{Me_{\text{OH}}}{I_{\pi}} \,. \tag{16}$$

Таблица 7

	I a o m n m a i
Факторы, вызывающие потери предварительного напряжения арматуры	Величина дополнительных потерь предвари- тельного напря- жения, кгс/см ^а
1. Усадка обычного бетона состава № 1 и жаростойкого бетона составов № 10 и 11 по табл. 11 настоящего Руководства при нагреве: а) постоянном б) циклическом (см. п. 1.11 настоящего Руководства)	600 400

Величина допол нительных потер предварительного напряжения, кгс/см ³		
706 1006 1506 1806		
0,0012Δt 0,001Δt	'aσ ₀	
	0,0012Δι	

Обозначения, принятые в табл. 7:

- Δt_a разность между температурой арматуры при эксплуатации, определяемой теплотехническим расчетом, согласно пп. 1.47—1.53 настоящего Руководства, и температурой арматуры при натяжении, которую допускается принимать равной 20° С;
- абі коэффициент, принимаемый по табл. 20 настоящего Руководства в зависимости от температуры бетона на уровне напрягаемой арматуры;
- α_{at} коэффициент, принимаемый по табл. 35 настоящего Руководства;
- Еа модуль упругости арматуры, принимаемый по табл. 37 настоящего Руководства;

Примечания: 1. Потери предварительного напряжения от релаксации напряжений арматуры учитываются при температуре арматуры выше 40° С.

- 2. Потери предварительного напряжения арматуры от разности деформаций бетона и арматуры учитываются в элементах, выполненных из обычного бетона, при кратковременном нагреве арматуры выше 100° С и в элементах из жаростойкого бетона при кратковременном нагреве арматуры выше 70° С.
- 3. Если от усилий, вызванных совместным действием нагрузки, температуры и предварительного обжатия, в бетоне на уровне арматуры в стадии эксплуатации возникают растягивающие напряжения, то дополнительные потери от ползучести бетона не учитываются.

Геометрические характеристики приведенного сечения предварительно-напряженного железобетонного элемента ($F_{\rm II}$, $S_{\rm II}$, $I_{\rm II}$) определяются, согласно п. 1.28 настоящего Руководства, с учетом продольной предварительно-напряженной арматуры A и A' и влияния температуры на снижение модулей упругости арматуры и бетона.

1.37. Усилия от воздействия температуры в статически неопределимых предварительно-напряженных железобетонных конструкциях определяют согласно пп. 1.45 и 1.46 настоящего Руководства.

При определении усилий от воздействия температуры жесткость элемента вычисляют согласно указаниям пп. 4.28—4.30 настоящего

Руководства.

1.38. При определении общего прогиба предварительно-напряженного железобетонного элемента необходимо учитывать прогиб, вызванный неравномерным нагревом бетона по высоте сечения элемента, согласно требованиям п. 4.26 настоящего Руководства.

ДЕФОРМАЦИИ И УСИЛИЯ ОТ ВОЗДЕЙСТВИЯ ТЕМПЕРАТУРЫ

1.39. Расчет деформаций, вызванных нагреванием и охлаждением бетонных и железобетонных элементов, должен производиться в зависимости от наличия трещин в растянутой зоне бетона и распре деления температуры бетона по высоте сечения элемента.

1.40. Для участков бетонного и железобетонного элементов, где в растянутой зоне не образуются трещины, нормальные к продольной оси элемента, деформации от нагрева следует рассчитывать согласно следующим указаниям:

а) сечение элемента приводится к более прочному бетону согласно п. 1.28 настоящего Руководства; удлинение ε_t оси элемента и ее кривизна $\frac{1}{\rho_t}$ определяются по формулам:

$$\boldsymbol{\varepsilon}_{t} = \frac{\sum F_{\Pi l} \, \boldsymbol{\varepsilon}_{t.l} + F_{\Pi.a}' \, \boldsymbol{\varepsilon}_{a}' + F_{\Pi.a} \, \boldsymbol{\varepsilon}_{a}}{F_{\Pi}} \, n_{t}; \tag{17}$$

$$\frac{1}{\rho_{t}} = \frac{\sum F_{ni} y_{6i} e_{t.i} + F'_{n.a} y'_{a} e'_{a} + F_{n.a} y_{a} e_{a} + \sum \frac{1}{\rho_{t.i}} I_{n.t}}{I_{n}} n_{t}. \quad (18)$$

Удлинение $\epsilon_{t,i}$ оси i-той части бетонного сечения и ее кривизна $\frac{1}{\rho_{t,t}}$ (рис. 2) определяются по формулам:

$$\varepsilon_{t,i} = \frac{\alpha_{6t,i} \ t_{6i} \ p_i + \alpha_{6t,i+1} \ t_{6i+1} (h_i - p_i)}{h_i} \ ; \tag{19}$$

$$\frac{1}{\rho_{t,i}} = \frac{\alpha_{6t,i} \ t_{6t} - \alpha_{6t,i+1} \ t_{6i+1}}{h_i} \ . \tag{20}$$

Удлинения ε_a и ε_a' соответственно арматуры A и A' определяются по формулам:

$$\varepsilon_{a} = \alpha_{at} t_{a}; \tag{21}$$

$$\varepsilon_a' = \alpha_{at} \ t_a'. \tag{22}$$

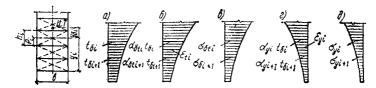


Рис. 2. Схемы распределения при нелинейном изменении температур по высоте бетонного сечения элементов

a — температуры бетона; b — деформации удлинения от нагрева; b — напряжения в бетоне от нагрева; b — деформации укорочения от остывания; b — напряжения в бетоне от остывания.

В формулах (17)—(22):

$$F_{\Pi}$$
, $F_{\Pi i}$, $F_{\Pi,a}$, $F'_{\Pi,a}$, $y_{6,i}$, y_{a} , y'_{a} , I_{Π} , $I_{\Pi,i}$, p_{i}

принимаются как в п. 1.28 настоящего Руководства;

 $\alpha_{6t.i}$ и $\alpha_{6t.i+1}$ — коэффициент, принимаемый по табл. 20 настоящего Руководства в зависимости от температуры бетона более и менее нагретой грани i-той части сечения;

 α_{at} — коэффициент, принимамый по табл. 35 настоящего Руководства в зависимости от температуры арматуры A и A';

п_t — коэффициент перегрева, принимаемый при расчете по предельным состояниям:
 первой группы — 1,1;

второй группы — 1,1

При расчете бетонного сечения в формулах (17) и (18) настоящего Руководства удлинение арматуры ε_a и ε_a' не учитывается;

б) при неравномерном нагреве бетона с прямолинейным распределением температуры по высоте сечения элемента (рис. 3, a) удлинение ε_t оси элемента и ее кривизну $\frac{1}{\rho_t}$ допускается определять по формулам:

$$\varepsilon_{t} = \frac{\alpha_{6t} t_{6} (h - y) + \alpha_{6t1} t_{61} y}{h} n_{t}; \tag{23}$$

$$\frac{1}{\rho_t} = \frac{\alpha_{6t1} t_{61} - \alpha_{6t} t_6}{h} n_t, \qquad (24)$$

где t6 и t61 — температура бетона менее и более нагретой грани сечения, определяемая теплотехническим расчетом согласно указаниям пп. 1.47—1.53 настоящего Руководства:

абі и абі1 — коэффициенты, принимаемые в зависимости от температуры бетона менее и более нагретой грани сечения по табл. 20 настоящего Руководства.

1.41. Для участков бетонного или железобетонного элемента, где в растянутой зоне бетона не образуются трещины, нормальные к продольной оси элемента, деформации от остывания следует рассчитывать согласно следующим указаниям:

а) сечение элемента приводится к более прочному бетону со-

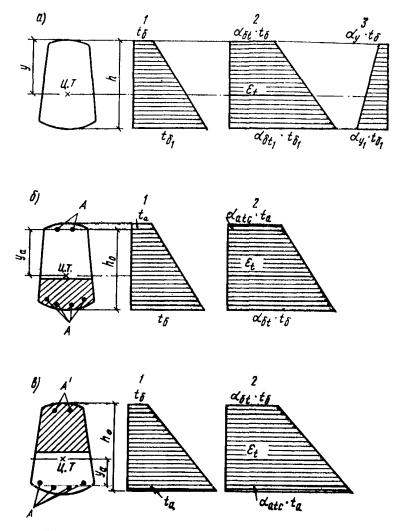


Рис. 3. Схемы распределения температур и деформаций от неравномерного нагрева при прямолинейном изменении температур по высоте сечения элементов

a — бетонного и железобетонного без трещин; b — железобетонного с трещинами в растянутой зоне, расположенной у менее нагретой грани; b — то же, у более нагретой грани; b — температуры бетона; b — деформации удлинения от нагрева; b — деформации укорочения от остывания

гласно п. 1.28 настоящего Руководства, укорочение ϵ_y оси элемента и ее кривизна $\frac{1}{\rho_y}$ определяются по формулам:

$$\mathbf{\epsilon}_{\mathbf{y}} = \frac{\sum F_{\Pi l} \, \mathbf{\epsilon}_{\mathbf{y} l}}{F_{\Pi}} \, n_{l}; \tag{25}$$

$$\frac{1}{\rho_{y}} = \frac{\sum F_{ni} y_{0i} e_{yi} + \sum \frac{1}{\rho_{yi}} I_{ni}}{I_{n}} n_{i}; \qquad (26)$$

Укорочение ϵ_{yi} оси *i*-той части бетонного сечения и ее кривизна $\frac{1}{\rho_{yi}}$ определяются по формулам:

$$e_{yi} = \frac{\alpha_{yi} t_{6i} p_i + \alpha_{yi+1} t_{6i+1} (h_i - p_i)}{h_i}; \qquad (27)$$

$$\frac{1}{\rho_{yi}} = \frac{\alpha_{yi} t_{6i} - \alpha_{yi+1} t_{6i+1}}{h_i} . \tag{28}$$

В формулах (25) - (28):

 $F_{\pi i}$, $F_{\pi i}$, $y_{\delta i}$, $I_{\pi i}$, $I_{\pi i}$, h_i , p_i принимаются согласно п. 1,28 настоящего Руководства;

 n_t — согласно п. 1.40 настоящего Руководства; $t_{\mathcal{S}_t}$ и $t_{\mathcal{S}_{t+1}}$ — см. рис. 2;

 α_{yi} и α_{yi+1} — коэффициенты, принимаемые по табл. 21 настоящего Руководства в зависимости от температуры более и менее нагретой грани i-той части сечения;

б) при остывании с неравномерным нагревом бетона и прямолинейным распределением температуры по высоте сечения элемента укорочение ϵ_y оси элемента и ее кривизну $\frac{1}{\rho_y}$ допускается опр делять по формулам:

$$\mathbf{e}_{y} = \frac{\alpha_{y} t_{6} (h - y) + \alpha_{y1} t_{61} u}{h} n_{c}. \tag{29}$$

$$\frac{1}{\rho_{\mathbf{v}}} = \frac{\alpha_{y1} t_{6i} - \alpha_{y} t_{6}}{h} n_{t}, \tag{30}$$

где α_y и α_{yi} — коэффициенты, принимаемые по табл. 21 настоящего Руководства в зависимости от температуры бетона менее и более нагретой грани сечения;

 n_t , t_6 , t_{61} — принимаются согласно п. 1.40 настоящего Руководства.

1.42. Для участков бетонного и железобетонного элемента, где в растянутой зоне бетона не образуются трещины, нормальные к продольной оси элемента, напряжения в бетоне грани *i*-той части сечения следует определять по формулам:

при нагревании

$$\sigma_{6t,i} = \left(\varepsilon_t - \alpha_{6t,i} t_{6i} + y_{6i} \frac{1}{\rho_t}\right) E_6 \beta_{6i} \overline{\nu}_t; \tag{31}$$

при остывании

$$\sigma_{yl} = \left(\varepsilon_y - \alpha_{yl} t_{6l} + y_{6l} \frac{1}{\rho_y}\right) E_6, \tag{32}$$

где y_{6i} , ε_{t} , $\frac{1}{\rho_{t}}$ — определяются соответственно по формулам (13), (17) и (18) настоящего Руководства;

 $\alpha_{6t,t}$, t_{6t} — принимаются согласно указаниям пп. 1.40 и 1.41 настоящего Руководства;

 E_6 — принимается по табл. 17 настоящего Руководства; β_{6i} и v_i — коэффициенты, принимаемые по табл. 16 и 18 настоящего Руководства в зависимости от температуры бетона грани *i*-той части сечения;

 e_{y} и $\frac{1}{\rho_{y}}$ — определяются соответственно по формулам (25) и (26) настоящего Руководства.

1.43. Для участков железобетонного элемента, где в растянутой зоне образуются трещины, нормальные к продольной оси элемента, деформации от нагрева следует рассчитывать согласно следующим указаниям:

а) для железобетонного элемента с трещинами в растянутой зоне, расположенной у менее нагретой грани сечения (рис. 3, 6), удлинение ε_t оси элемента и ее кривизна $\frac{1}{\rho_t}$ определяются по формулам:

$$\varepsilon_{t} = \frac{\alpha_{6t} t_{6} y_{a} + \alpha_{atc} t_{a} (h_{0} - y_{a})}{h_{0}} n_{t};$$
 (33)

$$\frac{1}{\rho_t} = \frac{\alpha_{6t} t_6 - \alpha_{atc} t_a}{h_0} n_t; \tag{34}$$

б) для участков железобетонного элемента с трещинами в растянутой зоне бетона, расположенной у более нагретой грани сечения (рис. 3, θ), удлинение ϵ_t оси элемента определяется по формуле

(33) настоящего Руководства и ее кривизна $\frac{1}{\rho_t}$ — по формуле

$$\frac{1}{\varrho_t} = \frac{\alpha_{\text{efc}} t_{\text{a}} - \alpha_{\text{cf}} t_{\text{c}}}{h_0} n_t; \tag{35}$$

В формулах (33)—(35):

 $t_{\mathbf{a}}$ — температура арматуры A;

t6 — температура бетона сжатой грани сечения;

 α_{atc} — коэффициент, определяемый по формуле (68) настоящего Руководства:

а_{бt} — коэффициент, принимаемый по табл. 20 настоящего Руководства в зависимости от температуры бетона сжатой грани се-

 n_t — принимается согласно указаниям п. 1.40 настоящего Руководства.

При равномерном нагреве железобетонного элемента кривизну 1 оси элемента допускается принимать равной нулю. В железобетонных элементах из обычного бетона при температуре арматуры до 100° С и из жаростойкого бетона при температуре арматуры до 70° С

для участков с трещинами в растянутои зоне бетона допускается определять удлинение оси элемента ε_t и ее кривизну $\frac{1}{\rho_t}$ по формулам (23) и (24) настоящего Руководства как для бетонных элементов без трещин.

1.44. Для участков железобетонных элементов, где в растянутой зоне образуются трещины, нормальные к продольной оси элемента, при остывании укорочение ε_y оси элемента и ее кривизну $\frac{1}{\rho_y}$ допускается определять по формулам (29) и (30) настоящего Руководства.

1.45. Определение усилий в статически неопределимых конструкциях от воздействия температуры должно производиться по формулам строительной механики с принятием действительной жесткости сечений.

Методика определения неизвестных, составление канонических уравнений перемещений, получение окончательных эпюр такие же, как и при расчете статически неопределимых конструкций на воздействие внешней нагрузки.

Если определение усилий от воздействия температуры плоской статически неопределимой системы производится методом сил, то канонические уравнения имеют вид

$$\frac{X_1\delta_{11} + X_2\delta_{12} + \dots + X_n\delta_{1n} + \Delta_{1t} = 0}{X_1\delta_{n1} + X_2\delta_{n2} + \dots + X_n\delta_{nn} + \Delta_{nt} = 0},$$
 (36)

где X_1, X_2, \dots, X_n — соответственно лишние неизвестные усилия основной системы;

 δ_{11} , δ_{12} , δ_{1n} — перемещение в основной системе в направлении 1, вызываемое единичной силой, действующей в направлении 1, 2 и n;

 δ_{ni} , δ_{n2} , δ_{nn} — перемещения в основной системе в n-м направлении, вызываемые единичной силой, действующей в направлении 1, 2 и n;

 Δ_{1t} и Δ_{nt} — перемещение в основной системе в направлении 1 и n, вызываемое воздействием температуры.

Перемещение Δ_{it} в основной системе в *i*-том направлении, вызванное воздействием температуры, равно

$$\Delta_{it} = \sum_{0}^{l} \overline{M}_{i} \frac{1}{\rho_{t}} (x) dx + \sum_{0}^{l} \overline{N}_{i} \varepsilon_{t}(x) dx, \qquad (37)$$

где \overline{M}_i , \overline{N}_i — изгибающий момент и продольная сила в сечении x элемента основной системы от действия в i-том направлении соответствующей единичной силы;

 $\frac{1}{\rho_t}(x)$, $\varepsilon_t(x)$ — кривизна и удлинение элемента в сечении x, вы-

званные воздействием температуры, определяемые согласно пп. 1.40 и 1.43 настоящего Руководства.

Единичное перемещение δ_{ik} по направлению i, вызванное силой, равной единице, действующей по направлению k, определяется по формуле

$$\delta_{lk} = \sum_{0}^{l} \frac{\overline{M}_{l} \overline{M}_{k}}{B(x)} dx + \sum_{0}^{l} \frac{\overline{N}_{l} \overline{N}_{k}}{E_{6} F_{\pi}(x)} dx, \qquad (38)$$

где $F_{\Pi}(x)$, B(x) — приведенная площадь и жесткость элемента в сечении x, определяемые согласно пп. 1.28, 4.28 и 4.29 настоящего Руководства.

При определении жесткости сечений элемента следует учитывать усилия от нагрузки и воздействия температуры, согласно требованиям табл. 1 и 2 настоящего Руководства.

Удлинения ϵ_t оси элемента и ее кривизна $\frac{1}{\rho_t}$ от воздействия температуры должны вычисляться согласно пп. 1.39—1.43 настоящего Руководства.

При расчете железобетонных элементов, работающих на изгиб, а также на сжатие и растяжение, когда $e_0 = \frac{M}{N} \geqslant 0.8h_0$, с достаточной для расчета точностью в формулах (37) и (38) второй интеграл можно прицимать равным нулю. Для вычисления величин Δ_{it} и δ_{ih} по формулам (37) и (38) настоящего Руководства рекомендуется следующая упрощенная методика. Элемент по длине разбивается

на n участков и на каждом участке Δl определяются жесткость B и кривизна $\frac{1}{\rho_l}$ в зависимости от наличия в сечении трещин и действующих усилий:

$$\int_{0}^{t} \frac{\overline{M}_{t} \overline{M}_{k}}{B(x)} dx = \Delta l \sum_{k=1}^{n} \frac{M_{t} M_{k}}{B};$$
 (39)

$$\int_{0}^{l} \overline{M}_{l} \frac{1}{\rho_{t}} dx = \Delta l \sum_{i}^{n} M_{i} \frac{1}{\rho_{t}}, \qquad (40)$$

где В — жесткость посередине длины каждого участка, определяемая с учетом наличия трещин и усилий от нагрузки и температуры согласно пп. 4.28 и 4.29 настоящего Руководства;

 M_l и M_k — изгибающие моменты посередине длины каждого участка от действия единичной силы;

1 — кривизна на каждом участке, определяемая согласно пп. 1.40 и 1.43 настоящего Руководства.

Величины жесткости и кривизны зависят от усилий, вызванных температурой, поэтому расчет статически неопределимых железобетонных конструкций на воздействие температуры необходимо выполнять методом последовательных приближений до тех пор, пока величина усилия, полученная в последнем приближении, будет отличаться от усилий предыдущего приближения не более чем на 5%.

Расчет усилий в статически неопределимых конструкциях, как правило, следует выполнять с применением ЭВМ. При использова-

нии малых вычислительных машин и при ручном счете жесткость сечений $B_{\mathbf{u}}$, удлинение оси $\mathbf{\epsilon}_{\mathbf{u}t}$ и ее кривизну $\frac{1}{\rho_{\mathbf{n}t}}$ допускается принимать постоянными по длине элемента.

Приведенная жесткость сечения определяется по формуле

$$B_{II} = B + (B_{I} - B) k_{M}, \tag{41}$$

Приведенное удлинение ϵ_{nt} оси элемента и ее кривизну $\frac{1}{\rho_{nt}}$ от нагрева определяют по формулам:

$$\varepsilon_{nt} = \varepsilon_{t1} + (\varepsilon_{t2} - \varepsilon_{t1}) k_{m}; \tag{42}$$

$$\frac{1}{\rho_{\Pi_{1}}} = \frac{1}{\rho_{t1}} + \left(\frac{1}{\rho_{t2}} - \frac{1}{\rho_{t1}}\right) k_{M}. \tag{43}$$

В формулах (41)—(43):

В — жесткость сечения элемента с трещинами в растянутой зоне в месте действия наибольшего изгибающего момента M, определяемая согласно п. 4.29 настоящего Руководства;

В₁ — жесткость сечения элемента без трещин, определяемая согласно п. 4.28 настоящего Руководства;

$$k_{\rm M} = exp\left(-\frac{M-M_{\rm T}}{1,25M_{\rm T}}\right);\tag{44}$$

при $M \geqslant 2,5 M_{\text{т}}$ принимается $k_{\text{M}} = 0$; $B_{\text{m}} = B$; $\varepsilon_{\text{n}\,t} = \varepsilon_{t^{1}}$ и $\frac{1}{\rho_{\text{n}\,t}} = \frac{1}{\rho_{t}}$;

Ми М_т — наибольший изгибающий момент и момент, воспринимаемый сечением, нормальным к продольной оси элемента, при образовании трещин, определяемый согласно п. 4.4 настоящего Руководства;

 $m{\epsilon_{t2}, \frac{1}{
ho_{t2}}}$ — удлинение оси и ее кривизна элемента без трещин от воздействия температуры, определяемые согласно п. 1.40 настоящего Руководства;

 ϵ_{t1} , $\frac{1}{\rho_{t1}}$ — удлинение оси и ее кривизна элемента с трещинами в растянутой зоне, определяемые согласно п. 1.43 настоящего Руководства.

Расчет статически неопределимых железобетонных конструкций при температурном воздействии рекомендуется выполнять в следующем порядке:

 а) составляется расчетная схема конструкции с указанием всех геометрических размеров элементов, действующих нагрузок и температур. Назначаются проектная марка и вид бетона, класс арматуры;

б) задается минимальное армирование сечений элементов конструкций по формуле

$$F_{a \text{ MHR}} = \frac{R_{\text{np}} b h_0}{25 R_a}; \tag{45}$$

в) вычисляют моменты, которые могут воспринять различные сечения элементов конструкции при заданных размерах сечений, проценте армирования, прочности бетона и температуре;

r) определяется удлинение ε_t оси, кривизна $\frac{1}{\rho_t}$ элементов, вызванные воздействием температуры.

Если по условию эксплуатации допускается образование трещин в элементах, величины ε_t и $\frac{1}{\rho_{t1}}$ определяют как для сечений без трещин, так и для сечений с трещинами согласно пп. 1.40 и 1.43 настоящего Руководства;

- д) вычисляется жесткость сечений элементов, при эксплуатации которых образование трещин маловероятно, согласно п. 4.28 настоящего Руководства;
- ж) для элементов, при эксплуатации которых возможно образование трещин, по формуле (282) или (283) настоящего Руководства вычисляется жесткость сечения с трещинами. При вычислении жесткости предполагается, что в сечении действует момент M, вычисленный согласно указаниям настоящего пункта;
- з) для элементов, работающих с трещинами, при ручном расчете вычисляются приведенные жесткость сечения, удлинение оси и кривизна элемента по формулам (41), (42) и (43) настоящего Руководства;
- и) по формулам строительной механики вычисляют коэффициенты и составляют канонические уравнения;
 - к) решают уравнения и находят неизвестные;
- л) при различном сочетании температуры и нагрузки определяют моменты, продольные и поперечные силы в сечениях элементов конструкции;
- м) полученный момент в рассматриваемом сечении элемента от действия температуры и нагрузки должен равняться или быть несколько меньше момента, который может воспринять сечение. Если полученный момент будет больше, то необходимо увеличить количество арматуры или размеры сечения и провести повторный расчет.
- 1.46. Изгибающий момент от неравномерного нагрева бетона по высоте сечения и при равномерном нагреве бетона по длине элемента, заделанного на опорах от поворота, а также в замкнутых рамах кольцевого, квадратного и прямоугольного очертания, имеющих одинаковые сечения, определяется по формуле

$$M_t = \frac{1}{\rho_t} B, \tag{46}$$

где $\frac{1}{\rho_t}$ — кривизна оси элемента от нагрева, определяемая согласно пп. 1.40 и 1.43 настоящего Руководства;

В — жесткость сечения, определяемая согласно пп. 4.28—4.30 настоящего Руководства.

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУР В СЕЧЕНИЯХ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

1.47. Расчет распределения температур в бетонных и железобетонных конструкциях для установившегося потока тепла следует производить, пользуясь методами расчета температур ограждающих конструкций, согласно главе СНиП II-А.7-71 «Строительная теплотехника. Нормы проектирования».

Расчет распределения температур в ограждающих конструкциях сложной конфигурации сечений элементов, в массивных конструкциях, изкодящихся ниже уровня земли, а также при неустановившемся потоке тепла с учетом переменной влажности бетона по сечению должен производиться методами расчета температурных полей или теории теплопроводности, либо по соответствующим нормативным документам.

Расчет распределения температур в стенках боровов и каналов,

расположенных под землей, допускается производить:

для кратковременного нагрева — принимая сечение по высоте стен неравномерно нагретым с прямолинейным распределением температур бетона и величину коэффициента теплоотдачи наружной поверхности стенки $\alpha_{\rm H}$ по табл. 8 настоящего Руководства;

Таблица 8

Коэффи- циенты											
	0	50	100	200	300	400	500	700	900	1100	1200
α_{H}	7	10	12	17	22	_	_	_			_
αв	-	10	10	10	12	15	20	40	70	120	150

Примечание. Коэффициенты $\alpha_{\text{в}}$ и $\alpha_{\text{в}}$ для промежуточных значений температур определяются по интерполяции.

для длительного нагрева — принимая сечение по высоте стен равномерно нагретым.

Температуру арматуры в сечениях железобетонных элементов допускается принимать равной температуре бетона в месте ее расположения.

1.48. Для конструкций, находящихся на воздухе, коэффициент теплоотдачи наружной поверхности α_н, ккал/(м²·ч·°С) в зависимости от преобладающей скорости ветра зимой и летом, указанной в табл. 6 главы СНиП II-A.6-72 «Строительная климатология и геофизика», следует принимать равным:

при скорости ветра от 1 до 5 м/с -10;

при скорости ветра от 8 м/с и более — 20.

При скоростях ветра более 5 и менее 8 м/с величина $\alpha_{\text{н}}$ определяется по интерполяции.

Для конструкций, находящихся в помещении или на воздухе, но защищенных от воздействия ветра, коэффициент теплоотдачи наружной поверхности α_n принимается по табл. 8 настоящего Руководства.

Коэффициент теплоотдачи внутренней поверхности конструкции α_B следует определять, как правило, методом расчета теплопередачи, как для случая сложного теплообмена. При определении распределения температуры бетона по сечению элемента допускается величину коэффициента α_B принимать по табл. 8 настоящего Руководства в зависимости от температуры воздуха производственного помещения или рабочего пространства теплового агрегата.

1.49. Коэффициент теплопроводности λ бетона в сухом состоянии должен приниматься по табл. 9 настоящего Руководства в зависимости от средней температуры бетона в сечении элемента. Коэффициент теплопроводности λ огнеупорных и теплоизоляционных материалов должен приниматься по табл. 10 настоящего Руководства.

Таблица 9

Номера составов бетона по табл. 11 настоящего Руководства	Коэффициент теплопроводности A, ккал/(м·ч·°С), обычного и жаростойкого бетонов в сухом состоянии при средней температуре бетона в сечении элемента, °С						
	50	100	300	500	700	900	
1 20 21 2, 3, 6, 7, 13 8, 9, 10, 11 14, 15, 16, 17, 18 19 4, 5 12 23 29 24 27 22, 25, 26 28, 30 31	1,3 2,3 1,28 1,3 0,8 0,85 0,75 0,7 0,43 0,37 0,43 0,38 0,18	1,18 2,09 1,16 1,18 0,77 0,82 0,72 0,65 0,76 0,39 0,45 0,35 0,4 0,2 0,2 0,19	0,94 1,67 1,18 1,2 0,72 0,8 0,67 0,54 0,7 0,45 0,5 0,39 0,44 0,29 0,22	1,2 1,27 1,3 0,75 0,87 0,70 0,58 0,77 0,5 0,55 0,43 0,48 0,28 0,33 0,25	1,05 1,35 1,39 0,80 0,98 0,75 0,6 	1,02 1,4 	

Примечания: 1. Коэффициент теплопроводности λ обычного и жаростойкого бетонов с влажностью после естественного твердения и тепловой обработки при атмосферном давлении при средней температуре бетона в сечении элемента до 100° С следует принимать по данным таблицы, увеличенным на 30%.

Для промежуточных значений температур величина коэффициента теплопроводности λ определяется по интерполяции.

При стационарном нагреве конструкции, состоящей из n слоев, температуру материала t_n между слоями $n{-}1$ и n определяют по формуле

$$t_n = t_{\mathrm{B}} - Q\left(\frac{1}{\alpha_{\mathrm{B}}} + \sum_{i=1}^{n-1} R_i\right). \tag{47}$$

Температура материала более нагретой поверхности $t_{\rm 6}$ вычисляется по формуле

$$t_6 = t_B - Q \frac{1}{\alpha_B}; (48)$$

температура материала менее нагретой поверхности t_{61} — по формуле

 $t_{\delta_{t}} = t_{\mathbf{B}} - Q\left(\frac{1}{\alpha_{\mathbf{B}}} + \Sigma R_{t}\right). \tag{49}$

В трехслойной конструкции определение температуры материала между первым и вторым слоями, считая слои от более нагретой поверхности, производится по формуле

$$t_1 = t_B - Q\left(\frac{1}{\alpha_B} + R_1\right). \tag{50}$$

Температура материала между вторым и третьим слоями определяется по формуле

$$t_2 = t_B - Q\left(\frac{1}{\alpha_B} + R_1 + R_2\right). {(51)}$$

Температура менее нагретой поверхности равна

$$t_{61} = t_{\rm B} - Q \left(\frac{1}{\alpha_{\rm B}} + R_1 + R_2 + R_3 \right). \tag{52}$$

Тепловой поток Q, ккал/(м²·ч), определяется по формуле

$$Q = \frac{1}{R_0} (t_{\rm B} - t_{\rm H}). \tag{53}$$

Сопротивление теплопередаче R_0 , м²·ч·°С/ккал, многослойной конструкции следует определять по формуле

$$R_0 = \frac{1}{\alpha_n} + R_1 + R_2 + \dots + R_{n-1} + R_n + \frac{1}{\alpha_n}, \qquad (54)$$

где

$$R_1 = \frac{\delta_1}{\lambda_1}$$
; $R_2 = \frac{\delta_2}{\lambda_2}$,..., $R_{n-1} = \frac{\delta_{n-1}}{\lambda_{n-1}}$; $R_n = \frac{\delta_n}{\lambda_n}$;

 $R_1, R_2, ..., R_{n-1}, R_n$ — термические сопротивления материала в отдельных слоях конструкции, пронумерованные со стороны нагреваемой поверхности, м²·ч·°С/ккал;

 $\delta_1, \delta_2, \dots, \delta_{n-1}, \delta_n$ — толщины отдельных слоев, м;

 $\lambda_1, \lambda_2, ..., \lambda_{n-1}, \lambda_n$ — коэффициенты теплопроводности материалов в слоях конструкции при их средней температуре, ккал/(м·ч·°C).

1.50. При расчете распределения температуры по толщине конструкции необходимо учитывать различие площадей теплоотдающих внутренней и наружной поверхностей:

при круговом очертании, если толщина стенки более 0,1 наружного диаметра;

при квадратном или прямоугольном очертании, если толщина стенки более 0,1 длины большей стороны;

при произвольном очертании, если разница в площадях теплоотдающих внутренней и наружной поверхностей более 10%.

Для трехслойной конструкции ограждения с учетом различия в

Nº π/π.	М атериалы	Объемный вес в сухом со- стоянии,	Предельно допустимая температура при-	огне	упорных сухом сос	и теплои тоянии пр	золяциони	, ккал/(м ных матер й темпера ента, °С	иалов
క		KГ/M ⁸	менения, °С	50	100	300	500	700	900
1	2	3	4	5	6	7	8	9	10
1 2 3 4 5 6 7	Шамотный, ГОСТ 390—69 Шамотный легковес, ГОСТ 5040—68 То же » » Динасовый, ГОСТ 4157—69 Динасовый легковес, ГОСТ 5040—68	1900 400 800 1000 1300 1900 1200— 1400	1150 1270 1300 1400 — 1550	0,63 0,11 0,2 0,29 0,42 1,38 0,49	0,66 0,12 0,21 0,3 0,43 1,39 0,5	0,76 0,15 0,25 0,36 0,5 1,46 0,55	0,87 0,17 0,29 0,42 0,56 1,53 0,6	0,98 0,2 0,33 0,48 0,63 1,59 0,65	1,09 0,23 0,37 0,54 0,7 1,66 0,7
8 9 10 11 12 13	Каолиновый Высокоглиноземистый Магнезитовый, ГОСТ 4689—74 Магнезитохромитовый, ГОСТ 10888—64 Хромомагнезитовый, ГОСТ 5381—72 Глиняный обыкновенный кирпич ГОСТ 530—71	2000 2609 2700 2800 2950 1700	— — — —	1,54 1,53 5,18 3,46 2,36 0,48	1,55 1,54 5,07 3,39 2,33 0,51	1,6 1,58 4,61 3,1 2,18 0,6	1,64 1,62 4,15 2,82 2,03 0,7	1,68 1,66 3,69 2,53 1,88	1,73 1,7 3,23 2,24 1,73
14	Кирпич пенодиатомитовый, ГОСТ 2694—67	350	900	0,075	0,08	0,11	0,133	0,156	_
15 16 17 18	То же Кирпич диатомитовый, ГОСТ 2694—67 То же Маты минераловатные прошивные, ГОСТ 21880—76	400 500 600 75—100	900 900 900 600	0,085 0,1 0,12 0,043	0,09 0,11 0,13 0,053	0,12 0,16 0,18 0,093	0,143 0,2 0,22 0,133	0,166 0,24 0,26	
19 20 21	Маты минераловатные прошивные, ГОСТ 21 880—76 То же Плиты и маты теплоизоляционные из минераловатной ваты на синтетическом	125 150 50—75	600 600 400	0,045 0,047 0,046	0,055 0,057 0,06	0,095 0,097 0,112	0,135 0,137 —	i	<u> </u>
22 23 24	связующем, ГОСТ 9573—72 То же Маты теплоизоляционные из ваты каолинового состава, ТУ 14-8-78-73	100—125 150 150	400 400 1100	0,047 0,048 0,043	0,057 0,056 0,055	0,097 0,088 0,105	_ 0,155	 0,205	 0,27
25 26	То же Маты и полосы из стеклянного волокна,	300 170	1100 45 0	0,048 0,049	0,06 0,064	0,11 0,124	0,16	0,22 —	0,3
27	ГОСТ 2245—43 Перлитофосфогелевые без гидроизоляционно-упрочняющего покрытия, ГОСТ 21 500—76	200	600	0,06	0,07	0,09	0,11	-	
28 29 30	То же » Перлитоцементные изделия, ГОСТ	250 300 250	600 600 600	0,068 0,072 0,064	0,074 0,078 0,079	0,098 0,118 0,109	0,122 0,138 0,139	=	_
31 32 33	18109—72 То же » Перлитокерамические изделия, ГОСТ 21521—76	300 350 250	600 600 875	0,069 0,074 0,068	0,084 0,089 0,076	0,114 0,119 0,105	0,144 0,149 0,135	_ 0,165	_ _ _
34 35 36 37	То же » Известково-кремнеземистые изделия,	300 350 400 200	875 875 875 600	0,073 0,08 0,09 0,059	0,181 0,088 0,098 0,064	0,11 0,12 0,13 0,084	0,14 0,15 0,16 0,104	0,17 0,18 0,19	
38	МРТУ 34-4601-68 Известковокремнеземистые изделия,	120	1200	0,055	0,06	0,09	0,101	0,15	0,18
39 37 40	на, ТУ 207-67 Совелитовые изделия, ГОСТ 6788—74 То же	350 400	500 500	0,071 0,075	0,076 0,08	0,096 0,10			

n/n.	Материалы	Объемный вес в сухом со- стоянии,	Предель- но допу- стимая темпера- тура при-	огне	оициент те упорных сухом сос- материя	и теплоиз	оляционн ои средне	ых матер й темпера	иалов
2		KΓ/M³	менения, °С	50	100	300	500	700	900
1	2	3	4	5	6	7	8	9	10
41 42 43 44 45 46 47 48 49 50 51 52	Вулканитовые изделия, ГОСТ 10179—74 То же "Пеностекло, СТУ 85-497-64 Асбестовермикулитовые плиты, ГОСТ 13450—68 То же "Вермикулит вспученный, ГОСТ 12865—67 То же "Асбозурит Картон асбестовый, ГОСТ 2850—75	300 350 400 200 250 300 350 100 150 200 600 1000— 1300	600 600 500 600 600 1100 1100 1100 900 600	0,069 0,073 0,078 0,075 0,08 0,085 0,09 0,061 0,066 0,071 0,15 0,14	0,074 0,078 0,083 0,081 0,091 0,096 0,101 0,074 0,079 0,084 0,16 0,15	0,094 0,098 0,103 0,113 0,135 0,14 0,145 0,124 0,129 0,134 0,18 0,17	0,114 0,118 0,123 - 0,179 0,184 0,189 0,174 0,179 0,184 0,21 0,19	0,224 0,229 0,234	0,274 0,279 0,284
53	Воздушная прослойка (вертикальная) толщиной 50 мм		-	0,34	0,5	1,6	3,8	-	_

Примечания: 1. Коэффициент теплопроводности λ огнеупорных и теплоизоляционных материалов с естественной влажностью при средней температуре нагрева материала в сечении элемента до 100° С следует принимать по данным таблицы, увеличенным соответственно на 30 и 10%.

2. Коэффициент теплопроводности λ для промежуточных значений температур определяется по интерполяции.

площадях теплоотдающих внутренней $F_{\mathtt{B}}$ и наружной $F_{\mathtt{H}}$ поверхностей:

температура материала более нагретой поверхности

$$t_{6} = t_{\rm B} - \frac{Q}{\alpha_{\rm B} F_{\rm B}}; \tag{55}$$

температура материала между первым и вторым слоями

$$t_1 = t_B - Q \left(\frac{1}{\alpha_B F_B} + \frac{2R_1}{F_B + F_1} \right); \tag{56}$$

температура материала между вторым и третьим слоями

$$t_2 = t_B - Q\left(\frac{1}{\alpha_B F_B} + \frac{2R_1}{F_B + F_1} + \frac{2R_2}{F_1 + F_2}\right); \tag{57}$$

температура материала менее нагретой поверхности

$$t_{61} = t_{\rm B} - Q \left(\frac{1}{\alpha_{\rm B} F_{\rm B}} + \frac{2R_1}{F_{\rm B} + F_1} + \frac{2R_2}{F_1 + F_2} + \frac{2R_3}{F_2 + F_{\rm H}} \right). \tag{58}$$

Определение сопротивления теплопередачи конструкции производится по формуле

$$R_0 = \frac{1}{\alpha_B F_B} + \frac{2R_1}{F_B + F_1} + \frac{2R_2}{F_1 + F_2} + \frac{2R_3}{F_2 + F_B} + \frac{1}{\alpha_H F_B}, \quad (59)$$

где $F_{\rm B}$ и $F_{\rm H}$ — расчетные площади теплоотдающих внутренней и наружной поверхностей;

 F_1 и F_2 — расчетные площади конструкции на границе между первым и вторым слоями и между вторым и третьим слоями.

1.51. В ребристых конструкциях, когда наружная поверхность бетонных ребер и тепловой изоляции совпадает, расчет температуры в бетоне должен производиться по сечению ребра.

Если бетонные ребра выступают за наружную поверхность тепловой изоляции, расчет температуры в бетоне ребра должен производиться методами расчета температурных полей или по соответствующим нормативным документам.

При выступающей за тепловую изоляцию бетона части ребра h_p (рис. 4) допускается температуру бетона менее нагретой наружной поверхности ребра t_p определять по формуле

$$t_{\rm p} = (t_{\rm 1} - t_{\rm H}) \, \frac{1}{ch \, mh_{\rm p}} + t_{\rm H}, \tag{60}$$

где

$$m = \sqrt{\frac{2\alpha_{\rm H}}{\lambda_6 b}}; ag{61}$$

$$ch \, mh_{\rm p} = \frac{t_1 - t_{\rm H}}{t_{\rm p} - t_{\rm H}} = \frac{e^{mh_{\rm p}} + e^{-mh_{\rm p}}}{2} \; ; \tag{62}$$

 λ_6 — коэффициент теплопроводности бетона при средней температуре $t_{
m cp}=rac{t_1+t_{
m p}}{2}$.

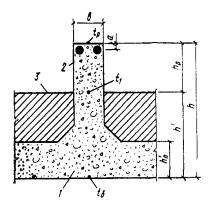


Рис. 4. Схема элемента с выступающим ребром

1 — жаростойкий бетон; 2 — стержневая арматура; 3 — теплоизоляция

Рис. 5. Значения отношения $\frac{t_1 - t_H}{t_P - t_H} = chmh_P$ в зависимости от параметра

Величина гиперболического косинуса $chmh_p$ определяется по рис. 5 в зависимости от параметра mh_p . Коэффициент m вычисляется по формуле (61) настоящего Руководства.

Температура бетона в ребре на уровне наружной поверхности

тепловой изоляции определяется по формуле

$$t_1 = \frac{0.8 \left(t_6 \frac{h_p}{h'} + t_p \right)}{1 + \frac{h_p}{h'}} \,. \tag{63}$$

Температура бетона более нагретой поверхности t_0 вычисляется по формуле (48) настоящего Руководства для сечения конструкции между ребрами.

Из совместного решения уравнений (60) и (63) настоящего Ру-

ководства находят температуру $t_{\rm p}$.

Температура арматуры, расположенной в ребре, определяется по формуле

$$t_{\rm a} = t_{\rm p} + \frac{a (t_{\rm 1} - t_{\rm p})}{h_{\rm p}}$$
 (64)

Расчет ребристой конструкции с выступающими за плоскость изоляции ребрами производится в следующей последовательности:

А. При неизвестной высоте ребра

1. Задаются высотой полки h_{π}^{\prime} .

2. Теплотехническим расчетом определяют толщину эффективной теплоизоляции, укладываемой между ребрами, из условия получения на ее наружной поверхности заданной температуры.

3. Определяют высоту ребра сечения из условия получения на

его наружной поверхности заданной температуры $t_{\rm p}$.

Для этого поступают следующим образом: а) задаются отношением $\frac{h_{\rm p}}{h'}$ и при известных $t_{\rm 0}$ и $t_{\rm p}$ по форму-

ле (63) находят температуру ребра t_1 ;

- б) значение коэффициента т вычисляют по формуле (61), в которой ан определяют согласно п. 1.48 настоящего Руководства в зависимости от температуры наружной поверхности ограждения $t_{
 m p}$; коэффициент теплопроводности бетона λ_6 принимают по табл. 9 настоящего Руководства в зависимости от средней температуры бетона:
- в) определяют значение отношения температур $\frac{t_1-t_{\rm H}}{t_{\rm p}-t_{\rm H}}$; r) по рис. 5 в зависимости от отношения $\frac{t_1-t_{\rm H}}{t_{\rm p}-t_{\rm H}}$ находят произведение $mh_{\rm p}$, из которого определяют высоту ребра $h_{\rm p}$ и отношение $\frac{n_{\mathbf{p}}}{h'}$.

Если при определении температуры t_1 заданное отношение $\frac{h_{\rm p}}{h'}$ отличается от вычисленного, производят перерасчет. При этом отношение $\frac{h_{\Pi}}{L}$ должно удовлетворять данным рис. 14.

- Б. При заданных размерах высоты ребра и высоты полки
- 1. Теплотехническим расчетом определяют толщину эффективной теплоизоляции, укладываемой между ребрами, из условия получения на ее наружной поверхности заданной температуры.

2. Задаются температурой наружной поверхности ребра $t_{\rm p}$.

3. При известных температурах t_6 и t_p по формуле (63) настоя-

щего Руководства находят температуру бетона ребра t_1 .

- 4. Вычисляют коэффициент т по формуле (61) настоящего Руководства, в которой принимают си согласно п. 1.48 настоящего Руководства в зависимости от температуры наружной поверхности ребра $t_{\rm p}$; коэффициент теплопроводности бетона $\lambda_{\rm b}$ принимают по табл. 9 настоящего Руководства в зависимости от средней температуры бетона.
- 5. Вычисляют величину произведения mh_{p} и по рис. 5 определяют гиперболический косинус $chmh_p$.

6. Из совместного решения уравнений (60) и (63) находят на-

ружную температуру бетона ребра t_p .

- В случае, если вычисленная температура $t_{
 m p}$ отличается от ранее принятой более чем на 10%, необходимо сделать перерасчет. Теплотехническим расчетом должны быть также определены температура арматуры по формуле (64) настоящего Руководства и температура на границе полки и теплоизоляции.
- 1.52. Температура бетона в сечениях конструкций от нагрева при эксплуатации должна определяться теплотехническим расчетом установившегося потока тепла при заданной по проекту расчетной температуре рабочего пространства или воздуха производственного помещения.

Для конструкций, находящихся на открытом воздухе, наиболь-

шие температуры бетона и арматуры определяются при абсолютной максимальной летней температуре наружного воздуха района строительства, принимаемой по графе 16 табл 1 главы СНиП II-А.6-72. Вычисленные температуры не должны превышать предельно допустимой температуры применения бетона по табл. 11 и арматуры по табл. 24 настоящего Руководства.

1.53. При расчете статически неопределимых конструкций, работающих в условиях воздействия температур выше 500° С, теплотехнический расчет должен производиться на расчетную температуру рабочего пространства и на температуру, вызывающую наибольшие усилия, определяемые согласно п. 1.23 настоящего Руководства.

При расчете наибольших усилий от воздействия температуры в конструкциях, находящихся на открытом воздухе, температура нагрева бетона вычисляется по расчетной зимней температура наружного воздуха, которая принимается как средняя температура наружного воздуха наиболее холодных суток района строительства, принимаемой по графе 19 табл. 1 главы СНиП II-A.6-72.

1.54. Расчет температур в конструкциях с включениями из различных теплоизоляционных материалов, а также более точный расчет ребристых конструкций из жаростойкого бетона следует производить согласно «Указаниям по тепловому расчету конструкций теп-

ловых агрегатов» $\left(\frac{\text{BCH } 314-73}{\text{MMCC CCCP}}\right)$.

2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

БЕТОН

2.1. Для бетонных и железобетонных конструкций, проектируемых в соответствии с требованиями настоящего Руководства, должны предусматриваться обычный и жаростойкий бетоны, составы которых приведены в табл. 11 настоящего Руководства.

Легкий жаростойкий бетон с объемным весом до 1400 кг/м³ следует предусматривать преимущественно для исиссущих ограждающих конструкций и в качестве теплоизоляционных материалов.

Легкий жаростойкий бетон с объемным весом более 1400 кг/м³

надлежит предусматривать для несущих конструкций.

2.2. Для конструкций, работающих в условиях воздействия повышенных и высоких температур, должна назначаться проектная марка бетона по прочности на осевое сжатие (кубиковая прочность).

За проектную марку бетона по прочности на сжатие «М» принимается сопротивление осевому сжатию \overline{R} , кгс/см², эталонного образца-куба из обычного бетона, испытанного согласно ГОСТ 10180—74, и из жаростойкого бетона, испытанного согласно требованиям ГОСТа на методику испытания жаростойкого бетона. Проектная марка по прочности на сжатие (сокращенно «проектная марка») является основной характеристикой бетона и должна указываться в проекте во всех случаях.

При наличии агрессивной среды должна устанавливаться проектная марка бетона по водонепроницаемости в соответствии с указаниями главы СНиП по защите строительных конструкций от корнозии

В случае необходимости следует назначать проектные марки

бетона по прочности на осевое растяжение, по морозостойкости и по водонепроницаемости согласно указаниям главы СНиП II-21-75.

2.3. Бетон для конструкций, работающих в условиях систематического воздействия повышенных и высоких температур, с іедует принимать следующих проектных марок по прочности на сжатие:

обычный бетон — (состав № 1 по табл. 11 настоящего Руководства) М 50, М 75, М 100, М 150, М 200, М 250, М 300, М 350, М 400, М 450, М 500 и М 600, при этом проектные марки М 250, М 350 и М 450 должны предусматриваться при условии, что это приводит к экономии цемента по сравнению с применением бетона проектных марок соответственно М 300, М 400, М 500 и не снижает другие технико-экономические показатели конструкций;

жаростойкий бетон составов (см табл. 11 настоящего Руко-

водства):

№ 2, 3, 6, 7, 13, 20 и 21 — особо тяжелый и тяжелый М 50, М 75, М 100, М 150, М 200, М 250, М 300, М 350, М 400, М 450 и М 500;

№ 9—12, 14—19 — облегченный М 25, М 35, М 50, М 100, М 150,

M 200, M 250, M 300, M 350 и M 400;

№ 4, 5, 8, 22—31 — легкий М 10, М 15, М 25, М 35, М 50, М 75, М 100, М 150 и М 200.

Проектная марка жаростойкого бетона по прочности на сжатие устанавливается согласно ГОСТ 20910—75 на классификацию бетонов.

2.4. Срок твердения (возраст) бетона, отвечающий его проектной марке по прочности на сжатие, принимается, как правило, 28 дней. В тех случаях, когда известны сроки фактического загружения и нагрева конструкции, способы их возведения, условия твердения бетона, сорт и вид применяемого цемента, допускается устанавливать проектную марку бетона в ином возрасте (большем или меньшем); при этом для монолитных массивных бетонных и железобетонных конструкций всегда должен учитываться реальный срок их загружения проектными нагрузками и нагревания до расчетной температуры.

Величина отпускной прочности бетона в элементах сборных конструкций устанавливается Государственными стандартами на сбор-

ные изделия.

2.5. Для железобетонных конструкций из обычного бетона, работающих в условиях воздействия повышенных температур, проектную марку бетона по прочности на сжатие рекомендуется принимать:

для железобетонных элементов из тяжелого бетона, рассчитываемых на воздействие многократно-повторяющейся нагрузки— не ниже M 200:

для железобетонных сжатых стержневых элементов из тяжелого бетона — не ниже М 200;

то же, для сильнонагруженных сжатых стержневых элементов (например, для колонн, воспринимающих значительные крановые нагрузки, и для колонн нижних этажей многоэтажных зданий)— не ниже М 300.

Для железобетонных конструкций не допускается применение тяжелого бетона проектной марки ниже М 100.

Для железобетонных конструкций из тяжелого и облегченного жаростойкого бетона, работающих в условиях воздействия высоких температур, рекомендуется принимать проектную марку бетона:

		Виды ис	ходных материалов		Предель	но допу-			
М состава бетона	вяжуще- го	отвердителя	тонкомолотой добавки	заполнителей	стимая тура при бетона, о струкц неравния нагреве и сечения щих наг сжатия от собс	темпера- именения С, в кон- иях при омерном	Максимальная проектная мар- ка бетона по прочности на сжатие	Объемный вес бетона естественной влажности, кг/м³	Дополнительные указания
1	2	3	4	5	6	7	8	9	10
1	Порт- ланд- (шлако- порт- ланд) цемент	т- Не применяется 		Гранитовые, доломитовые, плотные известняковые сиенитовые, плотные пески	200	200	M 600	2500	В фундаментах, находящихся в условиях постоянного нагрева, обычный бетон допускается применять при воздействии температур до 300° С

Жаростойкий бетон

;	2	То же	Не пр	именяется	Андезито- вые, базальто- вые, диабазо- вые, диорито- вые	350	350	M 500	2500	Рекомендуется применять при воздействии темпе- ратур выше 200° С
	3	>	Т	о же	Из доменных отвальных шлаков	350	350	M 400	24 00	
	4	>		»	Туфовые, из боя глиняного обыкновенного кирпича	350	350	M 200	1800	_
	5	Порт- ланд- цемент	То же	Из золы-уноса, из боя обыкновенного глиняного кирпича, из гранулированного доменного шлака, из вулканического пепла	Туфовые	700	700	M 200	1800	
45	6	Порт- ланд- цемент	Не применя- ется	Из золы-уноса, из боя обыкновенного глиняного кирпича, из гранулированного доменного шлака, из вулканического пепла	Андезито- вые, базальто- вые, диабазо- вые, диорито- вые	700	700	M 500	2400	

-		Виды ис	сходных материалов		Предель	HO HOTTV-	Ι.			
М состава бетона	вяжуще- го	отвердителя	тонкомолотой добавки	заполнителей	стимая т тура при бетона, о струкци неравно	темпера- менения С, в кон- имерном мерном имею- ряжения в бетоне	Максимальная проектная мар- ка бетона по прочности на сжатие	Объемный вес бетона естест- венной влажности, кг/м³	Дополнительные у казан ия	
1	2	3	4	5	6	7	8	9	10	
7	Порт- ланд- цемент	Не приме- няется	Из золы-уноса, из боя обыкновенного глиняного кирпича, из гранулированного доменного шлака, из вулканического пепла	Из доменных отвальных шла- ков	700	700	M 400	2400	_	
8	То же	То же	Из топливного (котельного) шла- ка	Из шлаков топливных (ко- тельных)	800	700	M 200	1800	_	
9	»	»	Из боя обыкно- венного глиняно- го кирпича	Из боя обык- новенного гли- няного кирпича	900	800	M 200	1900	_	
10	»	»	Из золы-уноса	Шамотные	1000—	900	M 450	2000	-	
				кусковые и из боя изделий	1100					
11	»	*	Шамотные	То же	1100— 1200	1000	M 450	2000	-	
12	Жидкое стекло	Кремнефто- ристый натрий	»	Из боя гли- няного обыкно- венного кирпи- ча	600	600	M 250	1900	Воздействие кислой агрессивной среды, пара и воды не допускается	
13	То же	То же	»	Андезито- вые, базальто- вые, диабазо- вые	600	600	M 250	2500	Кислотостоек (кроме фтористо- го водорода); не допускается воз- действие пара и воды	
14	Жидкое стекло	Кремнефто- ристый натрий	Шамотные, по- лукислые огне- упорные	Полукислые кусковые и из боя изделий	900	800	M 250	2100	Кислотостоек (кроме фтористого водорода). При применении для сооружений, в которых наряду с воздействием тем-	

Ų0			Runta M	сходных материалов				1 -0 1		<u> </u>
	№ состава бетона	вяжущего	отвердителя	тонкомолотой добавкн	заполнителей	Пределы стимая тура при бетона, об струкци неравно нагреве п сечения щих нап сжатия гот собствеса и в до 1 кгс/см²	темпера- менения С. в кон- мях при мерном ю высоте имею- ряжения в бетоне	Максимальная проектная марка бетока по прочности на сжатие	Объемный вес бетона естественной влажности, кг/м³	Дополнительные указания
		2	3	4	5	6	7	8	9	10
	15	Жидкое стекло	Кремнефто- ристый натрий	Шамотные	Шамотные кусковые и из боя изделий	1000	900	M 250	2100	ператур возможно периодическое воздействие пара и воды, элементы необходимо предварительно нагревать до 800° С
	16	То же	То же	Магнезитовые (периклазовые)	То же	1300	1100	M 200	2100	Стоек к расплавам солей натрия и плаву содорегенерационных агрегатов. Не допускается воздействие пара и воды
4-374	17	>	Нефелино- вый шлам или феррохромо- вый шлак	Шамотные	*	1100	1000	M 200	2100	Стоек в услови- ях воздействия сернистого газа. Не кислотостоек
	18	>>	Нефелино- вый шлам или марганцовис- тый шлак	Магнезитовые (периклазовые)	»	1300	1100	M 200	2200	Не кислотостоек
	19	Глино- земистый цемент	Не применя- ется	Не применяется	>	1300	1100	M 400	2100	В элементах тол-
	20	То же	То же	То же	Хромитовые	1400	1200	M 400	3000	мм при твердении бетона необходи- мо отводить тепло,
	21	>	*	»	Мулито- кремнеземи- стые кусковые и из боя изде- лий	1400	1200	M 450	2800	чтобы температура в первые сутки не превышала 40° С
49	22	Порт- ландце- мент	Не применя- ется	Шамотные	Вспученный перлит с на- сыпным объем- ным весом 200—400 кг/м ³	Талин- ском		M 50	950	_

5 <u> </u>									обоблжение Тибл. 11
М состава бетона	вяжущего	Вид ы ис	ходных материалов тонкомслотой добаеки	зап олнителей	стимая тура пр бетона, о струкц неравн нагреве и сечения щих наи сжатия от собс	но допу- темпера- именения С, в кон- иях при омерном по высоте и, имею- пряжения в бетоне твенного нагрузки	Максимальная проектная марка бетона по прочности на сжагие	Объемный вес бетона естественной влажности, кг/м3	Дополнительные Указання
1	2	3	4	5	6	7	8	9	10
23	Порт- ландце- мент	Не применя- ется	Шамотные, из боя обыкновенного глиняного кирпича, керамзитовые	Керамзито- вые с насып- ным объемным весом 550—650 кг/м ³	1000	800	M 200	1650	
24	То же	То же	То же	Керамзито- вые с насып- ным объемным весом 450—550 кг/м ³	1000	800	M 150	1400	
<u></u> 25	>	»	Шамотные, из	Керамзито-	1000		M 50	900	
44			боя обыкновенно- го глиняного кир- пича, из золы- уноса, керамзи- товые	ным объемным весом 350—450					
26	*	*	То же	Мелкий — вспученный вермикулит с насыпным объемным весом не более 150 кг/м³; крупный — керамзитовые с насыпным объемным весом 350—450 кг/м³	1000	_	M 35	1000	
27	Жидкое стекло	Кремнефто- ристый натрий	Шамотные	Керамзито- вые с насып- ным объемным весом 400—550 кг/м ³	800	700	M 150	1350	
28	То же	То же	»	Керамзито- вые с насып- ным объемным весом 350—450 кг/м ³	800		M 50	900	

3 <u> </u>							- 1		ооолжение табл. 11
№ состава бетона	вяжущего		ходных материалов тонкомолотой добанки	заполнителей	пустима ратура ния бет в конст при нер ном назысоте имеющи жения в бетоне ствение	темпе- примене- гома, °С, грукциях вавномер- греве по сечения, к напря- сжатия от соб- го веса грузки более 1 кгс/см²	Максимальная проектная марка бетона по прочности на сжатие	Объемный вес бетона естест- венной влажности, кг/м³	Дополнительные указания
1	2	3	4	5	6	7	8	9	10
29	Жидкое стекло	Кремне- фтористый натрий	Шамотные	Керамзито- вые с насып- ным объемным весом 500—650 кг/м ³	900	700	M 200	1650	_
30	То же	Нефелино- вый шлам или феррохромо- вый шлак	Шамотные	Керамзито- вые с насып- ным объемным весом 350—450 кг√м³	1100		M 50	900	_
31	Глинозе- мистый цемент	Не применя- ется	Не применяется	Вспученный перлит с на- сыпным объем- ным весом 400 кг/м ³	1000		M 35	950	

Примечания: 1. Для конструкций, в которых усилия возникают только от воздействия температуры, предельно допустимая температура применения бетона должна приниматься по графе 6.
2. Для составов бетона № 5, 6, 7, 8 и 9 портландцемент может быть заменен шлакопортландцементом согласно требованиям Инструкции по технологии приготовления жаростойких бетонов.

для сборных несущих элементов — не ниже М 200;

для монолитных конструкций при постоянном нагреве (см. п. 1.11 настоящего Руководства):

до 500° С — не ниже М 150; выше 500° С — не ниже М 200;

при ударных и истирающих воздействиях, а также при циклическом нагреве:

до 500° С — не ниже M 200; выше 500° С — не ниже M 250.

Для предварительно-напряженных железобетонных конструкций из обычного и жаростойкого бетонов, работающих в условиях воздействия повышенных и высоких температур, проектная марка бетона по прочности на сжатие должна приниматься в зависимости от вида и класса напрягаемой арматуры, ее диаметра и наличия анкерных устройств согласно п. 2.6 и табл. 7 главы СНиП II-21-75.

2.6. При неравномерном нагреве бетона по высоте сечения элементов конструкций, в которых напряжения сжатия в бетоне от собственного веса и нагрузки составляют до 1 кгс/см², а также элементов конструкций, в которых усилия возникают только от воздействия температуры, предельно допустимая температура применения бетона устанавливается по графе 6 табл. 11 настоящего Руководства.

При неравномерном нагреве по высоте сечения элементов конструкций, в которых напряжения сжатия в бетоне от собственного веса и нагрузки составляют более 1 кгс/см², предельно допустимая температура применения бетона устанавливается по графе 7 табл. 11 настоящего Руководства.

При воздействии температур, превышающих указанные в графе 7 табл. 11 настоящего Руководства, надлежит предусматривать устройство защитных слоев (футеровок).

2.7. Для замоноличивания стыков элементов сборных железобетонных конструкций проектную марку бетона следует устанавливать в зависимости от условий работы соединяемых элементов, но принимать не ниже M 100.

2.8. Для замоноличнвания стыков элементов сборных конструкций, которые в процессе эксплуатации или монтажа могут подвергаться воздействию отрицательных температур наружного воздуха, следует применять бетон проектных марок по морозостойкости и водонепроницаемости не ниже принятых для стыкуемых элементов.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА

2.9. Нормативными сопротивлениями бетона являются: сопротивление осевому сжатию кубов (кубиковая прочность)

сопротивление осевому сжатию призм (призменная прочность) $R_{\rm nn}^{\rm H}$; сопротивление осевому растяжению $R_{\rm n}^{\rm H}$.

Нормативная кубиковая прочность бетона принимается равной

$$R^{\mathbf{H}} = \overline{R} (1 - 1, 64v), \tag{65}$$

где \vec{R} — кубиковая прочность, отвечающая проектной марке бетона по прочности на осевое сжатие M;

т — коэффициент вариации прочности бетона, принимаемый согласно табл. 12 настоящего Руководства.

 R^{H} :

	проч-	1	Қоэффициенты (при сжатии и р	безопасности по астяжении ^к б.с	бетону ^{и <i>k</i>} б.р
	вариации пр		конструкции постояниям перво		Расчет
Бетон	Bapi		k ₍	конструкций по предель-	
	Коэффициент в ности бетона v	^k б.с	при назна- чении проект- ной марки бетона по прочности на сжатие	при назначении проектной марки бетона по прочности на осевое растяжение	ным состоя- ниям второй группы ^k б.с ^{н k} б.р
Обычный тя- желый и жаро- стойкий тяже- лый, облегчен- ный и легкий	0,135	1,3	1,5	1,3	1

Нормативная призменная прочность бетона для тяжелого обычного бетона, тяжелого, облегченного и легкого жаростойкого бетона принята равной

$$R_{\rm np}^{\rm H} = R^{\rm H} (0.77 - 0.0001 \bar{R}),$$
 (66)

но не менее $0.72R^{H}$.

Нормативные сопротивления бетона $R_{\rm np}^{\rm H}$ (с округлением) в зависимости от проектной марки бетона по прочности на сжатие даны в табл. 13 настоящего Руководства.

2.10. Расчетные сопротивления бетона для предельных состояний первой и второй группы определяются делением нормативных сопротивлений на соответствующие коэффициенты безопасности по бетону при сжатии $k_{6,c}$ или при растяжении $k_{6,p}$, принимаемые для основных видов бетона по табл. 12 настоящего Руководства.

Расчетные сопротивления бетона для предельных состояний первой группы $R_{\rm пp}$ и $R_{\rm p}$ снижаются (или повышаются) умножением на коэффициенты условий работы бетона $m_{\rm f}$, учитывающие особенности свойств бетонов, длительность действия нагрузки и ее многократную повторяемость, условия и стадию работы конструкции, способ ее изготовления, размеры сечений и т. п.

Расчетные сопротивления бетона для предельных состояний второй группы $R_{\rm при}$ и $R_{\rm pu}$ вводят в расчет с коэффициентом условий работы бетона $m_6 = 1$, за исключением случаев, указанных в пп. 4.7 и 4.9 настоящего Руководства.

При расчете элементов конструкций на воздействие температуры расчетные сопротивления бетона $R_{\rm np}$ и $R_{\rm np11}$ необходимо дополнительно умножить на коэффициент условий работы бетона при сжатии $m_{\rm 51}$, а расчетные сопротивления бетона $R_{\rm p}$ и $R_{\rm p11}$ — на коэффи-

Вид сопро-	по табл. 11	состоя	Норма	тивные рой гр	е сопро	THBREH R _{ID II}	ия R _{пр} и R _{р II}	н R _p , , кгс/с	расчет м ^в , прі	и проек	опротив Стной м	ления (арке б	бетона д етона по	едп вид	цельных сти на с	жатие
кивэквит	настоящего Руководства	M 10	M 15	M 25	M 35	M 50	M 75	M 100	M 150	M 200	M 250	M 300	M 350	M 400	M 450	M 500
Сжатие осе- вое (приз- менная проч-	1—3, 6, 7, 13, 20, 21				_	30	45	60	85	115	145	170	200	225	255	280
ность) R _{пр} и R _{пр II}		7	10	15	21	30	45	60	85	115	145	170	200	225		
Растяжение	1—3, 6, 7, 13, 20, 21	_	_	_		4,2	5,8	7,2	9,5	11,5	13	15	16,5	18	19	20
осевое R _p и R _{p II}	4, 5, 8—12, 14—19, 22—31	1	1,4	2,3	3,1	4,2	5,8	7,2	9,5	11	12	13	14	14,5	_	

Примечания: 1. Нормативные и расчетные сопротивления растяжению для всех видов бетона на глино-земистом цементе снижаются на 30% против значений, приведенных в настоящей таблице. 2. При температуре нагрева выше 50°С величины $R_{\pi p 11}$ и $R_{p 11}$, приведенные в настоящей таблице, вводятся в расчет с коэффициентами условий работы m_{62} , m_{62} , m_{62} , m_{61} и m_{p1} согласно табл. 15 настоящего Руководства.

Вид сопро-	Номера со- ставов бетона по табл. 11 настоящего Руководства		Расч	етные	сопроті кгс/	ивления см², пр	бетон и проен	а для і тной м	предели арке б	ьных со етона і	остояни ю проч	й перв ности н	ой групі на сжаті	ты R _{пр} и ие	R _p ,	
тивления		M 10	M 15	M 25	M 35	M 50	M 75	M 100	M 150	M 200	M 250	M 300	M 350	M 400	M 450	M 500
осевое (приз-						23	35	45	70	90	110	135	155	175	195	215
менная проч- ность) R _{пр}		5	8	12	16	23	35	45	70	90	110	135	155	175	_	
Растяжение	1—3, 6, 7, 13, 20, 21		_	-	_	2,8	3,8	4,8	6,3	7,5	8,8	10	11	12	12,8	13,5
oceвoe R _n	4, 6, 8—12, 14—19, 22—31	0,8	1,1	1,5	2,1	2,8	3,8	4,8	6,3	7,3	8	8,7	9,3	9,8		_

 Π р и м є ч а н и я: 1. Величины $R_{\rm np}$ и $R_{\rm p}$, приведенные в настоящей таблице, в необходимых случаях должны умножаться на коэффициенты условий работы бетона m_6 согласно табл. 15 настоящего Руководства.

2. Расчетные сопротивления растяжению для всех видов бетона на глиноземистом цементе снижаются на 30% против значений, приведенных в табл. 14.

	услови	оициенты й работы стона
Факторы, обусловливающие введение коэффициентов условий работы	условное обозначе- ние	значение коэффи- циента
1. Длительность действия нагрузки: а) при учете постоянных, длительных и кратковременных нагрузок, кроме нагрузок, суммарная длительность действия которых мала (например, крановые нагрузки; нагрузки от транспортных средств; ветровые нагрузки; нагрузки, возникающие при изготовлении, транспортировании, возведении и т. п.), а также при учете особых нагрузок, вызванных деформациями просадочных, набухающих и вечномерэлых и т. п. грунтов: для обычного тяжелого бетона и жаростойкого тяжелого, облегченного и легкого бетона, естественного твердения и подвергнутых тепловой обработке, если конструкция эксплуатируется в условиях воздействия повышенных и высоких температур при расчете на длительный нагрев; б) при учете постоянных длительных и кратковременных нагрузок при расчете на кратковременных нагрузок при расчете на кратковременный нагрев в) при учете кратковременных нагрузок, суммарная длительность действия которых мала, или особых нагрузок*, не указанных в поз. 1 «а», для всех видов бетонов	m ₆₁	0,85 1
 Многократно повторяющаяся нагрузка: при нормальной температуре при нагреве выше 40° С 	m ₆₂	См. табл. 22 См. табл. 23
3. Бетонные конструкции	m ₆₅	0,9
4. Бетонирование обычных тяжелых и жаро- стойких тяжелых, облегченных и легких бетонов в вертикальном положении при высоте слоя бето- нирования более 1,5 м	m ₆₇	0,85
5. Бетонирование монолитных бетонных стол- бов и железобетонных колонн с наибольшим раз- мером сечения менее 30 см	<i>m</i> 68	0,85

	Коэфо услови бе	рициент ы й работы тона
Факторы, обусловливающие введение коэффициентов условий работы	условное обозначе- ние	значение коэффи- циента
6. Стыки сборных элементов при толщине шва менее ¹ / ₅ наименьшего размера сечения элемента и менее 10 см	m ₆₉	1,15
7. Воздействие температуры: при сжатии	m _{6 t}	См.
при растяжении	$m_{\rm p}$	табл. 16 См. табл. 16

^{*} Если при учете особых нагрузок вводится дополнительный коэффициент условий работы, согласно соответствующим нормативным документам (например, при учете сейсмических нагрузок), коэффициент m_{61} принимается равным единице.

Примечания: 1. Коэффициенты условий работы бетона по поз. 1, 2, 3 и 7 должны учитываться при определении расчетных сопротивлений бетона $R_{\pi p}$ и R_{p} , а по остальным позициям — только при определении $R_{\pi p}$.

2. Для конструкций, находящихся под действием многократно повторяющейся нагрузки, коэффициент m_{51} учитывается при расчете по прочности, а m_{62} — при расчете на выносливость и по образованию трещин.

циент условий работы бетона при растяжении $m_{\rm pf}$, учитывающие ве-

личину температуры и длительность ее действия.

Величины расчетных сопротивлений основных видов бетонов (с округлением) в зависимости от их проектных марок по прочности на сжатие и на растяжение приведены: для предельных состояний первой группы — соответственно в табл. 14 и для предельных состояний второй группы — в табл. 13 настоящего Руководства.

Расчетные сопротивления бетона для предельных состояний первой группы, приведенные в табл. 13 и 14 настоящего Руководства, в соответствующих случаях следует умножать на коэффициенты условий работы бетона согласно табл. 15 настоящего Руководства.

2.11. Начальный модуль упругости бетона при сжатии и растя-

жении E_6 принимается по табл. 17 настоящего Руководства.

Коэффициент Вь, учитывающий снижение модуля упругости обычного и жаростойкого бетона при нагреве, следует принимать по табл. 16 настоящего Руководства в зависимости от температуры бетона.

2.12. Начальный коэффициент поперечной деформации бетона (коэффициент Пуассона) и принимается равным 0,2, а модуль сдви-

Номера составов бетона по табл. 11	Обозначе-		Қоэффициенты условий работы бетона при сжатии $m_{\tilde{0}t}$ и при растяжении m_{pt} , коэффициент $\beta_{\tilde{0}}$ при температуре бетона, °C									
настоящего Руководства	ние коэф- фициента	Расчет на нагрев	50	70	100	200	300	500	700	900	1000	1100
	m _{6 t}	Кратковремен-	1	0,85	0,9	0,8	0,65	-			_	_
		ный Длительный	1	0,85	0,9	0,8	0,5	-	—	-		-
1, 2	$m_{\mathrm{p}\ t}$	Кратковремен-	1	0,7	0,7	0,6	0,4	_	-	-	_	
		ный Длительный	1	0,7	0,7	0,5	0,2			-	_	_
	β_{δ}	Кратковремен- ный и длительный	1	0,9	0,8	0,6	0,4		-			_
	m _{6 t}	Кратковремен-	1	1	1	0,9	0,8	-	_	_		-
		ный Длительный	1	1	1	0,9	0,65	_	_	-	-	
3,4	$m_{\mathrm{p}} t$	Кратковремен- ный	1	0,8	0,75	0,65	0,5	_		_	_	
0,1		ныи Длительный	1	0,8	0,75	0,6	0,35	_	_	_	_	
	β ₆	Кратковремен- ный и длительный	1	1	0,9	0,8	0,6	_	_		_	-
	m _{6 t}	Кратковремен-	1	1 1	1	1,1	1	0,9	0,6	0,3	0,2	0,1
				1		<u> </u>	ļ					
		ный Длительный	1	1	1	1	0,7	0,4	0,2	0,06	0,01	_
5-11, 22-26	$m_{\mathrm{p}\ t}$	Кратковремен-	1	0,85	0,8	0,65	0,6	0,5	0,4	0,2	_	
0 -11, 22 -20		ный Длительный	1	0,85	0,8	0,65	0,4	0,2	0,06		_	_
	βв	Кратковремен- ный и длительный	1	1	1	0,9	0,75	0,5	0,32	0,22	0,18	0,15
	m _{6 t}	Кратковремен- ный	1	1	1,1	1,2	1,2	1	0,75	0,4	0,2	_
		длительный Д лительный	1	0,8	0,8	0,55	0,35	0,15	0,05	0,01	_	
12—15, 17,	$m_{p t}$	Кратковремен-	1	0,95	0,95	0,8	0,7	0,55	0,45	0,15		-
27—30		ный Длительный	1	0,7	0,7	0,45	0,25	0,06				_
	β6	Кратковремен- ный и длительный	1	1,1	1,1	1,1	1	0,7	0,3	0,1	0,05	-
16, 18	m _{6 t}	Кратковремен-	1	1	1	1	1	0,95	0,85	0,65	0,5	0,35
		ный Длительный	1	0,9	0,9	0,8	0,5	0,25	0,07	0,02	0,01	_

Номера составов бетона по табл. 11	Обозна- чение		Коэффициенты условий работы бетона при сжатии m_{6t} и при растяжении $m_{\mathrm{p}t}$, коэффициент β_6 при температуре бетона, °C										
настоящего Руководства	коэффи- циента	Расчет на нагрев	50	70	100	200	300	500	700	900	1000	1100	
16, 18,	$m_{\mathrm{p}t}$	Кратковремел- ный Длительный	1 1	0,95	0,95	0,8	0,7	0,55	0,45	0,35			
β _δ	Кратковремен- ный и длительный	1	1,1	1,1	1,1	1,1	1	0,7	0,35	0,27	0,2		
	m _{6 t}	Кратковремен- ный Длительный	I 1	0,9	0,8	0,7	0,55	0,45 0,25	0,35	0,3	0,25	0,2	
19, 20; 21, 31	$m_{\mathrm{p}\ t}$	Кратковремен- ный Длительный	1	0,65 0,65	0,55 0,55	0,5 0,5	0,45	0,35 0,12	0,25 0,02	0,1	_	_	
	β6	Кратковремен- ный и длительный	1	0,9	0,85	0,7	0,55	0,4	0,33	0,3	0,27	0,2	

```
Примечания: 1. Значения коэффициента m_{61} принимаются при расчете по формулам: (69), (94), (98)—(100), (102), (104), (107)—(111), (129)— (133), (135)—(137), (139), (140), (154)—(156), (165), (166), (172), (173), (267) — по средней температуре бетона сжатой зоны; (76), (134) — по средней температуре бетона участков сжатой зоны; (113)—(120), (146)—(153), (178) — по средней температуре бетона сжатой зоны ребра и свесов полки; (141), (143), (179) — по температуре бетона в центре тяжести сечения; (90) — по температуре бетона в месте расположения сеток; (218) — по температуре бетона в месте расположения закладной детали; (226) — по температуре бетона в месте расположения анкерных пластинок; (288) — по температуре бетона в месте расположения арматуры; 2. Значения коэффициента m_{p1} принимаются при расчете по формулам: (182), (183), (185), (186), (188)—(191), (194) — по средней температуре бетона сжатой зоны; (180), (195) — по температуре бетона в центре тяжести сечения; (248) — по температуре бетона в центре тяжести приведенного сечения; (947), (947), (949), (984), (986), по температуре бетона в центре тяжести приведенного сечения;
```

(237), (247), (273), (284) — (286) — по температуре бетона на уровне центра тяжести растянутой арматуры;

(337) — по температуре бетона у нижней полки металлической балки; (82), (83), (91) — по средней температуре бетона растянутой зоны при нагреве сжатой зоны или по температуре бетона растянутой грани при нагреве растянутой зоны;

(208), (209) — по средней температуре бетона на проверяемом участке;

(222)—(224) — по температуре бетона в середине длины анкера, ограниченного поверхностью выкалывания;

(275) — по наибольшей температуре бетона в месте расположения анкеров или края элемента.

3. При расчете на длительный нагрев несущих конструкций, срок службы которых не превышает 5 лет, коэффициент m_{5t} следует увеличить на 15%, но он не должен превышать величины m_{5t} при расчете на кратковременный нагрев.

4. Для конструкций, которые во время эксплуатации подвергаются циклическому нагреву, коэффициенты m_{61} и

 β_6 следует снизить на 15%, а коэффициент m_{pt} — на 20%.

5. Коэффициенты то, то в б для промежуточных значений температур определяются по интерполяции.

6. Коэффициенты *m*_{6t}, *m*_{pt} и β₆ для бетонов составов № 1—4 при их нагреве выше 300° С определяются экстраполяцией.

7. Среднюю температуру бетона сжатой зоны прямоугольных сечений при $\xi < \xi_R$ допускается принимать по температуре бетона, расположенного на расстоянии $0.2\ h_0$ от сжатой грани сечения; при $x = \xi_R h_0$, $x = 0.55\ h_0$ и x = h— на расстоянии $0.5\ x$ от сжатой грани сечения.

Номера составов бетона		Начальные модули упругости бетона при сжатии и растяжении $E_6 \cdot 10^{-3}$, кгс/см², при проектной марке бетона по прочности на сжатие												
по табл. 11 настоящего Руководства	M 25	M 35	M 50	M 75	M 100	M 150	M 200	M 250	M 300	M 350	M 400	M 450	M 500	M 600
1—3, 6, 7, 13, 20, 21 естественного твердения	_	_			170	210	240	265	290	310	330	345	360	380
Подвергнутого тепловой обработке при атмосферном давлении				<u> </u>	155	190	215	240	260	280	300	310	325	340
25, 28, 30	30	35	40	50	_	-	<u> </u>	_	<u> </u>	_		_		<u> </u>
22, 26, 31	40	45	50	60	65	_		_	_	_				
24, 27	_	_	75	85	95	105	115	125	135		_	_	<u> </u>	
4, 5, 8—12, 23, 29	_		_	110	120	135	150	165	175	185	190	-	_	
1419	_				_	170	185	200	215	225	235	_	_	

га G — равным 0,4 соответствующего значения модуля упругости бетона для всех видов бетона и температур нагрева.

2.13. Коэффициент упругости v, характеризующий упруго-пластическое состояние сжатого бетона, при определении приведенного сечения бетона, а также при расчете сводов и куполов из жаростойкого бетона принимается по табл. 18 настоящего Руководства в зависимости от величины температуры и длительности ее действия.

Коэффициент упругости v, характеризующий упруго-пластическое состояние бетона сжатой зоны, при расчете деформаций и закладных деталей принимается по табл. 19 настоящего Руководства в зависимости от величины температуры и длительности ее действия.

2.14. Коэффициент линейной температурной деформации бетона α_{6t} в зависимости от температуры бетона должен приниматься по табл. 20 настоящего Руководства. Величина коэффициента α_{6t} определена с учетом температурной усадки бетона при кратковременном и длительном нагревах бетона. При необходимости определения температурного расширения бетона при повторном воздействии температуры после кратковременного или длительного нагрева к коэффициент линейной температурной деформации α_{6t} следует прибавить коэффициент температурной усадки бетона α_{9t} соответственно для кратковременного или длительного нагрева.

Коэффициент температурной усадки бетона α, принимается по

табл. 21 настоящего Руководства.

Коэффициент температурной усадки бетона принят:

при кратковременном нагреве — для подъема температуры более 10° C в 1 ч;

при длительном нагреве — для подъема температуры менее 0,5°C в 1 ч;

при первом нагреве и подъеме температуры от 0,5 до 10° С в 1 ч — значения коэффициента α_y принимаются по интерполяции.

В табл. 20 и 21 настоящего Руководства влажность воздуха окружающей среды определяется как средняя относительная влажность наружного воздуха наиболее жаркого месяца в зависимости от района строительства, согласно главы СНиП II-А.6-72, или как относительная влажность внутреннего воздуха помещений отапливаемых и нагреваемых зданий и сооружений.

2.15. Объемный вес бетона естественной влажности принимается по табл. 11 настоящего Руководства. Объемный вес бетона в сухом состоянии при его нагреве выше 100° С уменьшают на 150 кг/м³.

Объемный вес железобетона (при µ≤3%) принимается на 100 кг/м³ больше объемного веса соответствующего состояния бетона.

2.16. При расчете железобетонных конструкций на выносливость, а также по образованию трещин при многократно повторяющейся нагрузке в условиях воздействия температур выше 50° С расчетные сопротивления обычного бетона должны умножаться на коэффициенты условий работы бетона m_{52} и m_{621} , принимаемые соответственно по табл. 22 и 23 настоящего Руководства.

При применении жаростойкого бетона в железобетонных конструкциях, подвергающихся воздействию высоких температур и многократно повторяющейся нагрузки, расчетные сопротивления бетона должны быть специально обоснованы.

Номера соста- вов бетона по табл. 11	Расчет на нагрев	Коэффициент упругости v обычного и жаростойкого бетонов при температуре бетона, °C									
настоящего Р ук оводства	-	50	70	100	200	300	500	700	900	1000	
1—4	Кратковременный Длительный	0,85 0,25	0,65 0,25	0,7 0,25	0,7 0,25	0,65 0,2	_	_ _	_	_	
5—11, 23,	Қратковременный Длительный	0,85 0,24	0,8 0,24	0,8 0,24	0,75 0,22	0,7 0,21	0,53 0,07	0,32 0,03	0,15 0,01	0,05	
12—18, 27,	Қратковременный Длительный	0,8	0,8	0,7 0,2	0,65 0,2	0,5 0,06	0,35 0,015	0,3	0,1		
19—21	Қратковременный Длительный	0,85	0,8 0,3	0,75 0,27	0,6 0,25	0,55 0,23	0,45 0,03	0,35 0,02	0,2	0,15	

Примечания: 1. При расчете на длительный нагрев при температуре бетона выше 50 до 200° С и средней относительной влажности воздуха до 40% коэффициент ν принимается 0,2.

^{2.} Коэффициент v для промежуточных значений температур определяется по интерполяции, а для бетонов составов № 1—4 при температурах выше 300°С — по экстраполяции.

Номера составов бетона				К оэффицие	нт ν при те	мпературе б	етона, °С		
по табл. 11 настоящего Руководства	Расчет на нагрев	50	70	100	200	300	500	700	900
1—4	Кратковременный Длительный	0,45 0,15	0,4 0,15	0,45 0,15	0,45 0,15	0,35 0,1	_	_	_
5—11, 23, 24	Кратковременный Длительный	0,45 0,15	0, 4 3 0,15	0,43 0,15	0,4 0,1	0,37 0,09	0,28 0,07	0,2 0,05	0,10,02
12—18, 27,	Кратковременный Длительный	0, 4 5 0,13	0,43 0,13	0,38 0,13	0,35 0,1	0,28 0,03	0,2 0,02	0,17	0,07
19—21	Кратковременный Длительный	0,45 0,15	0,43 0,15	0,4 0,13	0,33 0,13	0,3 0,1	0,25 0,03	0,2 0,03	0,15

Примечания: 1. При расчете на длительный нагрев при температуре бетона выше 50 до 200° С и средней относительной влажности воздуха до 40% коэффициент v принимается 0,1.
2. Коэффициент v для промежуточных значений температур определяется по интерполяции, а для бетона составов № 1—4 при температуре выше 300° С — по экстраполяции

Номера соста-		Коэф	Коэффициент линейной температурной деформации бетона $\alpha_{6.t} \cdot 10^{-6}$, град—1 при температуре бетона, °C										
вов бетона по табл. 11	Расчет на нагрев	50											
настоящего Руководства		влажность воздуха до 40%	влаж ность воздуха более 40%	100	200	300	500	700	900	1100			
1	Кратковременный Длительный	10 2	10 6	10 7,5	9,5 8	9 7,8	_	_		=			
2,6	Кратковременный Длительный	9	9 5	9 6	8 6,5	7 5,8	6	6	<u> </u>	_			
3,7	Кратковременный Длительный	8,5 0,5	8,5 4,5	8,5 5,5	7,5 6	7 5,8	5,5 —	4,5 —	4	3			
8	Кратковременный Длительный	9 7	9 7	9 7	8 6,5	7 5,5	6 4,5	6 4,6	_	_			
4, 5, 9—11, 23, 24	Кратковременный Длительный	8,5 6,5	8,5 6,5	8,5 6,5	7,5 6	7 5,5	5,5 4	4,5 3,1	4 1,7	$\begin{vmatrix} 3 \\ -0,2 \end{vmatrix}$			
12—18, 27,	Кратковременн ый Длительный	5 -7,5	5 —4,5	5 0	5,5 3	6 4,3	7 6	6,5 5,8	6 5,4	5 4,4			
19—21	Кратковременный Длительный	8 _1	8 3 омежуточн	8 4,5	7 5,2 ний темпеі	6,5 5,2	5,5	4,5 3,6	4 3,1 интерпо	3,5 2,6			

Примечания: 1. Коэффициент α₆₁ для промежуточных значений температур определяется по интерполяции, а для бетона составов № 1—4 при температуре выше 300° С— по экстраполяции.
2. Для бетонов состава № 1 с карбонатным щебнем (доломит, известняк) коэффициент α₆₁ увеличивается на 1× ×10⁻⁶, град⁻¹.
3. Влажность воздуха принимается согласно п. 2.14 настоящего Руководства.

Номера сеставов		K	ипературной усадки бетона α _у ·10 ^{—6} , град ^{—1} при температуре бетона, °C							
бетона по табл. 11	Расчет на нагрев	5								
настоящего Руководства		влажность воздуха до 40%	влажность воздуха более 40%	100	200	300	500	700	900	1100
14	Кратковременный Длительный	1 9	0,5 4,5	1,5 4,5	1,1 2,6	1,3 2,5	_	_	_	_
5—11, 23, 24	Кратковременный Длительный	2 12	1 6	2 6	1,5 3,5	1,5 2,8	1,5 2,5	1,4 2,4	2,3 3,2	3,2 4,1
12—18, 27, 29	Кратковременный Длительный	4 16	2 11	3 8	2,5 5	2 3,7	1,3 2,3	1 1,7	0,8	0,7
19—21	Кратковременный Длительный	1 10	0,5 5,5	2 5,5	1,5 3,25	1,3 2,6	1,4 2,2	1,6 2,5	2,1	2,3 3,2

Примечания: 1. Значения коэффициента α_у принимаются в таблице со знаком минус. 2. Коэффициент α_у для промежуточных значений температур определяется по интерполяции и для бетона составов № 1—4 при температуре выше 300° С — по экстраполяции. 3. Влажность воздуха принимается согласно п. 2.14 настоящего Руководства.

Бетоны	Состояние бетона по влаж- ности	и коэффициенте асимметрии цикла рб, равном								
	100711	0-0,1	0,2	0,3	0,4	0,5	0,6	≥0,7		
Обычный бетон состава № 1 по табл. 11 настоящего Руководства	Естест- венной влажно- сти	0,75	0,8	0,85	0,9	0,95	1	1		
	Водона- сыщен- ный	0,5	0,6	0,7	0,8	0,9	0,95	1		

Обозначения, принятые в табл. 22:

$$ho_{6}=rac{\sigma_{6.\text{мин}}}{\sigma_{6.\text{макс}}}$$
 , где $\sigma_{6\,\text{мин}}$ и $\sigma_{6\,\text{макс}}$ — соответственно наименьшес

и наибольшее напряжения в бетоне в пределах цикла изменения нагрузки, определяемые согласно п. 3.71 настоящего Руководства.

Таблица 23

Температура бетона, °С	Коэффициент условий работы обычного бетона, то при многократно повторяющихся нагрузках	Температура бетона, °С	Коэффициент условий работы обычного бетона точного многократно повторяющихся нагрузмах
50	0,8	90	0,4
70	0,6	110	0,2

 Π римечание. Величины m_{62t} для промежуточных значений температур определяются по интерполяции.

APMATYPA

- 2.17. Для армирования железобетонных конструкций, работающих при воздействии повышенной и высокой температуры, должна применяться арматура, отвечающая требованиям соответствующих государственных стандартов, или утвержденных в установленном порядке технических условий следующих видов.
 - Стержневая арматура:
- а) горячекатаная гладкая класса A-I; пернодического профиля классов A-II, A-III, A-IV, A-V;

б) термически упрочненная — периодического профиля классов Aт-IV, Aт-V, Aт-VI.

Проволочная арматура:

в) арматурная холоднотянутая проволока:

обыкновенная — гладкая класса В-I, периодического профиля класса Вр-I;

высокопрочная — гладкая класса B-II, периодического профиля класса Bp-II;

r) арматурные канаты — спиральные семипроволочные класса K-7.

Для закладных деталей и соединительных накладок применяется, как правило, прокатная углеродистая сталь класса C38/23 согласно главе СНиП 11-В.3-72 «Стальные конструкции. Нормы проектирования».

В железобетонных конструкциях допускается применять другие виды сталей, в том числе упрочненную вытяжкой классов A-IIв и A-IIIв, а также новые виды арматуры, осваиваемые промышленностью (например, стержневую повышенной коррозионной стойкости класса Aтп-V), арматурные канаты — 19-проволочные класса К-19, многопрядные класса К-n), применение которых должно быть согласовано в установленном порядке.

Примечание. В дальнейшем в настоящем Руководстве для краткости используются следующие термины: «стержень» — для обозначения арматуры любого диаметра, вида и профиля, независимо от того, поставляется ли она в прутках или мотках (бухтах), «диаметр» (d) — если не оговорено особо, означает номинальный

днаметр стержня.

2.18. Выбор арматурных сталей следует производить в зависимости от типа конструкции, наличия предварительного напряжения, величины температуры нагрева, а также от условий возведения и эксплуатации здания или сооружения в соответствии с пп. 2.19—2.25 настоящего Руководства.

2.19. В качестве ненапрягаемой арматуры железобетонных конструкций (кроме указанных в п. 2.20 настоящего Руководства) следует преимущественно применять:

а) горячекатаную арматурную сталь класса A-III;

б) обыкновенную арматурную проволоку диаметром 3—5 мм классов Вр-1 и В-1 (в сварных сетках и каркасах);

допускается также применять:

в) горячекатаную арматурную сталь классов A-II и A-I в основном для поперечной арматуры линейных элементов, для конструктивной и монтажной арматуры, а также в качестве продольной рабочей арматуры в случаях, когда использование других видов ненапрягаемой арматуры нецелесообразно или не допускается;

г) обыкновенную арматурную проволоку класса В-I диаметром 3—5 мм — для вязаных хомутов балок высотой до 400 мм и колоин;

д) горячекатаную арматурную сталь классов A-IV, A-V и термически упрочненную сталь классов Aт-IV и AT-V — только для продольной рабочей арматуры вязаных каркасов и сеток. Арматура этих классов может использоваться в качестве растянутой или сжатой в составе преднапряженных конструкций; в обычных конструкциях — для сжатой арматуры, а классов A-IV, AT-IV — и для растянутой арматуры.

Ненапрягаемую арматуру классов A-III, A-II и A-I рекоменду-

ется применять в виде сварных каркасов и сварных сеток.

- **2.20.** В конструкциях с ненапрягаемой арматурой, находящихся под давлением газов или жидкостей, следует преимущественно применять:
 - а) горячекатаную арматурную сталь классов А-ІІ и А-І; допускается также применять:

б) горячекатаную арматурную сталь класса A-III;

- в) обыкновенную арматурную проволоку классов Вр-I и В-I.
- 2.21. В качестве напрягаемой арматуры предварительно-напряженных железобетонных элементов:

при длине до 12 м включительно следует преимущественно применять:

а) термически упрочненную арматурную сталь классов Ат-VI и Ат-V;

допускается также применять:

б) высокопрочную арматурную проволоку классов В-II, Вр-II и арматурные канаты класса К-7;

в) горячекатаную арматурную сталь классов A-V, A-IV и тер-

мически упрочненную сталь класса Aт-IV;

при длине элементов свыше 12 м следует преимущественно применять:

r) высокопрочную арматурную проволоку классов В-II, Вр-II и арматурные канаты класса K-7;

д) горячекатаную арматурную сталь класса A-V; допускается также применять:

е) горячекатаную арматурную сталь класса A-IV.

2.22. В качестве напрягаемой арматуры предварительно-напряженных элементов, находящихся под давлением газов, жидкостей или сыпучих тел, следует преимущественно применять:

а) высокопрочную арматурную проволоку классов B-II, Вр-II и

арматурные канаты класса К-7;

- б) термически упрочненную арматурную сталь классов Ат-VI и Ат-V;
 - в) горячекатаную арматурную сталь класса A-V; допускается также применять:

г) горячекатаную арматурную сталь класса A-IV;

- д) термически упрочненную арматурную сталь класса Aт-IV; под воздействием агрессивной среды рекомендуется преимущественно применять горячекатаную арматурную сталь класса A-IV.
- 2.23. Для железобетонных конструкций из жаростойкого бетона в качестве ненапрягаемой арматуры, анкеров и закладных деталей при их нагреве выше 400° С следует предусматривать стержневую арматуру и прокат из:

легированной стали марки 30ХМ;

коррозионно-стойких, жаростойких и жаропрочных сталей марок 12X13, 20X13, 12X18H9T, 20X23H18 и 45X14H14B2M по ГОСТ 5632—72 и ГОСТ 5949—75.

Предельно допустимую температуру применения арматуры и проката в железобетонных конструкциях следует принимать по табл. 24 настоящего Руководства.

Разрешается применять другие марки жаростойких сталей при соответствующем обосновании и наличии данных о их работе при высоких температурах.

2.24. При выборе вида и марок стали для арматуры, устанавливаемой по расчету, а также прокатных сталей для закладных дета-

Вид и класс арматуры, и марки стали, проката	Предельно допустниая температура, применения арматуры и проката, установленных в железобетонных конструкциях						
	по расчету	по конструктив- ным соображе- ниям					
Стержневая арматура классов:							
А-I и А-II А-III	400 450	450 500					
A-IV, A-V, Ат-IV, Ат-V и Ат-VI в качестве арматуры:	100	300					
ненапрягаемой напрягаемой	450 250	_					
Проволочная арматура классов:							
B-I и Вр-I B-II, Вр-II и Қ-7	400 150	450 —					
Прокат из стали марок ВСт3пс2 и ВСт3сп5	400	450					
Стержневая арматура и про- кат из стали марок:							
30XM, 12X13, 20X13 20X23H18 12X18H9T и 45X14H14B2M	500 550 600	800 1000 800					

Примечания: 1. При циклическом нагреве предельно допустимая температура применения напрягаемой арматуры должна приниматься на 50° С ниже указанной в табл. 24.

2. При многократно повторяющейся нагрузке предельно допустимая температура применения напрягаемой арматуры не должна превышать 100° С и ненапрягаемой — 200° С.

3. При нагреве проволоки классов В-I и Вр-I выше 250° С расчетные сопротивления следует принимать как для арматуры класса А-I по табл. 26 и 30 настоящего Руководства.

4. Для конструктивной арматуры при температурах ее нагрева до 800° С разрешается применять жаростойкую сталь марки 08X17T по ГОСТ 5632—72 и ГОСТ 5949—75.

5. Стали марок 30ХМ, 12Х13, 20Х13 после сварки требуют высокотемпературного отпуска.

лей должны учитываться температурные условия эксплуатации кон-

струкций и характер их нагружения согласно прил. 2 и 3.

При возведении в условиях расчетной зимней температуры наружного воздуха ниже минус 40° С конструкций с арматурой, допускаемой для использования только в отапливаемых зданиях, должна быть обеспечена несущая способность конструкций на стадии ее возведения, принимая расчетное сопротивление арматуры с коэффициентом 0.7 и расчетную нагрузку с коэффициентом перегрузки n=1.

2.25. Для монтажных (подъемных) петель элементов сборных железобетонных и бетонных конструкций должна применяться горячекатаная арматурная сталь класса А-II марки 10ГТ и класса А-I

марок ВСт3сп2 и ВСт3пс2.

В случае, если возможен монтаж конструкций при расчетной зимней температуре ниже минус 40° С, для монтажных петель не допускается применять сталь марки ВСт3пс2.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ АРМАТУРЫ

2.26. За нормативные сопротивления арматуры $R_{\mathbf{a}}^{\mathbf{H}}$ принимаются наименьшие контролируемые значения:

для стержневой арматуры — предела текучести, физического или условного (равного величине напряжений, соответствующих остаточному относительному удлинению 0,2%);

для проволочной арматуры — временного сопротивления разрыву (для арматурных канатов это значение определяется по величине разрывного усилия каната в целом).

Указанные контролируемые характеристики арматуры принимаются в соответствии с государственными стандартами или техническими условиями на арматурные стали и гарантируются с вероятностью не менее 0,95.

Нормативные сопротивления $R_{a}^{\ \ \ }$ для основных видов стержневой, проволочной и жаростойкой арматуры приведены соответственно в табл. 25, 26 и 27 настоящего Руководства.

Таблица 25

Стержневая арматура класса	Нормативные сопротивления растяжению $R_{\rm a}^{\rm H}$ и расчетные сопротивления растяжению для предельных состояний второй группы $R_{\rm aII}^{\rm H}$, krc/cm²	Стержневая арматура класса	Нормативные сопротивления растяжению $R^{\rm H}_{\rm a}$ и расчетные сопротивления растяжению для предельных состояний второй группы $R_{\rm all}$, кгс/см²
A-I A-II A-III A-IV	A-II 3000 A-III 4000		8 000 6 000 8 000 10 000

Проволочная арматура класса	Диаметр, мм	Нормативные сопротивления растяжению R_{a}^{H} и расчетные сопротивления растяжению R_{aII} для предельных состояний второй группы, кгс/см²
B-1	3—5	5 500
Bp-1	3 — 4 5	5 500 5 25 0
B-II	3 4 5 6 7 8	19 000 18 000 17 000 16 000 15 000 14 000
Bp-II	3 4 5 6 7 8	18 000 17 000 16 000 15 000 14 000 13 000
K-7	4,5 6 7,5 9 12 15	19 000 18 550 18 000 17 500 17 000 16 500

Таблица 27

Арматура и прокат из стали марки	Нормативные сопротивления растяжению $R^{\rm H}$ и расчетные сопротивления растяжению для предельных состояний второй группы $R_{\rm all}$, кгс/см²	Арматура и прокат из стали марки	Нормативные сопротивления растяжения $R^{\rm H}$ и расчетные сопротивления растяжению для предельных состояний второй группы $R_{\rm all}$, кгс/см²
30XM	6000	20X23H18	2000
12X13	4200	12X18H9T	2000
20X13	4500	45X14H14B2M	3200

2.27. Расчетные сопротивления арматуры растяжению $R_{\rm a}$ для предельных состояний первой и второй группы определяются по формуле

$$R_{\mathbf{a}} = \frac{R_{\mathbf{a}}^{\mathbf{H}}}{\mathbf{k}_{\mathbf{a}}} \,, \tag{67}$$

где k_a — коэффициент безопасности по арматуре, принимаемый по табл. 28 настоящего Руководства.

Расчетные сопротивления арматуры растяжению для основных видов стержневой, проволочной и жаростойкой арматуры при расчете конструкций по предельным состояниям первой группы приведены соответственно в табл. 29, 30 и 31, а при расчете по предельным состояниям второй группы — в табл. 25, 26 и 27 настоящего Руководства.

Таблица 28

Вид и класс арматуры и марки стали проката	Коэффициент безопасности по арматуре k _a при расчете конструкций по предельным состояниям		
	первой группы	второй группы	
Стержневая арматура классов:			
A-I A-II и A-III A-IV и Aт-IV A-V, Aт-V и Ат-VI	1,15 1,1 1,2 1,25	1 1 1	
Проволочная арматура классов:			
Вр-I, В-II, Вр-II и K-7 В-I	1,55 1,75	1 1	
Жаростойкая арматура ма- рок 30ХМ, 12Х13, 20Х13, 12Х18Н9Т, 20Х23Н18, 45Х14Н14В2М	1,5	1	

2.28. Расчетные сопротивления арматуры сжатию, используемые при расчете конструкций по предельным состояниям первой группы, $R_{a.o}$ при наличии сцепления арматуры с бетоном принимаются равными соответствующим расчетным сопротивлениям арматуры растяжению R_a , но не более:

для конструкций из тяжелого обычного бетона и тяжелого, об-

легченного и легкого жаростойкого бетона — 4000 кгс/см².

Значения расчетных сопротивлений арматуры сжатию для основных видов стержнерой, проволочной и жаростойкой арматуры при-

	Расчетные сопротивления арматуры для предельных состояний первой группы, кгс/см ²			
Стержневая арматура класса	растя			
	продольной ,а также поперечной (хомутов и отогнутых стержней) при расчете наклонных сечений на действие изгибающего момента R_a	поперечной (хомутов и отогнутых стержней) при расчете наклонных сечений на действие поперечной силы $R_{a,\mathbf{x}}$	сжатию <i>R</i> _{a.c}	
A-I A-II A-III A-IV A-V AT-IV AT-V	2100 2700 3600 5000 6400 5000 6400	1700 2150 2900* 4000 5100 4000 5100	2100 2700 3400 4000 4000 4000 4000	

^{*} В сварных каркасах для хомутов из арматуры класса А-III, диаметр которых меньше $^{1}/_{3}$ диаметра продольных стержней, значение $R_{\rm a.x}$ принимается 2400 кгс/см².

ведены соответственно в табл. 29, 30 и 31 настоящего Руководства. При расчете конструкций из обычного и жаростойкого бетонов, для которых расчетное сопротивление бетона принято с учетом коэффициента условий работы $m_{61} = 0.85$ (см. поз. 1 табл. 15 настоящего Руководства), допускается. при соблюдении соответствующих конструктивных требований п. 5.22 настоящего Руководства, принимать значения $R_{\rm a,c}$ равными для арматуры классов:

A-IV и Aт-IV — 4500 кгс/см²;

A-V, AT-V, AT-VI, B-II, Bp-II и K-7 — 5000 кгс/см2.

При отсутствии сцепления арматуры с бетоном значение $R_{\rm a.c.}$

принимается равным нулю.

2.29. Расчетные сопротивления арматуры для предельных состояний первой группы снижаются (или повышаются) умножением на соответствующие коэффициенты условий работы m_a , учитывающие возможность неполного использования прочностных характеристик арматуры в связи с неравномерным распределением напряжений в сечении, низкой прочностью бетона, условиями анкеровки, наличием загибов, характером диаграммы растяжения стали, влиянием температуры нагрева, изменением ее свойств в зависимости от условий работы конструкций и т. п.

Расчетные сопротивления арматуры для предельных состояний второй группы $R_{\rm all}$ вводят в расчет с коэффициентом условий рабо-

ты $m_a=1$.

Расчетное сопротивление поперечной арматуры (хомутов и отогнутых стержней) на действие поперечных сил $R_{a,x}$ снижается путем

Проволочная арматура класса		Расчетные сопротивления арматуры для предельных состояний первой группы, кгс/см²		
		растяжению		
	Диаметр, мм	продольной, а также поперечной (хомутов и отогнутых стержней) при расчете наклонных сечений на действие изгибающего момента R_a	поперечной (хомутов и отогнутых стержней) при расчете наклонных сечений на действие поперечной силы $R_{\rm a\cdot x}$	сжатию <i>R</i> _{a.c}
B-I	35	3 150	2200(1900)	3150
Bp-I	3-4	3 500 3 400	2600(2800) 2500(2700)	3500 3400
·	3	12 300	9800	4000
	4	11 600	9300	4000
B-II	5	11 000	8800	4000
	6	10 300	8300	4000
	7	9 700	7700	4000
	8	9 000	7200	4000
<u></u>	3	11 600	9300	4000
	4	11 000	8800	4000
Bp-II	5	10 300	8300	4000
	6	9 700	7700	400 0
	7	9 000	7200	4000
	8	8 400	6700	4000
K-7	4,5	12 300 11 900	9800 9500	4000 4000
	7,5	11 600	9300	4000
	9	11 300	9000	4000
	12	11 000	8800	4000
	15	10 600	8500	4000

 Π р и м е ч а н и е. Величины $R_{\rm a.x}$ в скобках даны для случая применения проволочной арматуры классов B-I и Bp-I в вязаных каркасах.

	Расчетные сопротивления арматуры для предельных состояний первой группы, кгс/см²			
	растяжению			
Арматура и прокат из стали марки	продольной, а также поперечной (хомутов и отогнутых стержней) при расчете наклонных сечений на действие изгибающего момента R_a	ней) при расчете наклонных сечений на действие попереч-	сжати ю <i>R</i> _{a.c}	
30XM 12X13 20X13 20X23H18 12X18H9T 45X14H14B2M	4000 2800 3000 1350 1350 2100	2250 2400 1100 1100 1700	2880 3000 1350 1350 2100	

умножения на коэффициенты условий работы $m_{a \times}$, учитывающие особенности работы такой арматуры:

а) независимо от вида и класса арматуры — коэффициент $m_{a.x} = 0.8$, учитывающий неравномерность распределения напряжений в арматуре по длине наклонного сечения;

б) стержневой арматуры класса A-III диаметром менее 1 /₃ диаметра продольных стержней и проволочной арматуры классов B-I и Bp-I в сварных каркасах — коэффициент $m_{a.x}$ =0,9, учитывающий возможность хрупкого разрушения сварного соединения;

в) проволочной арматуры класса В-I в вязаных каркасах — коэффициент $m_{a.x}$ =0,75, учитывающий ее пониженное сцепление с бетоном

Расчетные сопротивления растяжению поперечной арматуры (хомутов и отогнутых стержней) $R_{\rm a.x.}$, с учетом указанных выше коэффициентов условий работы арматуры, приведены в табл. 29, 30 и 31 настоящего Руководства.

Кроме того, расчетные сопротивления R_a , R_a о и $R_{a,x}$ в соответствующих случаях следует умножать на коэффициенты условий работы согласно табл. 32—35 настоящего Руководства.

При расчете элементов конструкций, предназначенных для работы в условиях воздействия повышенных и высоких температур, расчетные сопротивления арматуры необходимо, кроме того, дополнительно умножать на коэффициент условий работы $m_{\rm at}$, учитывающий изменение механических свойств арматуры в зависимости от нагрева, который принимается по табл. 35 настоящего Руководства.

2.30. Коэффициент линейного температурного расширения арматуры α_{at} следует принимать по табл. 35 настоящего Руководства.

В железобетонных элементах, имеющих трещины в растянутой

			Қоэф	фициенты условий работы арматуры
Факторы, обусловливающие введение коэффициентов ус- ловий работы арматуры	Характеристика арматуры	Класс арматуры и марка стали проката	условное экнэгансодо	значение коэффициентов
1. Многократное по- вторение нагрузки при нормальной температу- ре. Влияние температу- ры нагрева		A·I, A·II, A·III и A·IV, B·I и Вр·I; B·II, Вр·II и К·7	$m_{ m al}$	См. табл. 33 настоящего Руководства См. п. 2.32 настоящего Руководства
2. Наличие сварных соединений при много- кратном повторении на- грузки	Продольная и поперечная при наличии сварных соединений арма- туры	A-I, A-II и A-III	m_{a2}	См. табл. 34 настоящего Руковод- ства
3. Зона передачи на- пряжений для армату- ры без анкеров и зона анкеровки ненапрягае- мой арматуры	Продольная не- напрягаемая	Независимо от класса	m_{a3}	l_x/l_{aB} , где l_x — расстояние от начала зоны передачи напряжений до рассматриваемого сечения; l_{aB} — длина зоны анкеровки арматуры (см. п. 5.14 настоящего Руководства)
Э 4. Работа высокопроч- ной арматуры при на- пряжениях выше услов- ного предела текучести	Продольная растянутая	A-IV и A-V; Aт-IV, Aт-V и Aт-VI; B-II, Вр-II и K-7	m_{a4}	Согласно указаниям п. 3.14 настоящего Руководства
5. Элементы из жаро- стойкого облегченного и легкого бетона проект- ной марки М 100 и ниже	а) Продольная растянутая б) То же в) Продольная сжатая г) Поперечная	А-II и А-III диа- метром 10—12 мм А-II и А-III диа- метром 14—16 мм Независимо от класса А-I, В-I и Вр-I		$\frac{1900 + 20\overline{R}}{R_{a}} \le 1$ $\frac{1700 + 17\overline{R}}{R_{a}} \le 1$ $\frac{1600 + 20\overline{R}}{R_{a \cdot c}} \le 1$ $0.5 + 0.005\overline{R} \le 1$ $0.4 + 0.008\overline{R} \le 1$
6. Воздействие температуры выше 50° С	Продольная и поперечная	Независимо от класса и марки	m _{at}	См. табл. 35 настоящего Руковод- ства

Примечания: 1. Коэффициенты m_{a1} и m_{a2} по поз. 1 и 2 настоящей таблицы учитываются только при расчете на выносливость; для арматуры, имеющей сварные соединения, эти коэффициенты учитываются одновременно, при нагреве арматуры выше 100° С дополнительно учитывается еще коэффициент $m_{a1}t$.

2. В формулах для определения коэффициентов условий работы арматуры по поз. 5 настоящей таблицы величины

 \overline{R} (см. п. 2.2), R_a и $R_{a.c}$ имеют размерность в кгс/см².

Класс арматуры	Қоэффициенты условий работы арматуры тапри многократном повторении нагрузки и коэффициенте асимметрии цикла ρ _а , равном								
	-1	-0,2	0	0,2	0,4	0,7	0,8	0,9	1
A-I	0,45	0,7	0,8	0,85	1	1	1	1	1
A-II	0.45	0,55	0,6	0,65	0,75	1	1	1	1
А-II марки 10ГТ с улучшенным профилем	_	_	0,8	0,85	0,95	1	1	1	1
A-III	0 35	0,4	0,45	0,5	0,6	0,9	1	1	1
A-IV			_	_	0,4	0,75	0,95	1	1
A-V			<u> </u>		0,3	0,6	0,75	0,95	1
Bp-II	_	_	_ [0,7	0,85	0,95	1
B-II	_			_		0,8	1	1	1
К-7, диаметр 4,5—9 мм К-7, диаметр 12—15 мм	_				_	0,8	0,95 0,8	1 1	1 1
В-І и Вр-І	[0,6	0,75	0,9	1	1	1	1

Обозначения, принятые в табл. 33:

ΓOCT 5781—75.

 $^{ho_a = rac{\sigma_{a \; \text{мин}}}{\sigma_{a \; \text{макc}}}}$, где $\sigma_{a \; \text{макc}}$ и $\sigma_{a \; \text{макc}}$ — соответственно наименьшее и нанбольшее напряжения в растянутой арматуре в пределах цикла изменения нагрузки, определяемые согласно п. 3.71 настоящего Руководства. Примечание. Характеристики улучшенного профиля арматуры класса A-II, марки 10ГТ (Ac-II) приведены в

Класс арматуры	Гр уппа сварных	Коэффициенты условий работы арматуры $m_{\rm a2}$ при многократном повторении нагрузки и коэффициенте асиммет гии цикла $ ho_{\rm a}$, равном						
	соединений	0	0,2	0,4	0,7	0,8	0,9	1
А-I, А-II, диа- метр не более 20 мм	III III	0,9 0,65 0,25	0,95 0,7 0,3	1 0,75 0,35	1 0,9 0,5	1 1 0,65	1 1 0,85	1 1 1
A-III, диаметр не более 20 мм	III	0,9 0,6 0,2	0,95 0,65 0,25	1 0,65 0,3	1 0,7 0,45	1 0,75 0,6	1 0,85 0,8	1 1 1

Примечания: 1. Разделение сварных соединений (см. прил. 4) на группы при расчете на выносливость принято следующим:

I — соединения типа КС-М механически обработанными местами сварки до полного снятия неровностей, создаваемых сваркой; контактные стыковые сварные соединения с предварительной механической зачисткой стыкуемых концов до цилиндрической поверхности стержней;

II — соединения типа КТ-2 (с минимально допустимой относительной осадкой h/d) КС-О, ВО-Б, ВП-В;

III — соединения типа КС-Р, ВП-Г, ВМ-1, а также по поз. 4, 5, 7, 8 прил. 4.

^{2.} Значения коэффициента $m_{\rm a2}$ должны быть снижены: на 5% — при диаметре стержней 22—32 мм и на 10% — при диаметре более 32 мм.

прокат из стали	Обозна- чение ко- эффици- ента	Расчет на нагрев	Қоэффициенты условий работы арматуры m_{at} , линейного температурного расширения арматуры α_{at} и β_a при температуре арматуры, °C						
марки	сита		50	100	200	300	400	500	600
A-I, A-II, B-I, Bp-I, B-II, Bp-II, K-7, ВСт3-2	m _{at}	Кратковременный Длительный	1 1	0,95 0,95	0,9 0,85	0,76 0,65	0,6 0,35	_	_
	a_{at}	Кратковременный и длитель- ный	11,5	11,7	12,5	13	13,5	af ^μ β _a Γ 500 0,6 0,45 14,5 0,73 0,08 11,7 0,65 0,13 14,7 0,58 0,3 14,7 0,58 0,55 12	
A-III, A-IV, A-V, At-IV, At-V, At-VI	m _{at}	Кратковременный Длительный	1	1 1	0,95 0,9	0,85 0,75	0,75 0,5	0,6 0,45	_
	α_{at}	Кратковременный и длитель- ный	11,5	12	13	13,5	14	α _{at} и β _a и	_
30XM	м жет Кратковременный и длитель- ный 11,5 12 13 13,5 14 14,5 м жет Кратковременный и длительный 1 0,95 0,9 0,85 0,77 0,73 Длительный 1 0,95 0,9 0,8 0,25 0,08 кратковременный и длительный 9,2 9,5 10,2 10,7 11,2 11,7 кратковременный длительный 1 0,97 0,93 0,86 0,8 0,65 Длительный 1 0,97 0,93 0,84 0,7 0,13	_							
	α _{at}	Кратковременный и длитель- 9,2 9,5 10,2 10,7 11,2 11,7 Ный 1 0,57 0,93 0,86 0,8 0,65	_						
12X13, 20X13	m_{at}			0,97 0,97		0,86 0,84	0,8 0,7	0,65 0,13	_
	$lpha_{at}$	Кратковременный и длитель- ный	11,5	12	12,6	13,3	14	14,7	
	α_{at}		11,5	12	12,6	13,3	14	14,7	_
20X23H18	<i>m</i> _a	Кратковременный Длительный	1	1	0,97 0,97	0,95 0,93	0,92 0,77	0,3	0,75
	$\alpha_{\mathbf{a}t}$	Кратковременный и длитель- ный	9,3	10,3	11,3	12,4	13,6	500 0,6 0,45 14,5 0,73 0,08 11,7 0,65 0,13 14,7 0,58 0,3 14,7	1 1 5
12X18H9T		<u> </u>					L J		15,
12X18H9T	m_{at}	Кратковременный Длительный	1	0,83 0,83	0,72 0,72	0,65 0,65	0,62 0,6	7 0,3 6 14,7 2 0,58 0,55	0,50
12X18H9T	m_{at} α_{at}	Кратковременный Длительный Кратковременный и длительный		0,83 0,83	0,72 0,72	0,65 0,65		0,55	0,5
12X18H9T 45X14H14B2M		Длительный Кратковременный и длитель-	1	0,83	0,72	0,65	0,6	0,55	0,56

Вид и класс арматуры, жаростой- кая арматура, прокат из стали марки	Обозна- чение ко- эффици- ента	чение ко- эффици- Расчет на нагрев		Коэффициенты условий работы арматуры m_{at} , ли температурного расширения арматуры α_{at} и β_a температуре арматуры, °C					
марки			50	100	200	300	400	500	600
Все классы ар- матуры и марки сталей, указанные в этой таблице		Кратковременный и длитель- ный	1	1	0,96	0,92	0,88	0,84	0,73

 Π р и м е ч а н и я: 1. Значения коэффициента m_{at} принимаются при расчете по формулам:

(98)—(101), (103), (107)—(120), (129)—(132), (134)—(138), (141), (143), (146)—(156), (159), (161)—(168), (172)—(178), (255), (288)— по температуре растянутой и сжатой арматуры;

(181), (184), (187), (189), (192), (193), (196)—(198), (210)— по наибольшей температуре поперечной арматуры;

(213), (218), (220), (223) — по наибольшей температуре закладной детали или конца анкера;

(211) — по температуре дополнительной арматуры;

(221) —по температуре пластины;

(202), (206) — по температуре сеток.

- 2. Қоэффициент линейного температурного расширения арматуры равен числовому значению, умноженному на 10^{-6} град $^{-1}$.
- 3. При расчете на длительный нагрев несущих конструкций, срок службы которых не превышает 5 лет, коэффициент m_{at} следует увеличить на 20%, при этом величина m_{at} должна быть не более, чем при кратковременном нагреве.
- 4. Қоэффициенты m_{at} , α_{at} и β_a для промежуточных значений температур определяются по интерполяции.

зоне сечения, коэффициент температурного расширения арматуры в бетоне $lpha_{stc}$ определяется по формуле

$$\alpha_{atc} = \alpha_{6t} + (\alpha_{at} - \alpha_{6t})k, \tag{68}$$

где α_{6t} , α_{at} — коэффициенты, принимаемые соответственно по табл. 20 и 35 настоящего Руководства в зависимости от температуры нагрева бетона на уровне арматуры:

k — коэффициент, принимаемый по табл. 36 настоящего Руководства в зависимости от процента армирования сечения продольной растянутой арматурой.

2.31. Модуль упругости арматуры для основных видов стержневой, проволочной и жаростойкой арматуры принимается по табл. 37 настоящего Руководства.

Таблица 36

Отношение момента М, при расчете по предельному состо- янию второй группы к моменту М при	Қоэффи	циент <i>k</i> при прод	проценте а ольной арма	рмирования атурой	сечения
расчете по предельному состоянию первой группы $\frac{M_1}{M}$	0,2	0,4	0,7	1	2 и более
1 0,7 0,5 0,2	0,9 0,75 0,55 0,2	0,95 0,9 0,8 0,55	1 0,95 0,9 0,7	1 1 0,95 0,8	1 1 1 0,95

Примечания: 1. Момент M принимается равным предельному моменту по прочности, правой части формул (98), (100), (101), (114) и (116).

2. Момент M_1 принимается равным при расчете: появления трещин $M_{\tt T}$ [см. формулу (228)]; деформаций $M_{\tt S}$ (см. п. 4.19 настоящего Руководства); раскрытия трещин M [см. формулу (252)]; статически неопределимых конструкций по первой группе предельных состояний — M (см. п. 1 настоящего примечания).

3. При расчете статически определимых элементов коэффициент k принимается при отношении $\frac{M_1}{M} = 0.5$, если наибольший изгибающий

момент от всех действующих нагрузок меньше момента появления трещин, определенного по формуле (237) при $\sigma_{0t} = 0$, а трещины в растянутой зоне появляются от воздействия температуры (см. п. 4.3 настоящего Руководства).

4. Коэффициент k для промежуточных значений отношений моментов $\frac{M_1}{M}$ определяется по интерполяции.

Коэффициент β_a , учитывающий снижение модуля упругости арматуры при нагреве, должен приниматься по табл. 35 настоящего Руководства в зависимости от температуры арматуры.

2.32. При расчете на выносливость железобетонных конструкций, работающих в условиях воздействия температур выше 50° С, следует дополнительно вводить коэффициент условий работы арматуры $m_{\rm all}$, принимаемый при температуре арматуры до 100° С — 1; 150° С — 0.8; 200° С — 0.65.

Для промежуточных значений температур коэффициент m_{att}

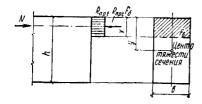
определяется по интерполяции.

2.33. При расчете кривизн железобетонных элементов на участках с трещинами в растянутой зоне бетона, работающих в условиях воздействия высоких температур, необходимо учитывать упругопластические свойства арматуры. Коэффициент $\nu_{\rm a}$, характеризующий упругопластические свойства растянутой арматуры, следует принимать по табл. 38 настоящего Руководства в зависимости от величины температуры арматуры и длительности нагрева.

Таблица 37

Класс арматуры и марка стали	Модуль упругости арматуры $E_{\bf a}$, кгс/см ²	Класс арматуры и марка стали	Модуль упругости арматуры $E_{\mathbf{a}}^{}$, кгс/см 2
A-I, A-II A-III, A-IV	2 100 000 2 000 000	K-7 Bp-I	1 800 000 1 700 000
A-V, At-IV, At-V,	1 900 000	30XM 12X13, 20X13	2 100 000 2 200 ₀ 00
B-1, B-II, Bp-II	2 000 000	20X23H18, 12X18H9T, 45X14H14B2M	2 000 000

Таблица 38


	Коэффициент v _а при расчете на нагрев					
Температура арматуры, °С	кратковременный	длительн ы й				
20—200	1	1				
300 400	0,9 0,7	0,6 0,3				

 Π римечание. Коэффициент v_a для промежуточных значений температур принимается по интерполяции.

3. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ПЕРВОЙ ГРУППЫ

РАСЧЕТ БЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

3.1. Расчет по прочности элементов бетонных конструкций, подвергающихся воздействию повышенных и высоких температур, должен производиться для сечений, нормальных к их продольной оси.

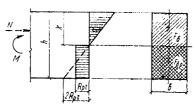


Рис. 6. Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно-сжатого бетонного элемента, рассчитываем бетона растянутой зоны

Рис. 7. Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси изгибаемого (внецентренно-сжатого) бетонного элемента, рассчитываемого с учетом сопротивления бетона растянутой зоны

В зависимости от условий работы элементов они рассчитываются как без учета, так и с учетом сопротивления бетона растянутой зоны.

Без учета сопротивления бетона растянутой зоны производится расчет внецентренно-сжатых элементов, принимая, что достижение предельного состояния характеризуется разрушением сжатого бетона. Сопротивление бетона сжатию условно представляется напряжениями, равными $R_{\rm пpt}$, равномерно распределенными по части сжатой зоны сечения — условной сжатой зоне (рис. 6), сокращенно именуемой в дальнейшем тексте настоящей главы «сжатой зоной бетона».

С учетом сопротивления бетона растянутой зоны производится расчет изгибаемых элементов, а также внецентренно-сжатых элементов, в которых не допускаются трещины из условий эксплуатации конструкций (элементы, подвергающиеся давлению воды, карнизы, парапеты и др.). При этом принимается, что достижение предельного состояния характеризуется разрушением бетона растянутой зоны (появлением трещин). Предельные усилия определяются исходя из следующих предпосылок (рис. 7):

сечения после деформаций остаются плоскими;

наибольшее относительное удлинение крайнего растянутого во-

локна бетона равно $\frac{2R_{\rm p}t}{\beta_6 E_6}$;

напряжения в бетоне сжатой зоны определяются с учетом упругих (а в некоторых случаях и неупругих) деформаций бетона;

напряжения в бетоне растянутой зоны распределены равномерно и равны по величине $R_{\rm pt}$.

В случаях, когда вероятно образование наклонных трещин (например, элементы двутаврового и таврового сечений при наличии поперечных сил), должен производиться расчет бетонных элементов из условий (135) и (136) главы СНиП II-21-75, заменяя расчетные сопротивления бетона для предельных состояний второй группы $R_{\rm npII}$ и $R_{\rm pII}$ соответствующими значениями расчетных сопротивлений бетона для предельных состояний первой группы $R_{\rm npI}$ и $R_{\rm pI}$.

Кроме того, должен производиться расчет элементов на местное действие нагрузки (смятие) согласно п. 3.63 настоящего Руководства.

ВНЕЦЕНТРЕННО-СЖАТЫЕ ЭЛЕМЕНТЫ

3.2. При расчете внецентренно-сжатых бетонных элементов должен приниматься во внимание случайный эксцентрицитет продольного усилия $e_0^{\rm cn}$, определяемый согласно п. 1.30 настоящего Руководства.

Эксцентрицитет продольного усилия e_0 относительно центра тяжести однородного или приведенного сечения определяется как сумма эксцентрицитетов предельного усилия: определяемого из статического расчета конструкции — $e_0^{\rm p}$ и случайного $e_0^{\rm cn}$ (см. п. 1.30 настоящего Руководства). Следует учитывать также деформации от неравномерного нагрева бетона по высоте сечения, определяемые согласно пп. 1.39—1.44 и 4.26 настоящего Руководства, суммируя их с эксцентрицитетом продольной силы. Если деформации от нагрева уменьшают эксцентрицитет продольной силы, то учет их не производится.

3.3. При гибкости элементов $\frac{I_0}{r} > 14$ необходимо учитывать влияние на их несущую способность прогибов как в плоскости эксцентрицитета продольного усилия, так и в нормальной к ней плоскости путем умножения значений e_0 на коэффициент η (см. п. 3.7 настоящего Руководства); в случае расчета из плоскости эксцентрицитета продольного усилия значение e_0 принимается равным величине случайного эксцентрицитета.

Применение внецентренно сжатых бетонных элементов не допускается при эксцентрицитетах приложения продольной силы с учетом прогибов $e_0\eta$, превышающих:

а) в зависимости от сочетания нагрузок:

при основном — 0.9y,

при особом — 0.95y;

б) в зависимости от вида и марки бетона:

для тяжелого обычного бетона и тяжелого, облегченного и легкого жаростойкого бетона марок выше M 100 - (y-1) см;

для других марок бетона — (у-2) см.

Здесь y — расстояние от центра тяжести сечения до наиболее сжатого волокна бетона (рис. 6).

- 3.4. Расчет бетонных элементов прямоугольного сечения на действие сжимающей продольной силы N при их расчетной длине $l_0 \le 20h$ и величине экспентрицитета e_0 , определенной в соответствии с п. 3.2. настоящего Руководства, не более $e_0^{\text{сл}}$, допускается производить из условия (141) при $F_a = F_a' = 0$.
- 3.5. Расчет внецентренно-сжатых бетонных элементов, подвергающихся равномерному нагреву и неравномерному нагреву по высоте сечения с температурой бетона наиболее нагретой грани до 400° С производится из условия

$$N \leqslant R_{\rm np} f_{\rm 0}, \tag{69}$$

где $F_{\bf 6}$ — площадь сечения сжатой зоны бетона, определяемая из условия, что ее центр тяжести совпадает с точкой приложения равнодействующей внешних сил.

Для элементов прямоугольного сечения (см. рис. 6) F_6 определяется по формуле

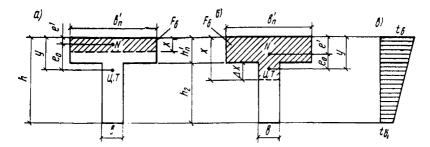
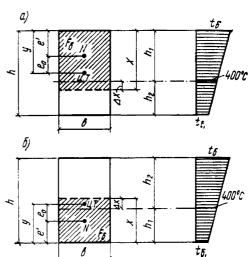



Рис. 8. Расчетные схемы сечений, принятые при расчете внецентренно-сжатых бетонных элементов таврового сечения

 $a = \text{при } 2e' < h'_{\Pi}; \quad 6 = \text{при } h'_{\Pi} < 2e'; \quad s = \text{распределение}$ температур; $L\!\!\!/.T =$ центр тяжести сечения

Рис. 9. Расчетные схемы сечений, принятые при расчете внецентренно-сжатых бетонных элементов прямоугольного сечения при его неравномерном нагреве с температурой наиболее нагретой грани сечения $t_6 > 400^{\circ}$ С

a — при продольной силе N, приложенной со стороны более нагретой грани сечения; δ — при продольной силе N, приложенной со стороны менее нагретой грани сечения

$$F_{\mathbf{6}} = bh \left(1 - \frac{2e_{\mathbf{0}}\eta}{h} \right). \tag{70}$$

Для элементов таврового сечения, если $2e' \leqslant h_{\Pi}'$ (рис. 8, a), F_6 определяется по формуле (70) при $b=b_{\Pi}'$.

Расстояние от точки приложения силы N до наиболее напряженной грани сечения e' определяется по формуле

$$e' = y - e_0 \eta \tag{71}$$

здесь у — расстояние от центра тяжести приведенного сечения до наиболее напряженной грани, определяемое согласно п. 1.28 настоящего Руководства.

настоящего Руководства. При $e' < h_{\rm fl}' < 2e'$ (рис. 8, 6) F_6 определяется по формуле где

$$F_6 = b_n' h_n' + b\Delta x, \tag{72}$$

где
$$\Delta x = -(h'_{\mathbf{n}} - e') \pm \sqrt{(h'_{\mathbf{n}} - e')^2 - \frac{b'_{\mathbf{n}} h'_{\mathbf{n}}}{b} (h'_{\mathbf{n}} - 2e')}$$
. (73)

3.6. Расчет внецентренно-сжатых бетонных элементов, подвергающихся неравномерному нагреву по высоте сечения с температурой бетона наиболее нагретой грани более 400° С и силе N, расположенной со стороны этой грани при $2e' \leqslant h_1$ для прямоугольного сечения (рис. 9, a) и $2e' \leqslant h_1'$ для таврового сечения (рис. 8, a) или силе N, расположенной со стороны менее нагретой грани при $2e' \leqslant h_1$ (рис. 9, 6), выполняется из условия (69) настоящего Руководства. При этом F_6 для элементов прямоугольного сечения и таврового сечения при расположении силы N со стороны ребра (менее нагретой грани) определяется по формуле

$$F_6 = 2be'; (74)$$

для элементов таврового сечения при расположении силы со стороны полки (наиболее нагретой грани) — по формуле

$$F_6 = 2b_0' e', \tag{75}$$

где e' определяется по формуле (71).

Расчет прямоугольного сечения при $2e' > h_1$ (рис. 9) выполняется из условия

$$N \leqslant R_{\text{npt1}} F_{61} + R_{\text{npt2}} F_{62}. \tag{76}$$

При силе N, расположенной со стороны более нагретой грани (рис. 9, a):

$$F_{61} = bh_1;$$
 (77)

$$F_{62} = b\Delta x; \tag{78}$$

$$\Delta x = -(h_1 - e') \pm \sqrt{(h_1 - e')^2 - \frac{\beta_{61} \overline{v_1}}{\beta_{62} \overline{v_2}} h_1 (h_1 - 2e')}, \quad (79)$$

где e' — определяется по формуле (71);

 eta_{61} , eta_{62} , v_1 и v_2 — коэффициенты, принимаемые по табл. 16 и 18 настоящего Руководства в зависимости от средней температуры бетона участков сжатой зоны высотой соответственно h_1 и Δx .

При силе N, расположенной со стороны менее нагретой грани, и обозначениях, принятых на рис. 9, δ , значения F_{61} , F_{62} и Δx определяются по формулам (77)—(79).

Расчет таврового сечения при силе N, расположенной со стороны полки (наиболее нагретой грани) (рис. 8), выполняется из условия (76). При $h_n^* < 2e'$ (рис. 8, a)

$$F_{61} = b_{\Pi}^{*} h_{\Pi}^{*}; \tag{80}$$

 F_{62} — определяется по формуле (78), в которой

$$\Delta x = -(h'_{\Pi} - e') \pm \sqrt{(h'_{\Pi} - e')^2 - \frac{\beta_{6.\Pi} \bar{\nu}_{\Pi}}{\beta_{62} \bar{\nu}_{2}} \frac{b'_{\Pi} h'_{\Pi}}{b} (h'_{\Pi} - 2e')}.$$
(81)

Здесь Вы нуп-коэффициенты, принимаемые по табл. 16 и 18 настоящего Руководства в зависимости от средней температуры полки;

 $oldsymbol{eta_{69}}$ и $oldsymbol{\overline{\nu_2}}$ — такие же, как в формуле (79). При силе N, расположенной со стороны ребра, полка тавра не принимается в расчет и сечение рассчитывается как прямоугольное.

Внецентренно-сжатые бетонные элементы, в которых не допускается появления трещин (рис. 7), независимо от расчета из условий (69) или (76) должны быть проверены с учетом сопротивления бетона растянутой зоны (см п. 3.1 настоящего Руководства), из условия

$$N \leqslant \frac{R_{\rm pt} W_{\rm T}}{e_0 \eta - r_y} \ . \tag{82}$$

Для элементов прямоугольного сечения, подвергающихся равномерному нагреву и неравномерному нагреву по высоте сечения с температурой бетона наиболее нагретой грани до 400° С, условие (82) имеет вид

$$N \leqslant \frac{1,75R_{\rm pt}\,bh}{\frac{6e_0\eta}{h} - 0.8} \,. \tag{83}$$

В формулах (70), (71), (82) и (83):

η — коэффициент, определяемый по формуле (87);

 r_u — расстояние от центра тяжести сечения до ядровой точки, наиболее удаленной от растянутой зоны, определяемое по формуле

$$r_y = 0.8 \frac{W_0}{F};$$
 (84)

 $W_{\rm T}$ — момент сопротивления сечения для крайнего растянутого волокна с учетом неупругих деформаций растянутого бетона, определяемый в предположении отсутствия продольной силы по формуле

$$W_{\rm T} = \frac{2I_{\rm 6.0}}{h - {\rm x}} + S_{\rm 6.p},\tag{85}$$

 $I_{6,0}$ — момент инерции сжатой зоны сечения относительно нулевой линии;

 W_0 — момент сопротивления для растянутой грани сечения, определяемый по правилам сопротивления упругих материалов по формуле (238).

Положение нулевой линии определяется из условия

$$S_{6,0} = 0.5 (h - x) F_{6,p};$$
 (86)

где $S_{6,D}$ и $S_{6,0}$ — статический момент площади соответственно растянутой и сжатой зон сечения относительно нулевой

 $F_{6,p}$ — площадь растянутой зоны сечения.

При неравномерном нагреве по высоте сечения с температурой наиболее нагретой грани выше 400° С положение центра тяжести сечения, а также величины $F_{6,p}$, $S_{6,p}$, $S_{6,p}$ и $I_{6,0}$ — определяются для приведенного сечения.

Допускается W_{τ} определять по формуле (245).

При проверке прочности необходимо учитывать напряжения растяжения в бетоне, вызванные нелинейным распределением температурных деформаций бетона по высоте сечения элемента и определяемые по формуле (31).

Наибольшая температура бетона сжатой зоны сечения элементов не должна превышать предельно допустимую температуру применения бетона, указанную в графе 7 табл. 11 и п. 1.27 настоящего

Руководства.

Если наибольшая температура бетона сжатой зоны превышает указанную величину, допускается рассчитывать сечения с неполной высотой, при которой наибольшая температура бетона сжатой зоны должна быть не выше этой величины.

3.7. Значение коэффициента η, учитывающего влияние прогиба на величину эксцентрицитета продольного усилия e_0 , следует опре-

делять по формуле

$$\eta = \frac{1}{1 - \frac{N}{N_{\rm KP}}} \,, \tag{87}$$

где $N_{\rm KP}$ — условная критическая сила, определяемая по формуле

$$N_{\rm KP} = \frac{6.4E_6 I_{\rm II}}{k_{\rm II} l_0^2} \left(\frac{0.11}{0.1+t} + 0.1 \right). \tag{88}$$

В формуле (88):

 $k_{дл}$ — коэффициент, учитывающий влияние длительного действия нагрузки на прогиб элемента в предельном состоянии, равный

$$k_{\rm g,n} = 1 + \beta \, \frac{M_{\rm l}^{\rm g,n}}{M_{\rm l}} \,. \tag{89}$$

Здесь

6 — коэффициент, принимаемый в зависимости от вида бетона и его температуры в центре тяжести сечения по табл. 39 настоящего Руководства;

 M_1 — момент относительно растянутой или наименее сжатой грани сечения от действия постоянных, длительных и кратковременных нагрузок;

 $M_1^{\pi_n}$ — то же, от действия постоянных и длительных нагрузок;

 $m{t_0}$ — определяется по табл. 40 настоящего Руководства; $m{t}$ — коэффициент, принимаемый равным e_0/h , но не менее величины

$$t_{\text{MHH}} = 0.5 - 0.01 \frac{l_0}{h} - 0.001 R_{\text{mpt}},$$
 (90)

где $R_{\rm npf}$ — в кгс/см²; $I_{\rm n}$ — момент инерции приведенного сечения относительно его центра тяжести, определяемый согласно указаниям п. 1.28 настоящего Руководства. При расчете сечений с неполной высотой, согласно п. 3.6, величина I_{π} принимается по полному сечению.

Номера составов бетона по табл. 11 настоящего Руковойства		Коэффициент β при температуре бетона, °C, в центре тяжести сечения							
Руководства	50	100	200	300	500	700	900		
1—3	1,2	1,4	1,5	2	_				
6—11, 23, 24	1,6	1,6	1,8	1,9	6,7	16			
12—18, 27, 29	1,5	1,5	2	8	33	_			
19—21	1,2	1,4	1,5	2	16	25	50		

Примечания: 1. Коэффициент в для промежуточных значений

температур определяется по интерполяции.

2. Если температура бетона в центре тяжести внецентренно-сжатого сечения превышает наибольшую температуру, для которой даны числовые значения β , то допускается расчетное сечение принимать с неполной высотой, в центре тяжести которого температура бетона не превышает наибольшую величину, указанную в табл. 39.

Таблица 40

	1 4 0 11 11 14 1
Характер опирания элементов	Расчетная длина 1 ₀ внецентренно-сжатых бетонных элементов
1. Для стен и столбов с опорами вверху и внизу: а) при шарнирах на двух концах независимо от величины смещения опор б) при защемлении одного из концов и возможном смещении опор для зда-	Н
ний: многопролетных однопролетных	1,25 <i>H</i> 1,5 <i>H</i>
2. Для свободно стоящих стен и столбов	2Н

Обозначения, принятые в табл. 40: H — высота столба или стены в пределах этажа за вычетом толщины плиты перекрытия либо высота свободно стоящей конструкции.

^{3.8.} Расчет элементов бетонных конструкций на местное сжатие (смятие) должен производиться согласно указаниям пп. 3.63 и 3.64 настоящего Руководства.

ИЗГИБАЕМЫЕ ЭЛЕМЕНТЫ

3.9. Изгибаемые бетонные элементы, подвергающиеся воздействию температуры, допускается применять только в случае, если они лежат на грунте или специальной подготовке, в других случаях, как исключение, при условии, что они рассчитываются на нагрузку от собственного веса и под ними исключается возможность нахождения людей и оборудования.

Расчет изгибаемых бетонных элементов (рис. 7) должен производиться из условия

$$M \leqslant R_{pt} W_{\mathbf{T}}, \tag{91}$$

где $W_{\rm T}$ — определяется по формуле (85).

Для элементов прямоугольного сечения, подвергающихся равномерному нагреву и неравномерному нагреву по высоте сечения с температурой бетона наиболее нагретой грани до 400° С, значение W_{τ} принимается равным

$$\mathbf{W}_{\mathbf{T}} = \frac{bh^2}{3.5} \ . \tag{92}$$

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ПРОЧНОСТИ

3.10. Расчет по прочности элементов железобетонных конструкций должен производиться для сечений, нормальных к их продольной оси, а также для наклонных к ней сечений наиболее опасного направления; при наличии крутящих моментов следует проверить прочность пространственных сечений, ограниченных в растянутой зоне спиральной трещиной, наиболее опасного из возможных направлений. Кроме того, должен производиться расчет элементов на местное действие нагрузки (смятие, продавливание, отрыв).

РАСЧЕТ ПО ПРОЧНОСТИ СЕЧЕНИЙ, НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

3.11. Определение предельных усилий в сечении, нормальном к продольной оси элемента, должно производиться исходя из следующих предпосылок:

сопротивление бетона растяжению принимается равным нулю; сопротивление бетона сжатию представляется напряжениями, равными $R_{\pi pt}$, равномерно распределенными по сжатой зоне бетона.

При расчете на нагрузку наибольшая температура бетона сжатой зоны сечения элемента не должна превышать предельно допустимой температуры применения бетона, указанной в графе 7 табл. 11 и п. 1.27 настоящего Руководства. Если наибольшая температура бетона свесов сжатой полки таврового сечения превышает предельно допустимую температуру применения бетона, то сечение рассчитывается как прямоугольное шириной b без учета свесов полки. Тавровое и прямоугольное сечения допускается рассчитывать с неполной высотой (см. примеры расчета 8 и 11). При этом наибольшая температура бетона наиболее сжатой грани прямоугольного сечения и свесов полки таврового сечения не должна превышать предельно допустимой температуры применения бетона, причем вы-

сота оставшейся части полки не должна быть меньше 1/20 высоты сечения элемента без учета отброшенной части сечения. Полка, расположенная в растянутой зоне, в расчете не учитывается.

Растягивающие напряжения в арматуре принимаются не более расчетного сопротивления растяжению $R_{\rm at}$, а сжимающие напряже-

ния — не более расчетного сопротивления сжатию R_{act} .

При этом температура арматуры не должна превышать предельно допустимой температуры применения арматуры, устанавливаемой по расчету, согласно табл. 24 настоящего Руководства.

3.12. Расчет сечений, нормальных к продольной оси элемента, когда внешняя сила действует в плоскости оси симметрии сечения и арматура сосредоточена у перпендикулярных к указанной плоскости граней элемента, должен производиться в зависимости от соотношения между величиной относительной высоты сжатой зоны бетона

 $\xi = \frac{x}{h_0}$, определяемой из соответствующих условий равновесия, и граничным значением относительной высоты сжатой зоны бетона Ед (см. п. 3.13 настоящего Руководства), при котором предельное состояние элемента наступает одновременно с достижением в растя-

нутой арматуре напряжения, равного расчетному сопротивлению R_{st} . 3.13. Величина Ев определяется по формуле

$$\xi_R = \frac{\xi_0}{1 + \frac{\sigma_A}{4000\beta_a} \left(1 - \frac{\xi_0}{1, 1}\right)},$$
 (93)

где \$0 - характеристика сжатой зоны бетона для тяжелого обычного бетона и тяжелого, облегченного и легкого жаростойкого бетона определяется по формуле

$$\xi_0 = a - 0,0008 R_{\text{np}t}. \tag{94}$$

В формуле (94):

а — коэффициент, принимаемый равным для бетона составов (см. табл. 11 настоящего Руководства):

№ 1—3, 6, 7, 13, 20 и 21 — 0,85;

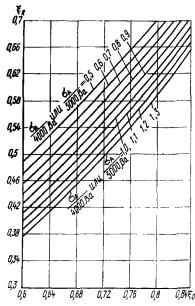
 N_2 4, 5, 8—12, 14—19, 23, 24 и 29—0,8;

 R_{npt} — в кгс/см²;

- σ_A — напряжение в арматуре, кгс/см², принимаемое равным для арматуры классов:

A-I, A-II, A-III, B-I и Bp-I — R_{at} — σ_0 ;

A-IV, AT-IV, A-V, AT-V, AT-VI, B-II, Bp-II и K-7 - Rat+ $+4000\beta_a-\sigma_0$;


для жаростойкой арматуры марок 30ХМ, 12Х13, 20Х13,

20X23H18, 12X18H9T is $45X14H14B2M - R_{at} - \sigma_0$.

Здесь R_{at} — расчетное сопротивление арматуры растяжению с учетом соответствующих коэффициентов условий работы арматуры, за исключением коэффициента m_{a4} (см. поз. 4 табл. 32 настоящего Руководства);

β_а — коэффициент, принимаемый по табл. 35 настоящего Руководства в зависимости от температуры арматуры;

 σ_0 — определяется при коэффициенте $m_{\mathtt{T}}$, меньшем единицы. В случае, если в расчете элементов из тяжелого обычного бетона и тяжелого, облегченного и легкого жаростойкого бетона учитыва-

 $Q\delta$ $Q\delta 4$ $Q\delta 8$ Q.72 Q.75 $Q\delta$ $Q\delta 4\xi_0$ Рис. 10. Значения ξ_R в зависимости от ξ_0 для различных

 $\frac{\sigma_A}{\sigma_A}$ β_a

значений величины

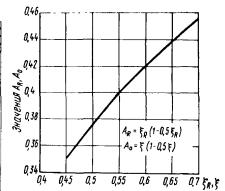


Рис. 11. Значения A_R в зависимости от ξ_R .

ется коэффициент условий рабо- $\bar{\varrho}_{\beta k \bar{\kappa}_{0}}$ ты бетона $m_{61} = 0.85$ (см. поз. 1 табл. 15 настоящего Руководства), то в формулу (93) вместо величины 4000 подставляется величина 5000.

Значения ξ_R в зависимости от ξ_0 при различных значениях величины $\sigma_A/4000\beta_a$ или $\sigma_A/5000\beta_a$ могут быть определены по рис. 10.

Если в сечении имеется растянутая арматура из сталей разных классов или с разной температурой нагрева, в формулу (93) вводится большее из значений од.

или

4000Ba

Статический момент площади бетона граничной сжатой зоны прямоугольной формы относительно оси, перпендикулярной к плоскости действия изгибающего момента и проходящей через центр тяжести площади сечения арматуры растянутой зоны, равен

$$S_R = A_R bh_0^2, (95)$$

где

$$A_R = \xi_R (1 - 0.5 \xi_R). \tag{96}$$

Значения A_R в зависимости от ξ_R приведены на рис. 11. Для элементов, подвергающихся нагреву, независимо от величины температуры ξ_R и A_R не должны превышать значений, соответ-

ственно 0,7 и 0,46.

3.14. При расчете по прочности железобетонных элементов с высокопрочной арматурой классов A-IV, Aт-IV, A-V, Aт-V, Aт-VI, B-II, Bp-II, K-7 при соблюдении условий $\xi < \xi_R$ расчетное сопротивление арматуры $R_{\rm at}$ должно быть умножено на коэффициент условий работы $m_{\rm at}$ (см. поз. 4 табл. 32 настоящего Руководства), определяемый по формуле (97). При наличии сварных стыков в зоне элемен-

та с изгибающими моментами, превышающими $0.9M_{\text{мако}}$ (где $M_{\text{мако}}$ — максимальный расчетный момент), значение коэффициента m_{ab} для арматуры классов A-IV и A-V принимается не более 1.1:

$$m_{a4} = \overline{m}_{a4} - (\overline{m}_{a4} - 1) \frac{\xi}{\xi_R}$$
, (97)

где m_{a4} — максимальное значение коэффициента m_{a4} , принимаемое равным для арматуры:

классов A-IV и Ат-IV — 1,2;

классов A-V, Ат-V, B-II, Вр-II и K-7 — 1,15;

класса Aт-VI — 1,1;

 $\xi = \frac{x}{h_0}$, где x подсчитывается при значениях R_{at} без учета коэффициента m_{a4} ; для случая центрального растяжения, а также внецентренного растяжения продольной силой, расположенной между равнодействующими усилий в арматуре, значение ξ принимается равным нулю.

Коэффициент условий работы $m_{\rm a4}$ не следует учитывать для арматуры элементов:

сжатых при гибкости $l_0/r > 35$;

рассчитываемых на действие многократно повторяющейся нагрузки;

армированных высокопрочной проволокой, расположенной вплотную (без зазоров);

эксплуатируемых в агрессивной среде.

3.15. Для напрягаемой арматуры, расположенной в сжатой от действия внешних сил зоне и имеющей сцепление с бетоном, расчетное сопротивление сжатию $R_{\rm a.o.}$ (пп. 3.17, 3.22, 3.33, 3.46 настоящего Руководства) должно быть заменено напряжением $\sigma_{\rm c}$, равным $\left(4000-\sigma_{\rm 0}^{\prime}\right)$ кгс/см², где $\sigma_{\rm 0}^{\prime}$ определяется при коэффициенте $m_{\rm T}$, большем единицы. Если в расчете элементов из обычного бетона и облегченного жаростойкого бетона учитывается коэффициент условий работы $m_{\rm 61}=0.85$ (см. поз. 1 табл. 15 настоящего Руководства), то значение $\sigma_{\rm c}$ принимается равным $\left(5000-\sigma_{\rm 0}^{\prime}\right)$ кгс/см², но не более $R_{\rm a.c.}$. При расчете элементов в стадии обжатия для напрягаемой арматуры, расположенной в зоне предполагаемого разрушения бетона от сжатия, напряжение $\sigma_{\rm c}$ принимается равным $\left(3300-\sigma_{\rm 0}^{\prime}\right)$ кгс/см².

Изгибаемые элементы прямоугольного, таврового, двутаврового, кольцевого сечений

3.16. При расчете по прочности изгибаемых элементов рекомендуется соблюдать условие $x \leqslant \xi_R h_0$. В случае когда площадь сечения растянутой арматуры по конструктивным соображениям или из расчета по предельным состояниям второй группы принята большей, чем это требуется для соблюдения условия $x \leqslant \xi_R h_0$, расчет следует производить по формулам для общего случая (п. 3.28 главы СНиП II-21-75) с учетом влияния температуры на расчетные сопротивления бетона и арматуры.

Допускается также в случае, если полученная из расчета по формуле (99) или (115) величина $x > \xi_R h_0$, производить расчет соответственно из условий (98) и (114), подставляя в них значение $x = \xi_R h_0$.

Расчет прямоугольных сечений

- **3.17.** Расчет прямоугольных сечений, указанных в п. 3.12 настоящего Руководства (рис. 12), должен производиться:
 - а) при $\xi = \frac{x}{h_0} \leqslant \xi_R$ из условия:

$$M \le R_{\text{mot}} bx (h_0 - 0.5x) + R_{\text{a.c.}} F_{\text{a}}^{"} (h_0 - a^"),$$
 (98)

при этом высота сжатой зоны х определяется из формулы

$$R_{at} F_a - R_{a,et} F_a' = R_{npt} bx; (99)$$

6) при $\xi = \frac{s}{h_0} > \xi_R$ прочность сечения с двойной арматурой можно проверять из условия

$$M \le A_R R_{\text{mpl}} b h_0^2 + R_{\text{a.o.t}} F_{\text{a}}' (h_0 - a'')$$
 (100)

или согласно указаниям п. 3.16 настоящего Руководства;

в) при x < 2a' прочность сечения проверяется из условия

$$M \leqslant R_{\mathbf{a}\mathbf{\bar{t}}} F_{\mathbf{a}} (h_{\mathbf{0}} - a'). \tag{101}$$

В формуле (100) значение $A_{\rm R}$ принимается по п. 3.13 настоящего Руководства.

3.18. При проверке прочности прямоугольных сечений с одиночной арматурой в формулах (98), (99) и (100) принимают $F_a = 0$.

3.19. Подбор продольной арматуры вычисляется следующим образом:

$$A_0 = \frac{M}{R_{\rm npt} bh_0^2} \, . \tag{102}$$

Ссли $A_0 \leqslant A_R$, то сжатой арматуры по расчету не требуется.

При отсутствии сжатой арматуры площадь сечения растянутой арматуры определяется по формуле

$$F_{\mathbf{a}} = \frac{M}{R_{\mathbf{a}t} \, v \, h_0} \,, \tag{103}$$

где v — определяется по табл. 41 настоящего Руководства в зависимости от значения A_0 .

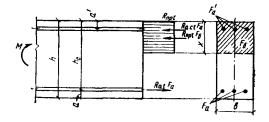


Рис. 12. Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси изгибаемого железобетонного элемента при расчете его по прочности

Таблица 41 Значения коэффициентов для расчета по прочности железобетонных элементов

ŧ	v	Ao	8	v	Α,
0,01	0,995	0,01	0,36	0,82	0,295
0,02	0,99	0,02	0,37	0,815	0,302
0,03	0,985	0,03	0,38	0,81	0,308
0,04	0,98	0,039	0,39	0,805	0,314
0,05	0,975	0,049	0,4	0,8	0,32
0,06	0,97	0,058	0,41	0,795	0,326
0,07	0,965	0,068	0,42	0,79	0,332
0,08	0,96	0,077	0,43	0,785	0,338
0,09	0,955	0,086	0,44	0,78	0,343
0,1	0,95	0,095	0,45	0,775	0,349
0,11	0,945	0,104	0,46	0,77	0,354
0,12	0,94	0,113	0,47	0,765	0,359
0,13	0,935	0,122	0,48	0,76	0,365
0,14	0,93	0,13	0,49	0,755	0,37
0,15	0,925	0,139	0,5	0,75	0,375
0,16	0,92	0,147	0,51	0,745	0,38
0,17	0,915	0,156	0,52	0,74	0,385
0,18	0,91	0,164	0,53	0,735	0,39
0,19	0,905	0,172	0,54	0,73	0,394
0,2	0,9	0,18	0,55	0,725	0,399
0,21	0,895	0,188	0,56	0,72	0,403
0,22	0,89	0,196	0,57	0,715	0,408
0,23	0,885	0,203	0,58	0,71	0,412
0,24	0,88	0,211	0,59	0,705	0,416
0,25	0,875	0,219	0,6	0,7	0,42
0,26	0,87	0,226	0,61	0,695	0,424
0,27	0,865	0,234	0,62	0,69	0,428
0,28	0,86	0,241	0,63	0,685	0,432
0,29	0,855	0,248	0,64	0,68	0,435
0,3	0,85	0,255	0,65	0,675	0,439
0,31	0,845	0,262	0,66	0,672	0,442
0,32	0,84	0,269	0,67	0,665	0,446
0,33	0,835	0,276	0,68	0,66	0,449
0,34	0,83	0,282	0,69	0,655	0,452
0,35	0,825	0,289	0,7	0,65	0,455

П р и м е ч а н и е. Для изгибаемых элементов прямоугольного сечения

$$\xi = \frac{R_{af} F_{a} - R_{a.cf} F_{a}'}{R_{mpt} bh_{0}};$$

$$A_{0} = \frac{M - R_{a.cf} F_{a}' (h_{0} - a')}{R_{mpt} bh_{0}^{2}} = \xi (1 - 0.5\xi); \quad v = 1 - 0.5\xi.$$

Если $A_0 > A_R$, то требуется увеличить сечение, повысить марку

бетона или установить сжатую арматуру.

При воздействии температуры, выше предельно допускаемой температуры применения бетона (см. табл. 11 и п. 1.27 настоящего Руководства), сечение рассчитывается с неполной высотой.

Расчет производят следующим образом. Определяют расстояние x_1 от наиболее нагретой грани до бетона, имеющего предельно допустимую температуру применения. Затем вычисляют значение A_{01} :

$$A_{01} = \frac{M}{R_{\rm npt} b (h_0 - x_1)^2} \,. \tag{104}$$

Относительную высоту сжатой зоны определяют по формуле

$$\xi = 1 - \sqrt{1 - 2A_{01}}. (105)$$

Для расчета принимают укороченную полезную высоту сечения:

$$h_{y} = h_{0} - x_{1}. {106}$$

Площадь сечения растянутой арматуры определяется по формуле

$$F_{\mathbf{a}} = bh_{\mathbf{y}} \, \xi \, \frac{R_{\mathbf{n}pl}}{R_{\mathbf{a}l}} \, . \tag{107}$$

3.20. Когда требуется по расчету сжатая арматура, площадь сечения сжатой и растянутой арматуры рекомендуется определять по формулам:

$$F_{a}' = \frac{M - 0.4R_{\text{npt}} bh_{0}^{2}}{R_{\text{a.cf}} (h_{0} - a')}; \tag{108}$$

$$F_{a} = \frac{0.55bh_{0}R_{\pi pf}}{R_{at}} + F_{a}'\frac{R_{a.c.t}}{R_{af}}.$$
 (109)

Если принятая площадь сечения сжатой арматуры $F_{\mathbf{a}}^{\bullet}$ значительно превышает ее величину по расчету, то площадь сечения растянутой арматуры может быть уменьшена.

Площадь сечения растянутой арматуры определяется с учетом фактической площади сечения сжатой арматуры по п. 3.21 настоя-

щего Руководства.

3.21. При наличии сжатой арматуры площадь сечения растянутой арматуры рекомендуется определять следующим образом.

Вычисляется значение

$$A_0 = \frac{M - R_{\text{a.c.}t} F_{\text{a}}' \left(h_0 - a' \right)}{R_{\text{mpt}} b h_0^2} > 0.$$
 (110)

Если $A_0 \leqslant A_R$, то в зависимости от значения A_0 по табл. 41 настоящего Руководства находится относительная высота сжатой зоны

$$\xi = \frac{x}{h_0}:$$
 при $\xi > \frac{2a'}{h_0}$

$$F_{\mathbf{a}} = \frac{\xi b h_0 R_{\mathbf{npt}}}{R_{\mathbf{ab}}} + F_{\mathbf{a}}' \frac{R_{\mathbf{a,ct}}}{R_{\mathbf{at}}}; \tag{111}$$

при
$$\xi \leqslant \frac{2a'}{h_0}$$

$$F_{a} = \frac{M}{R_{at} (h_{0} - a')} \, . \tag{112}$$

Площадь растянутой арматуры может быть снижена, если величина ξ , найденная без учета сжатой арматуры, в зависимости от значения A_0 по формуле (102), оказывается менее $\frac{2a'}{h_0}$. Тогда количество растянутой арматуры определяется без учета сжатой арматуры по формуле (103).

 \hat{E} сли $\hat{A}_0 > \hat{A}_R$, то требуется увеличить сжатую арматуру. В этом случае количество сжатой и растянутой арматуры определяется по п. 3.20 настоящего Руководства.

Расчет тавровых и двутавровых сечений

3.22. Расчет сечений, имеющих полку в сжатой зоне, должен производиться в зависимости от положения границы сжатой зоны:

а) если граница сжатой зоны проходит в полке (рис. 13, a), т. е. соблюдается условие

$$R_{at} F_{a} \leq R_{npt} b'_{n} h'_{n} + R_{a,ct} F'_{a}, \qquad (113)$$

расчет производится как для прямоугольного сечения щириной b_n в соответствии с пп. 3.17 и 3.18 настоящего Руководства;

б) если граница сжатой зоны проходит в ребре (рис. 13, б), т. е. условие (113) не соблюдается:

при
$$\xi = \frac{x}{h_0} \leqslant \xi_R$$
 расчет производится из условия

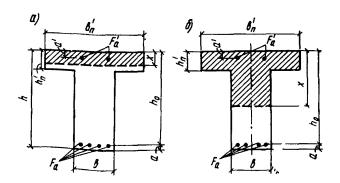


Рис. 13. Форма сжатой зоны в сечении изгибаемого железобетонного элемента с полкой в сжатой зоне

a — при расположении границы сжатой зоны в полке; δ — то же, в ребре

$$M \leq R_{npt} bx \left(h_0 - 0.5x\right) + R_{npt} \left(b_n'' - b\right) h_n'' \left(h_0 - 0.5h_n'\right) + R_{a.ct} F_a' \left(h_0' - a'\right), \tag{114}$$

при этом высота сжатой зоны х определяется из формулы

$$R_{at} F_a - R_{a,ct} F'_a = R_{npt} bx + R_{npt} (b'_n - b) h'_n.$$
 (115)

При $x>\xi_R h_0$ можно принять $x=\xi_R h_0$, а прочность сечения проверить из условия

$$M \leq A_R R_{\text{npt}} b h_0^2 + R_{\text{npt}} \left(b_n' - b \right) h_n' \left(h_0 - 0.5 h_n' \right) + \\ + R_{\text{a.ct}} F_{\text{a}}' \left(h_0 - a'' \right)$$
(116)

или согласно указаниям п. 3.16 настоящего Руководства.

Когда в расчете учитывается арматура, расположенная в сжатой зоне, и при этом не соблюдается условие $x \geqslant 2a'$, то следует в формулах (113)—(115) принять $R_{a.ct} = 0$, если это приводит к повышению прочности.

При мечание. При переменной высоте свесов полки допускается принимать значение $h_{\mathbf{n}}'$ равным средней высоте свесов.

3.23. Площадь сечения сжатой арматуры определяется по формуле

$$F'_{a} = \frac{M - A_{R} R_{\text{npt}} b h_{0}^{2} - R_{\text{npt}} (b'_{n} - b) h'_{n} (h_{0} - 0.5h'_{n})}{R_{a,\text{ct}} (h_{0} - a')}, \quad (117)$$

где A_R — определяется по п. 3.13 настоящего Руководства.

3.24. Площадь сечения растянутой арматуры определяется следующим образом:

 а) если граница сжатой зоны проходит в полке, т. е. соблюдается условие

$$M \leq R_{\rm npt} b'_{\rm n} h'_{\rm n} (h_0 - 0.5h'_{\rm n}) + R_{\rm a.ct} F'_{\rm a} (h_0 - a'),$$
 (118)

площадь сечения растянутой арматуры определяется как для прямоугольного сечения шириной $b_{\mathbf{n}}'$ согласно пп. 3.19 и 3.21 настоящего Руководства;

б) если граница сжатой зоны проходит в ребре, т. е. условие (118) не соблюдается, площадь сечения растянутой арматуры определяется по формуле

$$F_{a} = \frac{\xi b h_{0} R_{npt} + (b'_{n} - b) h'_{n} R_{npt} + R_{a,ct} F'_{a}}{R_{a,ct}}, \qquad (119)$$

где \$ определяется по табл. 41 настоящего Руководства в зависимости от значения

$$A_{0} = \frac{M - R_{\text{npt}} \left(b'_{\text{n}} - b \right) h'_{\text{n}} \left(h_{0} - 0.5 h'_{\text{n}} \right) - R_{\text{a.ct}} F'_{\text{a}} \left(h_{0} - a' \right)}{R_{\text{npt}} b h_{0}^{2}} . \tag{120}$$

При этом должно удовлетворяться условие $A_0 \leq A_R$.

3.25. При одиночном армирования сечения продольной растянутой арматурой в формулах (113)—(116), (118)—(120) принимается $F_a = 0$.

Устанавливаемая в сжатой зоне конструктивная и монтажная арматура при определении прочности сечений в условиях воздействия повышенных и высоких температур не должна учитываться в расчете.

- 3.26. Величина b_n'' , вводимая в расчет по формулам (113)— (120), принимается из условия, что ширина свеса полки в каждую сторону от ребра должна быть не более $^1/_6$ пролета элемента и не более:
- а) при наличии поперечных ребер 1/2 расстояния в свету между ребрами;
- б) при отсутствии поперечных ребер или при расстояниях между ними больших, чем расстояния между продольными ребрами, и $h'_n < 0.1h 6h'_n$;
 - в) при консольных свесах полки:

при
$$h'_{\Pi} \gg 0$$
, $1h - 6h'_{\Pi}$;

при
$$0.05h \leqslant h_{\Pi}' < 0.1h - 3h_{\Pi}'$$
;

при $h_{\Pi}^{s} < 0.05h$ — свесы не учитываются, а сечение элемента рассчитывается как прямоугольное шириной b.

В ребристых конструкциях панелей, ограничивающих рабочее пространство теплового агрегата, когда невозможна установка хо-

мутов и конструктивной арматуры в сжатой зоне бетона из-за температуры, превышающей предельно допустимую температуру применения конструктивной арматуры (см. табл. 24 настоящего Руководства), рекомендуется толщину полки h_n^* назначать такую, чтобы отношение h_n^*/h таврового сечения было равно или больше, чем это указано на рис. 14.

Расчет кольцевых сечений

3.27. Расчет изгибаемых элементов кольцевого сечения при соотношении внутреннего и наружного радиусов r₁/r₂≥0,5 с арматурой, равномерно распределенной по окружности (при числепродольных стержней не менее 6), должен производиться как для

Рис. 14. Значения отношения $\frac{h'_{\Pi}}{h}$ в зависимости от характеристики таврового сечения $A = \frac{b'_{\Pi} - b}{b}$

внецентренно-сжатых элементов по п. 3.44 настоящего Руководства, принимая в формулах (154) — (156) величину продольной силы N=0 и подставляя в формулу (154) вместо Ne_0 значение изгибающего момента M.

Внецентренно-сжатые элементы прямоугольного, таврового, двутаврового, кольцевого сечений

3.28. При расчете внецентренно-сжатых железобетонных элементов необходимо учитывать случайный начальный эксцентрицитет $e_0^{\rm cn}$

согласно указаниям пп. 1.30 и 3.2 настоящего Руководства, а также влияние прогиба на их несущую способность в соответствии с пп. 3.7 и 3.29 настоящего Руководства. Дополнительно должен учитываться эксцентрицитет от температурного выгиба f_t , вызванного неравномерным нагревом по высоте сечения элемента

$$e_0 = e_0^{\rm p} + e_0^{\rm cn} + f_t, \tag{121}$$

где
$$e_0^\mathrm{p} = \frac{M}{N}$$
:

Если температурный выгиб уменьшает расчетный эксцентрицитет продольной силы e_0^p , то он не учитывается.

3.29. При расчете внецентренно-сжатых элементов следует учитывать влияние прогиба на их несущую способность, как правило,

путем расчета конструкций по деформированной схеме.

Допускается производить расчет конструкций по недеформированной схеме, учитывая при гибкости $l_0/r > 14$ влияние прогиба элемента на его прочность путем умножения e_0 на коэффициент η . При этом условная критическая сила в формуле (87) для вычисления п принимается равной

$$N_{\rm KP} = \frac{6.4}{l_0^2} \left[\frac{E_6 I_{\rm II}}{k_{\rm A}\pi} \left(\frac{0.11}{0.1 + t/k_{\rm H}} + 0.1 \right) + E_a \beta_a I_a \right] . \tag{122}$$

Для элементов прямоугольного сечения при равномерном нагреве и неравномерном нагреве с температурой наиболее нагретой грани до 400° С и расположении продольной силы в плоскости симметрии

$$N_{\rm KP} = \frac{19,2bh}{\lambda^2} \left[\frac{E_6 \, \beta_6 \, \overline{\nu}}{3k_{\rm A} n} \left(\frac{0,11}{0,1+t/k_{\rm H}} + 0,1 \right) + \mu_1 E_2 \, \beta_a \left(\frac{h_0 - a'}{h} \right)^2 \right] \,, \tag{123}$$

В формулах (122) и (123):

 t_0 — принимается по п. 3.30 настоящего Руководства; t — коэффициент, принимаемый по п. 3.7 настоящего Руковод-

 $k_{\rm д, n}$ — коэффициент, определяемый по формуле (89); при этом моменты M_1 и $M_1^{\, {\rm д}, {\rm n}}$ определяются относительно оси, параллельной линии, ограничивающей сжатую зону и проходящей через центр наиболее растянутого или наименее сжатого (при целиком сжатом сечении) стержня арматуры, соответственно от действия полной нагрузки и кратковременного воздействия температуры и от действия постоянных и длительных нагрузок и длительного нагрева (с учетом указаний п. 1.17 настоящего Руководства);

 I_{Π} — момент инерции приведенного бетонного сечения элемента относительно оси, проходящей через центр тяжести сечения и параллельной линии, ограничивающей сжатую зону, определяется согласно указаниям п. 1.28 настоящего Руковод-

ства;

І_а — момент инерции сечения всей арматуры относительно той же оси:

фа — принимается по табл. 35 настоящего Руководства в зависимости от температуры арматуры;

Вб и v — принимаются по табл. 16 и 18 настоящего Руководства для кратковременного нагрева в зависимости от температуры бетона в центре тяжести приведенного сечения;

k_п — принимается согласно п. 1.28 настоящего Руководства;

 $k_{\rm H}$ — коэффициент, учитывающий влияние предварительного напряжения арматуры на жесткость элемента; при равномерном обжатии сечения напрягаемой арматурой $k_{\rm H}$ определяется по формуле

$$k_{\rm H} = 1 + 40 \frac{\sigma_{\rm 6.H}}{R_{\rm mp1I}} \frac{e_0}{h};$$
 (124)

здесь $\sigma_{6.8}$ — определяется при коэффициенте $m_{\rm T}$ меньшем единицы. Для элементов без предварительного напряжения арматуры $k_{\rm H} = 1$.

$$\lambda = \frac{l_0}{r}$$
 — гибкость элемента,

где г — радиус инерции сечения в плоскости изгиба.

При неравномерном нагреве по высоте сечения *г* определяется: в направлении перепада температур — как для приведенного сечения (см. п. 1.28 настоящего Руководства), по формуле

$$r = \sqrt{\frac{I_{\pi}}{F_{\pi}}}; \tag{125}$$

в направлении, перпендикулярном к перепаду температур, по формуле

$$r = \sqrt{\frac{I}{F}}.$$
 (126)

Гибкость элемента прямоугольного сечения при равномерном и неравномерном нагреве по высоте сечения с температурой наиболее нагретой грани до 400° С определяется по формуле

$$\lambda = \frac{3,46 l_0}{h} \tag{127}$$

Когда по условиям нагрева арматура устанавливается только у одной из граней сечения элемента, т. е. применяется одиночное армирование, в формулах (122) и (123) $I_a = 0$ и $\mu_1 = 0$.

При расчете из плоскости эксцентрицитета продольной силы значение e_0 принимается равным величине случайного эксцентрицитета e_0^{cn} (см. п. 1.30 настоящего Руководства).

При гибкости $\lambda \le 14$ допускается принимать $\eta = 1$.

При N>N_{кр} следует увеличить размеры сечения или уменьшить расчетную длину элемента.

3.30. Расчетные длины l_0 внецентренно-сжатых железобетонных элементов рекомендуется определять как для элементов рамной конструкции с учетом ее деформированного состояния при наиболее не-

				Расчетная д этажных эда в	лина <i>l</i> , коло		
	Y and what have a second in wavening				перпендикулярной к поперечной раме или параллежьной к оси эстакады		
	Х аракт	еристика зданий и кол они		поперечной рамы или пер- пендикуляр- ной к осн	при нали- чин	при отсут- ствии	
				эстакады	связей в плоскости продольного ряда колони или анкерных опор		
1. Здания с	а) при учете	колонн при подкрановых бал- неразрезных надкрановая (верхняя) часть колонн при подкрановых балках подкрановая (нижняя) часть колонн зданий неразрезных многопролетных надкрановая (верхняя) часть колонн при подкрановых бал- колонн при подкрановых бал- ках неразрезных неразрезных неразрезных неразрезных	разрезных	1,5 <i>H</i> _H	0,8 <i>H</i> _H	1,2 <i>H</i> _H	
мостовыми кранами	нагрузки от кранов	·	неразрезных	1,2 <i>H</i> _H	0,8 <i>H</i> _H	0,8 <i>H</i> H	
			разрезных	2 H _B	1,5 H _B	2 H _B	
		подкрановая (нижняя) однопрол часть колонн зданий многопро	неразрезных	2 H _B	1,5 <i>H</i> _B	1,5 <i>H</i> _B	
	б) без учета			1,5 <i>H</i>	0,8 <i>H</i> H	1,2 <i>H</i>	
	нагрузки от кранов	часть колонн зданий	-	1,2 <i>H</i>	0,8 H _H	1,2 <i>H</i>	
		надкрановая (верхняя) часть	разрезных	2,5 H _B	1,5 H _B	2 H B	
		• • •	неразрезных	2 H _B	1,5 H _B	1,5 <i>H</i> _B	
2. Здания без мостовы х	а) колонны ступенчатые	1	однопролетных	1,5 <i>H</i>	0,8 <i>H</i>	1,2 <i>H</i>	
кранов			многопролет- ных	1,2 <i>H</i>	0,8 <i>H</i>	1,2H	
		верхняя часть колонн		2,5 H _B	2 H _B	2,5 H	
	б) колонны постоянного	однопролетных зданий		1,5 <i>H</i>	0,8 H	1,2 <i>H</i>	
	сечения зда - ний	многопролетных зданий		1,2 <i>H</i>	0,8 <i>H</i>	1,2 <i>H</i>	
3. Открытые г	крановые эстакады	ы при подкрановых балках	разрезных	2 H _H	0,8 H _H	1,5 H _H	
			неразрезных	1,5 H _H	0,8 H _H	H _H	
							
4. Открытые колонн с пролет		убопроводы при соединении	шарнирном	2 H	H	2 H	

Примечание. При налични связей до верха колонн в зданиях с мостовыми кранами расчетная длина надкрановой части колони в плоскости оси продольного ряда колони принимается равной Нв.

Обозначения, принятые в табл. 42:

H— полная высота колонны от верха фундамента до горизонтальной конструкции (стропильной или подстропильной, распорки) в соответствующей плоскости;

H_B— высота подкрановой части колонны от верха фундамента до низа подкрановой балки;

H_B— высота надкрановой части колонны от ступени колонны до горизонтальной конструкции в соответствующей плоскости.

выгодном для данного элемента расположении нагрузки, принимая во внимание неупругие деформации материалов и наличие трещин.

Для элементов наиболее часто встречающихся конструкций до-

пускается принимать расчетные длины l_0 равными:

а) для колонн многоэтажных зданий при числе пролетов не менее двух и соединениях ригелей и колонн, рассчитываемых как жесткие, при конструкциях перекрытий:

сборных — H; монолитных — 0,7 H,

где Н — высота этажа (расстояние между центрами узлов);

б) для колонн одноэтажных зданий с шарнирным опиранием несущих конструкций покрытий, жестких в своей плоскости (способных передавать горизонтальные усилия), а также для эстакад — по табл. 42 настоящего Руководства;

Таблица 43

Элементы	Расчетная длина <i>l</i> ₀ элементов ферм и арок
1. Элементы ферм	
Верхний пояс при расчете:	
a) в плоскости фермы: при e ₀ <1/ ₈ h _{в.п} » e ₀ ≥1/ ₈ h _{в.п}	0,9 <i>t</i> 0,8 <i>t</i>
б) из плоскости фермы: для участка под фонарем при ширине фонаря 12 м и более	0,8 <i>t</i>
в остальных случаях Раскосы и стойки при расчете: в) в плоскости фермы	0,9 <i>t</i>
r) из плоскости фермы: при b _{в.п} /b _c < 1,5	0,9 <i>t</i> 0,8 <i>t</i>
2. Арки	
а) При расчете в плоскости арки: трехшарнирной двухшарнирной бесшарнирной б) При расчете из плоскости арки (любой)	0,58 s 0,54 s 0,365 s s

Обозначения, принятые в табл. 43:

- I длина элемента между центрами примыкающих узлов, а для верхнего пояса фермы при расчете из плоскости фермы — расстояние между точками его закрепления;
- длина арки вдоль ее геометрической оси; при расчете из

плоскости арки — длина арки между точками ее закрепления из плоскости арки;

 $h_{\rm B,\Pi}$ — высота сечения верхнего пояса;

 $b_{\text{в.п.}}, b_{\text{с}}$ — ширина сечения соответственно верхнего пояса и стойки (раскоса) фермы.

в) для элементов ферм и арок — по табл. 43 настоящего Руководства.

3.31. При расчете по недеформированной схеме расстояние от сжимающей продольной силы до равнодействующей усилий в арматуре А в рассматриваемом сечении с учетом продольного изгиба определяется по формуле

$$e = e_0 \eta + e_{\mu}, \tag{128}$$

где e_0 — расстояние от продольной силы N до центра тяжести бетонного сечения, определяемое по формуле (121);

 п — коэффициент, учитывающий влияние продольного изгиба (см. пп. 3.7 и 3.29 настоящего Руководства);

 $e_{\mathbf{u}}$ — расстояние от центра тяжести бетонного сечения до центра тяжести продольной арматуры A.

3.32. Расчет сечений внецентренно-сжатых элементов при неравномерном нагреве по высоте сечения с температурой наиболее нагретой грани выше 400° С производится с учетом следующих особенностей.

При расположении силы со стороны менее нагретой грани сечения растянутая или слабосжатая арматура, а также свесы полки в тавровом сечении не учитываются и сечение рассчитывается как бетонное.

При расположении силы со стороны наиболее нагретой грани и наличия растянутой арматуры сжатая арматура не учитывается в расчете.

Расчет прямоугольных сечений

3.33. Расчет прямоугольных сечений внецентренно-сжатых элементов, указанных в п. 3.12 настоящего Руководства, следует производить:

а) при
$$\xi = \frac{x}{h_0} \leqslant \xi_R$$
 (рис. 15) из условия
$$Ne \leqslant R_{\text{пр},t} bx (h_0 - 0.5x) + R_{s,ct} F_s'(h_0 - a'), \tag{129}$$

при этом высота сжатой зоны определяется из формулы

$$N + R_{at} F_a - R_{a,ct} F'_a = R_{not} bx; (130)$$

б) при $\xi = \frac{x}{h_0} > \xi_R$, равномерном и неравномерном нагревах и $x \leqslant h_1$ (см. рис. 9, a) — из условия (129), при этом высота сжатой зоны определяется:

для элементов из бетона марки М 400 и ниже с ненапрягаемой арматурой классов А-І, А-ІІ, А-ІІІ и из жаростойкой стали марок 12Х13, 20Х13, 20Х23Н18, 12Х18Н9Т и 45Х14Н14В2М из формулы

$$N + \left(2\frac{1 - x/h_0}{1 - \xi_R} - 1\right) R_{at} F_a - R_{a.ct} F'_a = R_{npt} bx, \qquad (131)$$

откуда

$$\xi = \frac{\left(N - R_{\text{a.c.}t} F_{\text{a}}'\right) \left(1 - \xi_{R}\right) + R_{\text{a.t.}} F_{\text{a}} \left(1 + \xi_{R}\right)}{R_{\text{mpt}} bh_{0} \left(1 - \xi_{R}\right) + 2R_{\text{a.t.}} F_{\text{a}}} > \xi_{R}; \quad (132)$$

для элементов из бетона марки выше М 400, а также для элементов с арматурой классов выше А-III как ненапрягаемой, так и

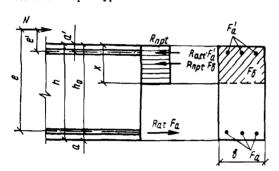


Рис. 15. Схема усилий и эпюра напряжений в сечении, нормальной оси внецентренно-сжатого железобетонного элемента при расчете его по прочности

напрягаемой — из формул (66) и (67) или (68) главы СНиП II-21-75, с учетом влияния температуры на расчетные сопротивления бетона и арматуры;

в) при $\xi = \frac{x}{h_0} > \xi_R$ и неравномерном нагреве по высоте сечения с температурой наиболее нагретой грани выше 400° С при $x > h_1$ (см. рис. 9, a) из условия

$$Ne < R_{\rm npt} bh_1 (h_0 - 0.5 h_1) + R_{\rm npt} b(x - h_1) (h_0 - 0.5 h_1 - 0.5 x),$$
 (133)

при этом относительная высота сжатой зоны определяется для элементов из бетона марки М 400 и ниже с ненапрягаемой арматурой классов А-I, А-II, А-III и жаростойкой стали марок 12X13, 20X13, 20X23H18; 12X18H9T и 45X14H14B2M из формулы

$$\xi = \frac{\left[N - R_{\text{a.ct}} F_{\text{a}}^* + bh_1 \left(R_{\text{npt2}} - R_{\text{npt1}}\right)\right] \left(1 - \xi_R\right)}{R_{\text{npt2}} bh_0 \left(1 - \xi_R\right) + 2R_{\text{at}} F_{\text{a}}} > \xi_R : \quad (134)$$

При определении $R_{\rm npt1}$ и $R_{\rm npt2}$ коэффициенты $m_{\rm 01}$ принимаются по табл. 16 в зависимости от средней температуры участков высотой соответственно $h_{\rm 1}$ и Δx (рис. 9, a).

3.34. При расчете прочности прямоугольных сечений с одиночной арматурой в формулах (129), (130) и (131) принимают $F_a = 0$.

3.35. Площади поперечного сечения сжатой и растянутой арматуры при оптимальных их соотношениях рекомендуется определять по формулам:

$$F_{a}' = \frac{Ne - A_{0} R_{\text{npt}} b h_{0}^{2}}{R_{\text{a.ct}} (h_{0} - a')};$$
(135)

$$F_{a} = \frac{0.55 R_{\text{np}t} bh_{0} - N + R_{\text{a.ct}} F_{a}'}{R_{\text{a}t}}.$$
 (136)

Здесь A_0 принимается равным 0,4;

а) если принятая площадь поперечного сечения сжатой арматуры $F_{a,\Phi}'$ значительно превышает ее оптимальное значение F_a' , определенное по формуле (135), то площадь поперечного сечения растянутой арматуры может быть уменьшена согласно формуле

$$F_{a} = \frac{\xi R_{\text{np}t} bh_{0} - N + R_{\text{a.c}t} F_{\text{a.}\Phi}'}{R_{\text{a}t}}, \qquad (137)$$

где ξ — определяется по табл. 41 настоящего Руководства в зависимости от значения A_0 , которое определяется из формулы (135),

лы (135), а если $\xi < \frac{2a'}{h_0}$, то площадь поперечного сечения растянутой арма-

туры определяется по формуле

$$F_{a} = \frac{N\left[e - (h_{0} - a')\right]}{R_{at}(h_{0} - a')};$$
(138)

- б) при отрицательном значении F_a , вычисленном по формуле (136), площадь арматуры A принимается согласно п. 3.68 «Руководства по проектированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения)».
- 3.36. Площадь поперечного сечения слабосжатой или растянутой арматуры, устанавливаемой у наименее нагретой грани при одиночном армировании, неравномерно нагретого по высоте сечения до температуры наиболее нагретой грани выше 400° С, определяется следующим образом:
 - а) если удовлетворяется условие

$$Ne \leqslant A_R R_{\rm not} bh_0^2, \tag{139}$$

площадь поперечного сечения арматуры $F_{\bf a}$ вычисляют по формуле (137) при $F_{\bf a}^{'}=0$. При этом величину ξ находят по табл. 41 настоящего Руководства в зависимости от величины A_0 , определяемой из формулы (139), в которой A_R заменяется на A_0 ;

б) если удовлетворяется условие

$$A_R R_{\text{npt}} bh_0^2 < Ne \le 0.5 R_{\text{npt}} bh^2,$$
 (140)

то сечение армируют конструктивно. Принятое количество арматуры $F_{a,\Phi}$ должно удовлетворять условию $F_{a,\Phi}\!\!>\!\!F_a$, где F_a определяют согласно п. 3.36«а»;

в) если условие (140) не удовлетворяется, необходимо увеличить сечение элемента, так как сжатая арматура не может быть

установлена по условиям нагрева сечения.

3.37. Приближенный расчет прямоугольных сечений сжатых элементов с учетом продольного изгиба, если величина эксцентрицитета e_0 , определенная в соответствии с п. 3.28 настоящего Руководства, не превышает e_0^{cn} , а расчетная длина элемента прямоугольного сечения $l_0 \leq 20 \ h \ (\lambda = 70)$, допускается производить из условия

$$N \leqslant am\phi \left[R_{\pi pt} F + \sum R_{a,ct} F_a \right], \tag{141}$$

где т — коэффициент, принимаемый равным:

при h > 20 см — 1;

» $h \le 20$ cm — 0,9.

Здесь h — размер сечения в плоскости наибольшей гибкости элемента;

ф — коэффициент, определяемый по формуле

$$\varphi = \varphi_6 + 2 (\varphi_{\mathsf{x}} - \varphi_6) \alpha, \qquad (142)$$

но принимаемый не более фж;

Здесь фбифж — коэффициенты, принимаемые по табл. 44 и 45 настоящего Руководства;

$$\alpha = \frac{R_{a.ct} F_a + R_{a.ct} F_a'}{R_{mot} F}.$$
 (143)

Таблица 44

Nдл	Коэффициент ϕ_{G} при t_{O}/h									
N	≪6	8	10	12	14	16	18	20		
0 0,5 1	0,93 0,92 0,92	0,92 0,91 0,91	0,91 0,9 0,89	0,9 0,89 0,86	0,89 0,86 0,82	0,88 0,82 0,76	0,86 0,78 0,69	0,84 0,72 0,61		

Примечание. Обозначения в табл. 44 такие же, как в табл. 45.

При наличии промежуточных стержней, расположенных у граней, параллельных рассматриваемой плоскости, в формуле (143) $F_a\left(F_a'\right)$ принимается равной половине площади сечения всей арматуры в поперечном сечении элемента.

 $\sum R_{\mathbf{a},\mathbf{c}\ell}F_{\mathbf{a}}$ — сумма произведений площади арматуры, устанавливаемой по каждой из сторон сечения, на расчетное сопро-

тивление.

 Π р и м е ч а н и я: 1. Если площадь сечения продольной арматуры составляет более 3% всей площади сечения F, то в формуле (141) величина F заменяется величиной F— ΣF_a .

2. В том случае, когда по условиям нагрева расчетная арматура устанавливается только у одной из граней сечения, т. е. принимается одиночное армирование, в формуле (141) принимается $\Sigma R_{\mathbf{a}.ct}F_{\mathbf{a}}=0$. При неравномерном нагреве по высоте сечения с температурой

		Коэф	фициент фж	для желе:	зобетонных	элементов п	ри <i>l₀/ħ</i>		1 0 0 0
N _{ДЛ}	≪6	8	10	12	14	16	18	20	2

А. При площади сечения промежуточных стержней, расположенных у граней, параллельных рассматриваемой плоскости, менее $\frac{1}{3}(F_a+F_a)$

						- · a·		
0 0,5	0,93 0,92	0,92 0,92	0,91 0,91	0,9 0,89 0,89	0,89 0,88	0,88 0,86	0,86 0,83	0,84 0,79
1	0,92	0,91	0,9	0,89	0,87	0,84	0,79	0,74

Б. При площади сечения промежуточных стержней, расположенных у граней, параллельных рассматриваемой плоскости, равной или более $\frac{1}{3}(F_a+F_a)$

0		0,92		0,89	0,87	0.85	0.82	0,79
0,5	0,92	0,91	0,9	0,88	0,85	0,81	0.76	0.71
1	0,92	0,91	0,89	0,86	0,82	0,77	0,7	0,63

Обозначения, принятые в табл. 44 и 45:

 $N_{\rm дл}$ — продольная сила от действия постоянных, длительных нагрузок и длительного нагрева; N — продольная сила от действия постоянных, длительных и кратковременных нагрузок, кратковременного и длительного нагрева;

1-1 - рассматриваемая плоскость;

2 — промежуточные стержни;

коэффициенты ϕ_6 и ϕ_m определяются по интерполяции. При промежуточных значениях

наиболее нагретой грани выше 400° С поперечное сечение элемента разбивают на две части, согласно п. 1.28 настоящего Руководства, и площадь бетона каждой части сечения умножается на расчетное сопротивление бетона. В этом случае в формуле (141) значение $R_{nnt}F$ заменяется на $\Sigma R_{\pi pti} F_i$.

Коэффициент а учитывает влияние нагрева на продольный изгиб

Коэффициент
$$a$$
 учитывает влияние нагрева на продольный изгиб и определяется по формуле
$$a=1-\frac{(1-a_{\rm пp})\,(\lambda-14)}{\lambda_{\rm np}-14}\,, \tag{144}$$

где a_{np} — принимается по табл. 46 настоящего Руководства в зависимости от температуры бетона в центре тяжести се-

 $\lambda_{\rm np} = \frac{l_0}{r}$ — принимается по табл. 47 настоящего Руководства. При $\lambda \leq 14$ значение коэффициента a=1.

3.38. При расчете площади поперечного сечения арматуры в равномерно нагретых элементах величину $N_{\rm kp}$ разрешается определять по формулам (122) или (123), принимая площадь всей арматуры $F_a + F_a' = \mu_1 F$. Коэффициент армирования μ_1 , соответствующий определенным интервалам армирования, принимается по табл. 48 настоящего Руководства.

Расчет производится следующим образом.

Задается ориентировочно армирование элемента и по табл. 48 настоящего Руководства устанавливается коэффициент µ1, затем вычисляются значения $N_{\rm kp}$ и η и определяется площадь поперечного сечения арматуры по п. 3.35 настоящего Руководства. В этом случае разрешается принимать значения коэффициентов β_0 и ν по температуре бетона в центре тяжести сечения:

- а) если полученная площадь поперечного сечения арматуры $F_{\bf a} + F_{\bf a}'$ соответствует принятой, расчет считается законченным;
- б) если площадь арматуры $F_a + F_a'$ отличается от принятой и оказывается в другом интервале армирования (см. табл. 48 настоящего Руководства), следует выполнить повторный расчет, принимая коэффициент - µ1 в соответствии с этим интервалом армирования. В отдельных случаях новая площадь сечения арматуры $F_a + F_a'$ может снова перейти в первоначальный интервал армирования, тогда площадь поперечного сечения арматуры принимается по граничным значениям. Следует по возможности добиваться сближения заданного и вычисленного значений и1.

$$\mu_{\mathbf{I}} = \frac{F_{\mathbf{a}} + F_{\mathbf{a}}'}{F} \,. \tag{145}$$

Расчет тавровых и двутавровых сечений

- 3.39. При расчете внецентренно-сжатых железобетонных элементов таврового и двутаврового сечений должны учитываться следующие особенности:
- а) ширина сжатой полки, вводимая в расчет, не должна быть более величин, определяемых по п. 3.26 настоящего Руководства;
 - б) высота сжатой полки, вводимая в расчет, при работе сечения

Значения коэффициента $a_{ m np}$ для кратковременного и длительного нагрева при температуре бетона в центре тяжести сечения, °C										
50	100	200	300	500	700	900	1000			
1	0,7	0,6	0,45	-	_		_			
1	0,75	0,7	0,55		-					
1	0,9	0,7	0,6	0,3	0,2	0,12	0,05			
1	0,8	0,7	0,5	0,25	0,1	0,03				
1	0,9	0,8	0,6	0,3	0,2	0,06				
1	0,85	0,7	0,6	0,4	0,2	0,15	0,1			
	1 1 1	1 0,7 1 0,75 1 0,9 1 0,9	50 100 200 1 0,7 0,6 1 0,75 0,7 1 0,9 0,7 1 0,8 0,7 1 0,9 0,8	Тяжест 50 100 200 300 1 0,7 0,6 0,45 1 0,75 0,7 0,55 1 0,9 0,7 0,6 1 0,8 0,7 0,5 1 0,9 0,8 0,6	ТЯЖЕСТИ СЕЧЕНИЯ, °C 50 100 200 300 500 1 0,7 0,6 0,45 — 1 0,75 0,7 0,55 — 1 0,9 0,7 0,6 0,3 1 0,8 0,7 0,5 0,25 1 0,9 0,8 0,6 0,3	Тяжести сечения, °С 50 100 200 300 500 700 1 0,7 0,6 0,45 — — 1 0,75 0,7 0,55 — — 1 0,9 0,7 0,6 0,3 0,2 1 0,8 0,7 0,5 0,25 0,1 1 0,9 0,8 0,6 0,3 0,2	ТЯЖЕСТИ СЕЧЕНИЯ, °С 50 100 200 300 500 700 900 1 0,7 0,6 0,45 — — — — 1 0,75 0,7 0,55 — — — — 1 0,9 0,7 0,6 0,3 0,2 0,12 1 0,8 0,7 0,5 0,25 0,1 0,03 1 0,9 0,8 0,6 0,3 0,2 0,06			

Примечание. Қоэффициент $a_{\pi p}$ для промежуточных значений температур определяется по интерполяции.

Элементы	Предельная гибкость $\lambda_{\text{пр}} = \frac{l_0}{r}$ сжатых бетонных и железобетонных элементов при температуре бетона в центре тяжести сечения, °C							
	50—100	300	500	700	900			
Бетонн ые	85	60	50	45	35			
Железобетон- ные	125	90	55	_				

Примечания: 1. Применение элементов конструкций, имеющих гибкость, превышающую табличные значения табл. 47, должно быть специально обосновано.

2. Для железобетонных элементов с односторонним армированием предельные гибкости принимаются как для бетонных элементов.

3. Для промежуточных значений температур предельные гибкости определяются по интерполяции.

Таблица 48

Интервалы армирования $\frac{F_a + F_a'}{F} 100, \%$	Коэффициент армирования µ, для опре- деления величины N _К р
От 0,8 до 1,8 Свыше 1,8 до 2,8 Свыше 2,8 » 3,8	0,01 0,02 0,03

с укороченной высотой должна соответствовать требованиям п. 3.11 настоящего Руководства;

в) свесы полки, расположенные в растянутой зоне, в расчете не учитываются;

 г) наиболее нагретая грань сечения совпадает со сжатой полкой.

3.40. Расчет сечений, имеющих полку в сжатой зоне, должен производиться в зависимости от положения границы сжатой зоны:

а) если граница сжатой

зоны проходит в полке, т. е. соблюдается условие

$$Ne < R_{\pi\pi} t h'_{\pi} h'_{\pi} (h_0 - 0.5 h'_{\pi}) + R_{a,ct} F'_{a} (h_0 - a'),$$
 (146)

расчет производится как для прямоугольного сечения шириной $b_{\mathbf{n}}'$ в соответствии с пп. 3.33 и 3.34 настоящего Руководства;

б) если $\xi = \frac{x}{h_0} \leqslant \xi_R$ и граница сжатой зоны проходит в ребре, т. е. условие (146) не соблюдается, расчет производится из условия

$$Ne < R_{npt} bx (h_0 - 0.5 x) + R_{npt} (b'_n - b) h''_n \times (h_0 - 0.5 h'_n) + R_{a.ct} F'_a (h_0 - a'),$$
(147)

а высота сжатой зоны х определяется из формулы

$$N + R_{at}F_{a} - R_{act}F_{a}^{"} = R_{not}bx + R_{not}(b_{n}^{"} - b)h_{n}^{"};$$
 (148)

- в) если в расчете учитывается арматура, расположенная в сжатой зоне, и x < 2 a', то в формулах (146)—(148) принимается $R_{a,ct} = 0$, если это приводит к повышению прочности элемента;
- г) если $\xi = \frac{x}{h_0} > \xi_R$, граница сжатой зоны проходит в ребре и условие (146) не соблюдается, расчет сечений производится из условия (147), а относительная высота сжатой зоны определяется:

для элементов из бетона марки M400 и ниже с ненапрягаемой арматурой классов A-I, A-II, A-III и из жаростойкой стали марок 12X13, 20X13, 20X23H18, 12X18H9T и 45X14H14B2M— из формулы

$$\xi = \frac{\left[N - R_{\text{a.c.}t} F_{\text{a}}' - R_{\text{mpt}} (b_{\text{n}}'' - b) h_{\text{n}}'\right] (1 - \xi_{R})}{R_{\text{mpt}} b h_{0} (1 - \xi_{R}) + 2R_{\text{at}} F_{\text{a}}} + \frac{R_{\text{at}} F_{\text{a}} (1 + \xi_{R})}{R_{\text{mpt}} b h_{0} (1 - \xi_{R}) + 2R_{\text{at}} F_{\text{a}}} > \xi_{R}.$$
(149)

для элементов из бетона марки выше М 400, а также для элементов с арматурой классов выше А-III как ненапрягаемой, так и напрягаемой — из формул (66) и (67) или (68) главы СНиП II-21-75 с учетом влияния температуры на расчетные сопротивления бетона и арматуры.

Значения ξ_R и A_R принимаются по п. 3.13, а e — по п. 3.31 настоящего Руководства.

3.41. Площадь поперечного сечения сжатой арматуры определяется по формуле

$$F_{a}' = \frac{Ne - A_{R} R_{npt} b h_{0}^{2} - R_{npt} \left(b_{n}' - b \right) h_{n}' \left(h_{0} - 0.5 h_{n}' \right)}{R_{a,ct} \left(h_{0} - a' \right)}. \quad (150)$$

- 3.42. Площадь поперечного сечения растянутой арматуры определяется следующим образом:
- а) если граница сжатой зоны проходит в полке и соблюдается условие (146), площадь поперечного сечения растянутой арматуры определяется как для прямоугольного сечения шириной b'_{Π} согласно пп. 3.35. 3.36 и 3.38 настоящего Руководства:
- б) если граница сжатой зоны проходит в ребре, условие (146) не соблюдается и сжатая арматура вычислена по формуле (150), площадь поперечного сечения растянутой арматуры определяется по формуле

$$F_{a} = \frac{\xi_{R} b h_{0} R_{npt} + (b_{n}^{"} - b) h_{n}^{"} R_{npt} - N + F_{a}^{"} R_{a.ct}}{R_{at}}; \quad (151)$$

в) если принятая площадь поперечного сечения сжатой арматуры $F_{a\varphi}'$ превышает площадь F_a' , определенную по формуле (150), то площадь поперечного сечения растянутой арматуры может быть принята уменьшенной согласно формуле

$$F_{a} = \frac{\xi b h_{0} R_{npt} + (b'_{n} - b) h'_{n} R_{npt} - N + R_{a.ct} F'_{a.\phi}}{R_{a}}, \quad (152)$$

где в определяется по табл. 41 настоящего Руководства в зависимости от значения

$$A_{0} = \frac{Ne - R_{npt} (b'_{n} - b) h'_{n} (h_{0} - 0.5 h'_{n}) - R_{a.ct} F'_{a.\phi} (h_{0} - a')}{R_{npt} bh_{0}^{2}}, (153)$$

при этом должно удовлетворяться условие $A_0 < A_R$;

 \mathbf{r}) если при расчете по формуле (150) величина $\mathbf{F}_{\mathbf{s}}'$ получается равной нулю или отрицательной, это означает, что сжатой арматуры по расчету не требуется, и площадь растянутой арматуры F_a определяется по формуле (152) при $F_{a\varphi}'=0$.

Значения коэффициентов A_R и ξ_R принимаются по п. 3.13 и e по п. 3.31 настоящего Руководства.

3.43. При одиночном армировании продольной растянутой арматурой в формулах (146)—(149), (151)—(153) принимается $F_{\alpha}' = 0$.

Устанавливаемая в сжатой зоне конструктивная и монтажная арматура при определении прочности сечений в условиях воздействия повышенных и высоких температур не должна учитываться.

Расчет элементов кольцевого сечения

3.44. Расчет внецентренно-сжатых элементов кольцевого сечения при соотношении внутреннего и наружного радиусов $\frac{r_1}{r_0} > 0.5$ с арматурой, равномерно распределенной и равномерно нагретой по длине окружности (при числе продольных стержней не менее 6), должен производиться из условия

$$Ne_0 < (R_{\pi p t} Fr_{cp} + R_{a,ct} F_{a,K} r_a) \frac{\sin \pi \alpha_K}{\pi} + R_{a,t} F_{a,K} k_a z_a,$$
 (154)

при этом величина относительной площади сжатой зоны бетона ακ

определяется по формуле
$$\alpha_{K} = \frac{N + (\sigma_{0} + A_{a} R_{at}) F_{a,K}}{R_{npt} F + (R_{a,ct} + B_{a} R_{at}) F_{a,K}}.$$
(155)

При расчете элемента по недеформированной схеме в формуле (154) величина эксцентрицитета продольного усилия относительно центра тяжести сечения е₀ [см. формулу (121)] умножается на ко-эффициент η (см. пп. 3.7 и 3.29 настоящего Руководства).

Если полученная из расчета по формуле (155) величина ακ< <0,15, в условие (154) подставляется значение ак, определяемое по

формуле

$$\alpha_{K} = \frac{N + (\sigma_{0} + k_{a} R_{at}) F_{a.K}}{R_{npt} F + R_{a.ct} F_{a.K}};$$
 (156)

при этом значения k_a и z_a определяются по формулам (157) и (158), принимая $\alpha_{\kappa} = 0.15$.

В формулах (154)—(156):

$$r_{\rm ep} = \frac{r_1 + r_2}{2};$$

 га — радиус окружности, проходящей через центры тяжести стержней рассматриваемой арматуры;

F_{а.к} — площадь сечения всей продольной арматуры, распределенной по длине окружности;

ka — коэффициент, определяемый по формуле

$$k_{\mathbf{a}} = A_{\mathbf{a}} - B_{\mathbf{a}} \, \alpha_{\mathbf{K}}; \tag{157}$$

 $z_{\rm a}$ — расстояние от равнодействующей в арматуре растянутой зоны до центра тяжести сечения, определяемое по формуле

$$z_{\rm a} = (0, 2 + 1, 3 \,\alpha_{\rm K}) \,r_{\rm a}, \tag{158}$$

но принимаемое не более га;

 σ_0 — определяется при коэффициенте $m_{ extbf{ iny T}}$, большем единицы;

$$A_{\mathbf{a}} = m_{\mathbf{a},\mathbf{K}} - \frac{\sigma_{\mathbf{0}}}{R_{\mathbf{0}}} \, \bullet \tag{159}$$

где $m_{a,\kappa}$ — коэффициент, принимаемый равным для арматуры: классов А-I, А-II, А-III и из жаростойких сталей марок 12X13, 20X13, 20X23H18, 12X18H9T и 45X14H14B2M — 1,0, классов А-IV; Ат-IV, А-V, Ат-V, Ат-VI, B-II, Вр-II и К-7 — 1,1;

$$B_{\mathbf{a}} = A_{\mathbf{a}} \, \Delta \,, \tag{160}$$

значение Δ принимается равным

$$\Delta = 1.5 + 6R_{at} 10^{-5}$$

$$(R_{at} \text{ B Krc/cm}^2).$$
(161)

Если вычисленное по формуле (157) значение $k_a \le 0$, то в условие (154) подставляется значение $k_a = 0$ и значение $\alpha_{\rm K}$, полученное по формуле (155) при $A_a = B_a = 0$.

Центрально-растянутые элементы

3.45. При расчете равномерно нагретых сечений центрально-растянутых железобетонных элементов должно соблюдаться условие

$$N \leqslant R_{at} F_a, \tag{162}$$

где F_a — площадь сечения продольной арматуры.

При неравномерном нагреве по высоте сечения правая часть формулы (162) заменяется $\Sigma R_{at}f_a$ — суммой произведений площади арматуры, расположенной по каждой из сторон сечения, на расчетное сопротивление арматуры R_{at} .

Для каждой из сторон сечения значение $R_{at}f_{a}$ должно быть при-

мерно одинаковым.

Внецентренно-растянутые элементы

Расчет прямоугольных сечений

3.46. Расчет прямоугольных сечений внецентренно-растянутых элементов, указанных в п. 3.12 настоящего Руководства, должен производиться в зависимости от положения продольной силы N:

а) если продольная сила N приложена между равнодействующими усилий в арматуре A и A' (рис. 16,a) — из условий

$$Ne \leqslant R_{af} F_a' \left(h_0 - a' \right) \tag{163}$$

И

$$Ne' \leqslant R_{at} F_a (h_0 - a');$$
 (164)

б) если продольная сила N приложена за пределами расстояния между равнодействующими усилий в арматуре A и A', τ . е. $e' > h_0 - a'$ (рис. 16, 6) — из условия

$$Ne < R_{npt} bx (h_0 - 0.5 x) + R_{a,ct} F'_a (h_0 - a'),$$
 (165)

при этом высота сжатой зоны х определяется по формуле

$$R_{at} F_{a} - R_{a,ct} F_{a}' - N = R_{npt} bx. {166}$$

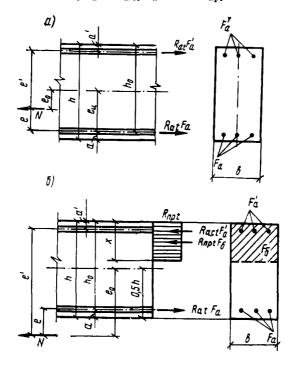


Рис. 16. Схема усилий и эпюра напряжений в сечении, нормальном к продольной оси внецентренно-растянутого железобетонного элемента при расчете его по прочности

a — продольная сила N приложена между равнодействующими усилий в арматуре A и A'; b — то же, за пределами расстояния между равнодействующими усилий в арматуре A и A'.

Если полученная из расчета по формуле (166) величина $x > \xi_R h_0$, в условие (165) подставляется значение $x = \xi_R h_0$, где ξ_R определяется согласно указаниям п. 3.13 настоящего Руководства;

если x < 2a', то прочность сечения проверяется из условия

$$N[e + (h_0 - a')] \le R_{at} F_a (h_0 - a').$$
 (167)

Если высота сжатой зоны, определенная по формуле (166) без учета сжатой арматуры A', x < 2a', то прочность сечения проверяется из условия

$$N(e+h_0-0.5x) \le R_{ab} F_a(h_0-0.5x)$$
. (168)

Если величина x, определенная без учета арматуры A', оказывается отрицательной, то это означает, что площадь сечения арматуры A недостаточна.

Значения е и е' принимаются по п. 3.47 настоящего Руководства.

- 3.47. Расстояние от растягивающей продольной силы до равнодействующей усилий в арматуре A в рассматриваемом сечении определяется по формулам:
- а) если продольная сила N приложена между равнодействующими усилий в арматуре A и A' (см. рис. 16, a):

$$e = e_{\mathbf{q}} - e_{\mathbf{0}},\tag{169}$$

$$e' = h_0 - e_n + e_0 - a';$$
 (170)

б) если продольная сила N приложена за пределами расстояния между равнодействующими усилий в арматуре A и A', e' определяется по формуле (170),

$$e = e_0 - e_{\mathbf{u}}, \tag{171}$$

где e_0 — расстояние от продольной силы N до центра тяжести бетонного сечения, определяемое по формуле (121) при $e_0^{\rm cn}=0$;

ец — см. п. 3.31 настоящего Руководства.

3.48. Расчет продольной арматуры производится следующим образом:

а) при $e'>h_0-a'$ площадь поперечного сечения сжатой армату-

ры определяется по формуле

$$F_{a}' = \frac{Ne - A_{R} R_{npt} bh_{0}^{2}}{R_{a,ct} (h_{0} - a')},$$
 (172)

где A_{R} определяется по п. 3.13 настоящего Руководства.

Площадь поперечного сечения растянутой арматуры определяется по формуле

$$F_{a} = \frac{\xi R_{\text{np}t} bh_{0} + N + F'_{a} R_{a,ct}}{R_{at}}, \qquad (173)$$

где ξ — определяется по табл. 41 настоящего Руководства в зависимости от величины A_0 , полученной из формулы (172), в которой A_R заменяется на A_0 , при этом должно удовлетворяться условие $A_0 < A_R$.

ряться условие $A_0 < A_R$.

Если $\xi < \frac{2a'}{h_0}$, то площадь поперечного сечения растянутой арматуры определяется по формуле

$$F_{a} = \frac{N(e + h_{0} - a')}{R_{at}(h_{0} - a')}.$$
 (174)

Если значение \$, определенное так же, как и для формулы (173), но без учета арматуры A', т. е. при $F_a''=0$, оказывается меньше $\frac{2a'}{h_a}$, TO

$$F_{a} = \frac{N(e + vh_{0})}{R_{at} v h_{0}}.$$
 (175)

Коэффициент и определяется по табл. 41 настоящего Руководства в зависимости от значения A_0 , также вычисленного без учета арматуры A';

6) при $e' < h_0 - a'$ площадь поперечного сечения растянутой и

и сжатой арматуры определяются по формулам:

$$F_{a} = \frac{Ne'}{R_{at} (h_0 - a')}; {176}$$

$$F_a'' = \frac{N\sigma}{R_{at}(h_0 - a')} \,. \tag{177}$$

Значения е и е' принимаются по п. 3.47 настоящего Руководства. При симметричном армировании равномерно нагретых сечений элемента подбор арматуры при $e' < h_0 - a'$ производится по формуле (176).

Расчет тавровых сечений

3.49. Расчет тавровых сечений внецентренно-растянутых элементов, указанных в п. 3.12 настоящего Руководства, должен производиться в зависимости от положения продольной силы N:

 а) если продольная сила N приложена между равнодействующими усилий в арматуре A и A' — из условий (163) и (164);
 б) если продольная сила N приложена за пределами расстояния между равнодействующими усилий в арматуре A и A', τ , е. $e'>>h_0-a'$, и наиболее нагретая грань сечения совпадает со сжатой полкой — из условия (147), при этом высота сжатой зоны определяется из формулы

$$R_{at}F_{a} - R_{a,ct}F'_{a} - N = R_{not}bx + R_{not}(b''_{n} - b)h''_{n};$$
 (178)

в) если продольная сила N приложена за пределами расстояния между равнодействующими усилий в арматуре A и A', τ . e. e'>h —a', и наиболее нагретая грань сечения совпадает с растянутой полкой — из условий (165), (166) как для прямоугольного сечения.

РАСЧЕТ ПО ПРОЧНОСТИ СЕЧЕНИЙ, НАКЛОННЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

3.50. Расчет по прочности сечений, наклонных к продольной оси элемента, должен производиться:

на действие поперечной силы (см. пп. 3.51-3.60 настоящего Руководства):

на действие изгибающего момента (см. пп. 3.61—3.62 настоящего Руководства).

Расчет сечений, наклонных к продольной оси элемента, на действие поперечной силы

3.51. При расчете элементов на действие поперечной силы должно соблюдаться условие

$$Q \leqslant 0.35 R_{\text{HD}t} bh_0, \tag{179}$$

при этом значение $R_{\rm npt}$ для бетонов проектных марок выше М 400

принимается как для бетона марки М 400.

3.52. Расчет на действие поперечной силы, согласно пп. 3.51— 3.59 настоящего Руководства, не производится, если соблюдается условие

$$Q \leqslant k_1 R_{pl} bh_0, \tag{180}$$

где k_1 — коэффициент, принимаемый равным для бетона составов (см. табл. 11 настоящего Руководства):

№ 1—3, 6, 7, 13, 20 и 21 — 0,6;

№ 4, 5, 8-12, 14-19, 23, 24 и 29 - 0,4.

Для сплошных плоских плит указанные значения k_1 увеличиваются на 25%.

Для внецентренно-растянутых элементов правая часть условия (180) дополнительно умножается на коэффициент k_N , определяемый по формуле (183).

При соблюдении условия (180) поперечная арматура должна устанавливаться в соответствии с конструктивными требованиями согласно пп. 5.25 и 5.26 настоящего Руководства. Если условие (180) не удовлетворяется, то производится расчет элементов:

с поперечной арматурой — по пп. 3.54—3.58 настоящего Руководства;

без поперечной арматуры — по п. 3.59 настоящего Руководства. Кроме того, во всех случаях должно всегда удовлетворяться условие (179).

3.53. При расчете сечений, наклонных к продольной оси элемента, на действие поперечной силы предельные усилия определяются из следующих предпосылок:

поперечное усилие, воспринимаемое бетоном над наклонной трещиной, определяется в зависимости от его расчетного сопротивления растяжению $R_{\rm pt}$ размеров элемента и наклона сечения;

усилия в поперечной арматуре направлены вдоль оси стержней; в расчет вводится вся пересекающая рассматриваемое наклонное сечение поперечная арматура с растягивающими напряжениями, равными расчетным сопротивлениям R_{a,x_i} ;

сопротивление продольной арматуры действию поперечной силы -

не учитывается.

Примечание. В настоящем Руководстве под поперечной арматурой имеются в виду хомуты и отогнутые стержни. Термин «хомуты» включает поперечные стержни сварных каркасов и хомуты вязаных каркасов.

3.54. Расчет элементов с поперечной арматурой (рис. 17) производится из условия

$$Q \leqslant \sum R_{a,xt} F_x + \sum R_{a,xt} F_0 \sin \alpha + Q_0, \qquad (181)$$

где

Q — поперечная сила, действующая в наклонном сечении, т. е. равнодействующая всех поперечных сил от внешней нагрузки и воздействия температуры, расположенных по одну сторону от рассматриваемого наклонного сечения;

 $\sum R_{a,xt} F_x$ и $\sum R_{a,xt} F_0 \sin \alpha$ — сумма поперечных усилий, воспринимаемых соответственно хомутами и отогнутыми стержнями, пересекающи-

ми наклонное сечение; с — угол наклона отогнутых стержней к продольной оси элемента в наклонном

сечении;

Q6 — поперечное усилие, воспринимаемое бетоном сжатой зоны в наклонном сечении.

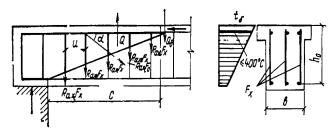


Рис. 17. Схема усилий в сечении, наклонном в продольной оси железобетонного элемента при расчете его по прочности на действие поперечной силы

Величина Q_6 для изгибаемых и сжатых элементов определяется по формуле

$$Q_6 = \frac{k_2 R_{\rm pf} b h_0^2}{c} \,, \tag{182}$$

где k_2 — коэффициент, принимаемый равным для бетона составов (см. табл. 11 настоящего Руководства): № 1—3, 6, 7, 13, 20 и 21 при средней температуре бетона сжатой зоны сечения:

50—200° С — 2; 800° С и выше — 5;

№ 4—5, 8—12, 14—19, 23, 24 и 29 при средней температуре бетона сжатой зоны сечения:

50—200° С — 1,5; 800° С и выше — 4.5.

Для температур между 200 и 800° С коэффициент k_2 принимается по интерполяции;

с — длина проекции наклонного сечения на продольную ось элемента;

b и ho — принимаются в пределах наклонного сечения.

Величина Q6 для внецетренно-растянутых элементов определяется по формуле (182) настоящего Руководства с умножением на коэффициент k_N , равный

$$k_N = 1 - 0.2 \frac{N}{R_{\rm pt} bh_0} \,, \tag{183}$$

но принимаемый не менее 0,2.

Для элементов с наклонной сжатой гранью значение Q_{δ} определяется по формуле (182), принимая рабочую высоту h_0 у конца наклонного сечения в сжатой зоне.

Для элементов с наклонной растянутой гранью в правую часть условия (181) вводится дополнительное поперечное усилие Q_{a} , равное проекции усилий в продольной арматуре, расположенной у наклонной грани, на нормаль к сжатой грани

$$Q_{a} = \frac{M - \sum R_{a,xt} F_{x} z_{x} - \sum R_{a,xt} F_{0} z_{0}}{z} \operatorname{tg} \beta, \qquad (184)$$

где М — изгибающий момент в сечении, нормальном к сжатой грани и проходящем через конец наклонного сечения в сжатой зоне:

z — расстояние от равнодействующей усилий в арматуре A до равнодействующей усилий в сжатой зоне в плоскости наклонного сечения, указанного выше;

 z_x , z_0 — обозначения те же, что в формуле (196); β — угол наклона арматуры A к сжатой грани элемента. В этом случае величина Q_5 определяется по формуле (182) настоящего Руководства при рабочей высоте h_0 у начала наклонного

сечения в растянутой зоне.

3.55. Для изгибаемых и внецентренно-сжатых элементов постоянной высоты, армированных хомутами, длина проекции наклонного сечения на продольную ось элемента, отвечающая минимуму его несущей способности по поперечной силе (при отсутствии внешней нагрузки в пределах наклонного сечения), c_0 определяется по формуле

$$c_0 = \sqrt{\frac{k_2 R_{\rm pf} b h_0^2}{q_{\rm x}}}.$$
 (185)

При воздействии температуры, не превышающей предельно допустимой температуры применения арматуры, устанавливаемой по расчету (см. табл. 24 настоящего Руководства), величина поперечной силы $Q_{x.6}$, воспринимаемой хомутами и бетоном в наклонном сечении с длиной проекции c_0 , — по формуле

$$Q_{x.6} = 2 \sqrt{k_2 R_{pt} b h_0^2 q_x}, \qquad (186)$$

где k_2 — коэффициент, принимаемый согласно п. 3.54 настоящего Руководства;

 $q_{\mathbf{x}}$ — усилие в хомутах на единицу длины элемента, определяемое по формуле

 $q_{\mathbf{x}} = \frac{R_{\mathbf{a}.\mathbf{x}t} F_{\mathbf{x}}}{u}.$ (187) В этом случае хомуты ставятся по всей высоте сечения, и наклонная трещина пересекает все хомуты, определенные расчетом по формуле (187) (рис. 18).

При воздействии температуры, превышающей предельно допустимую температуру применения арматуры, установленной по расче-

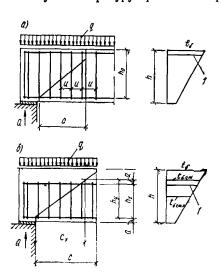


Рис. 18. Схемы расположения поперечной арматуры при воздействии температуры

a— не превышающей предельно допустимую температуру применения арматуры; b— превышающей предельно допустимую температуру применения арматуры; I— предельно допустимая гемпература применения арматуры, устанавливается по табл. 24 настоящего Руководства; C_y — проекция расчетного наклонного сечения элемента ϵ условной укороченной высотой h_y — $h_x + a$

ту (см. табл. 24 настоящего Руководства), допускается принимать поперечную арматуру, укороченную по высоте сечения элемента. Минимально допустимая длина хомутов устанавливается не менее $^{2}/_{3}h_{0}$ (рис. 18, б).

Величина поперечной силы, воспринимаемая укороченными хомутами и бетоном в наклонном сечении, определя-

ется по формуле

$$Q_{x.6} = 2 \sqrt{k_2 R_{pt} b h_0^2 q_x} - \frac{c_0 q_x (h_0 - h_x)}{h_0}, \quad (188)$$

где c_0 — определяется по формуле (185) настоящего Руководства;

q_x — определяется по формуле (187) настоящего Руководства.

Сечение элемента с укороченной поперечной арматурой необходимо проверить по формуле (186) настоящего Руководства, в которой вместо h_0 принимается условная рабочая высота сечения изгибаемого элемента h_{y} , равная длине хомутов и толщине защитного слоя бетона у менее нагретой грани: $h_{y} = h_{x} + a$ (рис. 18). R_{pt} принимается

в зависимости от средней температуры бетона условной сжатой зоны сечения элемента укороченной высоты, а температура бетона сжатой зоны определяется из теплотехнического расчета элемента действительной высоты. За расчетную поперечную силу принимается наименьшая величина, полученная из расчета по формуле (186) или (188) настоящего Руководства.

3.56. Для хомутов, устанавливаемых по расчету в соответствии с пп. 3.54 и 3.55 настоящего Руководства, должно удовлетворяться условие

$$\frac{R_{a,xt}F_x}{u} \leqslant \frac{R_{pt}b}{2}.$$
 (189)

Расстояние между хомутами u, между опорой и концом отгиба, ближайшего к опоре u_1 (рис. 19), а также между концом предыдущего и началом последующего отгиба u_2 должно быть не более величины

$$u_{\text{Makc}} = \frac{0.75 \, k_2 \, R_{\text{pt}} \, b h_0^2}{Q} \,, \tag{190}$$

 $rдe_{\bf k}^{\prime}k_{2}$ — коэффициент, принимаемый согласно п. 3.54 настоящего Руководства.

Кроме того, поперечное армирование элемента независимо от результатов расчета должно удовлетворять конструктивным требованиям, приведенным в п. 5.26

настоящего Руководства.

При воздействии температуры, не превышающей предельно допустимую температуру применения арматуры, устанавливаемой по расчету (см. табл. 24 настоящего Русководства), определение усилий в хомутах на единицу длины элемента производится по формуле

$$q_{\rm x} = \frac{Q^2}{2k_2 R_{\rm pf} bh_0^2} \,, \quad (191)$$

где Q — поперечная сила и коэффициент k_2 принимаются согласно п. 3.54 настоящего Руководства.

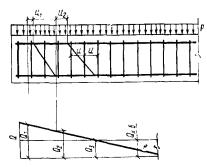


Рис. 19. Расстояния между хомутами и отогнутыми стержнями

3.57. Проверку прочности по поперечной силе наклонных сечений, начинающихся у опоры и у начала отгиба, допускается проводить из условия

$$Q \leqslant Q_{x,6} + R_{a,xt} F_0 \sin \alpha, \qquad (192)$$

где Q — поперечная сила у начала рассматриваемого наклонного сечения (у опоры или у начала отгиба);

 $Q_{\mathbf{x},\mathbf{6}}$ — поперечная сила, воспринимаемая хомутами и бетоном, определяемая по формуле (186);

 F_{θ} — площадь сечения отогнутых стержней в ближайшей за началом рассматриваемого наклонного сечения плоскости отгиба, расположенных согласно п. 3.58.

3.58. Необходимое сечение отогнутых стержней, расположенных в одной плоскости, определяется по формуле

$$F_0 = \frac{Q - Q_{\text{x.6}}}{R_{\text{a.x}t} \sin \alpha}.$$
 (193)

При этом поперечная сила Q принимается:

а) при расчете отогнутых стержней первой (от опоры) плоскос-

ти — равной поперечной силе у опоры;

б) при расчете отогнутых стержней в каждой из последующих плоскостей — равной поперечной силе у начала предыдущей (по отношению к опоре) плоскости отгибов (рис. 19).

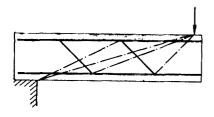


Рис. 20. Расчетная схема опасных наклонных сечений при расчете по прочности на действие поперечной силы

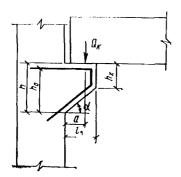


Рис. 22. Расчетная схема для короткой консоли при расчете ее по прочности на действие поперечной силы

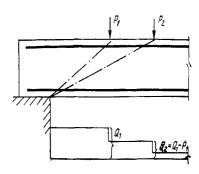


Рис. 21. Расчетная схема опасных наклонных сечений при расчете по прочности на действие поперечной силы -

Нижний конец наиболее удаленных от опоры отогнутых стержней должен располагаться не ближе, чем то сечение, в котором поперечная сила Q становится больше усилия, воспринимаемого бетоном и хомутами $Q_{\mathbf{x}\cdot\mathbf{6}}$.

Кроме того, расположение отгибов должно удовлетворять требованиям п. 5.26 настоящего Руководства.

В элементах с поперечным армированием только из отогнутых стержней расчет по поперечной силе производится из условия (181) при $F_{\mathbf{x}} = 0$. При этом рассчитываются наклонные сечения,

начинающиеся в растянутой зоне у опоры и у начала отгибаемых стержней и заканчивающиеся в сжатой зоне в конце отгибаемых стержней каждой плоскости, а также в местах приложения сосредоточенных сил (рис. 20).

3.59. Расчет изгибаемых элементов без поперечной арматуры должен производиться из условия

$$Q \leqslant \frac{k_3 R_{\rm pl} bh_0^2}{c} , \qquad (194)$$

в котором правая часть неравенства принимается:

не менее $k_1 R_{p_1}bh_0$ (где k_1 определяется по п. 3.52 настоящего Руководства);

и не более $2R_{\rm pt}bh_0$ (для сплошных плоских плит — не более $2.5~R_{\rm pt}bh_0$).

Коэффициент k₃ принимается равным для бетона составов (см. табл. 11 настоящего Руководства):

№ 1—3, 6, 7, 13, 20 и 21 при средней температуре бетона сжатой зоны сечения:

50-200° C - 1,2;

800°С и выше —3;

№ 4, 5, 8—12, 14—19, 23, 24 и 29 при средней температуре бетона сжатой зоны сечения:

50-200° C -0,8;

800°С и выше -2.

Для температур между 200 и 800° С коэффициент k_3 принимается по интерполяции.

Для сплошных плоских плит указанные значения k_3 увеличиваются на 25%.

В формуле (194) Q и c — те же, что в п. 3.54 настоящего Руководства.

В расчете рассматриваются наклонные сечения, проходящие через опору и направленные к точкам приложения сосредоточенных сил, а расчетные значения поперечных сил Q принимаются в конце рассматриваемого наклонного сечения (рис. 21).

3.60. Короткие консоли $(l_{\kappa} \leqslant 0,9 \ h_0)$ (рис. 22), поддерживающие балки и фермы и т. п., следует рассчитывать на действие поперечной

силы из условия

$$Q < \frac{k_3 k_4 R_{\rm pf} b h_0^2}{a} \,, \tag{195}$$

в котором правая часть неравенства принимается не более $2.5~R_{
m pt}bh_0.$

В условии (195):

 Q — поперечная сила, действующая на консоль в пределах ее вылета;

 k_3 — коэффициент, принимаемый согласно п. 3.59 настоящего Руководства;

k₄ — коэффициент, принимаемый равным: при кранах весьма тяжелого режима работы — 0,5; при кранах тяжелого режима работы — 0,75; при кранах среднего и легкого режимов работы — 1,0; при статической нагрузке — 1,0;

a — расстояние от точки приложения силы Q_{κ} до опорного сечения

консоли (рис. 22);

b и h₀ — принимаются в опорном сечении.

Для коротких консолей, входящих в жесткий узел рамной конструкции, в правую часть условия (181) вводится коэффициент 1,25.

Расчет, согласно указаниям настоящего пункта, распространяется на консоли с углом наклона α сжатой грани консоли к горизонтали не более 45° и с высотой сечения $h_{\rm K}$ у свободного края не менее $^{1}/_{3}$ высоты опорного сечения $h_{\rm C}$.

Армирование консолей, поддерживающих балки, фермы и т. п., независимо от результатов расчета, должно удовлетворять требова-

ниям п. 5.29 настоящего Руководства.

Расчет сечений, наклонных к продольной оси элемента, на действие изгибающего момента

3.61. Расчет сечений, наклонных к продольной оси элемента, на действие изгибающего момента (рис. 23) должен производиться из условия

$$M \leqslant R_{at} F_a z + \sum R_{at} F_0 z_0 + \sum R_{at} F_x z_x, \qquad (196)$$

где

М — момент всех внешних сил, расположенных по одну сторону от рассматриваемого наклонного сечения, относительно оси, проходящей через точку приложения равнодействующей усилий в сжатой зоне и перпендикулярной к плоскости действия момента;

 R_{at} F_{az} , ΣR_{at} F_{0z} , ΣR_{at} F_{xz} — сумма моментов относительно той же оси соответственно от усилий в продольной арматуре, в отогнутых стержнях и хомутах, пересекающей растянутую зону наклонного сечения;

z, z_0 , z_x — расстояния от плоскостей расположения соответственно продольной арматуры, отогнутых стержней и хомутов до указанной выше оси.

Высота сжатой зоны наклонного сечения, измеренная по нормали к продольной оси элемента, определяется из условия равновесия

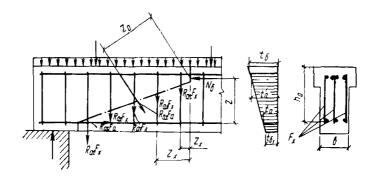


Рис. 23. Схема усилий в сечении, наклонном к продольной оси железобетонного элемента, при расчете его по прочности на действие изгибающего момента

проекции усилий в бетонс и арматуре наклонного сечения на продольную ось элемента согласно пп. 3.17 и 3.22 настоящего Руководства.

Для опорной зоны элементов с продольной арматурой без анкеров расчетное сопротивление арматуры растяжению принимается сниженным согласно поз. 3 табл. 32 настоящего Руководства.

Проверка на действие изгибающего момента не производится для наклонных сечений, пересекающих растянутую грань элемента на участках, обеспеченных от образования нормальных трещин, т. е. там, где момент M от внешней нагрузки и воздействия температуры, на которую ведется расчет по прочности, меньше или равен моменту трещинообразования $M_{\rm T}$, определяемому по формуле (237), принимая в ней значения $R_{\rm P}t$ вместо $R_{\rm PII}t$.

3.62. Для обеспечения прочности наклонных сечений на действие изгибающего момента в элементах постоянной высоты продольные растянутые стержни, обрываемые в пролете, должны заводиться за точку теоретического обрыва (т. е. за нормальное сечение, в кото-

ром эти стержни перестают требоваться по расчету) на длину не менее 20d и не менее величины w, определяемой по формуле

$$w = \frac{Q - R_{at} F_0 \sin \alpha}{2q_{xw}} + 5d, \tag{197}$$

где Q — поперечная сила в нормальном сечении, проходящем через точку теорстического обрыва стержня;

α — то же, что в п. 3.54 настоящего Руководства;

 q_{xw} — усилие в хомутах на единицу длины элемента на рассматриваемом участке длиной w, определяемое по формуле (198):

$$q_{\mathbf{x}\mathbf{w}} = \frac{R_{\mathbf{a}t} F_{\mathbf{x}}}{u} \,; \tag{198}$$

d — диаметр обрываемого стержия.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА МЕСТНОЕ ДЕЙСТВИЕ НАГРУЗОК

Расчет на местное сжатие

3.63. При расчете на местное сжатие (смятие) элементов без косвенного армирования должно удовлетворяться условие

$$N \leqslant \mu_{\rm CM} R_{\rm CM} F_{\rm CM}, \tag{199}$$

где N — продольная сжимающая сила от местной нагрузки;

 F_{cm} — площадь смятия;

μ_{см} — коэффициент, принимаемый равным:

при равномерном распределении местной нагрузки на площади смятия — 1;

при неравномерном распределении местной нагрузки на площади смятия (под концами балок, прогонов, перемычек) для бетона составов № 1—21, 23, 24 и 29 по табл. 11 настоящего Руководства принимается равным — 0,75;

 $R_{\sf cm}$ — расчетное сопротивление бетона смятию определяется

по формуле

$$R_{\mathbf{c}_{\mathbf{M}}} = \gamma_{\mathbf{6}} R_{\mathbf{n}\mathbf{p}t}; \tag{200}$$

здесь $\gamma_6 = \sqrt[3]{F_{\rm p}/F_{\rm cm}}$, но не более следующих значений:

при схеме приложения нагрузки по рис. 24, а, в, г, е, и для бетона составов (см. табл. 11 настоящего Руководства):

№ 1—21, 23, 24 и 29 проектных марок выше М 100 — 2,5;

для бетона составов № 4, 5, 8—12, 14—19, 23, 24 и 29 проектных марок М 50, М 75, М 100 — 1,5; марок М 35 и ниже — 1,2; при схеме приложения нагрузки по рис. 24, δ , δ , κ независимо от вида и марки бетона — 1;

 $R_{\rm np}_t - R_{\rm np} m_{6t}$ — принимается как для бетонных конструкций (см. табл. 14 настоящего Руководства);

 $F_{
m p}$ — расчетная площадь, определяемая по п. 3.64 настоящего Руководства.

Коэффициент m_{6t} принимается по табл. 16 настоящего Руководства в зависимости от средней температуры бетона площади смятия — при схеме приложения нагрузки по рис. 24, a, b, e, u и в зави-

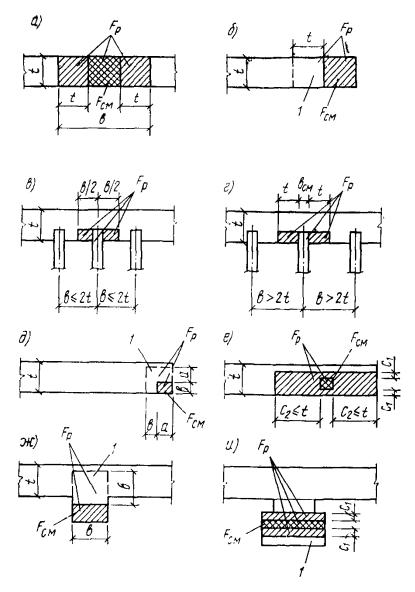


Рис. 24. Определение расчетной площади F_p при расчете на местное сжатие

a — при местной нагрузке по всей ширине элемента; δ — при местной краевой нагрузке по всей ширине элемента; s и s — при местной нагрузке в местах опирания концов прогонов и балок; δ — при местной краевой нагрузке на угол элемента; s — при местной нагрузке, приложенной на части длины и ширины элемента; m и m — при местной нагрузке, расположенной в пределах выступа стены; m — расчетная площадь, учитываемая только при наличии косвенной арматуры

симости от температуры наиболее нагретой грани — при схеме приложения нагрузки по рис. 24, в, г, д, ж.

3.64. В расчетную площадь $F_{\rm p}$ включается участок, симметричный по отношению к площади смятия (рис. 24). При этом должны выполняться следующие правила:

при местной нагрузке по всей ширине элемента t в расчетную площадь включается участок длиной не более t в каждую сторону от границы местной нагрузки (рис. 24, a);

при местной краевой нагрузке по всей ширине элемента расчет-

ная площадь F_p равна площади смятия F_{cm} (см. рис. 24, 6);

при местной нагрузке в местах опирания концов прогонов и балок в расчетную площадь включается участок шириной, равной глубине заделки прогона или балки, и длиной не более расстояния между серединами примыкающих к балке пролетов (рис. 24, в); если расстояние между балками превышает двойную ширину элемента, длина расчетной площади определяется как сумма ширины балки и удвоенной ширины элемента (рис. 24, г);

при местной краевой нагрузке на угол элемента (рис. 24, д)

расчетная площадь $F_{\rm p}$ равна площади смятия $F_{\rm cm}$;

при местной нагрузке, приложенной на части длины и ширины элемента, расчетная площадь принимается согласно рис. 24, е. При наличии нескольких нагрузок указанного типа расчетные площади ограничиваются линиями, проходящими через середину расстояний между точками приложения двух соседних нагрузок;

при местной краевой нагрузке, расположенной в пределах выступа стены (пилястры) или простенка таврового сечения, расчетная

площадь равна площади смятия F_{cm} (см. рис. 24, ж);

при определении расчетной площади для сечений сложной формы не должны учитываться участки, связь которых с загруженным участком не обеспечена с необходимой надежностью (рис. 24, u).

Примечание. При местной нагрузке от балок, прогонов, перемычек и других элементов, работающих на изгиб, учитываемая в расчете глубина опоры при определении $F_{\rm cm}$ и $F_{\rm p}$ принимается не более 20 см.

3.65. При расчете на местное сжатие равномерно нагретых железобетонных элементов с косвенным армированием в виде сварных поперечных сеток должно удовлетворяться условие

$$N \leqslant R_{\text{npt}}^* F_{\text{cm}}, \tag{201}$$

где F_{cm} —площадь смятия;

 R_{npf}^* — приведенная призменная прочность бетона, определяемая по формуле

$$R_{\mathrm{np}t}^* = R_{\mathrm{np}t} \gamma_6 + k \mu_{\kappa}^{\mathrm{c}} R_{\mathrm{a}t}^{\mathrm{c}} \gamma_{\kappa}; \qquad (202)$$

В формуле (202)

$$\gamma_{\delta} = \sqrt[3]{F_{\rm p}/F_{\rm GM}} \,, \tag{203}$$

но не более 3,5;

$$\gamma_{\rm K} = 4.5 - 3.5 \frac{F_{\rm CM}}{F_{\rm g}};$$
 (204)

 $F_{\rm p}$ — расчетная площадь, определяемая в соответствии с п. 3.64 настоящего Руководства (для схем приложения местной нагрузки по рис. 24, δ , δ , ω в нее дополнительно включается площадь, ограниченная пунктирной линией);

 $F_{\rm s}$ — площадь бетона, заключенного внутри контура сеток косвенного армирования; для схем приложения местной нагрузки по рис. 24, a, s, e, e, u должно удовлетворяться условие $F_{\rm cm} < < F_{\rm g} \le F_{\rm p}$, а для схем по рис. 24, δ , δ , κ $F_{\rm g}$ должно быть

не менее $F_{\mathbf{p}}$, при этом в формулу (204) подставляется $F_{\mathbf{n}} = F_{\mathbf{p}}$;

 R_{at}^{c} — расчетное сопротивление растяжению арматуры сеток;

 k — коэффициент эффективности косвенного армирования, принимаемый равным

$$k = \frac{5 + \alpha_{\rm c}}{1 + 4,5 \ \alpha_{\rm c}} \,, \tag{205}$$

где

$$\alpha_{\mathbf{c}} = \frac{\mu_{\kappa}^{\mathbf{c}} R_{\mathsf{a}t}^{\mathsf{c}}}{R_{\mathsf{npt}}}; \tag{206}$$

 μ_{κ}^{c} — коэффициент насыщения поперечной арматурой, опредсляемый для сварных поперечных сеток по формуле

$$\mu_{\rm K}^{\rm c} = \frac{n_1 \, f_{\rm c1} \, l_1 + n_2 \, f_{\rm c2} \, l_2}{F_{\rm g} \, s} \ . \tag{207}$$

Здесь n_1, f_{c1} и l_1 — соответственно число стержней, площадь поперечного сечения и длина стержня сетки в одном направлении (считая в осях крайних стержней);

 n_2 , f_{c2} и l_2 — то же, в другом направлении;

s — расстояние между сетками; F_n — площадь бетона, заключенного внутри контура

сеток (считая в осях крайних стержней).
Площади сечения стержней сетки на единицу длины в одном и другом направлениях не должны различаться более чем в 1,5 раза.

Расчет на продавливание

3.66. Расчет на продавливание плитных конструкций (без поперечной арматуры) от действия сил, равномерно распределенных на ограниченной площади, должен производиться из условия

$$P \leqslant k R_{\rm pf} b_{\rm cp} h_{\rm 0} , \qquad (208)$$

где

P — продавливающая сила;

 k — коэффициент, принимаемый равным для бетона составов (см. табл. 11 настоящего Руководства):
 № 1—3, 6, 7, 13, 20 и 21 — 1;

№ 4, 5, 8—12, 14—19, 23, 24 и 29 — 0,8;

 $b_{
m cp}$ — среднее арифметическое величин периметров верхнего и нижнего оснований пирамиды, образующейся при продавливании в пределах рабочей высоты сечения h_0 .

При определении величин $b_{\rm cp}$ и P предполагается, что продавливание происходит по боковой поверхности пирамиды, меньшим основанием которой служит площадь действия продавливающей силы, а боковые грани наклонены под углом 45° к горизонтали (рис. 25, a).

Величина продавливающей силы P принимается равной величине продольной силы N, действующей на пирамиду продавливания, за вычетом нагрузок, приложенных к большему основанию пирамиды продавливания (считая до плоскости расположения растянутой арматуры) и сопротивляющихся продавливанию.

Если схема опирания такова, что продавливание может происходить только по поверхности пирамиды с углом наклона боковых граней больше 45° (например, в свайных ростверках, рис. 25,6), правая часть условия (208) умножается на величину h_0/c , но не бо-

лее 2,5, где c — длина горизонтальной проекции боковой грани

пирамиды продавливания.

При установке в пределах пирамиды продавливания поперечной арматуры расчет должен производиться из условий:

$$P < 1.4 kR_{pt} b_{cp} h_0;$$
 (209)

$$P \leqslant R_{\mathbf{a},\mathbf{x}t}\,F_{\mathbf{x}\mathbf{n}}$$
, (210) где $F_{\mathbf{x},\mathbf{n}}$ — суммарная площадь сечения поперечной арматуры, пересекающей боковые грани пирамиды продавливания;

k и $b_{\rm cp}$ — обозначения те же, что в формуле (208).

Кроме того, поперечное армирование и размеры плит независимо от результатов расчета должны удовлетворять конструктивным требованиям пп. 5.3 и 5.27 настоящего Руководства.

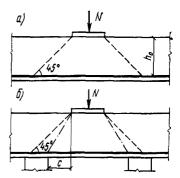


Рис. 25. Схема пирамиды продавливания при угле наклона ее боковых граней к горизонтали

a — равном 45°; 6 — большем 45°

В случае продавливания при дополнительном действии момента, наличии стальных воротников, действии продавливающей силы на краю плиты, несимметричных фундаментах, при внецентренном приложении нагрузки и т. п. должны учитываться специальные указания.

Кроме расчета на продавливание должен производиться расчет на действие поперечных сил.

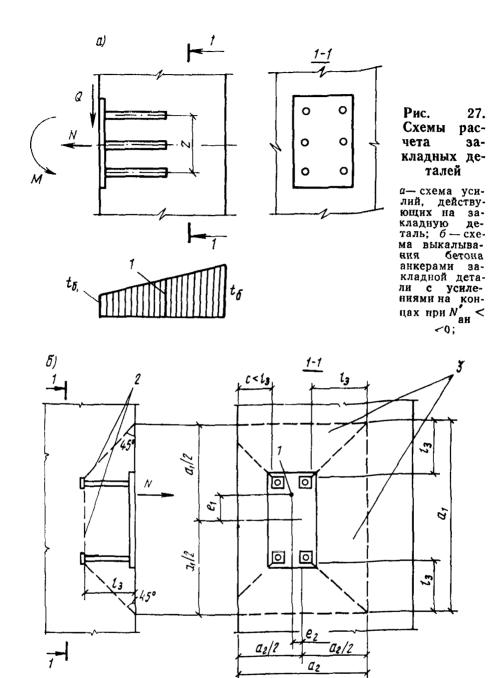
Расчет на отрыв

3.67. Расчет на отрыв растянутой зоны элемента от действия нагрузки, подвешенной к элементу или приложенной в пределах высоты его сечения (рис. 26), должен производиться из условия

$$h_1$$
 h_2 h_3 h_4 h_5 h_5 h_6

Рис. 26. Схема для определения длины зоны отрыва

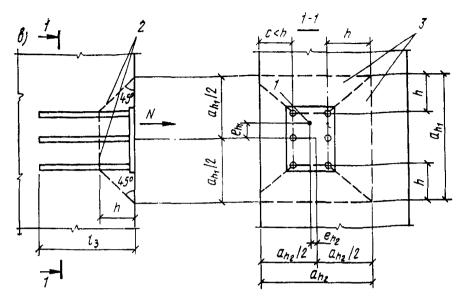
1 — центр тяжести сжатой зоны сечения примыкающего элемента

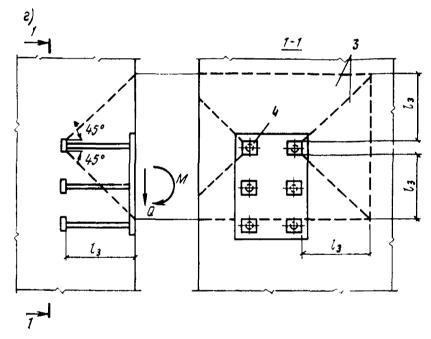

$$P_{\rm or} \leqslant R_{\rm at} \, F_{\rm x.\pi}, \qquad (211)$$

где $P_{\text{от}}$ — отрывающее усилие; $F_{\text{х.д}}$ — площадь дополнительной, сверх требуемой по расчету наклонного сечения поперечной

арматуры (подвески, хомуты и т. п.), расположенной на длине зоны отрыва s.

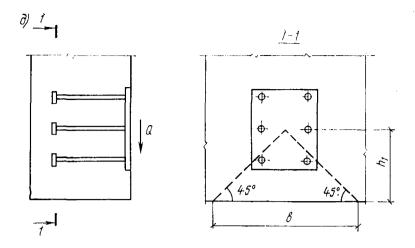
Длина зоны отрыва s при нагрузке, распределенной по ширине b_1 , принимается равной


$$s = 2h_1 + b_1, (212)$$


где h_1 — расстояние от уровня передачи нагрузки (при примыкающих друг к другу элементах — от центра тяжести сжатой зоны элемента, вызывающего отрыв) до центра тяжести сечения арматуры A.

Расчет закладных деталей

3.68. Расчет анкеров, приваренных втавр к плоским элементам стальных закладных деталей, на действие изгибающих моментов,


s — схема выкалывания бетона анкерами закладной детали без усилений на концах при $N_{
m ah} < 0$;

z — схема выкалывания бетона растянутыми анкерами закладной детали при $m{N}_{\mathbf{a}\mathbf{H}}^{s}>0;$

нормальных и сдвигающих сил (рис. 27, a), должен производиться по формуле

$$F_{aH} = \frac{1.1 \sqrt{N_{aH}^2 + \left(\frac{Q_{aH}}{kk_i}\right)^2}}{R_{at}},$$
 (213)

 ∂ — схема, принимаемая при расчете на откалывание бетона анкерами закладной детали; I — точка приложения нормальной силы N; 2 — поверхность выкалывания; 3 — проекция выкалывания на плоскость, нормальную анкерам; 4 — анкерная пластина

 $F_{\mathrm{a}\mathrm{H}}$ — суммарная площадь поперечного сечения анкеров наиболее напряженного ряда;

 $N_{
m an}$ — наибольшее растягивающее усилие в одном ряду анкеров, равное

$$N_{\rm aH} = \frac{M}{z} + \frac{N}{n_{\rm aH}}; \tag{214}$$

 $Q_{
m ah}$ — сдвигающее усилие, приходящееся на один ряд анкеров, равное

$$Q_{\rm aH} = \frac{Q - 0.3 \, N'_{\rm aH}}{n_{\rm aH}} \, ; \tag{215}$$

 $N'_{\rm ah}$ — наибольшее сжимающее усилие в одном ряду анкеров, определяемое по формуле

$$N'_{\rm aH} = \frac{M}{z} - \frac{N}{n_{\rm cr}}$$
 (216)

В формулах (213) — (216):

M N и Q — соответственно момент, нормальная и сдвигающая силы, действующие на закладную деталь; величина момента определяется относительно оси, расположенной в плоскости наружной грани пластины и проходящей через центр тяжести всех анкеров;

 $n_{\rm ah}$ — число рядов анкеров (при определении сдвигающего усилия $Q_{\rm ah}$ учитывается не более четырех рядов);

z — расстояние между крайними рядами анкеров; k_1 — коэффициент, определяемый по формуле

$$k_1 = \frac{1}{\sqrt{1+\omega}} \,, \tag{217}$$

но принимаемый не менее 0,15; коэффициент ю в формуле (217) принимается равным:

$$\omega=0$$
,3 $rac{N_{
m aH}}{Q_{
m aH}}$ при $N_{
m aH}'\geqslant 0$;

И

$$\omega=0,6\,rac{N}{Q}$$
 при $N'_{
m aH}<0$;

k — коэффициент, определяемый для анкерных стержней диаметром 8-25 мм и бетона марок М 150-М 600 по формулс

$$k = \frac{7n_0 \sqrt[3]{R_{\rm npt}}}{(1+0,15 f_{\rm all}) \sqrt{R_{\rm at}}},$$
 (218)

но принимаемый не более 0.7.

В формуле (218):

 R_{npt} , R_{at} B Krc/cm²;

 $f_{\rm ah}$ — площадь анкерного стержня наиболее напряженного ряда,

Площадь сечения анкеров остальных рядов должна приниматься равной площади сечения анкеров наиболее напряженного ряда;

$$n_6 = k_6 \beta_6 \bar{\nu}, \qquad (219)$$

где k_6 — коэффициент, принимаемый равным для бетона составов (см. табл. 11 настоящего Руководства): № 1—3, 6, 7, 13, 20 и 21—1; № 4, 5, 8—12, 14—19, 23, 24 и 29 — 0,6;

β₆ и v — коэффициенты, принимаемые соответственно по табл. 16 и 18 настоящего Руководства в зависимости от температуры бетона (для кратковременного нагрева) в месте расположения закладной детали.

При нормальной температуре $\beta_5 v = 1$. В формулах (214) и (216) сила N считается положительной, если она направлена от закладной детали, и отрицательной — если она направлена к ней. В случае когда вычисленные по формулам (214)—(216) усилия N_{ah} , N_{ah}^{\prime} и Q_{ah} имеют отрицательное значение, в формулах (213), (215) и (217) они принимаются равными нулю. Кроме того, при отрицательном значении $N_{\rm an}$ в формулу (215) вместо N'_{ah} подставляется величина N.

При расположении закладной детали на верхней (при бетонировании) поверхности изделия коэффициент к уменьшается на 20%, а значение $N'_{\rm au}$ принимается равным нулю.

3.69. Расчет анкеров, приваренных к пластине внахлестку, на действие сдвигающей силы должен производиться по формуле

$$F_{\rm aH} = \frac{Q}{R_{at}} \,. \tag{220}$$

Сопротивление анкеров, приваренных внахлестку, действию сдвигающей силы учитывается при Q > N (где N — растягивающая сила), и угле отгиба этих анкеров от 15 до 30°. При этом должны дополнительно устанавливаться анкеры, приваренные втавр и рассчитываемые по формуле (213), принимая $k_1 = 1$, а значение Q_{an} равным 0,1 от сдвигающего усилия, определенного по формуле (215).

3.70. Конструкция закладных деталей с приваренными к ним элементами, передающими нагрузку на закладные детали, должна обладать достаточной жесткостью для обеспечения равномерного распределения усилий между растянутыми анкерами и равномерной передачи сжимающих усилий на бетон. Стальные элементы закладных деталей и их сварные соединения рассчитываются согласно главе СНиП II-B.3-72.

Толщина пластин закладных деталей δ_{π} при анкерах, приваренных втавр, должна удовлетворять условию

$$\delta_{\rm II} \geqslant 0.25 \, d_{\rm aH} \frac{R_{\rm at}}{R_{\rm cot}} \,, \tag{221}$$

где d_{ah} — диаметр анкеров;

 $R_{\rm cpt} = R_{\rm cp} \cdot m_{\rm at}; R_{\rm cp}$ — расчетное сопротивление стали пластин на срез, принимаемое согласно главе СНиП II-В.3-72 (для

стали класса C38/23 $R_{\rm cp}$ =1300 кгс/см²). 3.71. Если выполняется условие $N_{\rm ah}$ <0, где $N_{\rm ah}$ см. п. 3.68, т. е. все анкеры закладной детали растянуты, следует производить расчет на выкалывание бетона следующим образом:

а) при анкерах с усилением на концах (см. п. 5.43 настоящего Руководства) расчет производится из условия

$$N \leq \frac{0.5 \, \Pi \, R_{\text{p}t}}{1 + 3.5 \, \frac{e_1}{a_1} + 3.5 \, \frac{e_2}{a_2}}, \qquad (222)$$

 Π — площадь проекции на плоскость, нормальную к анкерам, где поверхности выкалывания, идущей от граней анкерных пластин или высаженных головок всех анкеров под углом 45° к осям анкеров (рис. 27, б) за вычетом площади анкерных пластин и высаженных головок;

 a_1 и a_2 — размеры площади Π ;

 e_1 — эксцентрицитет силы N относительно центра площади Π в направлении размера а1;

 e_2 — то же, в направлении размера a_2 ;

б) при анкерах без усиления на концах расчет производится из условия

$$N \leqslant \frac{0.5 \, \Pi_h \, R_{\rm pt}}{1 + 3.5 \, \frac{e_{h1}}{a_{h1}} + 3.5 \, \frac{e_{h2}}{a_{h2}}} + n_{\rm a} \, F_{\rm a} \, R_{\rm at} \, \frac{l_{\rm a} - h}{l_{\rm aH}} \,, \tag{223}$$

где

 Π_h — то же, что и Π при поверхности выкалывания, начинающейся от анкеров на расстоянии h от поверхности элемента (рис. 27, β);

 a_{hi} и a_{hs} — размеры площади Π_h ;

 e_{h1} — эксцентрицитет силы N относительно центра площади Π_h в направлении размера a_{h1} ;

 e_{h2} — то же, в направлении размера a_{h2} ;

l₃ и l_{ан} — соответственно длина заделки и длина зоны анкеровки (см. п. 5.14 настоящего Руководства);

 $n_{\rm a}F_{\rm a}$ — суммарная площадь сечения анкеров, приваренных

Условие (223) проверяется при различных значениях h, меньших $l_{\rm a}$.

Если $N_{\rm au}^{''}>0$, расчет на выкалывание производится при длине анкеров, меньшей $l_{\rm au}$, и при наличии усиления на их концах из условия

$$N_{\mathbf{aH}} \leqslant 0.5 \,\Pi_{\mathbf{i}} \,R_{\mathbf{p}t}, \qquad (224)$$

где N_{вв} — см. п. 3.68 настоящего Руководства;

П₁ — то же, что и П при поверхности выкалывания, начинающейся от граней анкерных пластин или высаженных головок анкеров наиболее растянутого ряда (рис. 27, г).

При этом для колонн расчет на выкалывание можно не производить, если концы анкеров заведены за продольную арматуру, расположенную у противоположной от закладной детали грани колонны, а усиление анкеров в виде пластин или поперечных коротышей зацепляются за стержни этой арматуры днаметром: не менее 20 мм при симметричном зацеплении и не менее 25 мм при несимметричном зацеплении. В этом случае участок колонны между крайними рядами анкеров проверяется на действие поперечной силы, равной $Q = N_{an} \mp Q_{k}$, где Q_{k} — поперечная сила на участке колонны, прилежащем к наиболее растянутому ряду анкеров закладной детали; значение Q_{k} определяется с учетом действующих на закладную деталь усилий.

3.72. Если сдвигающая сила Q действует на закладную деталь в направлении к краю элемента (рис. 27, ∂), то при отсутствии анкеров, приваренных внахлестку, следует производить расчет на откалывание бетона из условия

$$Q \leqslant 0.5 R_{\rm pt} bh_1, \tag{225}$$

где h_1 — расстояние от центра тяжести анкеров закладной детали до края элемента в направлении сдвигающей силы Q;

b — ширина откалывающейся части элемента, принимаемая не более $2h_1$.

Если условие (225) не выполняется, то к закладной детали приваривают внахлестку анкеры или по грани элемента с закладной деталью устанавливают дополнительные хомуты, воспринимающие сдвигающую силу Q.

3.73. При наличии на концах анкеров закладной детали усилений в виде анкерных пластинок или высаженных головок бетон под этими усилениями должен быть проверен на смятие из условия

$$N_{\rm CM} \leqslant 2.5 R_{\rm ID} F_{\rm CM}, \tag{226}$$

где $F_{\rm CM}$ — площадь анкерной пластины или сечения высаженной головки нормальной к оси анкера, за вычетом площади сечения анкера;

 $N_{\rm cm}$ — сила смятия, определяемая следующим образом:

а) для анкеров, приваренных втавр, длиной $l_{\rm a}$ не менее 15d, если вдоль анкера возможно образование трещин от растяжения бетона,

$$N_{\rm GM} = \frac{N_{\rm aH}}{n_{\rm a}} \,, \tag{227}$$

если образование таких трещин невозможно, величина $N_{\rm cm}$, вычисленная по формуле (227), умножается на $\frac{l_{\rm ah}-l_{\rm a}}{l_{\rm ah}}$;

- 6) для анкеров, приваренных втавр, длиной l_a менее 15d, значение $N_{\text{см}}$, определенное по подпункту a, увеличивается на $\frac{Q_{\text{ан}}}{n_a} \frac{15d-l_a}{l_{\text{cut}}}$;
- в) для анкеров, приваренных внахлестку, величина $N_{\text{см}}$ опредсляется по формуле (227), в которой $N_{\text{ап}}$ заменяется на Q.

В формулах настоящего пункта:

*N*_{ан} и *Q*_{ан} — см. п. 3.68;

 n_a — число анкеров наиболее напряженного ряда;

І_{ан} — длина зоны анкеровки, определяемая по п. 5.14 настоящего Руководства.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА ВЫНОСЛИВОСТЬ

3.74. Расчет железобетонных элементов на выносливость производится сравнением напряжений в бетоне и арматуре с соответствующими расчетными сопротивлениями, умноженными на коэффициенты условий работы m_{52} и m_{a1} , принимаемые соответственно по табл. 22 и табл. 33 настоящего Руководства, а при наличии сварных соединений арматуры — также на коэффициент условий работы m_{a2} (см. табл. 34 настоящего Руководства). При нагреве бетона выше 50° С должен учитываться коэффициент условий работы бетона m_{52} , принимаемый по табл. 23 настоящего Руководства, и коэффициент условий работы арматуры m_{a11} , принимаемый по п. 2.32 настоящего Руководства при температурах нагрева арматуры выше 100° С.

Напряжения в бетоне и арматуре вычисляются как для упругого тела (по приведенным сечениям) на действие внешних нагрузок, усилий от воздействия температуры и усилия предварительного обжатия N_0 . Неупругие деформации в сжатой зоне бетона учитываются снижением величны модуля упругости бетона, принимая коэффициенты приведения арматуры к бетону n', равными 25, 20, 15 и 10 соответственно для бетонов проектных марок M 200, M 300, M 400, M 500 и выше.

При воздействии температуры выше 50° С величины коэффициентов n' должны умножаться на отношение коэффициентов β_a/β_6 . Значения коэффициентов β_a принимаются по табл. 35 настоящего Руководства в зависимости от температуры арматуры, β_6 — по табл. 16 настоящего Руководства в зависимости от средней температуры бетона сжатой зоны сечения. В случае, если не соблюдаются условия п. 4.7 настоящего Руководства при замене в нем значения $R_{\rm pII}$ на $R_{\rm pf}$, площадь приведенного сечения определяется без учета растянутой зоны бетона.

3.75. Расчет на выносливость сечений, нормальных к продольной оси элемента, должен производиться из условия:

для сжатого бетона

$$\sigma_{\mathsf{6,Makc}} < R_{\mathsf{np}t}; \tag{228}$$

для растянутой арматуры

$$\sigma_{a,\text{Makc}} \leqslant R_{at},$$
 (229)

где $\sigma_{6,\text{макс}}$ и $\sigma_{a,\text{макс}}$ — максимальные нормальные напряжения соответственно в сжатом бетоне и в растянутой арматуре.

При этом расчетные сопротивления бетона сжатню $R_{\rm пp}$ и растяжению $R_{\rm at}$ арматуры умножаются на соответствующие коэффициенты условий работы m_{6t} , m_{62} , m_{52t} , (см. табл. 16, 22 и 23 настоящего Руководства) и $m_{\rm at}$, $m_{\rm at}$, $m_{\rm az}$ и $m_{\rm at}$ (см. табл. 33 и п. 2.32, табл. 34 и 35 настоящего Руководства).

В зоне, проверяемой по сжатому бетону, при действии многократно повторяющейся нагрузки появление растягивающих напря-

жений не допускается.

Сжатая арматура на выносливость не рассчитывается.

3.76. Расчет на выносливость сечений, наклонных к продольной оси элемента, должен производиться из условия, что равнодействующая главных растягивающих напряжений, действующих на уровне центра тяжести приведенного сечения, должна быть полностью воспринята поперечной арматурой при напряжениях в ней, равных расчетным сопротивлениям R_a , умноженным на коэффициенты условий работы m_{a1} , m_{a2} и m_{a1t} (см. табл. 33, 34 и п. 2.32 настоящего Руководства).

Для элементов, в которых поперечная арматура не предусматривается, должны быть выполнены условия п. 4.8 настоящего Руководства с введением в условия (246) и (247) вместо расчетных сопротивлений бетона $R_{\rm np11}$ и $R_{\rm p11}$ — соответственно расчетных сопротивлений $R_{\rm np}$ и $R_{\rm p}$, которые умножаются на коэффициенты условий работы $m_{\rm bt}$, $m_{\rm pt}$, $m_{\rm bt}$

водства).

4. РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО, ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО ОБРАЗОВАНИЮ ТРЕЩИН

4.1. Железобетонные элементы, подвергаемые воздействию повышенных и высоких температур, рассчитываются по образованию трешин:

нормальных к продольной оси элемента; наклонных к продольной оси элемента.

РАСЧЕТ ПО ОБРАЗОВАНИЮ ТРЕЩИН, НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

4.2. Для изгибаемых, растянутых и внецентренно-сжатых железобетонных элементов, подвергаемых воздействию повышенных и высоких температур, усилия воспринимаемые сечениями, нормальными к продольной оси, при образовании трещин определяются исходя из следующих положений:

сечения после деформаций остаются плоскими;

наибольшее относительное удлинение крайнего растянутого во-

локна бетона равно $\frac{2R_{\text{ptII}}}{E_6 \, \beta_6}$

напряжения в бетоне сжатой зоны (если они имеются) определяются с учетом упругих, а для внецентренно-сжатых элементов—также с учетом неупругих деформаций нагретого бетона;

напряжения в бетоне растянутой зоны распределены равномерно и равны по величине R_{ptii} .

напряжения в арматуре равны алгебраической сумме напряжений, вызванных усадкой бетона, и напряжения, отвечающего приращению деформаций окружающего нагретого бетона.

Величина коэффициента в принимается по табл. 16 настоящего Руководства в зависимости от температуры бетона на уровне растя-

нутой арматуры.

Допускается расчет по образованию трещин, нормальных к продольной оси изгибаемых элементов, прямоугольного и таврового с полками в сжатой зоне сечений, не производить, если при расчете прочности требуется $\mu \ge 0.5\%$.

4.3. Расчет железобетонных элементов по образованию трещин на усилия, вызванные только воздействием температуры, следует

производить когда:

температура бетона по высоте элемента между гранями сечения отличается более чем на 30°C в элементах статически неопределимых конструкций и более чем на 50° С в элементах статически определимых конструкций при криволинейном распределении температуры;

температура растянутой арматуры превышает 100° С в конструкциях из обычного бетона и 70° С — в конструкциях из жаростой-

кого бетона.

Расчет по образованию трещин при температуре нагрева арматуры выше 200° С элементов с µ≥0,4% допускается не производить.

Расчет по образованию трещин в элементах статически определимых конструкций производится из условия, что растягивающие напряжения бетона, вызванные воздействием только температуры, определяемые по формуле (31) настоящего Руководства, равны или меньше величины расчетного сопротивления бетона $R_{\rm pII}$, дополнительно умноженного на коэффициент условий работы бетона m_{pt} , принимаемый по табл. 16 настоящего Руководства в зависимости от температуры волокна бетона, для которого определяются напряжения.

4.4. Расчет изгибаемых, внецентренно-сжатых, а также внецентренно-растянутых элементов по образованию трещин производится: статически определимых конструкций из условия

$$M_{\rm B}^{\rm H} \leqslant M_{\rm T}; \tag{230}$$

статически неопределимых конструкций из условия

$$\left(M_{\rm B}^{\rm H}+M_{\rm f}\right)\leqslant M_{\rm T},\tag{231}$$

где $M_{\rm B}^{\rm M}$ — момент внешних сил, расположенных по одну сторону от рассматриваемого сечения, относительно оси, параллельной нулевой линии и проходящей через ядровую точку, наиболее удаленную от растянутой зоны, трещинообразование которой проверяется;

 M_t — момент, вызванный воздействием температуры, определяется согласно п. 1.46 настоящего Руководства и принимается со знаком «плюс», когда направление момента совпадает с $M_{\rm B}^{\rm H}$ и со знаком «минус» — когда не совпа-

дают:

 $M_{\rm T}$ — момент, воспринимаемый сечением, нормальным к продольной оси элемента, при образовании трещин.

Величина Мя принимается:

для изгибаемых элементов равной изгибающему моменту М (рис. 28, а);

для внецентренно-сжатых элементов (рис. 28, 6)

$$M_{\rm B}^{\rm fl} = N (e_0 - r_{\rm y});$$
 (232)

для внецентренно-растянутых элементов (рис. 28, 8)

$$M_{\rm B}^{\rm S} = N (e_0 + r_{\rm y}),$$
 (233)

где /у расстояние от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от растянутой зоны, трещинообразование которой проверяется.

Величина r_y определяется по формулам:

для изгибаемых элементов

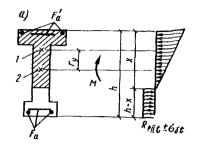
$$r_{y} = \frac{W_{0}}{F_{\pi}} ; \qquad (234)$$

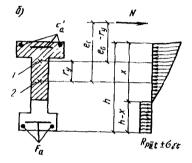
для внецентренно-сжатых элементов

$$r_{y} = 0.8 \frac{W_{0}}{F_{n}}$$
; (235)

для центрально- и внецентренно-растянутых элементов

$$r_{y} = \frac{W_{T}}{F + 2n \left(F_{a} + F'_{a}\right)}$$
, (236)


 ${\it W_0}$ и ${\it W_\tau}$ — см. соответственно пп. 4.5 и 4.6 настоящего Руководства.


Коэффициент *п* в формуле (236) определяется по формуле (244) настоящего Руководства.

Приведенная площадь нагретого элемента F_{π} в формулах (234) и (235) определяется по формуле (6) настоящего Руководства.

Величина $M_{ au}$ определяется по формуле

$$M_{\tau} = (R_{\text{DfII}} \pm \sigma_{6 \cdot \tau}) W_{\tau}, \quad (237)$$

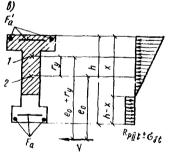


Рис. 28. Схемы усилий и эпюры напряжений в поперечном сечении элемента при расчете его по образованию трещин в зоне сечения, растянутой от действия внешних нагрузок

а — при нзгибе; б — при сжатии; в — при растяжении; I — ядровая точка; 2 — центр тяжести приведенного сечения

где σ_{6t} — напряжения в бетоне на уровне растянутой арматуры, вызванные воздействием температуры, определяемые по формуле (31), напряжения σ_{6t} принимаются со знаком «плюс» при сжатии и со знаком «минус» при растяжении.

Допускаются напряжения σ_{6t} , вызванные воздействием температуры, не учитывать, если их учет увеличивает трещиностойкость

сечения.

При проверке возможности исчерпания несущей способности одновременно с образованием трещин (см. п. 1.20 настоящего Руководства) усилие, воспринимаемое сечением при образовании трещин, определяется по формуле (237) с заменой значения $R_{\rm ptil}$ на 1,2 $R_{\rm ptil}$.

4.5. Величина момента сопротивления приведенного сечения элемента для крайнего растянутого волокна определяется по правилам сопротивления упругих материалов в предположении отсутствия продольных сил по формуле

$$W_0 = \frac{I_{\pi}}{y} \,, \tag{238}$$

где I_{π} — момент инерции приведенного сечения, определяемый по формуле (11) настоящего Руководства как для упругого материала, принимая $v=k_{\pi}$. Расстояние от центра тяжести приведенного сечения до крайнего растянутого волокна определяется по формуле (5) настоящего Руководства.

4.6. Величина момента сопротивления приведенного сечения для крайнего растянутого волокна с учетом неупругих деформаций растянутого бетона при воздействии температуры определяется по формуле

$$W_{T} = [0,292 + 0.75 (\gamma_{1} + 2\mu_{1} n) + 0.075 (\gamma_{1}' + 2\mu_{1}' n)] bh^{2}, (239)$$

где

$$\gamma_1 = \frac{(b_{\Pi} - b) h_{\Pi}}{bh}; \qquad (240)$$

$$\gamma_{1}' = \frac{2\left(b_{n}' - b\right)h_{n}'}{bh}; \tag{241}$$

$$\mu_1 = \frac{F_a}{bh} \; ; \tag{242}$$

$$\mu_1' = \frac{F_a'}{bh} \,; \tag{243}$$

$$n = \frac{E_a \, \beta_a}{E_6 \, \beta_6} \, . \tag{244}$$

Здесь β_a — коэффициент, определяемый по табл. 35 настоящего Руководства в зависимости от температуры на уровне центра тяжести растянутой и сжатой арматуры;

6 — коэффициент, определяемый по табл. 16 настоящего Руководства в зависимости от температуры бетона на уров-

не соответствующей арматуры.

	таблица 49
Сеченя е	Значение коэффициента у для определения момента сопротивления W_{T}
1. Прямоугольное и тавровое с полкой, распо- ложенной в сжатой зоне	1,75
2. Тавровое с полкой, расположенной в растянутой зоне:	
при $\frac{b_\Pi}{b} \leqslant 2$ независимо от отношения $\frac{h_\Pi}{h}$	1,75
при $\frac{b_{\Pi}}{b}>$ 2 и $\frac{h_{\Pi}}{h}\geqslant$ 0,2	1,75
при $\frac{b_{\Pi}}{b}>$ 2 н $\frac{h_{\Pi}}{h}<$ 0,2	1,5
3. Двутавровое симметричное (коробчатое):	
при $\frac{b_{\Pi}^{'}}{b}=\frac{b_{\Pi}}{b}\leqslant 2$ независимо от отношений	1,75
$\frac{h'_{\Pi}}{h} = \frac{h_{\Pi}}{h}$	
при $2<\dfrac{b_{\Pi}^{'}}{b}=\dfrac{b_{\Pi}}{b}\ll 6$ независимо от отноше-	1,5
ний $\frac{h'_{\Pi}}{h} = \frac{h_{\Pi}}{h}$	
при $\frac{b'_{\Pi}}{b} = \frac{b_{\Pi}}{b} > 6$ и $\frac{h'_{\Pi}}{h} = \frac{h_{\Pi}}{h} > 0,2$	1,5
при 6 $<\frac{b_{\pi}'}{b} = \frac{b_{\pi}}{b} < 15$ и $\frac{h_{\pi}'}{h} = \frac{h_{\pi}}{h} < 0,2$	1,25
4. Кольцевое и круглое	$2-0,4\frac{D_{\mathbf{i}}}{D}$

Примечание. В таблице обозначения b_{π} и h_{π} соответствуют размерам полки, которая при расчете по образованию трещин является растянутой, а b_{π}' и h_{π}' — размерам полки, которая для этого случая расчета является сжатой.

Допускается при определении $W_{\rm T}$ по формуле (239) принимать $F_a = F_a' = 0$, если $\mu < 1.5\%$.

Разрешается величину $W_{\mathtt{T}}$ также определять по приближенной формуле

 $W_{\mathrm{T}} = \gamma W_{0}, \tag{245}$

где W_0 — см. п. 4.5 настоящего Руководства;

т — коэффициент, принимаемый по табл. 49 настоящего Руководства.

При расчете элементов с повышенной толщиной защитного слоя бетона растянутой арматуры $\left(\delta = \frac{a}{h} > 0,1\right)$, коэффициент μ_1 в формуле (239) умножается на величину

$$k = 1 - 2\delta. \tag{246}$$

4.7. Расчет железобетонных элементов по образованию трещин при воздействии температуры и многократно повторяющейся нагрузки следует производить из условия

$$\sigma_{6 \text{ n}} \leqslant R_{\text{ptii}}. \tag{247}$$

Максимальное нормальное растягивающее напряжение в бетоне, вызванное нагрузкой, должно суммироваться с растягивающим напряжением от воздействия температуры, определяемым по формуле (31) настоящего Руководства.

РАСЧЕТ ПО ОБРАЗОВАНИЮ ТРЕЩИН, НАКЛОННЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

4.8. Участки на длине элемента, на которых отсутствуют наклонные трещины, определяются из условия

$$Q \leqslant 0.6 R_{\text{pfII}} bh_{\text{o}}. \tag{248}$$

Для сплошных плоских плит правая часть условия увеличивается на 25%.

4.9. При действии многократно повторяющейся нагрузки в условиях воздействия температуры расчет по образованию трещин, наклонных к продольной оси элемента, должен производиться согласно п. 4.8 настоящего Руководства, при этом расчетные сопротивления бетона $R_{\rm ptii}$ и $R_{\rm пptii}$ вводятся в расчет с коэффициентами условий работы m_{62} и m_{62} , принимаемые по табл. 22 и 23 настоящего Руководства.

РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПО РАСКРЫТИЮ ТРЕЩИН

РАСЧЕТ ПО РАСКРЫТИЮ ТРЕЩИН, НОРМАЛЬНЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

4.10. Ширина раскрытия трещин, нормальных к продольной оси элемента при воздействии повышенных и высоких температур $a_{\rm T}$, мм, должна определяться по формуле

$$a_{\rm T} = k \eta \, 20 \, (3.5 - 100 \, \mu) \, \sqrt[3]{d} \left[\frac{c_{\rm H} \, \sigma_{\rm a}}{E_{\rm a} \, \beta_{\rm a}} + (\alpha_{\rm atc} - \alpha_{\rm 6f}) \, t_{\rm a} \right], \quad (249)$$

- где k -- коэффициент, принимаемый равным: для изгибаемых и внецентренно-сжатых элементов — 1; для растянутых элементов — 1,2;
 - с п коэффициент, принимаемый равным при учете:

кратковременных нагрузок, кратковременного действия постоянных и длительных нагрузок — 1;

многократно повторяющейся нагрузки, а также длительного действия постоянных и длительных нагрузок для конструкций из бетонов составов (по табл. 11 настоящего

Руководства):

№ 1—3, 6, 7, 13, 20 и 21 естественной влажности — 1,5; то же, в водонасыщенном состоянии — 1,2; \mathbb{N}_2 4, 5, 8—12, 14—19, 23, 24 и 29 — не менее 1,5;

п — коэффициент, принимаемый равным:

при стержневой арматуре:

периодического профиля — 1;

гладкой — 1.3;

при проволочной арматуре:

периодического профиля — 1,2;

гладкой — 1,4;

- σ_a напряжение в стержнях крайнего ряда арматуры A, определяемое согласно п. 4.11 настоящего Руководства;
- и коэффициент армирования сечения, принимаемый равным отношению площади сечения арматуры А к площади сечения бетона (при рабочей высоте h_0 и без учета сжатых свесов полок), но не более 0,02;

d — диаметр стержней арматуры, мм;

- β_a коэффициент, определяемый по табл. 35 настоящего Руководства;
- а_{вtс} определяется по формуле (68) настоящего Руководства в зависимости от длительности нагрева;
- α_{6t} принимается по табл. 20 настоящего Руководства в зависимости от температуры бетона на уровне арматуры в зависимости от длительности нагрева.

Дополнительное раскрытие трещин, вызванное разностью температурных деформаций бетона и арматуры [второй член в скобках формулы (249)], допускается не учитывать:

для железобетонных элементов из обычного бетона при температуре арматуры до 100° С и из жаростойкого бетона при темпера-

туре арматуры до 70° С;

для элементов, к трещиностойкости которых предъявляются требования 2-й категории, ширина кратковременного раскрытия трещин определяется от кратковременного действия постоянных и длительных нагрузок и длительного нагрева, а также от действия кратковременных нагрузок и кратковременного нагрева;

для элементов, к трещиностойкости которых предъявляются требования 3-й категории, ширина кратковременного раскрытия трещин определяется как сумма ширины раскрытия от длительного действия постоянных и длительных нагрузок и длительного нагрева и приращения ширины раскрытия от действия кратковременной нагрузки и кратковременного нагрева. Ширина длительного раскрытия трещин определяется от длительного действия постоянных и длительных нагрузок и длительного нагрева.

Если центр тяжести площади сечения стержней крайнего ряда арматуры А изгибаемых, внецентренно-сжатых, внецентренно-растянутых при $e_0 \ge 0.8 \ h_0$ элементов отстоит от наиболее растянутого волокна бетона на расстоянии c, большем 0.2 h, величина $a_{\rm T}$, определенная по формуле (249), должна умножаться на коэффициент $k_{\rm c}$, равный

$$k_{\rm c} = \frac{20 \frac{c}{h} - 1}{3} \tag{250}$$

и принимаемый не более 3.

Для элементов из бетона проектной марки М 100 и ниже величина $a_{\rm T}$, определенная по формуле (249), должна быть увеличена

4.11. Напряжения в растянутой арматуре оа должны определяться по формулам:

для центрально-растянутых элементов

$$\sigma_{a} = \frac{N}{F_{a}} ; \qquad (251)$$

для изгибаемых элементов

$$\sigma_{a} = \frac{M}{F_{a} z_{1}}; \qquad (252)$$

для внецентренно-сжатых, а также внецентренно-растянутых при $e_0 \ge 0.8 \ h_0$ элементов

$$\sigma_{\rm a} = \frac{N (e_{\rm a} \pm z_{\rm 1})}{F_{\rm a} z_{\rm 1}} \,. \tag{253}$$

Для внецентренно-растянутых элементов при $e_0 < 0.8 h_0$ величина σ_a определяется по формуле (253), принимая z_1 равным z_a — расстоянию между центрами тяжести арматуры A и A'.

В формуле (253) знак плюс принимается при внецентренном растяжении, а знак минус - при внецентренном сжатии. При расположении растягивающей продольной силы N между центрами тяжести арматуры A и A' значение $c_{\rm a}$ принимается со знаком минус.

В формулах (252) и (253):

 z_1 — расстояние от центра тяжести площади сечения арматуры Aдо точки приложения равнодействующей усилий в сжатой зоне сечения над трещиной, определяемое согласно указаниям п. 4.20 настоящего Руководства, принимая у для кратковременного действия нагрузки и нагрева.

При расположении растянутой арматуры в несколько рядов по высоте сечения в изгибаемых, внецентренно-сжатых, а также внецентренно-растянутых при $e_0 \ge 0.8 h_0$ элементах напряжения σ_a , подсчитанные по формулам (252) и (253), должны умножаться на коэффициент фп, равный

$$\varphi_{\Pi} = \frac{h - x - c}{h - x - a} \,, \tag{254}$$

где $x=\xi h_0$ — величина ξ определяется по формуле (266); a и c — расстояния от центра тяжести площади сечения арматуры А соответственно всей и крайнего ряда стержней до наиболее растянутого волокна бетона.

Величина σ_a с учетом коэффициента ϕ_π не должна превышать $R_{at II}$ для стержневой арматуры и 0,8 $R_{at II}$ для проволочной арматуры.

Для изгибаемых элементов допускается определять оа по фор-

муле

$$\sigma_{\rm a} = R_{\rm af} \frac{M}{M_{\rm np}} \, . \tag{255}$$

Здесь $M_{\rm пp}$ — предельный момент по прочности, равный правой части неравенств (98), (100), (101), (113), (114) и (116). При подборе сечения арматуры

$$M_{\rm np} = M_{\rm pacq} \frac{F_{\rm a, \phi a KT}}{F_{\rm a, pacq}}, \qquad (256)$$

где $M_{\text{расч}}$ — момент от действия полной нагрузки с коэффициентом перегрузки n > 1;

 $F_{\rm a \; \Phi a \, KT}$ — фактическая площадь принятой арматуры; $F_{\rm a \; Teop}$ — площадь арматуры, требуемая по расчету прочности.

РАСЧЕТ ПО РАСКРЫТИЮ ТРЕЩИН, НАКЛОННЫХ К ПРОДОЛЬНОЙ ОСИ ЭЛЕМЕНТА

4.12. Ширина раскрытия трещин, наклонных к продольной оси элемента a_{τ} , мм, в изгибаемых элементах, армированных поперечной арматурой при воздействии повышенных и высоких температур, должна определяться по формуле

$$a_{\rm T} = c_{\rm H} k \left(h_0 + 30 \, d_{\rm Make} \right) \frac{\eta}{\mu_{\rm B}} \frac{t^2}{E_{\rm a}^2 \beta_{\rm a}} \,,$$
 (257)

где c_{π} и η — обозначения те же, что в формуле (249);

$$k = (20 - 1200 \,\mu_{\rm n}) \,10^3,$$
 (258)

но не менее 8⋅103;

d_{макс} — наибольший из диаметров хомутов и отогнутых стержней:

β_а — коэффициент, принимаемый по табл. 35 настоящего Руководства в зависимости от наибольшей температуры нагрева поперечной арматуры;

µ_п — коэффициент насыщения балки поперечной арматурой, равной

$$\mu_{\pi} = \mu_{\mathbf{x}} + \mu_{\mathbf{0}}.\tag{259}$$

Здесь μ_x — коэффициент насыщения балки хомутами:

$$\mu_{\mathbf{x}} = \frac{F_{\mathbf{x}}}{hu} \,; \tag{260}$$

 μ_0 — коэффициент насыщения балки отогнутыми стержнями:

$$\mu_0 = \frac{F_0}{bu_0};$$
 (261)

$$t = \frac{Q}{bh_0} : (262)$$

Здесь Q — наибольшая поперечная сила на рассматриваемом участке элемента с постоянным насыщением поперечной арматурой).

При расчете рассматриваются сечения, расположенные на рас-

стояниях от опоры, не меньших h_0 .

Для элементов из бетонов марки М 100 и ниже величина a_{τ} ,

вычисленная по формуле (257), увеличивается на 30%.

При определении ширины кратковременного и длительного раскрытия наклонных трещин должны учитываться указания п. 4.10 настоящего Руководства об учете длительности действия нагрузок и нагрева.

4.13. Расчет железобетонных элементов по закрытию трещин при температурном воздействии производится, согласно пп. 4.19—4.21 главы СНиП II-21-75, принимая расчетное сопротивление арма-

туры R_{atli} .

Напряжения растяжения в напрягаемой арматуре A и сжатия в бетоне должны определяться от действия постоянных, длительных и кратковременных нагрузок и усилий от длительного и кратковременного нагрева.

РАСЧЕТ ЭЛЕМЕНТОВ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ПО ДЕФОРМАЦИЯМ

4.14. Деформации (прогибы, углы поворота) элементов железобетонных конструкций, подверженных воздействию повышенных и высоких температур, должны вычисляться по формулам строительной механики, определяя входящие в них величины кривизны в соответствии с пп. 4.15—4.22 настоящего Руководства.

4.15. Величина кривизны определяется:

а) для участков элемента, где в растянутой зоне не образуются трещины, нормальные к продольной оси элемента, либо они закрыты — как для сплошного тела;

б) для участков элемента, где в растянутой зоне имеются трещины, нормальные к продольной оси элемента, вызванные нагрузкой и воздействием температуры — как отношение разности средних деформаций крайнего волокна сжатой зоны бетона и продольной растя-

нутой арматуры к рабочей высоте сечения элемента.

Элементы или участки элементов рассматриваются без трещин в растянутой зоне, если трещины не образуются при действии постоянных, длительных и кратковременных нагрузок, длительного и кратковременного нагрева или они закрыты при действии постоянных, длительных нагрузок и длительного нагрева; при этом нагрузки вводятся в расчет с коэффициентом перегрузки n=1, усилия, вызванные воздействием температуры с коэффициентом перегрева, $n_t=1$.

ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА УЧАСТКАХ БЕЗ ТРЕЩИН В РАСТЯНУТОЙ ЗОНЕ

4.16. На участках, где не образуются нормальные к продольной оси трещины, полная величина кривизны изгибаемых, внецентренно-сжатых и внецентренно-растянутых элементов должна определяться по формуле

Номера составов бетона по табл. 11 настоящего Руко-	Қоэфф	Коэффициент с, учитывающий влияние длительной ползучести бетона на деформации элемента без трещин, при средней температуре бетона сжатой зоны сечения, °C											
водства	50	70	100	200	300	400	500	600	700	800			
1—4	3	4	3,5	4	4,5	_				_			
5—11, 23, 24	3	4	3,5	3,5	3,5	5	7	8	10				
12—18, 27, 29	3,5	4,5	4	4	8	11	15	20	_				
19—21	3	3	3	3	3,5	7	10	13	16	20			

 Π р и м е ч а н и я: 1. Коэффициент c для кратковременного действия нагрузки или нагрева принимается раваым 1.

Коэффициент с для промежуточных значений температур принимается по интерполяции.
 При наличии в элементе сжатой арматуры (µ_{сж}≥0,7%) величина коэффициента с умножается на 0,8.

$$\frac{1}{\rho} = \frac{1}{\rho_{\kappa}} + \frac{1}{\rho_{\pi}},\tag{263}$$

где $\frac{1}{\rho_{\text{K}}}$ и $\frac{1}{\rho_{\text{Д}}}$ — кривизны соответственно от кратковременных нагрузок и кратковременного нагрева (определяемых соглас-

зок и кратковременного нагрева (определяемых согласно п. 1.16 настоящего Руководства) и от длительного действия постоянных и длительных нагрузок и длительного нагрева, определяемые по формуле

$$\frac{1}{\rho} = \frac{\overline{M}c}{k_{\rm n}E_6 I_{\rm n}}.$$
 (264)

- здесь \overline{M} момент от соответствующей внешней нагрузки и нагрева относительно оси, нормальной к плоскости действия изгибающего момента и проходящей через центр тяжести приведенного сечения;
 - с коэффициент, учитывающий влияние длительной ползучести бетона при расчете на длительный нагрев, принимается по табл. 50 настоящего Руководства в зависимости от средней температуры бетона сжатой зоны сечения (см. п. 4.19 настоящего Руководства);
 - $k_{\rm fl}$ коэффициснт, принимаемый согласно п. 1.28 настоящего Руководства;
 - I_п момент инерции приведенного сечения, определяемый согласно п. 1.28 настоящего Руководства.
- 4.17. При определении кривизны участков элементов с начальными трещинами в сжатой зоне, вызванных воздействием температуры, величины $\frac{1}{\rho_{\rm K}}$ и $\frac{1}{\rho_{\rm Q}}$, определяемые по формуле (264), должны быть увеличены на 15%.
- 4.18. На участках, где образуются нормальные трещины, но при действии рассматриваемой нагрузки обеспечено их закрытие, величины кривизн $\frac{1}{\rho_{\mathbf{K}}}$ и $\frac{1}{\rho_{\mathbf{A}}}$, входящие в формулу (263), увеличиваются на 20%.

ОПРЕДЕЛЕНИЕ КРИВИЗНЫ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ НА УЧАСТКАХ С ТРЕЩИНАМИ В РАСТЯНУТОЙ ЗОНЕ

4.19. На участках, где образуются нормальные к продольной оси элемента трещины, кривизны изгибаемых, внецентренно-сжатых, а также внецентренно-растянутых при $e_0 \geqslant 0.8~h_0$ элементов прямоугольного, таврового и двутаврового (коробчатого) сечений должны определяться по формуле

$$\frac{1}{\rho} = \frac{M_{\rm s}}{h_0 z_1} \left[\frac{\psi_{\rm a}}{E_{\rm a} \beta_{\rm a} v_{\rm a} F_{\rm a}} + \frac{\psi_{\rm 6}}{(\gamma' + \xi) b h_0 E_{\rm 6} \beta_{\rm 6} v} \right] - \frac{N}{h_0} \frac{\psi_{\rm a}}{E_{\rm a} \beta_{\rm a} v_{\rm a} F_{\rm a}} . \quad (265)$$

Для изгибаемых элементов последнее слагаемое правой части формулы (265) принимается равным нулю, В формуле (265):

 M_3 — момент (заменяющий) относительно оси, нормальной к плоскости действия момента и проходящей через центр тяжести площади сечения арматуры A, от всех внешних сил и усилий, вызванных воздействием температуры, расположенных по одну сторону от рассматриваемого сечения:

для изгибаемых элементов — $M_3 = M_1$;

- для внецентренно-сжатых и внецентренно-растянутых элсментов M_3 = Ne_a ;
- z₁ расстояние от центра тяжести площади сечения арматуры А до точки приложения равнодействующей усилий в сжатой зоне сечения над трещиной (плечо внутренней пары сил), определяемое по п. 4.20 настоящего Руководства;

 фа — коэффициент, учитывающий работу растянутого бетона на участке с трещинами и определяемый по п. 4.21 настоящего

Руководства;

Фъ — коэффициент, учитывающий неравномерность распределения деформаций крайнего сжатого волокна бетона по длине участка с трещинами и принимаемый равным:

для обычного и жаростойкого бетонов марок выше М 100 — 0,9;

для жаростойкого бетона марок M 100 и ниже — 0,7; для конструкций, рассчитываемых на действие многократно повторяющейся нагрузки, независимо от вида и марки бетона — 1;

ү' — коэффициент, определяемый по формуле (269);

 $\xi = \frac{x}{h_0}$ — определяется согласно п. 4.20 настоящего Руководства;

- β₆ коэффициент, принимаемый по табл. 16 настоящего Руководства в зависимости от средней температуры бетона сжатой зоны;
- v_а коэффициент, характеризующий упругопластическое состояние растянутой арматуры и принимаемый по табл. 38 настоящего Руководства в зависимости от температуры арматуры;
- v коэффициент, характеризующий упругопластическое состояние бетона сжатой зоны и принимаемый по табл. 19 настоящего Руководства для средней температуры бетона сжатой зоны;
- N продольная сила (при внецентренном растяжении сила N принимается со знаком минус).

Среднюю температуру бетона сжатой зоны сечения допускается принимать:

для прямоугольных сечений — по температуре бетона на расстоянии $0,2 h_0$ от края сжатой грани сечения;

для тавровых и двутавровых сечений — по средней температуре бетона сжатой полки.

4.20. Величина § вычисляется по формуле

$$\xi = \frac{1}{1.8 + \frac{1 + 5(L + T)}{10 \frac{\mu E_a \beta_a}{E_6 \beta_6}}} \pm \frac{1.5 + \gamma'}{11.5 \frac{e_a}{h_0} = 5},$$
 (266)

но принимается не более 1; при этом $\frac{e_a}{h_0}$ принимается не менее 0,5.

Для второго слагаемого правой части формулы (266) верхние знаки принимаются при сжимающем, а нижние — при растягивающем усилии N (см. п. 4.19 настоящего Руководства). Для изгибаемых элементов последнее слагаемое правой части формулы (266) принимается равным нулю.

В формуле (266):

$$L = \frac{M_s}{bh_0^2 R_{\text{HD}, t, H}}; (267)$$

$$T = \gamma' \left(1 - \frac{h'_{\Pi}}{2h_0} \right); \tag{268}$$

$$\gamma' = \frac{\left(b'_{n} - b\right)h'_{n} + \frac{n}{\overline{v}}F'_{a}}{bh_{0}}; \qquad (269)$$

 e_a — эксцентрицитет силы N относительно центра тяжести площади сечения арматуры A соответствует заменяющему моменту M_3 (см. п. 4.19 настоящего Руководства) и определяется по формуле

$$e_{\mathbf{a}} = \left| \frac{M_{\mathbf{s}}}{N} \right| \,. \tag{270}$$

Величина z_1 вычисляется по формуле

$$z_1 = h_0 \left[1 - \frac{h_n'}{h_0} \frac{\gamma' + \xi^2}{2 (\gamma' + \xi)} \right]. \tag{271}$$

Для внецентренно-сжатых элементов величина z_1 должив приниматься не более 0,97 $e_{\rm a}$.

Для элементов прямоугольного сечения и таврового с полкой в растянутой зоне в формулы (268), (269) и (271) вместо величины h_{Π}^{*} подставляется величина 2a' или $h_{\Pi}^{*}=0$, соответственно при наличии или отсутствии арматуры A'.

Расчет сечений, имеющих полку в сжатой зоне, при $\xi < \frac{h_\pi^\prime}{h_0}$

производится как прямоугольных шириной b_{n}

Расчетная ширина полки b_{π} определяется согласно п. 3.26 настоящего Руководства.

Коэффициент β_6 определяется по табл. 16 настоящего Руководства в зависимости от средней температуры бетона сжатой зоны.

Коэффициент β_a в формуле (266) принимается по табл. 35 настоящего Руководства в зависимости от температуры растянутой арматуры.

Коэффициент упругости бетона у определяется по табл. 18 на-

стоящего Руководства в зависимости от температуры бетона на уровне сжатой арматуры.

Коэффициент п в формуле (269) определяется по формуле (244)

настоящего Руководства.

4.21. Величина коэффициента фа для конструкций из обычного и жаростойкого бетонов определяется по формуле

$$\psi_a = 1,25 - sm - \frac{1 - m^2}{(3,5 - 1,8m) e_a/h_0}$$
 (272)

но принимается не более 1, при этом e_a/h_0 принимается не менее 1,2/s. Для изгибаемых элементов последний член в правой части формулы (272) принимается равным нулю.

В формуле (272):

s — коэффициент, учитывающий влияние длительности действия нагрузки и нагрева и принимаемый по табл. 51 настоящего

Таблица 51

Длительность действия нагрузки и нагрева и вид продольной арматуры	Коэффициент s, учитывающий влияние длительности действия нагрузки и нагрева, при проектной марке бетона					
	выше М 100	М 100 и ниже				
1. Кратковременное действие на- грузки и нагрева: а) при стержневой арматуре: гладкой периодического профиля б) при проволочной арматуре	1 1,1 1	0,7 0,8 0,7				
2. Длительное действие нагрузки и нагрева (независимо от вида арматуры)	0,8	0,6				

Руководства;

 e_a — см. формулу (270);

$$m = \frac{R_{\text{pfII}} W_{\text{T}}}{M_{\text{n}}^{\text{H}}} , \qquad (273)$$

но не более 1.

Здесь W_{τ} — см. формулу (239) или (245); M_{B}^{m} — см. п. 4.4 настоящего Руководства.

Для конструкций, рассчитываемых на выносливость, значение коэффициента фа принимается во всех случаях равным 1.

4.22. Полная величина кривизны $\frac{1}{0}$ для участка с трещинами в растянутой зоне должна определяться по формуле

$$\frac{1}{\rho} = \frac{1}{\rho_1} - \frac{1}{\rho_2} + \frac{1}{\rho_3} \,, \tag{274}$$

 $\frac{1}{\rho_1}$ — кривизна от кратковременного действия всей нагрузки и кратковременного нагрева, на которую производится расчет по деформациям;

 $\frac{1}{
ho_2}$ — кривизна от кратковременного действия постоянных и длительного нагрева;

 $\frac{1}{
ho_3}$ — кривизна от длительного действия постоянных и длительного нагрева.

Кривизны $\frac{1}{\rho_1}$, $\frac{1}{\rho_2}$ и $\frac{1}{\rho_3}$ определяются по формуле (265), при этом величины $\frac{1}{\rho_1}$ и $\frac{1}{\rho_2}$ вычисляются при величинах ψ_a и ν , отвечающих кратковременному действию нагрева и нагрузки, а кривизна $\frac{1}{\rho_3}$ при величинах ψ_a и ν , отвечающих длительному действию нагрузки и нагрева. Если величины $\frac{1}{\rho_2}$ и $\frac{1}{\rho_3}$ оказываются отрицательными, то они принимаются равными нулю.

ОПРЕДЕЛЕНИЕ ПРОГИБОВ

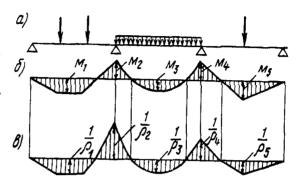
4.23. Полный прогиб изгибаемых элементов равен сумме прогибов, обусловленных: деформацией изгиба — $f_{\rm M}$, который определяется согласно п. 4.24, деформацией от воздействия температуры — $f_{\rm L}$, который принимается в соответствии с п. 4.26, деформацией сдвига — $f_{\rm Q}$, который учитывается для изгибаемых элементов при $\frac{l}{h} < 10$, согласно п. 4.25 настоящего Руководства.

Прогиб f_t допускается не учитывать, если он приводит к умень-

шению полного прогиба элемента.

4.24. Прогиб $f_{\mathbf{M}}$, обусловленный деформацией изгиба, определяется по формуле

$$f_{\rm M} = \int_0^l \overline{M}(x) \frac{1}{\rho}(x) dx, \qquad (275)$$


- где $\overline{M}(x)$ изгибающий момент в сечении x от действия единичной силы, приложенной по направлению искомого перемещения элемента в сечении по длине пролета, для которого определяется прогиб;
 - $\frac{1}{\rho}$ (x) полная величина кривизны элемента в сечении x от нагрузки и усилий, вызванных температурой, при которой определяется прогиб; величины $\frac{1}{\rho}$ определяются по фор-

мулам (263) и (274) соответственно для участков без трещин и с трещинами; знак $\frac{1}{\rho}$ принимается в соответствии с эпюрой кривизны.

Для изгибаемых элементов постоянного сечения, имеющих трещины, на каждом участке, в пределах которого изгибающий момент не меняет знака, кривизну допускается вычислять для наиболее напряженного сечения, принимая кривизну для остальных сечений та-

Рис. 29. Эпюры изгибающих моментов и кривизн в железобетонном элементе постоянного сечения

a — схема расположения нагрузки; δ — эпюра изгибающих моментов; θ — эпюра кривизн

кого участка изменяющейся пропорционально значениям изгибающего момента (рис. 29).

4.25. Для изгибаемых элементов при $\frac{1}{h}$ <10 необходимо учитывать влияние поперечных сил на их прогиб. В этом случае прогиб f_Q , обусловленный деформацией сдвига, определяется по формуле

$$f_Q = \int_0^1 \overline{Q}(x) \gamma_c(x) c dx, \qquad (276)$$

где $\overline{Q}(x)$ — поперечная сила в сечении x от действия по направлению искомого перемещения единичной силы, приложенной в сечении, где определяется прогиб;

ус (х) — деформация сдвига, определяемая по формуле

$$\gamma_{c}(x) = \frac{1.5 Q(x)}{G\beta_{6} bh} \beta(x), \qquad (277)$$

здесь Q(x) — поперечная сила в сечении x от действия внешней нагрузки;

G — модуль сдвига бетона (см. п. 2.12 настоящего Руководства);

водства); \$\beta_6 — коэффициент, определяемый по табл. 16 настоящего Руководства в зависимости от температуры бетона в центре тяжести сечения;

β(x) — коэффициент, учитывающий влияние трещин на деформации сдвига и принимаемый равным:
 на участках по длине элемента, где отсутствуют

нормальные и наклонные к продольной оси элемента трещины — 1;

на участках, где имеются только наклонные к продольной оси элемента трещины — 4,8;

на участках, где имеются только нормальные или нормальные и наклонные к продольной оси элемента трещины — по формуле

$$\beta(x) = \frac{3E_6 I_{\pi}}{M(x)} \frac{1}{\rho}(x). \tag{278}$$

В формуле (278): M(x) и $\frac{1}{\rho}$ (x) — соответственно момент от внешней нагрузки и уси-

лий, вызванных температурой, и полная кривизна в сечении х от нагрузки и усилий, вызванных температурой, при которых определяется прогиб;

 I_{π} — приведенный момент инерции сечения, определяемый согласно п. 1.28 настоящего Руководства;

с- коэффициент, учитывающий влияние длительной ползучести бетона при нагреве, принимаемый по табл. 50 настоящего Руководства.

4.26. Прогиб f_t , обусловленный деформациями от неравномерного нагрева бетона по высоте сечения элемента, определяется по формуле

$$f_t = \int_0^l \overline{M}(x) \frac{1}{\rho_t}(x) dx, \qquad (279)$$

где $\frac{1}{\rho_t}(x)$ — кривизна элемента в сечении x от воздействия темпе-

ратуры с учетом наличия в данном сечении трещин, вызванных усилиями от действия нагрузки или температуры, определяется согласно пп. 1.40 и 1.43 настоящего Руководства;

M(x) — см. п. 4.24 настоящего Руководства.

При расчете свободно опертой или консольной балки постоянной высоты с одинаковым распределением температуры бетона по высоте сечения на всей длине балки прогиб, вызванный воздействием температуры, определяют по формуле

$$f_t = \frac{1}{\rho_t} \, s_2 l^2, \tag{280}$$

где $\frac{1}{\rho_t}$ — кривизна от воздействия температуры определяется согласно пп. 1.40 и 1.43 настоящего Руководства;

 s_2 — коэффициент, принимаемый равным для свободно опертых балок — 1/8 и для консольных — 1/2.

Прогибы элементов конструкций из жаростойкого бетона, имеющих одностороннее армирование и сварные стыки арматуры в растянутой зоне сечения, определяются с учетом повышенной деформативности стыков. При этом кривизна элемента в пределах стыка, определенная как для целого элемента, увеличивается в 5 раз при заполнении шва раствором после сварки стыковых накладок и в 50 раз при заполнении шва до сварки, осуществляемой с учетом заданной последовательности сварки, указанной в п. 5.44 настоящего Руководства.

4.27. Для сплошных плит толщиной менее 25 см, армированных плоскими сетками, с трещинами в растянутой зоне значения прогибов, подсчитанные по формуле (275), умножаются на коэффициент $\left(\frac{h_0}{h_0-0.7}\right)^3$, принимаемый не более 1,5, где h_0 в см.

ОПРЕДЕЛЕНИЕ ЖЕСТКОСТИ СЕЧЕНИЙ ЭЛЕМЕНТОВ

4.28. На участках, где не образуются нормальные к продольной оси элемента трещины, жесткость изгибаемых, внецентренно-сжатых и внецентренно-растянутых элементов определяется по формуле

$$B = \frac{k_{\rm II} E_{\rm 6 In}}{c} \,. \tag{281}$$

Величины I_n , c и k_n принимаются согласно п. 4.16 настоящего Руководства.

4.29. На участках, где образуются нормальные к продольной оси элемента трещины в растянутой зоне, жесткость определяется:

для изгибаемых элементов по формуле

$$B = \frac{h_0 z_1}{\frac{\psi_a}{E_a \beta_a v_a F_a} + \frac{\psi_6}{(\gamma' + \xi) bh_0 E_6 \beta_6 v}};$$
(282)

для внецентренно-сжатых и внецентренно-растянутых при $e_0 \geqslant 0.8 \; h_0$ и приложении продольной силы в центре тяжести приведенного сечения элементов по формуле

$$B = \frac{e_0 h_0 z_1}{\frac{\psi_a}{E_a \beta_a v_a F_a} (e = z_1) + \frac{\psi_6 e}{(\gamma' + \xi) b h_0 E_6 \beta_6 v}},$$

$$e_0 = \left| \frac{M}{M} \right|.$$
(283)

где

В формуле (283) знак минус перед z_1 принимается при внецентренном сжатии, плюс — при внецентренном растяжении.

Величины, входящие в формулы (282) и (283), определяются согласно пп. 4.19—4.21 настоящего Руководства.

ПРИБЛИЖЕННЫЙ МЕТОД РАСЧЕТА ДЕФОРМАЦИЙ И ЖЕСТКОСТИ ЭЛЕМЕНТОВ

4.30. Для изгибаемых элементов постоянного сечения на участках, где образуются нормальные к продольной оси элемента трещины в растянутой зоне, допускается кривизну определять по формуле

$$\frac{1}{\rho} = \frac{M - k_2 bh^2 R_{\text{ptII}}}{k_1 E_a \beta_a v_a F_a h_0^2},$$
 (284)

11*

где k_1 и k_2 — коэффициенты, зависящие от формы сечения, величины $\mu \frac{E_a \beta_a}{E_6 \beta_6}$ и длительности действия температуры и нагруз-

ки, определяемые по табл. 52 настоящего Руководства; у' — определяется по формуле (269) настоящего Руководства;

 γ_1 — по формуле (240) настоящего Руководства, в которой величина h заменяется значением h_0 сечения.

Значения коэффициентов β_a , ν_a , β_6 принимаются согласно п. 4.19 настоящего Руководства.

Жесткость изгибаемых элементов с трещинами в растянутой зоне допускается определять приближенным методом по формуле

Ka H Hal-								Қоэ	ффиді	мент <i>К</i>	г₁ при	значе	квин
нагрузка рев	γ	γ¹	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,1	0,13	0,15	0,17
Длительные	0 0 0 0 0 0 0 0,2 0,4 0,6 0,8 1,0	0 0,2 0,4 0,6 0,8 0,1	0,43 0,49 0,52 0,54 0,56 0,57 0,47	0,39 0,46 0,49 0,51 0,53 0,54 0,40 0,42 0,43	0,36 0,44 0,47 0,49 0,51 0,52 0,36 0,36 0,37 0,38 0,4	0,34 0,42 0,46 0,48 0,49 0,51 0,33 0,33 0,33	0,32 0,41 0,45 0,47 0,48 0,5 0,31 0,31 0,31 0,3	0,3 0,39 0,44 0,46 0,47 0,49 0,3 0,3 0,29 0,29	0,28 0,37 0,42 0,44 0,46 0,48 0,28 0,28 0,27 0,27	0,26 0,35 0,4 0,43 0,45 0,47 0,26 0,26 0,25 0,24 0,24	0,23 0,31 0,38 0,42 0,44 0,46 0,23 0,22 0,22 0,22	0,22 0,29 0,35 0,39 0,42 0,44 0,22 0,21 0,21 0,21	0,21 0,27 0,33 0,37 0,4 0,42 0,21 0,2 0,2 0,2 0,19
	0,2 0,4 0,6 0,8 1,0	0,2 0,4 0,6 0,8 1,0	0,51	0,45 0,53 — —	0,43 0,49 0,53 —	0,40 0,47 0,50 0,53 0,61	0,38 0,45 0,48 0,5 0,53	0,37 0,43 0,46 0,48 0,5	0,36 0,42 0,44 0.46 0,48	0,34 0,39 0,41 0,44 0,45	0,3 0,37 0,39 0,41 0,43	0,28 0,35 0,38 0,39 0,4	0,26 0,33 0,36 0,38 0,39
ные	0 0 0 0 0	0 0,2 0,4 0,6 0,8 1,0	0,64 0,72 0,76 0,79 0,82 0,84	0,59 0,66 0,69 0,71 0,73 0,74	0,56 0,63 0,66 0,69 0,7 0,71	0,53 0,61 0,65 0,67 0,68 0,69	0,51 0,59 0,63 0,65 0,67 0,68	0,5 0,58 0,62 0,64 0,66 0,67	0,49 0,57 0,61 0,63 0,65 0,66	0,46 0,56 0,6 0,63 0,65 0,65	0,43 0,53 0,59 0,62 0,64 0,66	0,41 0,51 0,57 0,61 0,63 0,65	0,4 0,49 0,56 0,6 0,63 0,65
Кратковременные	0,2 0,4 0,6 0,8 1,0	00000	0,74	0,6 0,63 0,81 —	0,56 0,57 0,59 0,63 0,84	0,53 0,54 0,54 0,55 0,55	0,51 0,51 0,51 0,51 0,51 0,52	0,49 0,49 0,49 0,49 0,49	0,47 0,47 0,47 0,47 0,47	0,44 0,44 0,44 0,44 0,44	0,42 0,42 0,42 0,42 0,42	0,4 0,4 0,4 0,4 0,4	0,39 0,39 0,39 0,39 0,39
Кp	0,2 0,4 0,6 0,8 1,0	0,2 0,4 0,6 0,8 1.0	0,79 — — — —	0,67 0,77 — —	0,63 0,69 0,76	0,61 0,66 0,7 0,76 0,92	0,59 0,64 0,67 0,71 0,76	0,58 0,62 0,65 0,68 0,71	0,56 0,61 0,64 0,66 0,69	0,55 0,58 0,61 0,64 0,66	0,52 0,56 0,58 0,61 0,63	0,5 0,55 0,57 0,59 0,61	0,48 0,54 0,56 0,58 0,6

$$B = \frac{Mk_1 E_a \beta_a v_a h_0^2 F_a}{M - k_a bh^2 R_{\text{ptII}}}.$$
 (285)

Жесткость внецентренно сжатых элементов с трещинами в растянутой зоне с процентом армирования $\mu \geqslant 0.7\%$ и $e_0 \geqslant 0.8~h_0$ допускается определять приближенным методом по формуле

$$B = \frac{Mk_1 E_a \beta_a v_a h_0^2 F_a}{M - k_2 bh^2 R_{ptII} - k_3 N r_y},$$
 (286)

где k_3 — коэффициент, принимаемый по табл. 53 настоящего Руководства для кратковременного или длительного действия нагрева и нагрузки;

						_			Таб	лица	52
μ <i>n</i> ,	равных			Коэффициент k_2 при значениях μn , равных							
0,	0,25	0,30	0,35	0,4	0,45	0,5	<0,04	0.04-	0,08— <0,15	0,15-	0,3-0,5
0,1 0,2 0,3 0,3 0,3 0,4	5 0,21 1 0,26 5 0,31 8 0,35	0,14 0,19 0,24 0,28 0,32 0,35	0,13 0,17 0,22 0,25 0,29 0,32	0,12 0,16 0,2 0,23 0,27 0,3	0,11 0,14 0,18 0,22 0,25 0,28	0,1 0,13 0,17 0,2 0,23 0,26	0,1 0,12 0,13 0,13 0,14 0,15	0,07 0,09 0,1 0,11 0,12 0,13	0,04 0,05 0,06 0,08 0,09 0,1	0 0,02 0,02 0,04 0,06	0 0 0 0
0,1 0,1 0,1 0,1 0,1	9 0,16 8 0,15 7 0,15	0,14 0,14 0,14 0,14 0,14	0,13 0,13 0,12 0,12 0,12	0,11 0,11 0,11 0,11 0,11	0,11 0,1 0,1 0,1 0,1	0,1 0,1 0,1 0,1 0,1	0,15 0,18 0,2 0,23 0,25	0,12 0,16 0,19 0,22 0,24	0,08 0,13 0,17 0,2 0,23	0,03 0,06 0,09 0,12 0,14	0 0,02 0,03 0,05 0,06
0,2 0,3 0,3 0,3 0,3	0,26 0,31 0,34	0,19 0,23 0,28 0,31 0,34	0,17 0,21 0,25 0,29 0,32	0,16 0,2 0,23 0,26 0,29	0,14 0,18 0,21 0,25 0,27	0,13 0,17 0,2 0,23 0,26	0,16 0,2 0,24 —	0,13 0,19 0,22 0,25 0,26	0,08 0,14 0,2 0,24 0,25	0,04 0,07 0,12 0,19 0,2	0 0,03 0,04 0,08 0,12
0,33 0,46 0,53 0,56 0,63	0,43 0,49 0,55 0,58 0,61	0,32 0,4 0,46 0,52 0,56 0,59	0,3 0,37 0,44 0,49 0,53 0,56	0,28 0,35 0,41 0,56 0,5 0,54	0,26 0,33 0,39 0,44 0,48 0,52	0,25 0,31 0,37 0,42 0,46 0,5	0,17 0,21 0,23 0,25 0,26 0,27	0,14 0,18 0,2 0,21 0,23 0,24	0,09 0,11 0,14 0,16 0,17 0,18	0,02 0,03 0,04 0,05 0,06 0,07	0 0 0 0
0,33 0,33 0,33 0,33	7 0,34 7 0,34 7 0,34	0,32 0,32 0,32 0,32 0,32 0,32	0,3 0,3 0,3 0,3 0,3	0,28 0,28 0,28 0,28 0,28	0,26 0,26 0,26 0,26 0,27	0,25 0,25 0,25 0,25 0,25	0,28 0,35 0,36 0,45 0,5	0,23 0,31 0,39 0,4 0,46	0,16 0,25 0,32 0,38 0,44	0,07 0,14 0,2 0,25 0,29	0 0,03 0,08 0,12 0,15
0,46 0,53 0,55 0,55 0,56	0,48 0,53 0,56	0,39 0,45 0,5 0,53 0,56	0,37 0,43 0,47 0,51 0,54	0,35 0,4 0,45 0,49 0,52	0,33 0,38 0,43 0,47 0,5	0,31 0,37 0,41 0,45 0,48	0,27 0,39 0,5 —	0,24 0,37 0,46 0,6 0,72	0,17 0,3 0,44 0,57 0,7	0,08 0,16 0,28 0,41 1,55	0 0,01 0,11 0,21 0,31

96 —	3жа							Коэффициент k_3 при значениях μn , равных													
Harby	и нагрев	γ	ν'	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,1	0,13	0,15	0,17	0,2	0,25	0,3	0,35	0,4	0,45	0,5
		0	0	1,12	1,08	0,99	0,91	0,87	0,83	0,79	0,75	0,7	0,66	0,63	0,59	0,54	0,5	0,47	0,45	0,42	0,41
		0	0,2	1,19	1,14	1,07	0,99	0,95	0,88	0,84	0,79	0,74	0,69	0,66	0,62	0,57	0,53	0,5	0,47	0,44	0,42
		0	0,4	1,25	1,19	1,15	1,07	0,99	0,93	0,89	0,84	0,79	0,73	0,69	0,65	0,61	0,57	0,54	0,49	0,46	0,43
	Hbre	0	0,6	1,29	1,24	1,2	1,12	1,05	0,97	0,93	0,89	0,83	0,77	0,73	0,69	0,65	0,6	0,57	0,52	0,47	0,44
	Длительные	0	0,8	1,32	1,27	1,23	1,15	1,09	1,02	0,97	0,92	0,87	0,82	0,77	0,72	0,68	0,63	0,59	0,54	0,49	0,45
:	Дли	0	1	1,34	1,3	1,25	1,19	1,13	1,06	1	0,95	0,9	0,86	0,8	0,74	0,7	0,65	0,61	0,56	0,51	0,46
-		0	0	1,15	1,11	1,07	1,04	1,01	0,99	0,97	0,94	0,9	0,88	0,86	0,84	0,81	0,78	0,75	0,73	0,7	0,68
	ere e	0	0,2	1,17	1,14	1,09	1,06	1,03	1,01	0,99	0,96	0,93	0,91	0,89	0,87	0,84	0,82	0,79	0,77	0,74	0,72
	ченн	0	0,4	1,19	1,16	1,11	1,08	1,05	1,03	1,02	0,98	0,95	0,94	0,92	0,9	0,87	0,85	0,83	0,8	0,78	0,76
	эврег	0	0,6	1,2	1,17	1,12	1,09	1,07	1,05	1,03	1	0,97	0,96	0,94	0,92	0,89	0,87	0,85	0,83	0,81	0,79
	Қратковременные	0	0,8	1,21	1,18	1,13	1,1	1,08	1,06	1,04	1,02	0,99	0,97	0,96	0,94	0,91	0,89	0,87	0,85	0,83	0,81
,	쏘	0	•	1,23	1,19	1,14	1,11	1,09	1,07	1,05	1,03	1	0,98	0,97	0,95	0,92	0,9	0,88	0,86	0,84	0,83

ry — см. п. 4.4 настоящего Руководства.

Остальные величины, входящие в формулы (285) и (286), те же,

что и в формуле (284) настоящего Руководства.

4.31. Для свободно опертых или консольных балок постоянного сечения при $\frac{l}{h} \geqslant 10$ прогиб от нагрузки определяется по формуле

$$f_{\rm M} = \frac{1}{\rho_{\rm C}} st^2, \tag{287}$$

rде $\frac{1}{
ho_{f c}}$ — кривизна в сечении с наибольшим изгибающим моментом от нагрузки, при которой определяется прогиб;

s — коэффициент равный:

при загружении консоли:

равномерно распределенной нагрузкой — 1/4; сосредоточенной силой на конце консоли — 1/3; сосредоточенной силой на расстоянии а от опоры — а / а \

$$\frac{\mathbf{a}}{6}\left(3-\frac{\mathbf{a}}{l}\right);$$

при загружении свободно опертой балки:

равномерно распределенной нагрузкой — $\frac{5}{48}$;

сосредоточенной силой по середине пролета $-\frac{1}{12}$; двумя сосредоточенными силами, приложенными на расстоянии а от каждой опоры, $-\frac{1}{8}-\frac{a^2}{6l^2}$.

5. КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

5.1. При проектировании бетонных и железобетонных конструкций, работающих в условиях воздействия повышенных и высоких температур, для обеспечения условий их изготовления, требуемой долговечности и совместной работы арматуры и бетона надлежит выполнять конструктивные требования, изложенные в настоящем разделе Руководства.

минимальные размеры сечения элементов

5.2. Минимальные размеры сечения бетонных и железобетонных элементов, определяемые из расчета по действующим усилиям и соответствующим группам предельных состояний, должны назначаться с учетом экономических требований, необходимости унификации опалубочных форм и армирования, а также условий принятой технологии изготовления конструкций.

Кроме того, размеры сечения элементов железобетонных конструкций должны приниматься такими, чтобы соблюдались требования в части расположения арматуры в сечении (толщины защитных слоев бетона, расстояния между стержнями и т. п.) и анкеровки ар-

матуры.

5.3. Минимальные размеры сечений ограждающих элементов

конструкций устанавливаются теплотехническим расчетом.

Толщина монолитных плит покрытий и перекрытий из тяжелого и облегченного жаростойкого бетона должна приниматься не менее 60 мм, сводов и куполов — не менее 40 мм, плит из легкого жаростойкого бетона — не менее 60 мм. Минимальная толщина сборных плит должна определяться из условий обеспечения толщин защитных слоев бетона и условий расположения арматуры по толщине плиты (см. пп. 5.4—5.12 настоящего Руководства).

Размеры сечений внецентренно-сжатых бетонных и железобетонных элементов при воздействии повышенных и высоких температур должны приниматься такими, чтобы их гибкость $\frac{l_0}{l_0}$ в любом направлении не превышала предельной величины, указанной в табл. 54

настоящего Руководства.

Таблица 54

Элементы	Предельная гибкость $\frac{l_0}{r}$ внецентренно- сжатых элементов при температуре бетона в центре тяжести сечения, °C									
	50—100	300	500	700	900					
Бетонные	85	60	50	45	35					
Железобетонные	125	90	55							

Примечания: 1. Для железобетонных элементов с односторонним армированием предельные гибкости принимаются, как для бетонных элементов.

2. Для промежуточных значений температур предельные гибкости определяются по интерполяции.

ЗАЩИТНЫЙ СЛОЙ БЕТОНА

5.4. Защитный слой бетона для рабочей арматуры должен обеспечивать совместную работу арматуры с бетоном на всех стадиях работы конструкции, а также защиту арматуры от внешних атмосферных, температурных и т. п. воздействий.

5.5. В конструкциях из обычного бетона для продольной рабочей арматуры (ненапрягаемой и напрягаемой, натягиваемой на упоры) толщина защитного слоя должна составлять, как правило,

не менее диаметра стержня или каната и не менее:

при температуре арматуры до 100° С:

в плитах и стенках толщиной до 100 мм включительно — 10 мм; в плитах и стенках толщиной более 100 мм, а также в балках и ребрах высотой менее 250 мм — 15 мм; в балках и ребрах высотой 250 мм и более, а также в колон-

нах — 20 мм:

в фундаментных балках и в сборных фундаментах — 30 мм;

для нижней арматуры монолитных фундаментов: при наличии бетонной подготовки — 35 мм, при отсутствии бетонной подготовки — 70 мм;

при температуре арматуры выше 100° C — увеличенной на 5 мм

и быть не менее 1,5 диаметра арматуры.

В конструкциях из жаростойкого бетона толщину защитного слоя бетона для арматуры независимо от ее вида необходимо увеличивать при температуре арматуры до 200° С — на 5 мм, выше 200° С — на 10 мм, при этом минимальная толщина защитного слоя бетона должна быть при температуре арматуры:

```
до 100^{\circ} С — 1,5 d; выше 100 до 300^{\circ} С — 2 d; выше 300^{\circ} С — 2,5 d.
```

5.6. В конструкциях из обычного бетона толщина защитного слоя бетона для поперечной, распределительной и конструктивной арматуры должна приниматься не менее диаметра указанной арматуры и не менее:

```
при температуре нагрева арматуры до 100° С;
```

при h < 250 мм — 10 мм;

при $h \ge 250$ мм — 15 мм;

при температуре нагрева арматуры выше 100° С и в конструкциях из жаростойкого бетона — согласно п. 5.5 настоящего Руководства.

5.7. Толщина защитного слоя бетона у концов предварительно напряженных элементов из обычного и жаростойкого бетонов на участке зоны передачи усилий от арматуры на бетон (см. п. 2.30 главы СНиП II-21-75) должна составлять не менее:

при температуре арматуры до 100° С:

для стержневой арматуры классов A-IV (AT-IV) и ниже, а также для арматурных канатов — 2d;

для стержневой арматуры классов A-V (Aт-V) и Aт-VI—3d; при температуре нагрева арматуры выше 100° C — увеличенной на 0.5~d.

Кроме того, толщина защитного слоя бетона на указанном участке длины элемента должна быть не менее 40 мм для стержневой арматуры всех классов и не менее 20 мм для арматурных канатов.

5.8. При воздействии повышенных температур в элементах с напрягаемой продольной арматурой, натягиваемой на бетон и располагаемой в каналах, расстояние от поверхности элемента до поверхности канала должно приниматься не менее 50 мм и не менее ширины канала; указанное расстояние до боковых граней элемента должно быть, кроме того, не менее половины высоты канала.

При расположении напрягаемой арматуры в пазах или снаружи сечения элемента толщина защитного слоя бетона, образуемого последующим торкретированием или иным способом, должна приниматься не менее 30 мм.

5.9. При температуре арматуры до 100° С концы продольных рабочих стержней ненапрягаемой арматуры, не привариваемых к анкерующим деталям, должны отстоять от торца элемента на расстоянии, не менее указанного в табл. 55 настоящего Руководства. Концы напрягаемой арматуры, а также анкеры должны быть защищены слоем раствора не менее 10 мм или бетона не менее 15 мм.

Железо б етонные элементы	Минимальное расстояние, мм, между торцом элемента и концами рабочих стержней продольной арматуры
	при ее температу- ре до 100°C
А. Сборные	
1. Плиты перекрытий, стеновые панели пролетом до 12 м включительно	10
2. Колонны длиной: до 18 м включительно более 18 м 3. Опоры, мачты любой длины 4. Прочие элементы пролетом (длиной) до 9 м включительно	10 15 15 10
Б. Монолитные	
5. Длиной до 6 м включительно при диаметре стержней арматуры до 28 мм включительно	15
6. Длиной более 6 м при диаметре стержней арматуры до 28 мм включительно	20

Примечание. При температуре арматуры выше 100° С минимальное расстояние между торцом элемента и концами рабочих стержней продольной арматуры увеличивается на 5 мм.

5.10. В полых элементах кольцевого или коробчатого сечения расстояние от стержней продольной арматуры до внутренней поверхности бетона должно удовлетворять требованиям пп. 5.5 и 5.6 настоящего Руководства.

МИНИМАЛЬНЫЕ РАССТОЯНИЯ МЕЖДУ СТЕРЖНЯМИ АРМАТУРЫ

5.11. Расстояния в свету между стержнями арматуры или оболочками каналов для арматуры по высоте и ширине сечения должны обеспечивать совместную работу арматуры с бетоном и назначаться с учетом удобства укладки и уплотнения бетонной смеси; для предварительно-напряженных конструкций должны также учитываться степень местного обжатия бетона и габариты натяжного оборудования (домкратов, зажимов и т. п.). В элементах, изготовляемых без применения виброплощадок или вибраторов, укрепляемых на опалубке, должно быть обеспечено свободное прохождение между арматурными стержнями наконечников штыковых вибраторов или виброштампующих элементов машин, уплотняющих бетонную смесь.

- 5.12. Расстояния в свету между отдельными стержнями продольной ненапрягаемой арматуры либо напрягаемой арматуры, натягиваемой на упоры, а также между продольными стержиями соседних плоских сварных каркасов должны приниматься не менее наибольшего диаметра стержней, а также:
- а) если стержни при бетонировании занимают горизонтальное или наклонное положение — не менее: для нижней арматуры — 25 мм и для верхней арматуры — 30 мм; при расположении нижней арматуры более чем в два ряда по высоте расстояния между стержнями в горизонтальном направлении (кроме стержней двух нижних рядов) должны приниматься не менее 50 мм;
- б) если стержни при бетонировании занимают вертикальное положение — не менее 50 мм; при систематическом контроле фракционирования заполнителей бетона это расстояние может быть уменьшено до 35 мм, но при этом должно быть не менее полуторакратного наибольшего размера крупного заполнителя.

При стесненных условиях допускается располагать стержни арматуры попарно (без зазора между ними).

В элементах с напрягаемой арматурой, натягиваемой на бетон (за исключением непрерывно-армированных конструкций), расстоянне в свету между каналами для арматуры должно быть, как правило, не менее диаметра канала и во всяком случае не менее 50 мм.

Примечание. Расстояние в свету между стержнями периодического профиля принимается по номинальному диаметру без учета выступов и ребер.

АНКЕРОВКА НЕНАПРЯГАЕМОЙ АРМАТУРЫ

- 5.13. Стержни периодического профиля, а также гладкие арматурные стержни, применяемые в сварных каркасах и сетках, выполняются без крюков. Растянутые гладкие стержни вязаных каркасов и вязаных сеток должны заканчиваться полукруглыми крюками, лапками или петлями.
- 5.14. Продольные стержни растянутой и сжатой арматуры должны быть заведены за нормальное к продольной оси элемента сечение, в котором они учитываются с полным расчетным сопротивлением, на длицу не менее $l_{\rm au}$, определяемую по формуле

$$l_{\rm aH} = \left(m_{\rm aH} \frac{R_{\rm at}}{R_{\rm mot}} + \Delta \lambda_{\rm aH}\right) d, \qquad (288)$$

но не менее $l_{an} = \lambda_{an} d$, где значения m_{an} , $\Delta \lambda_{an}$ и λ_{an} , а также допускаемые минимальные величины $l_{\rm an}$ определяются по табл. 56 настоящего Руководства. При этом гладкие арматурные стержни должны оканчиваться крюками или иметь приваренную поперечную арматуру по длине заделки.

Если вдоль анкеруемых стержней образуются трещины от растяжения бетона, то стержни должны быть заделаны в сжатую зону

бетона на длину l_{ah} , определяемую по формуле (288).

Если анкеруемые стержни поставлены с запасом по площади сечения против требуемой расчетом по прочности, то при определении l_{an} по формуле (288) значение R_{at} должно умножаться на величину, равную отношению необходимой по расчету и фактической площади сечения арматуры.

При невозможности выполнения этих требований должны быть

	Параметры для определения анкеровки ненапрягаемой арматуры										
V. Tanua makanti wasannananak ansanin.		периодиче	ского профи	ля	гладкой						
Условия работы ненапрягаемой арматуры	m _{ан}	Δλан	λан	l _{aH} , mm	m _{aH}	Δλан	λан	l _{aн} , мм			
	ан	ан	не м	енее	ан	ан	не м	енее			
1. Заделка растянутой арматуры в растянутом бетоне	0,7	11	20	250	1,2	11	20	250			
2. Заделка сжатой или растянутой арматуры в сжатом бетоне	0,5	8	12	200	0,8	8	15	200			
3. Стыки арматуры внахлестку в растанутом бетоне	0,9	11	20	250	1,55	11	20	250			
4. Стыки арматуры внахлестку в сжатом б етоне	0,65	8	15	200	1	8	15	200			

приняты меры по анкеровке продольных стержней для обеспечения их работы с полным расчетным сопротивлением в рассматриваемом сечении (постановка косвенной арматуры, приварка к концам стержней анкерующих пластин или закладных деталей, отгиб анкерующих стержней). При этом величина $l_{\rm an}$ должна быть не менее 12 d.

При температуре арматуры выше 200° С величину $l_{\rm ah}$, определяемую по формуле (288), следует увеличивать на 20%; к каждому растянутому продольному стержню необходимо предусматривать

приварку не менее двух поперечных стержней.

5.15. Для обеспечения анкеровки всех продольных стержней арматуры, доходящих до опоры, на крайних свободных опорах изгибаемых элементов должны выполняться следующие требования:

 а) если соблюдается условие (180), длина запуска растянутых стержней за внутреннюю грань свободной опоры должна составлять

не менее 6d;

б) если условие (180) не соблюдается, длина запуска стержней за внутреннюю грань свободной опоры должна быть не менее $12\,d$.

Длина зоны анкеровки $l_{\rm ah}$ на крайней свободной опоре, на которой снижаются расчетные сопротивления арматуры (см. табл. 32 настоящего Руководства), определяется согласно п. 5.14 настоящего Руководства и п. 2 табл. 56.

При наличии косвенной арматуры (сварных поперечных сеток или охватывающих продольную арматуру хомутов) длина зоны анкеровки $l_{\mathtt{a}\mathtt{B}}$ снижается путем деления коэффициента $m_{\mathtt{a}\mathtt{B}}$ на величину

 $1+12~\mu_{ ext{\tiny K}}$ и уменьшения коэффициента $\Delta\lambda_{ ext{\tiny AH}}$ на величину $10~\frac{68}{R_{ ext{\tiny Rpf}}}$

Здесь μ_{κ} — объемный коэффициент армирования, определяемый по п. 5.15 главы СНиП II-21-75.

Напряжение сжатия бетона на опоре σ_6 определяется делением опорной реакции на площадь опирания элемента и принимается не более $0.5~R_{\pi\pi^2}$.

Косвенное армирование распределяется по длине зоны анкеровки от торца элемента до ближайшей к опоре нормальной трещины.

Длина запуска стержней за внутреннюю грань опоры уменьшается против требуемой настоящим пунктом, если величина $l_{\rm as} < 12~d$, и принимается равной $l_{\rm as}$, но не менее 6~d. В этом случае, а также при приварке концов стержней к надежно заанкеренным стальным закладным деталям, снижение расчетного сопротивления продольной арматуры на опорном участке не производится.

продольное армирование элементов

5.16. Площадь сечения продольной арматуры в железобетонных элементах из обычного и жаростойкого бетона (в процентах от площади сечения бетона) должна приниматься не менее указанной в табл. 57 настоящего Руководства.

В элементах с продольной арматурой, расположенной равномерно по контуру сечения, а также в центрально-растянутых элементах минимальная площадь сечения всей продольной арматуры должна приниматься вдвое больше величин, указанных в табл. 57 настоящего Руководства.

Минимальный процент содержания арматуры A и A' во внецентренно-сжатых элементах, несущая способность которых при расчетном эксцентрицитете используется менее чем на 50%, независимо от гибкости элементов принимается равным 0,05.

Характеристика положения арматуры и характер работы элемента	Минимальная площадь сечения продольной арматуры в железобетонных элементах из обычного и жаростойкого бетонов (в % от площади сечения бетона)
1. Арматура A во всех изгибаемых, а также во внецентренно-растянутых элементах при расположении продольной силы за пределами рабочей высоты сечения	0,05
2. Арматура A и A' во внецентренно-растянутых элементах при расположении продольной силы между арматурой A и A'	
3. Арматура A и A' во внецентренно-сжатых элементах при: a) l ₀ /r < 17 6) 17 ≤ l ₀ /r ≤ 35 в) 35 ≤ l ₀ /r ≤ 83 г) l ₀ /r > 83	0,05 0,1 0,2 0,25

Примечание. Минимальная площадь сечения арматуры, приведенная в табл. 57, относится к площади сечения бетона, равной произведению ширины прямоугольного сечения, либо ширины ребра таврового (двутаврового) сечения b на расчетную рабочую высоту сечения h_0 . В элементах с продольной арматурой, расположенной равномерно по контуру сечения, а также в центрально-растянутых элементах указанная величина минимального армирования относится к полной плошали сечения бетона.

Требования табл. 57 настоящего Руководства не распространяются на армирование, определяемое расчетом элемента для стадии транспортирования и возведения; в этом случае площадь сечения арматуры определяется только расчетом по прочности.

Если расчетом установлено, что несущая способность элемента исчерпывается одновременно с образованием трещин в бетоне растянутой зоны, то должны учитываться требования п. 1.20 настоящего Руководства для слабоармированных элементов.

Требования настоящего пункта не учитываются при назначении площади сечения арматуры, устанавливаемой по контуру плит или панелей из расчета на изгиб в плоскости плиты (панели).

5.17. Диаметр продольной растянутой и сжатой рабочей арматуры не должен превышать при температуре арматуры:

```
до 100° С — 28 мм;
выше 100 до 200° С — 25 мм;
выше 200 до 300° С — 20 мм;
выше 300 до 400° С — 16 мм;
выше 400° С — 12 мм.
```

Диаметр продольных стержней сжатых элементов монолитных конструкций должен быть не менее 12 мм.

5.18. В линейных внецентренно-сжатых элементах расстояние между осями стержней продольной арматуры должно приниматься не более 400 мм.

5.19. Во внецентренно-сжатых элементах, несущая способность которых при заданном эксцентрицитете продольной силы используется менее чем на 50%, а также в элементах с гибкостью $l_0/r < 17$ (например, подколонники), где по расчету сжатая арматура не требуется, а количество растянутой арматуры не превышает 0,3%, допускается не устанавливать продольную и поперечную арматуру, требуемую согласно пп. 5.18, 5.22 и 5.23 настоящего Руководства по граням, параллельным плоскости изгиба. При этом армирование по граням, перпендикулярным к плоскости изгиба, производится сварными каркасами и сетками с толщиной защитного слоя бетона не менее двух диаметров продольной арматуры.

5.20. В балках шириной более 150 мм число продольных рабочих стержней, доводимых до опоры, должно быть не менее двух. В ребрах сборных панелей, настилов, часторебристых перекрытий и т. п. шириной 150 мм и менее допускается доведение до опоры одного про-

дольного рабочего стержня.

В плитах расстояния между стержнями, доводимыми до опоры, не должны превышать 400 мм, причем площадь сечения этих стержней на 1 м ширины плиты должна составлять не менее ¹/₃ площади сечения стержней в пролете, определенной расчетом по наибольшему изгибающему моменту.

При армировании неразрезных плит сварными рулонными сетками допускается вблизи промежуточных опор все нижние стержни

отгибать в верхнюю зону.

Расстояния между осями рабочих стержней в средней части пролета плиты и над опорой (вверху) должны быть не более 200 мм при толщине плиты до 150 мм и не более 1,5 h — при толщине плиты

более 150 мм (где h — толщина плиты).

5.21. В изгибаемых элементах при высоте сечения более 700 мм у боковых граней должны ставиться конструктивные продольные стержни с расстояниями между ними по высоте не более 400 мм и площадью сечения не менее 0,1% площади сечения бетона с размерами: по высоте элемента — равными расстоянию между этими стержнями, и по ширине элемента — равными половине ширины ребра элемента, но не более 200 мм.

поперечное армирование элементов

5.22. У всех поверхностей железобетонных элементов, вблизи которых ставится продольная арматура, должна предусматриваться также поперечная арматура, охватывающая крайние продольные стержни. При этом расстояния между поперечными стержнями у каждой поверхности элемента должны быть не более 500 мм и не более удвоенной ширины грани элемента.

Поперечную арматуру допускается не ставить у граней тонких ребер изгибаемых элементов (шириной 150 мм и менее), по ширине которых располагается лишь один продольный стержень или сварной

каркас.

Во внецентренно-сжатых линейных элементах, а также в сжатой зоне изгибаемых элементов при наличии учитываемой в расчете сжа-

той продольной арматуры хомуты должны ставиться на расстояниях: при $R_{\rm a.c} \! \leq \! 4000$ кгс/см² — не более 500 мм и при вязаных каркасах не более 15 d, а при сварных — не более 20 d; при $R_{\rm a.c} \! \geq \! \geq \! 4500$ кгс/см² — не более 400 мм и при вязаных каркасах не более 12 d, а при сварных — не более 15 d (где d — наименьший диаметр сжатых продольных стержней). При этом конструкция поперечной арматуры должна обеспечивать закрепление сжатых стержней от их бокового выпучивания в любом направлении.

Расстояния между хомутами внецентренно-сжатых элементов в местах стыкования рабочей арматуры внахлестку без сварки должны

составлять не более 10 d.

Если общее насыщение элемента продольной арматурой составляет более 3%, хомуты должны устанавливаться на расстояниях не более 10~d и не более 300~мм.

При проверке соблюдения требований настоящего пункта продольные сжатые стержни, не учитываемые расчетом, не должны приниматься во внимание, если диаметр этих стержней не превышает 12 мм и не более половины толщины защитного слоя бетона.

5.23. Конструкция вязаных хомутов во внецентренно-сжатых элементах должна быгь такова, чтобы продольные стержни (по крайней мере через один) располагались в местах перегиба хомутов, а эти перегибы — на расстоянии не более 400 мм по ширине грани элемента. При ширине грани не более 400 мм и числе продольных стержней у этой грани не более четырех допускается охват всех продольных стержней одним хомутом.

При армировании внецентренно-сжатых элементов плоскими сварными каркасами два крайних каркаса (расположенных у противоположных граней) должны быть соединены друг с другом для образования пространственного каркаса. Для этого у граней элемента, нормальных к плоскости каркасов, должны ставиться поперечные стержни, свариваемые контактной точечной сваркой с угловым продольным стержнем каркасов, или шпильки, связывающие эти стержни; расстояния между приваренными поперечными стержнями должны быть не более 20 d, а между шпильками — 15 d (где d — наименьший из диаметров сжатых продольных стержней).

Если крайние плоские каркасы имеют промежуточные продольные стержни, то последние по крайней мере через один и не реже, чем через 400 мм по ширине грани элемента должны связываться с продольными стержнями, расположенными у противоположной грани, при помощи шпилек, устанавливаемых по длине элемента на тех же расстояниях, что и поперечные стержни плоских каркасов. Шпильки допускается не ставить при ширине данной грани элемента не более 500 мм, если число продольных стержней у этой грани не превышает четырех.

5.24. Диаметр хомутов в вязаных каркасах внецентренно-сжатых линейных элементов должен приниматься не менее 0.25 d и не менее 5 мм (где d — наибольший диаметр продольных стержней).

Диаметр хомутов в вязаных каркасах изгибаемых элементов должен приниматься не менее:

при $h \le 300$ мм — 6 мм;

при h > 300 мм — 8 мм.

Соотношение диаметров поперечных и продольных стержней в сварных каркасах и в сварных сетках устанавливается из условия сварки по соответствующим нормативным документам.

5.25. В балках и ребрах высотой более 150 мм, а также в много-

пустотных сборных плитах (или аналогичных часторебристых конструкциях) высотой более 300 мм должна всегда устанавливаться

вертикальная поперечная арматура.

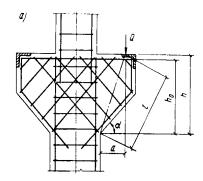
В сплошных плитах, а также в балках и ребрах высотой 150 мм и менее и в многопустотных сборных плитах (или аналогичных часторебристых конструкциях) высотой 300 мм и менее допускается поперечную арматуру не устанавливать, при этом должны быть обеспечены требования расчета согласно п. 3.59 настоящего Руководства.

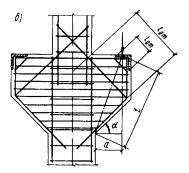
5.26. Расстояние между вертикальными поперечными стержнями в элементах, не имеющих отогнутой арматуры, в случаях, когда по-

перечная арматура требуется по расчету либо по конструктивным соображениям, указанным 5.25 настоящего Руководства, должно приниматься:

а) на приопорных участках (равных при равномерной нагрузке 1/4 пролета, а при сосредотонагрузках — расстоянию ченных от опоры до ближайшего груза, но не менее 1/4 пролета):

при высоте сечения ≤ 450 мм — не более h/2и не более 150 мм:


при высоте сечения >450 мм — не более h/3более 500 мм:


б) на остальной части пролета при высоте сечения >300 мм более $\frac{3}{4}$ h и не более 500 мм.

5.27. Поперечная арматура, устанавливаемая в плитах в зоне продавливания, должна иметь анкеровку по концам, выполненную приваркой или охватом продольной арматуры.

Расстояние между поперечными стержнями принимается не более $\frac{1}{3}h$ и не более 200 мм (где h — толщина плиты). рина зоны постановки поперечной арматуры должна быть не менее 1,5 h.

5.28. Отогнутые стержни неарматуры напрягаемой должны предусматриваться в изгибаемых элементах при армировании их вязаными каркасами и в коротких консолях. Отгибы стержней

30. Схема армирования Рис. коротких консолей

а — наклонными хомутами; отогнутыми стержнями и горизонтальными хомутами

должны осуществляться по дуге радиуса не менее 10 d. В изгибаемых элементах на концах отогнутых стержней должны устраиваться прямые участки длиной не менее $0.8 \ l_{\rm ah}$, принимаемой согласно п. 5.14 настоящего Руководства, но не менее $25 \ d$ в растянутой и 12d в сжатой зонах.

Начало отгиба в растянутой зоне должно отстоять от нормального сечения, в котором отгибаемый стержень используется по расчету, не менее чем на $0.5\ h_0$, а конец отгиба должен быть расположен не ближе того нормального сечения, в котором отгиб не требуется по расчету.

5.29. Поперечное армирование коротких консолей должно вы-

полняться следующим образом:

при $h \le 2.5 a$ — консоль армируется наклонными хомутами по всей высоте (см. рис. 22 и 30, a);

при h>2,5 а — консоль армируется отогнутыми стержнями и горизонтальными хомутами по всей высоте (см. рис. 30, 6);

при h > 3,5 а и $Q \le R_{\rm pt}$ bh_0 отогнутые стержни допускается не устанавливать (здесь h — принимается в опорном сечении консоли).

Во всех случаях шаг хомутов должен быть не более h/4 и не более 150 мм; диаметр отогнутых стержней должен быть не более

 $^{1}/_{15}$ длины отгиба $l_{\text{от}}$ и не более 25 мм (рис. 30, б).

Суммарная площадь сечения отогнутых стержней и наклонных хомутов, пересекающих верхнюю половину линии длиной l, соединяющей точки приложения силы Q и сопряжения нижней грани консоли и колонны (рис. 30, δ), должна быть не менее 0,002 bh_0

СВАРНЫЕ СОЕДИНЕНИЯ АРМАТУРЫ

5.30. Арматура железобетопных конструкций из горячекатаной стали периодического профиля, горячекатаной гладкой стали и обыкновенной арматурной проволоки должна, как правило, изготовляться с применением для соединения стержней контактной сварки — точечной и стыковой, а также в указанных ниже случаях дуговой (ванной и протяженными швами) сварки.

Сварные соединения стержневой термически упрочненной арматуры, высокопрочной арматурной проволоки и арматурных канатов,

как правило, не допускается.

Типы сварных соединений арматуры должны назначаться и выполняться в соответствии с указаниями государственных стандартов и нормативных документов на сварную арматуру и закладные детали для железобетонных конструкций (см. прил. 4).

5.31. Контактная точечная сварка применяется при изготовлении сварных каркасов, сеток и закладных деталей с нахлесточными

соединениями стержней.

5.32. Контактная стыковая сварка применяется для соединения по длине заготовок арматурных стержней. Диаметр соединяемых стержней при этом должен быть не менее 10 мм.

Контактную сварку стержней диаметром менее 10 мм допускается применять только в заводских условиях при наличии специаль-

ного оборудования.

5.33. Дуговая сварка должна применяться:

- а) для соединения стержней ненапрягаемой арматуры из горячекатаных сталей диаметром 8 мм и более между собой и с сортовым прокатом (закладными деталями) в условиях монтажа, а также с анкерными закрепляющими устройствами;
- б) при изготовлении стальных закладных деталей и для соединения их на монтаже между собой в стыках сборных железобетонных конструкций;
- в) для соединения стержней напрягаемой арматуры с анкерными коротышами или петлями, используемыми для натяжения, а

после спуска натяжения — с анкерными шайбами или анкерными плитами.

5.34. При отсутствии оборудования для контактной сварки допускается применять дуговую сварку в следующих случаях:

а) для соединения по длине заготовок арматурных стержней

из горячекатаных сталей диаметром 8 мм и более;

б) при выполнении сварных соединений, рассчитываемых по прочности, в сетках и каркасах с обязательными дополнительными конструктивными элементами в местах соединения стержней продольной и поперечной арматуры (косынки, лапки, крюки и т. п.).

СТЫКИ НЕНАПРЯГАЕМОЙ АРМАТУРЫ ВНАХЛЕСТКУ (БЕЗ СВАРКИ)

5.35. Стыки ненапрягаемой рабочей арматуры внахлестку применяются при стыковании как сварных, так и вязаных каркасов и сеток.

Стыки стержней рабочей арматуры внахлестку не рекомендуется располагать в растянутой зоне изгибаемых и внецентренно-растянутых элементов в местах полного использования арматуры. Такие стыки не допускаются в линейных элементах, сечение которых полностью растянуто (например, в затяжках арок), а также во всех случаях применения стержневой арматуры класса A-IV (AT-IV) и выше.

5.36. Стыки растянутой или сжатой рабочей арматуры, а также сварных сеток и каркасов в рабочем направлении должны иметь длину перепуска (нахлестки) $l_{\rm m}$ не менее величины $l_{\rm an}$, определяемой по формуле (288) и табл. 56 настоящего Руководства.

Диаметр стыкуемых стержней в зависимости от температуры арматуры следует применять согласно п. 5.17 с учетом требований п. 5.14 настоящего Руководства. Диаметр стыкуемых стержней из арматуры периодического профиля не должен превышать 28 мм, а из гладкой арматуры — 20 мм.

Стыки внахлестку без сварки не допускаются при циклическом нагреве и при постоянном нагреве растянутой арматуры выше 100° С.

5.37. Стыки сварных сеток и каркасов, а также растянутых стержней вязаных каркасов и сеток внахлестку без сварки должны, как правило, располагаться вразбежку. При этом площадь сечения рабочих стержней, стыкуемых в одном месте или на расстоянии менее длины перепуска $l_{\rm H}$, должна составлять: не более 50% общей площади сечения растянутой арматуры при стержнях периодического профиля и не более 25% — при гладких стержнях.

Стыкование отдельных стержней, сварных сеток и каркасов без разбежки допускается при конструктивном армировании (без расчета), а также на тех участках, где арматура используется не

более чем на 50%.

5.38. Стыки сварных сеток в направлении рабочей арматуры из гладкой горячекатаной стали класса А-I и обыкновенной арматурной проволоки класса В-I должны выполняться таким образом, чтобы в каждой из стыкуемых в растянутой зоне сеток на длине нахлестки располагалось не менее двух поперечных стержней, приваренных по всем продольным стержням сеток (рис. 31). Такие же типы стыков применяются и для стыкования внахлестку сварных

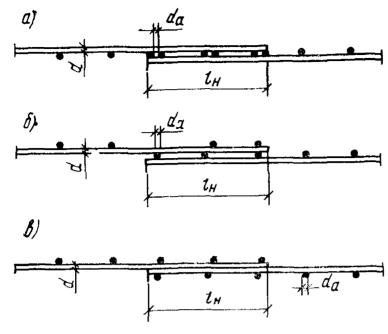


Рис. 31. Стыки сварных сеток внахлестку (без сварки) В направлении рабочей арматуры при выполнении последней из стержней гладкой арматуры

а — распределительные (поперечные) стержни расположены в одной плоскости; б и в — распределительные стержни расположены в разных плоскостях

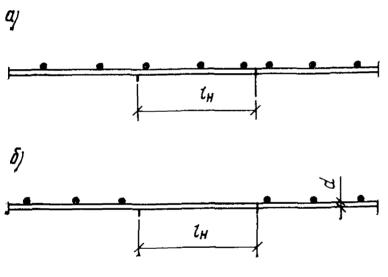
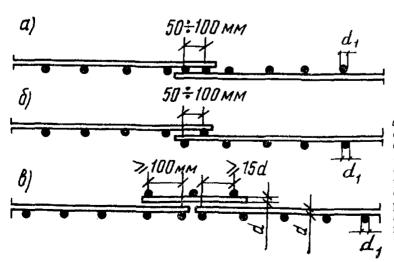



Рис. 32. Стыки сварных сеток внахлестку (без сварки) направлении рабочей арматуры при выполнении следней из стержней периодического профиля

а—поперечные стержни в пределах стыка отсутствуют в одной из стыкуемых сеток; б—поперечные стержни в пределах стыка отсутствуют в обеих стыкуемых сетках

Рис. 38, Стыки сварных сеток в направлении распределительной арматуры

а — стык внахлестку с расположением рабочих стержней одной плоскости; б стык внахлестку c расположением paстержней бочих В разных плоскостях; в — стык впритык с разных наложением дополнигельной стыковой сеткаркасов с односторонним расположением рабочих стержней из всех видов стали.

Стыки сварных сеток в направлении рабочей арматуры из горячекатаной стали периодического профиля классов A-II и A-III выполняются без поперечных стержней в пределах стыка (рис. 32).

- 5.39. Стыки сварных сеток в нерабочем направлении выполняются внахлестку с перепуском, считая между крайними рабочими стержнями сетки:
- а) при диаметре распределительной арматуры до 4 мм включительно на 50 мм (рис. 33, a и δ);

б) при диаметре распределительной арматуры более 4 мм — на

100 мм (рис. 33, а и б).

При диаметре рабочей арматуры 16 мм и более сварные сетки в нерабочем направлении допускается укладывать впритык друг к другу, перекрывая стык специальными стыковыми сетками, укладываемыми с перепуском в каждую сторону не менее 15 диаметров распределительной арматуры и не менее 100 мм (рис. 33, в).

Сварные сетки в нерабочем направлении допускается укладывать впритык без нахлестки и без дополнительных стыковых сеток

в следующих случаях:

- в) при укладке сварных полосовых сеток в двух взаимно перпендикулярных направлениях;
- г) при наличии в местах стыков дополнительного конструктивного армирования в направлении распределительной арматуры.

СТЫКИ ЭЛЕМЕНТОВ СБОРНЫХ КОНСТРУКЦИЙ

- 5.40. При стыковании железобетонных элементов сборных конструкций усилия от одного элемента к другому передаются через стыкуемую рабочую арматуру, стальные закладные детали, заполняемые бетоном швы, бетонные шпонки или (для сжатых элементов) непосредственно через бетонные поверхности стыкуемых элементов.
- 5.41. Жесткие стыки сборных конструкций должны, как правило, замоноличиваться путем заполнения швов между элементами бетоном. Если при изготовлении элементов обеспечивается плотная подгонка поверхностей друг к другу (например, путем использования торца одного из стыкуемых элементов в качестве опалубки для торца другого), то допускается при передаче через стык только сжимающего усилия выполнение стыков «насухо».
- 5.42. Стыки элементов, воспринимающие растягивающие усилия, должны выполняться:
 - а) сваркой стальных закладных деталей;
 - б) сваркой выпусков арматуры;

в) пропуском через каналы или пазы стыкуемых элементов стержневой арматуры, канатов или болтов с последующим натяжением их и заполнением пазов и каналов цементным раствором или мелкозернистым бетоном.

При проектировании стыков элементов сборных конструкций должны предусматриваться такие соединения закладных деталей, при которых не происходило бы разгибания их частей, а также выколов бетона.

5.43. Закладные детали должны быть заанкерены в бетоне с помощью анкерных стержней или приварены к рабочей арматуре элементов. Закладные детали с апкерами должны, как правило, состоять из отдельных пластин (уголков или фасонной стали) с приваренными к ним втавр или внахлестку анкерными стержнями, преимущественно из арматуры классов A-II или A-III. Длина анкерных стержней закладных деталей при действии на них растягивающих сил должна быть не менее величины $l_{\rm ah}$, определяемой по п. 5.14 настоящего Руководства. Указанная длина анкерных стержней может быть уменьшена при условии приварки на концах стержней менерных пластин или устройства высаженных горячим способом анкерных головок диаметром 2d — для стержней из арматуры классов A-I и A-II и диаметром 3d — для стержней из арматуры классов A-III. В этих случаях длина анкерного стержня определяется расчетом на выкалывание и смятие бетона и принимается не менее 10d (где d — диаметр анкера).

В элементах с трещинами при расположении анкеров нормально к продольной оси элемента (вдоль трещин) и возникновении в них растягивающих усилий в любом случае на концах анкеров должны устраиваться усиления в виде пластин или высаженных головок.

При действии на анкерные стержни только сдвигающих или сжимающих сил длина анкерных стержней может приниматься на 5d меньше значений $l_{\rm ah}$, определенных по формуле (288), но не менее минимальных величин $l_{\rm ah}$ согласно п. 514 настоящего Руководства.

Расстояния между осями требуемых по расчету анкеров, приваренных к пластине втавр, должно быть не менее: 6d — вдоль сдвигающей силы, 4d — в перпендикулярном направлении. Расстояния от оси анкера до граней элемента вдоль сдвигающей силы должно быть не менее 8d, а в перпендикулярном направлении — не менее 3d (здесь d — диаметр анкерного стержня, требуемый по расчету).

Толщина пластин закладных деталей определяется в соответствии с п. 3.70 настоящего Руководства и требованиями сварки. В зависимости от технологии сварки отношение толщины пластины к диаметру анкерного стержня принимается:

при сварке втавр слоем флюса на оборудовании с ручным приводом или при дуговой сварке швами в раззенкованном отверстии — не менее 0,75;

при сварке внахлестку дуговой сваркой фланговыми швами — не менее 0,3;

при автоматической сварке под слоем флюса и контактной рельефной сварке — согласно требованиям соответствующих государственных стандартов.

В закладных деталях с тавровыми сварными соединениями анкерных стержней толщина пластин может быть уменьшена на 25% по сравнению с указанной выше в том случае, если с внешней стороны пластины предусматривается приварка ребер жесткости по линии, соединяющей центры анкерных стержней.

5.44. Стыки элементов сборных конструкций из жаростойкого бетона должны выполняться согласно пп. 5.40—5.43 настоящего Руководства. Сварные соединения арматуры необходимо выполнять с соблюдением последовательности приварки стержней к накладкам. Сначала должны привариваться стержни с одной стороны, а после остывания накладки — с другой.

Стыки между стеновыми панелями из жаростойкого бетона следует предусматривать на растворе с установкой бетонного бру-

са размером 5×5 см (рис. 34, a). В стыках панелей, перекрывающих рабочее пространство теплового агрегата, бетонный брус должен устанавливаться на растворе с менее нагретой стороны ребер (рис. 34, δ). Пространство между ребрами стыкуемых подвесных панелей с консольными выступами плиты следует заполнять теплоизоляционным материалом (рис. 34, δ).

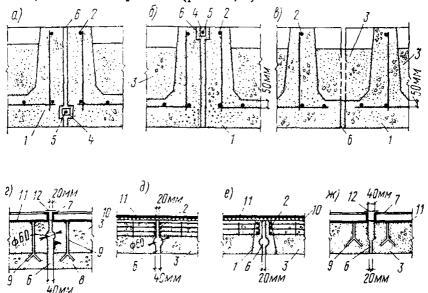


Рис. 34. Стыки элементов сборных конструкций из жаростойкого бетона

a— стык ребристых панелей в стенах; b— стык ребристых панелей в покрытиях; b— стык ребристых панелей с консольными выступами; c— стык двухслойных панелей; d— стык панелей с окаймляющим арматурным каркасом; e— стык панелей с окаймляющими ребрами из тяжелого жаростойкого бетона; m— стык панелей из особолегкого жаростойкого бетона; d— особолегкого жаростойкого бетона; d— особолегкий жаростойкий бетон; d— арматурный каркас; d— особолегкий жаростойкий бетон; d— особолегкий жаростойкий бетон; d— стыжень диаметром d0 мм; d0— жаростойкий раствор; d0— уголок жесткости панели; d0— жаростойкий легкий бетон; d0— анжер; d0— теплоизоляционная прослойка толщиной d0—20 мм; d10— металлический лист; d2— стыковая накладка

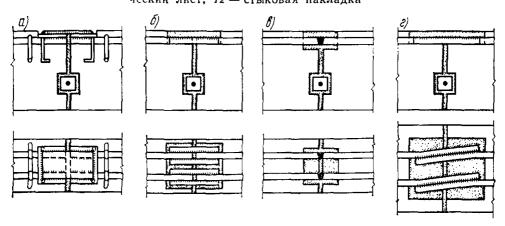


Рис. 35. Соединения арматуры в стыках элементов сборных конструкций из жаростойкого бетона

а — нахлесточное соединение с металлической накладкой из листовой стали;
 б — стыковое соединение по ГОСТ 19293—73;
 в — стыковое соединение по ГОСТ 14098—68;
 г — нахлесточное соединение

Стыки между панелями из легкого бетона должны заполняться раствором марки меньшей, чем бетон футеровки. Марка раствора должна быть не ниже M15. Продольные торцовые поверхности панелей должны иметь пазы или скосы, удерживающие раствор от выпадания (рис. 34, 2-ж).

5.45. Соединение арматуры в сборных элементах из жаростойкого бетона допускается выполнять через окаймляющие уголки, стыковые накладки или путем стыкования арматуры внахлестку (рис. 35).

В стыках панелей, передающих усилия от арматуры через косынку на стыковую накладку с эксцентрицитетом, обязательно должны предусматриваться анкеры из арматуры периодического профи-

Рис. 36. Деталь стыка арматуры четырех панелей из жаростойкого железобетона

1 — арматура; 2 — косынка; 3 — стыковая накладка; 4 — сварка; 5 — анкер арматуры; 6 — анкер косынки; 7 — анкерующая пластинка

ля. Длина анкерных стержней, приваренных к пластине втавр или внахлестку, должна быть не менее $l_{\rm an}$, определяемой согласно п. 5.14 настоящего Руководства. Если необходимую расчетную длину анкеров трудно выдержать из-за температуры, превышающей предельно допустимую температуру применения арматуры, устанавливаемой по расчету (см. табл. 24 настоящего Руководства), то допускается уменьшать длину анкеров с обязательной приваркой к их концам дополнительных пластин (рис. 36).

ОТДЕЛЬНЫЕ КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

5.46. Осадочные швы должны предусматриваться в случаях возведения здания (сооружения) на неоднородных грунтах основания (просадочных и др.), в местах резкого изменения нагрузок и т. п.

Осадочные швы, а также температурно-усадочные швы в сплошных бетонных и железобетонных конструкциях должны осу-

ществляться сквозными, разрезая конструкцию до подошвы фундамента. Температурно-усадочные швы в железобетонных каркасах осуществляются посредством двойных колонн с доведением шва до верха фундамента.

Расстояния между температурно-усадочными швами в бетонных фундаментах и стенках подвалов допускается принимать в соответствии с расстояниями между швами, принятыми для вышеле-

жащих конструкций.

5.47. Ширина температурно-усадочного шва δ в зависимости от расстояния между швами l должна определяться по формуле

$$\delta = \varepsilon_t \, l. \tag{289}$$

Относительное удлинение оси элемента є следует вычислять в зависимости от вида конструкции и характера нагрева согласно

пп. 1.39—1.43 настоящего Руководства.

Ширину температурно-усадочного шва, вычисленную по формуле (289) настоящего Руководства, следует увеличивать на 30%, если шов заполняется легкодеформируемым теплоизоляционным материалом, например: асбовермикулитовым раствором, каолиновой ватой или шнуровым асбестом, смоченным в глиняном растворе (рис. 37, а).

Температурно-усадочные швы в бетонных и железобетонных конструкциях из жаростойкого бетона следует принимать шириной не менее 20 мм. Когда давление в рабочем пространстве не равно атмосферному, температурно-усадочный шов должен иметь уширение для установки бетонного бруса, Брус должен устанавливаться насухо без раствора, Между брусом и менее нагретой поверхностью шов следует заполнять легкодеформируемым теплоизоляционным материалом (рис. 37, 6).

В печах, где образуется герметичность рабочего пространства, наружной поверхности в температурно-усадочном шве должен

предусматриваться компенсатор (рис. 37, в).

5.48. Для организованного развития усадочных трещин в бетоне со стороны рабочего пространства теплового агрегата должны предусматриваться усадочные швы. Швы шириной 2—3 мм и глубиной, равной 1/10 высоты сечения, но не менее 20 мм, следует располагать через 60—90 см в двух взаимно перпендикулярных направлениях (рис. 38, 6).

5.49. В бетонных конструкциях должно предусматриваться кон-

структивное армирование:

- а) в местах резкого изменения размеров сечения элементов;
- б) в местах изменения высоты стен (на участке не менее 1 м);

в) в бетонных стенах под и над проемами;

г) в конструкциях, подвергающихся воздействию динамической нагрузки;

д) у растяпутой или менее сжатой грапи внецентренно сжатых элементов, если в сечении возникают растягивающие напряжения или сжимающие напряжения менее 10 кгс/см², при наибольших сжимающих напряжениях более 0,8 $R_{\rm np}$ (напряжения определяются как для упругого тела); при этом коэффициент армирования μ принимается равным или более 0,025%.

Требования настоящего пункта не распространяются на элементы сборных конструкций, проверяемые в стадии транспортирования и монтажа; в этом случае необходимое армирование определяется расчетом по прочности.

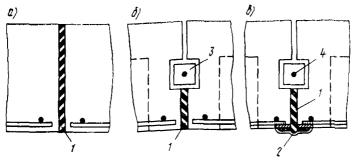
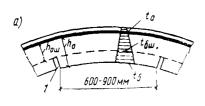



Рис. 37.
Температурные швы в конструкциях из жаростойкого бетона

а — шов, заполненный шнуровым асбестом; б то же, с бе-

тонным бруском; в— то же, с металлическим компенсатором; 1— шнуровой асбест, смоченный в глиняном растворе; 2— компенсатор; 3— бетонный брускок; 4— стальной стержень диаметром 6 мм

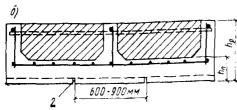


Рис. 38. Швы со стороны нагреваемой поверхности в конструкциях из жаростойкого бетона

а — компенсационные;
 б — усадочные;
 шов шириной
 5 мм;
 2 — усадочный шов глубиной
 0,1 h и шириной
 3 мм

Если расчетом установлечто прочность элемента исчерпывается одновременно с образованием трещин в бетоне растянутой зоны, то слеучитывать требования п. 1.20 настоящего Руководстслабоармированных для (без учета работы элементов растянутого бетона). Если, согласно расчету, с учетом сопротивления растянутой зоны бетона арматура не требуется опытом доказана возмож-НОСТЬ транспортирования монтажа таких элементов без арматуры, конструктивная арматура не предусматривается,

5.50. Соответствие расположения арматуры ее проектному положению должно обеспечиваться специальными мероприятиями (установкой пластмассовых фиксаторов, шайб из мелкозернистого бетоко и пределения и п

тона и т. п.).

5.51. Отверстия значительных размеров в железобетонных плитах, панелях и т. п. должны окаймляться дополнительной арматурой сечением не менее сечения рабочей арматуры (того же напряжения), которая требуется по расчету плиты как сплошной.

5.52. При проектировании элементов сборных перекрытий должно предусматриваться устройство швов между ними, заполняемых бетоном. Ширина швов должна назначаться из условия обеспечения качественного заполнения их и должна составлять не менее 20 мм для элементов высотой сечения до 250 мм и не менее 30 мм при элементах большей высоты.

5.53. Усилия от неравномерного нагрева бетона по высоте сечения элементов допускается уменьшать:

устройством компенсационных швов в более нагретой сжатой зоне бетона (рис. 38, а). Компенсационные швы шириной 2—5 мм

следует располагать через 60—90 см на глубину не более 0,5 высоты сечения элемента в направлении, перпендикулярном к действию сжимающих усилий от воздействия температуры;

повышением температуры растянутой арматуры, расположенной у менее нагретой грани бетона, посредством увеличения толщины защитного слоя бетона или устройством наружной теплоизоляции.

5.54. В железобетонных конструкциях из жаростойкого бетона для восприятия растягивающих усилий, как правило, следует устанавливать арматуру у менее нагретой грани сечения элемента.

Если в конструкциях от нагрузки растягивающие усилия возникают со стороны более нагретой грани сечения элемента, то арматура может воспринимать растягивающие усилия при температуре, не превышающей предельно допустимую температуру применения арматуры, устанавливаемой по расчету (см. табл. 24 настоящего Руководства).

Для снижения температуры арматуры допускается увеличивать толщину защитного слоя бетона у более нагретой грани сечения элемента до 6 диаметров продольной арматуры или предусматривать теплоизоляцию из легкого жаростойкого бетона.

На границе бетонов разных видов следует устанавливать конструктивную арматуру из жаростойкой стали диаметром не более 4 мм, которая должна быть приварена к хомутам (рис. 39).

Температура нагрева конструктивной арматуры не должна превышать предельно допустимую температуру применения конструктивной арматуры, указанную в табл. 24 настоящего Руководства.

5.55. Несущие и ненесущие конструкции тепловых агрегатов следует выполнять из сборных однослойных или многослойных элементов. Сборные ограждающие конструкции, как правило, предусматриваются из блоков, плит и панелей.

В двухслойных панелях, проектируемых из разных видов жаростойкого бетона, теплоизоляционный легкий жаростойкий бетон может предусматриваться как со стороны рабочего пространства, так и с наружной стороны теплового агрегата.

Для улучшения совместной работы отдельных слоев бетона допускается предусматривать установку конструктивной арматуры или анкеров. Арматура должна заходить в каждый слой бетона на глубину не менее 50 мм. Если в зоне сопряжения отдельных слоев бетона температура превышает предельно допустимую температуру применения конструктивной арматуры, указанную в табл. 24 настоящего Руководства, то для усиления связи между слоями допускается устранвать выступы или бетонные шпонки.

В ребристых панелях плиту и ребра следует выполнять из тяжелого или облегченного жаростойкого бетона (рис. 38, б). В местах сопряжения ребер с плитой необходимо устраивать вуты. Между ребрами с менее нагретой стороны следует располагать тепловую изоляцию из легкого жаростойкого бетона или из теплоизоляционных материалов. В ребрах панели следует предусматривать арматурные каркасы, которые должны быть заведены в бетон плиты не менее чем на 50 мм. При необходимости снижения температуры рабочей арматуры, устанавливаемой в ребрах, ребра могут выступать за наружную поверхность тепловой изоляции. Плиту панели следует армировать конструктивной сварной сеткой из арматуры диаметром не более 4 мм с расстояниями между стержнями не менее 100 мм.

Температура нагрева сварной сетки не должна превышать предельно допустимую температуру применения конструктивной

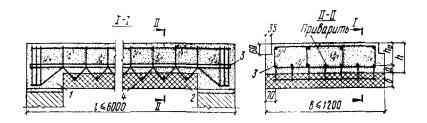


Рис. 39. Конструкция изгибаемого железобетонного элемента, нагреваемого до температуры более 400° С со стороны растянутой зоны

1 — тяжелый или облегченный жаростойкий бетон; 2 — теплоизоляционный слой из особолегкого жаростойкого бетона; 3 — продольная рабочая арматура; 4 — сетка из жаростойкой стали диаметром 4 мм

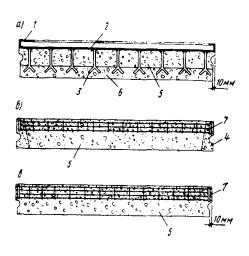


Рис. 40. Конструкции панелей из легкого жаростойкого бетона

a — двухслойная панель на металлическом листе; b — панель с окаймляющим каркасом из тяжелого или облегченного жаростойкого бетона; b — панель с окаймляющим арматурным каркасом; b — уголок жесткости панели; b — металлический лист; b — ан кер; b — окаймляющий каркас из тяжелого или облегченного жаростойкого бетона; b — особолегий жаростойкий бетон; b — окайм жаростойкий бетон; b — арматурный каркас

арматуры, указанную в табл. 24 настоящего Руководства. Если температура нагрева плиты панели превышает предельно допустимую температуру применения конструктивной арматуры, допускается плиту не армировать.

В панелях с окаймляющиребрами прямоугольного трапециевидного сечения или ребра должны предусматриваться из тяжелого или облегченного жаростойкого бетона, а пространство между ребрана всю толщину следует заполнять теплоизоляционным легким жаростойким бетоном. следует армировать плоскими каркасами, расположенными с менее нагретой стороны (рис. 40, 6).

Для ненесущих облегченных ограждающих конструкций тепловых агрегатов следует предусматривать легкие жаростойкие бетоны и эффективные теплоизоляционные материалы.

В двухслойных панелях на металлическом листе легкий жаростойкий бетон следует крепить анкерами, приварен-

ными к листу (рис. 40, a). Анкеры должны приниматься из стержней диаметром 6—10 мм или полосы 3×19 мм. Длина анкера должна быть не менее половины толщины футеровки и расстояния между ними не более 250 мм. Металлический лист толщиной не менее 3 мм должен иметь отогнутые края или приваренные по контуру уголки.

В панелях с окаймляющим арматурным каркасом сварной каркас следует располагать по периметру панели у менее нагретой стороны (рис. 40, в).

Крепление панелей к каркасу должно осуществляться на болтах или на сварке так, чтобы они могли свободно перемещаться

при нагреве.

В конструкциях тепловых агрегатов из монолитного железобетона со стороны рабочего пространства в углах сопряжения стен с покрытием и перекрытием следует предусмат-

ривать вуты.

5.56. Конструкции. рекрывающие рабочее пространство теплового агрегата, могут быть свободно опертыми, подвесными монолитно связанными стенами. При пролетах более 4 м должны преимущественно предусматриваться подвесные балки, плиты панели. Расчетную схему подвесной конструкции следует принимать как двухконсольной балки, при этом не должно допускаться возникновения растягивающих напряжений в бетоне со стороны более нагретой поверхности. Подконструкции весные не должны воспринимать нивнешних нагрузок, кроме собственного веса и на них не должны устраиваться мостки или настилы для хождения обслуживающего персонала.

Купола и своды должны иметь стрелу подъема не менее ¹/₁₂ пролета в свету. Нижняя криволинейная поверхность их при жесткой монолитной заделке на опорах должна сопрягаться со стенами по переходной

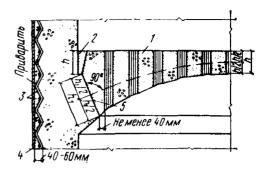


Рис. 41. Конструкция купола перекрытия с технологическими отверстиями из жаростойкого бетона для круглого теплового агрегата

1 — бетонный купол;
 2 — компенсационный шов толщиной 20—40 мм, заполненный легкодеформируемым материалом;
 3 — сетка из проволоки диаметром до 6 мм, приваренная к кожуху;
 4 — кожух;
 5 — пята купола

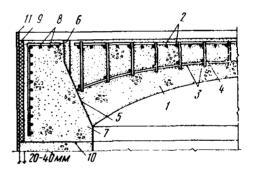


Рис. 42. Конструкция железобетонного купола покрытия с плоской верхней поверхностью из жаростойкого бетона для круглого теплового агрегата

1 — купол; 2 — рабочая арматура купола; 3 — сетка из проволоки диаметром до 6 мм; 4 — хомут из проволоки диаметром 6 мм; 5 — пята купола; 6 — компенсационный шов шириной 20—40 мм, заполненный легкодеформируемым материалом; 7 — опорное кольцо; 8 — рабочая арматура опорного кольца; 9 — теплоизоляционная прослойка толщиной 20—40 мм; 10 — шов бетонирования; 11 — кожух

кривой, радиус которой принимается не менее толщины стены. Купола и своды с плоской верхней поверхностью у пяты должны иметь компенсационный шов шириной 20—40 мм на глубину, равную высоте сечения в замке (рис. 41). Следует предусматривать заполнение шва легкодеформируемым материалом. За осевую линию в таких куполах и сводах допускается принимать дугу окружности, проведенную через центр пяты и середину высоты сечения в центре пролета.

В куполах и сводах при высоте сечения в замке более 250 мм кроме основной рабочей арматуры необходимо предусматривать конструктивную сетку из проволоки диаметром не более 6 мм с ячейкой не менее 100×100 мм, которую следует располагать в бетоне с температурой, не превышающей предельно допустимую температуру применения конструктивной арматуры (см. табл. 24 настоящего Руководства). Сетка и хомуты должны соединяться с основной ар

матурой (рис. 42).

5.57. Рабочую арматуру в железобетонных конструкциях, перерезываемую различными технологическими отверстиями, следует приваривать к рамкам из арматуры или проката, устанавливаемым вокруг отверстий. Размеры рамки должны приниматься такими, чтобы толщина бетона со стороны отверстия была достаточной для обеспечения температуры рамки, не превышающей предельно допустимую температуру применения арматуры, устанавливаемой по расчету, согласно табл. 24 настоящего Руководства.

Площадь сечения рамки в каждом направлении должна быть

достаточной для восприятия усилий в перерезанных стержнях.

Отверстия большого размера следует окаймлять армированными бортовыми замкнутыми рамами. Сечение стенок бортовых рам определяют из расчета на усилия от воздействия температуры и нагрузки.

5.58. Фундаменты, борова и другие сооружения, расположенные под землей и подвергающиеся нагреву, должны находиться выше наиболее возможного уровня грунтовых вод. При наличии воды следует предусматривать гидроизоляцию.

5.59. Кожуха тепловых агрегатов из листовой стали допускается предусматривать, когда необходимо обеспечить газонепроницаемость конструкции и когда имеется большое число отверстий или точек крепления оборудования.

Соединение кожуха с бетоном следует осуществлять арматурными сетками или анкерами, приваренными к кожуху (рис. 41).

- 5.60. Если жаростойкий бетон подвержен сильному истирающему воздействию со стороны рабочего пространства, то его следует защищать металлической панцирной сеткой, по которой наносится слой торкрет-бетона, или блоками из наиболее стойкого в этих условиях жаростойкого бетона или огнеупора.
- 5.61. В элементах сборных конструкций должны предусматриваться мероприятия для захвата их при подъеме: инвентарные монтажные вывинчивающиеся петли, строповочные отверстия со стальными трубками, стационарные монтажные петли из арматурных стержней и т. п. Петли для подъема должны выполняться из горячекатаной стали согласно п. 2.25 настоящего Руководства.
- **5.62.** Указания по конструированию предварительно-напряженных железобетонных элементов принимаются согласно пп. 5.53—5.63 главы СНиП 11-21-75.

ТРЕБОВАНИЯ, УКАЗЫВАЕМЫЕ В ПРОЕКТАХ

- **5.63.** В рабочих чертежах конструкций или в пояснительной записке к проекту должны быть дополнительно указаны:
- а) наибольшая температура нагрева конструкции при эксплуатации, принятая в расчете;
 - б) вид бетона;
- в) проектная марка бетона и требуемая прочность бетона при температуре во время эксплуатации;
 - г) виды (классы) арматуры и марка жаростойкой стали;
- д) прочность бетона при отпуске сборных элементов предприятием-изготовителем:
- е) указания по обетонированию стыков и узлов, марка и состав раствора для заполнения швов в стыках элементов.

6. РАСЧЕТ И КОНСТРУИРОВАНИЕ НЕКОТОРЫХ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ФУНДАМЕНТЫ

- **6.1.** Фундаменты под колонны и стены теплотехнических сооружений конструируют:
- а) из сборных бетонных блоков или из монолитного бетона, если температура нагрева превышает предельно допустимую температуру применения арматуры;

б) из сборного или монолитного железобетона, если температура нагрева не превышает предельно допустимую температуру применения арматуры.

Арматура, установленная на монтажную нагрузку, не учитывается при расчете фундамента во время эксплуатации, если ее темпе-

ратура нагрева превышает предельно допустимую температуру применения арматуры, устанавливаемой по расчету (см. табл. 24 настоящего Руководства).

6.2. Прямоугольная фундаментная плита толщиной h и размером в плане $2b \times 2a$, причем $b \geqslant a$ имеет арматуру по контуру. По толщине плита нагрета равномерно, а в горизонтальной плоскости неравномерно от максимальной величины t_6 в центре до

Таблица 58

Отношение сторон $\frac{b_0}{a_0}$ прямоугольной	Значение коэффициен- тов		
плиты	k	k,	
1 1,5 2 4 и более	0,8 0,9 0,95 1	1 1,5 1,8 2	

 t_a и t_{ab} — на арматуре у короткой и длинной сторон (рис. 43, a).

Плита, имеющая трещины в растянутой зоне, условно разрезается на две полуплиты по более длинной осевой линии I-I. Каждая полуплита рассчитывается как защемленная статически неопределимая балка с высотой сечения a.

Изгибающий момент в сечении II-II полуплиты, от воздействия температуры определяется по формуле (46) настоящего Руководства, в которой величина M_t умножается на коэффициент k, который принимается по табл. 58 настоящего Руководства в зависимо-

сти от отношения сторон плиты $\frac{b_0}{a_0}$

Кривизна $\frac{1}{\rho_t}$ оси и жесткость B полуплиты высотой a от воздействия температуры определяются соответственно по формулам (43) и (41) при $h_0 = a_0$.

Расчет плиты производится методом последовательного приближения. В первом приближении для более длинной стороны 2b плиты определяем минимальное количество арматуры по формуле (45), в которой принимаем b=h.

Вычисленный момент $M_{t,b}$ должен удовлетворять условию прочности при изгибе согласно выражению (98). Если условие (98) не

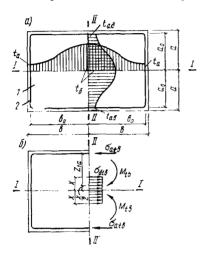


Рис. 43. Расчетные схемы распределения

а — температуры; б — напряжений в прямоугольной железобетонной плите при неравномерном нагреве бетона с криволинейным распределением температуры от центра плиты до ее сторон 1 — бетон; 2 — арматура

удовлетворяется, то необходим повторный расчет с увеличенным количеством арматуры.

Площадь растянутой арматуры, устанавливаемой по короткой стороне 2*a* плиты, определяют по формуле

$$F_{a.a} = \frac{F_{a.b}}{k_1} \ . \tag{290}$$

Коэффициент k_1 принимается по табл. 58 настоящего Руководства.

Ширину раскрытия трещин в растянутой зоне плиты проверяют по формуле (249) настоящего Руководства при напряжении в арматуре, вычисленном по формуле (252) при $M = M_{t,b}, F_a = F_{a,b}, N_0 = 0$ и $z_1 = z_{1a}$. Расстояние z_{1a} от центра тяжести площади сечения арматуры $F_{a,b}$ до точки приложения равнодействующей усилий в сжатой зоне бетона сечения II—II полуплиты определяется по формуле (271) при $h_0 = a_0$ (рис. 43). Порядок расчета прямоугольного железобетонного фундамента

воздействие температуры принимается согласно п. 6.6 настоящего Руководства.

6.3. Круглая фундаментная плита армирована по периметру кольцевой арматурой. Круглая плита по толщине нагрета равномерно, а в горизонтальной плоскости — неравномерно. Максимальная температура бетона t_6 в центре плиты уменьшается к ее краю до температуры в арматуре t_a (рис. 44, a).

Кривизна $\frac{1}{\rho_f}$ от воздействия температуры (т. е. относительный угол поворота вертикального сечения плиты) определяется по формуле (34) при $h_0 = r_a$, уменьшенной в два раза.

Изгибающий момент, действующий в вертикальном сечении полуплиты на длине радиуса r_a (рис. 44, 6), определяют по формуле

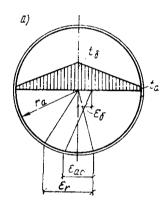
(46), в которой жесткость B вертикального сечения плиты высотой $h_0 = r_a$ по растянутой зоне вычисляют по формуле (282) настоящего Руководства.

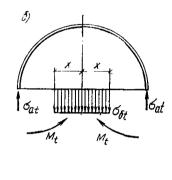
Коэффициент армирования плиты принимается равным

$$\mu = \frac{F_a}{br_a} \,, \tag{291}$$

где b — толщина плиты.

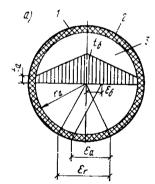
Расчетный изгибающий момент, вычисленный по формуле (46), должен удовлетворять условию прочности плиты, согласно выражению (98), при $M = M_t$.


Раскрытие трещин в плите проверяют по формуле (249) при на-


пряжении в арматуре, вычисляемом по формуле (252).

Порядок расчета круглого железобетонного фундамента на воз-

Рис. 44. Расчетные схемы распределения


а — температуры и деформаций; б — напряжений в круглой железобетонной плите при неравномерном нагреве бетона с линейным распределением температуры от центра плиты до ее края

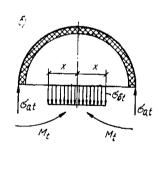


Рис. 45. Расчетные схемы распределения

а — температур и деформаций; б — напряжений в круглой бетонной плите с наружным кожухом при неравномерном нагреве бетона с линейным распределением температуры от центра плиты до кожуха; і — кожух; 2 — эластичная прокладка; 3 — бетон

действие температуры принимается согласно п. 6.6 настоящего Руководства.

6.4. Снижение напряжений в металлическом кожухе теплового агрегата может быть достигнуто путем повышения его температуры при помощи устройства наружной теплоизоляции или устройством между кожухом и бетоном прослойки из легкодеформируемого материала.

В этом случае круглую фундаментную плиту следует рассчиты-

вать согласно п. 6.5 настоящего Руководства.

6.5. Круглая бетонная фундаментная плита имеет кожух, между кожухом и бетоном плиты положена прослойка из легкодеформируемого материала: асбеста, крошки из диатомового кирпича, углеродистой набойки и пр. (рис. 45). Такую плиту рассчитывают согласно п. 6.3. настоящего Руководства. При вычислении жесткости B по формуле (282) принимается коэффициент $\psi_a=1$, $\psi_b=1$ и вместо $E_{a.t.}$ — условный модуль упругости стали $E_{a.t.y}$, определяемый по формуле

$$E_{a,t,y} = \frac{E_a \, \beta_a}{1 + \frac{\delta_a \delta_{\pi}}{r_a^2} \frac{E_a \, \beta_a}{v_{\pi} \, E_{\pi}}} \,, \tag{292}$$

где

 δ_a — толщина кожуха, см;

 δ_{Π} — толщина прослойки, см;

 r_a — радиус кожуха, см;

v_п — коэффициент упругости прослойки из легкодеформируемого материала, принимаемый равным 0,1;

Еп — модуль упругости прослойки, принимаемый равным: 1000 кг/см² — для асбеста и засыпки из диатомового кирпича, 1200 кг/см² — для углеродистой набойки и 1500 кг/см² — для засыпки из шамотного песка или мертоля

Величины коэффициента упругости и модуля упругости материалов прослойки могут быть уточнены на основании опытной проверки

их деформаций под нагрузкой.

Расчетный изгибающий момент, вычисленный по формуле (46), должен удовлетворять условию прочности плиты, согласно выражению (98), при $M=M_t$. В плитах, армированных стальным кожухом, раскрытие трещин в бетоне не проверяется.

6.6. Расчет конструкций фундаментов, указанных в пп. 6.1—6.5

настоящего Руководства, производят в следующем порядке:

1) при принятом составе бетона и его температуре в центре плиты определяют температуру арматуры по методике расчета температур ограждающих конструкций (см. пп. 1.47—1.53 настоящего Руководства);

 для принятой марки и состава бетона, а также класса арматуры по главе 2 настоящего Руководства определяют необходимые

для расчета характеристики бетона и арматуры.

Задаваясь минимальным процентом армирования по формуле (45) и принимая в первом приближении M_t равным правой части уравнения (98), по формуле (68) вычисляют величину коэффициента α_{atc} ;

3) по формуле (43) вычисляют кривизну элемента от воздейст-

вия температуры;

4) относительную высоту сжатой зоны в сечении с трещиной вычисляют по формуле (266) и коэффициент фа — по формуле (272);

5) жесткость плиты с трещинами в растянутой зоне бетона вычисляют по формуле (282) или (283). В случае прямоугольной плиты жесткость определяют по сечению II—II (рис. 43).

6. Имея величины $\frac{1}{\rho_t}$ и B, по формуле (46) определяют первое

значение M_t . По найденному первому значению M_t снова вычисляют ξ , ψ_a и B. По новому значению жесткости B определяют второе значение M_t и т. д. до тех пор, пока расхождение между последним и предыдущим значениями M_t не будет превышать $\pm 5\%$. После определения изгибающего момента от воздействия температуры производят проверку прочности плит и раскрытие трещин.

СТЕНЫ

6.7. Стены тепловых агрегатов из жаростойкого бетона и железобетона предназначаются для защиты от воздействия высокой температуры. В зависимости от схемы конструкции и условий работы теплового агрегата стены разделяются на несущие и ненесущие.

К несущим стенам относятся конструкции, в которых от собственного веса, нагрузки и неравномерного нагрева по высоте сечения возникают напряжения сжа-

тия более 1 кгс/см².

К ненесущим стенам относятся конструкции, в которых отсутствуют усилия от внешней нагрузки и неравномерного нагрева по высоте сечения, а напряжения от собственного веса — до 1 кгс/см².

Толщина ненесущих стен определяется теплотехническим расчетом. Толщину несущих стен сначала определяют теплотехническим расчетом, а затем проверяют расчетом на прочность.

- 6.8. Стены ограждающих конструкций тепловых агрегатов проектируют:
- а) однослойными из сборного или монолитного железобетона (рис. 46, a);
- б) то же с теплоизоляционной наружной штукатуркой (рис. 46, 6);
- в) то же с теплоизоляцией и металлическим кожухом (рис. 46, в);
- г) двухслойными и многослойными из сборного или монолитного железобетона с теплоизоляционной прослойкой (рис. 47, a);
- д) из панелей с пустотами, которые могут быть заполнены теплоизоляцией из легкого жаростойкого бетона и другого материала (рис. 47, 6);
- е) из панелей ребристой конструкции с тепловой изоляцией, расположенной между ребрами (рис. 47, в).

В тепловом агрегате, имеющем в плане круглое, квадратное или прямоугольное очертание и стены одинаковой толщины, при нагреве с внутренией стороны возникает изгибающий момент, одинаковый в продольном и поперечном направлениях.

Количество горизонтальной арматуры, устанавливаемой у наружной поверхности стен, определяют по формуле (103), в которой

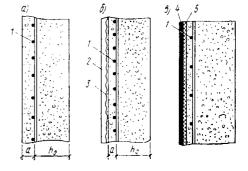


Рис. 46. Железобетонные стены тепловых агрегатов

a — однослойная из сборного или монолитного железобетона; δ — то же, с теплоизоляционной штукатуркой; ϵ — то же, с теплоизоляцией и стальным кожухом; 1 — арматура; 2 — теплоизоляционная штукатурка; 3 — металлическая сетка; 4 — стальной кожух; 5 — теплоизоляция

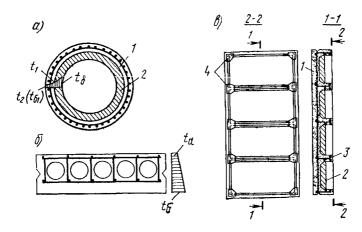


Рис. 47. Железобетонные стены тепловых агрегатов

a — двухслойные из сборного или монолитного бетона; b — из панелей с пустотами; b — из ребристых панелей; l — бетон; d — легкий жаростойкий бетон; d — арматура; d — металлические косынки

момент находят по формуле (46). Этот момент должен удовлетворять условию прочности вертикального сечения стены при изгибе согласно неравенства (98).

Прочность горизонтального сечения стены проверяют на совместное действие сжимающей силы от собственного веса и нагрузки и неравномерного нагрева, как это принято для сжатых элементов. Раскрытие трещин в стенах проверяют по формуле (249).

6.9. В железобетонных стенах тепловых агрегатов кольцевого или коробчатого очертания в плане с компенсационными швами (см. п. 5.53 настоящего Руководства) определение изгибающего момента от воздействия температуры производят по формуле (46). При этом в формулы для определения кривизны и жесткости сечений вместо h_0 подставляют условную высоту сечения элемента $h_{0.y}$, вычисляемую по формуле

$$h_{0,y} = h_0 \sqrt{\frac{1}{1 + \frac{6h_{0,\text{III}}}{l_{\text{III}}} \left(\frac{h_0}{h_{0,\text{III}}} - 1\right)^{\frac{n}{4}}}},$$
 (293)

где $l_{\mathbf{m}}$ — расстояние между компенсационными швами, которое должно удовлетворять условию

$$l_{\rm III} \geqslant 6 (h_0 - h_{0,\rm III}).$$
 (294)

покрытия

6.10. Для покрытий цехов, имеющих повышенную температуру, рекомендуется применять типовые сборные железобетонные плиты, предварительно рассчитав их на совместное действие температуры и нагрузки.

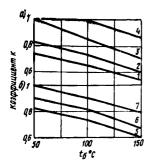


Рис. 48. Коэффициент k, учитывающий влияние температуры крайнего растянутого волокна бетона на величину нагрузки для плит размером

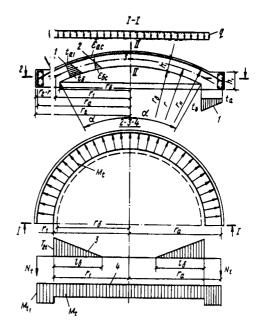


Рис. 49. Расчетные схемы

1 — температур;
 2 — деформаций;
 3 — кольцевых усилий;
 4 — моментов от неравномерного нагрева по высоте сечения купола и опорного кольца из жаростойкого железобетона

При применении типовых сборных железобетонных предварительно-напряженных плит покрытий серий I.465-7 и I-465-3 допускается не проводить поверочного расчета. В этом случае заданную для расчета на-

грузку делят на коэффициент k. Коэффициент k, учитывающий влияние нагрева на величину нагрузки, принимается по рис. 48 в зависимости от температуры крайнего волокна бетона растянутой зоны. Марка типовой плиты принимается для вычисленной величины нагрузки. При этом гарантируются прочность, раскрытие трещин ме-

нее 0,3 мм и предельный прогиб не более $\frac{1}{300}$ пролета плиты. Напри-

мер, для цеха с температурой 150°С и нормативной нагрузкой 300 кгс/см², с учетом собственного веса плиты, необходимо выбрать плиту покрытия размером 3×6 м.

На рис. 48 выбираем плиту второй группы, для которой коэффициент k при 150° С равен 0,6. Заданную нормативную нагрузку делим на коэффициент k (300:0,6=500 кгс/м²) и по этой нагрузке отыскиваем в типовом проекте плиту. Это могут быть плиты марок

$$\frac{\Pi A III B}{3 \times 6} - 4; \frac{\Pi A IV}{3 \times 6} - 4; \frac{\Pi AV}{3 \times 6} - 4; \frac{\Pi A T IV}{3 \times 6} - 4; \frac{\Pi A T V}{3 \times 6} - 4.$$

6.11. Сферический купол из жаростойкого железобетона (см. п. 5.56 настоящего Руководства и рис. 49) монолитно сопряжен с опорным кольцом и подвергается воздействию равномерно распределенной вертикальной нагрузки и нагреву со стороны нижней поверхности. Купол и опорное кольцо неравномерно нагреты по высоте сечения.

От неравномерного нагрева по высоте сечения купола возникают равные по величине изгибающие моменты в кольцевом и радиальном направлениях, вызывающие в кольцевой и радиальной арматуре усилия растяжения, а в бетоне со стороны более нагретой поверхности — усилия сжатия. Эти моменты в любом сечении купола, нормальном к его срединной поверхности, определяют по формуле (46).

Вследствие ограничения деформаций купола опорным кольцом при нагревании возникает распор, воспринимаемый арматурой опорного кольца. Кроме того, в бетоне краевой зоны купола возникают меридиональные T_{1t} и кольцевые T_{2t} усилия сжатия, которые достигают своего максимума в опорном сечении I-I (рис. 49) по плоскости сопряжения купола с опорным кольцом. В расчете учитывают только кольцевые усилия T_{2t} , так как меридиональные усилия T_{1t} по своей величине в несколько раз меньше кольцевых и они в данном случае могут не учитываться.

При высоте сечения опорного кольца $h_0 = (r_a - r_1) \geqslant 0, 1r_a$ по формуле (46) определяют также изгибающий момент M_{t1} от неравномерного нагрева по высоте сечения опорного кольца в радиальном направлении.

Распор от нагрузки и собственного веса, воспринимаемый арматурой опорного кольца, а также кольцевое и меридиональное усилия сжатия в куполе находят по правилам строительной механики, используя безмоментную теорию.

Усилия в опорном кольце и в куполе от воздействия температуры определяют из условия неразрывности деформаций наружной грани купола и опорного кольца. Распор от воздействия температуры на один сантиметр периметра опорного кольца определяют по формуле

$$H_{t} = \frac{(\alpha_{6.t} t_{6.c} r_{6} - \alpha_{atc} t_{a} r_{a}) n_{t}}{\frac{\sin^{2} \alpha}{kBs^{3}} + \frac{r_{a}^{2} \psi_{a}}{E_{a} \beta_{a} F_{a}}},$$
 (295)

где $t_{6,c}=rac{t_6+t_{6_1}}{2}$ — температура бетона на уровне срединной поверхности купола;

 $t_{\mathbf{6_1}}$ — температура менее нагретой поверхности купола; $t_{\mathbf{a}}$ — температура арматуры опорного кольца;

$$r_6 = r_B \sin \alpha; \tag{296}$$

$$s = \sqrt[4]{\frac{E_6 \beta_6 \bar{\nu} h}{4Br^2}}; \qquad (297)$$

r — радиус срединной поверхности купола;

В — жесткость сечения шириной 1 см купола по растянутой зоне, вычисляемая по формуле (282);

п_t — коэффициент перегрева, принимаемый по п. 1.39 настоящего Руководства;

 $F_{\rm a}$ — площадь арматуры опорного кольца;

 ψ_a — коэффициент, учитывающий работу растянутого бетона в опорном кольце; если высота сечения опорного кольца r_a — r_1 \geqslant

 $\geqslant 0,1r_a$, ψ_a определяется по формуле (272), если $r_a-r_1<0,1r_a$, $\psi_a=1$.

 $r_a - r_1 < 0, 1 r_a, \psi_a = 1.$

Коэффициент армирования принимается по площади сечения

опорного кольца $F_6 = h_1(r_a - r_1)$.

При наличии в пяте купола шва опирание купола можно считать шарнирным и в знаменателе формулы (295) коэффициент k принимается равным 2. При монолитном сопряжении купола с опорным кольцом, где арматура купола анкеруется в опорном кольце, коэффициент k принимается равным 4.

Усилие в арматуре опорного кольца от распора, вызванного воздействием температуры, вычисляют по формуле

$$N_t = H_t r_a. (298)$$

Максимальное усилие T_{2t} сжатия бетона от воздействия температуры в опорном сечении $I{-}I$, шириной $b{=}1$ см, расположенном на границе сопряжения купола с опорным кольцом, определяют по формуле

$$T_{2t} = \frac{H_t E_6 \beta_6 \bar{\nu} h \sin^2 \alpha}{k B s^3 r_6} , \qquad (299)$$

где β_6 , E_6 и ν принимаются по табл. 16, 17 и 18 настоящего Руководства при средней температуре бетона в сечении купола, а коэффициент k — как в формуле (295).

Длина участка купола, на котором возникают кольцевые усилия

в бетоне T_{2t} , равна

$$l_6 = \frac{2\pi}{\sqrt[4]{\frac{E_6 \beta_6 \overline{\nu} h}{4Br^2}}}.$$
 (300)

Распор в опорном кольце от равномерно распределенной нагрузки и собственного веса определяют по формуле

$$H_{\rm H} = \frac{qr\cos\alpha}{1 + \cos\alpha}\,,\tag{301}$$

где **q** — равномерно распределенная нагрузка с учетом собственного веса купола, кг/см².

Усилие в арматуре опорного кольца от нагрузки определяют по формуле

 $N_{\rm H} = H_{\rm H} \, r_1. \tag{302}$

Кольцевое усилие сжатия в опорном сечении I-I купола шириной b=1 см от нагрузки и собственного веса вычисляют по формуле

$$T_{2H} = \frac{qr \left(\cos^2 \alpha + \cos \alpha - 1\right)}{\left(1 + \cos \alpha\right)}, \qquad (303)$$

а максимальное меридиональное усилие сжатия — по формуле

$$T_{1H} = \frac{qr}{1 + \cos \alpha} \,. \tag{304}$$

Усилия в опорном кольце и в куполе от совместного воздействия температуры, собственного веса и нагрузки алгебраически суммируются. При высоте сечения опорного кольца $(r_a-r_1) < 0,1r_a$ расчетное усилие растяжения N в кольцевой арматуре должно удовлетворять условию прочности при центральном растяжении согласно формуле (162). При высоте сечения опорного кольца $(r_a-r_1) \ge 0,1r_a$ или $h_{0.m} \ge 0,1r_a$ при устройстве компенсационных швов усилие в кольцевой арматуре N и момент M_{t1} вызывают в опорном кольце внецентренное растяжение.

Эксцентрицитет продольной силы N относительно центра тяжести приведенного сечения опорного кольца вычисляют по формуле

$$e_0 = e_1 + \frac{M_{t1}}{N} \,, \tag{305}$$

где e_1 — расстояние от центра тяжести площади сечения кольцевой арматуры до центра тяжести приведенного сечения опорного кольца.

Расчет прочности и раскрытия трещин в бетоне опорного кольца с односторонним армированием с учетом M_{t_1} производят как для первого случая внецентренного растяжения элемента (с большим эксцентрицитетом). При этом проверку прочности арматуры кольца производят согласно неравенству (165) при $F_a=0$, а раскрытие трещин определяют по формуле (249).

Расчет прочности и раскрытия трещин в бетоне опорного кольца с односторонним армированием без учета M_{4} , производят как для

центрально-растянутого элемента.

Расчет прочности купола производят по наиболее напряженному опорному сечению I-I на расчетное кольцевое усилие $T_2=T_{2\pi}+T_{2t}$ и момент M_t от неравномерного нагрева по высоте сечения купола. Прочность опорного сечения купола проверяют по формуле (129) на сжатие силой T_2 , приложенной с эксцентрицитетом $e_0=\frac{M_t}{T_2}$ относительно испективание.

тельно центра тяжести приведенного сечения купола. Раскрытие кольцевых или меридиональных трещин в бетоне проверяют в сечении купола II—II в центре пролета при действии кольцевого усилия $T_2 = T_{2\pi} = \frac{qr}{2}$ и момента M_t от неравномерного нагрева по высоте сечения как при внецентренном сжатии.

При длительном нагреве проверяется только прочность наиболее напряженного опорного сечения купола I-I на внецентренное сжатие силой T_2 в кольцевом направлении. При этом должно также удовлетворяться условие прочности опорного сечения купола при сжатии от действия только меридионального усилия T_{1B} , вычисленного по формуле (304).

Прогиб сферического купола в центре пролета при его загруже-

нии равномерно распределенной нагрузкой допускается вычислять по формуле

$$f_{\rm H} = \frac{192 \,\lambda^3 \,a^4 q r k_w}{\pi^6 \,E_6 \,\beta_6 \,\bar{\nu}},\tag{306}$$

где
$$\lambda = \frac{r}{h}; \quad a = \frac{2r_1}{r};$$

k_w — коэффициент, учитывающий геометрические параметры купола, принимается по табл. 59 настоящего Руководства.

Значения β_6 , E_6 и ν принимаются по табл. 16, 17 и 18 настоящего Руководства при средней температуре бетона в сечении купола.

6.12. Купол из жаростойкого бетона с опорным кольцом из жаростойкого железобетона (см. п. 5.56 настоящего Руководства) подвергается одностороннему нагреву и равномерно распределенной нагрузке (рис. 50).

Распор от воздействия температуры на один сантиметр периметра опорного кольца определяют по формуле

(295) при k=2.

В формуле (295) все величины принимаются такими же, как для железобетонного купола, кроме жесткости В. В этом случае жесткость купола вычисляют по формуле (281), принимая β_{5} , E_{5} и ν по табл. 16, 17 и 18 настоящего Руководства в зависимости от средней температуры бетона сечения купола. Определение приведенного момента инерции сечения $I_{\rm II}$ производится по формуле (11). Если от нагрузки и собственного веса возникают усилия до 0,1 от несущей способности купола, то высота сечения в формуле принимается в зависимости от температуры наиболее нагретой грани бетона:

от 51 до 600° С — равной h; 1000° С и более — равной ²/₃h.

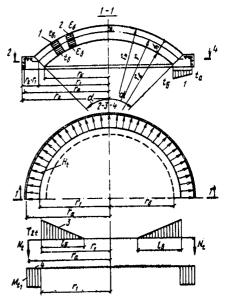


Рис. 50. Расчетные схемы

I — температур;
 2 — деформаций;
 3 — кольцевых усилий;
 4 — моментов от неравномерного нагрева по высоте сечения купола из жаростойкого бетсна и опорного кольца из жаростойкого железобетона

Для температур бетона от 600 до 1000° С изменение высоты сечения купола принимается по интерполяции. При усилиях в куполе более 0,1 от несущей способности независимо от температуры нагрева высота сечения принимается равной h.

Для бетонного купола момент в меридиональном и кольцевом направлениях от неравномерного нагрева по высоте сечения купола принимают равным нулю.

201

а	Коэффициент $k_{w}\cdot 10^{3}$ в зависимости от λ						
	10	20	30	40	50		
0,5 0,7 0,75 1 1,25 1,5	200 136,2 119,6 55,84 24,92 11,65	133,8 57,69 45,87 15,01 5,63 2,52	85,36 28,09 21,36 6,16 2,31 1,09	55,84 15,66 11,65 3,25 1,27 0,61	38,07 9,67 7,12 2,01 0,81 0,39		

Примечание. При промежуточных значениях a и λ коэффициент k_w принимается по интерполяции.

6.13. При монолитном сопряжении свода со стенами, когда арматура свода анкеруется в стене, своды являются элементами рамных конструкций и расчетные усилия в них определяются как для статически неопределимых конструкций (см. пп. 1.45—1.46 настоящего Руководства).

В конструкциях тепловых агрегатов с металлическим или железобетонным каркасом передача распора от сводов на каркас осуще-

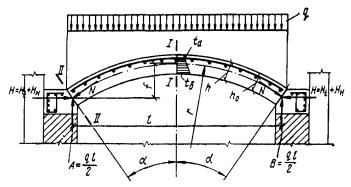


Рис. 51. Расчетная схема цилиндрического свода из жаростойкого железобетона при одностороннем нагреве

ствляется через опорные балки, имеющие наклонную пяту для опирания свода. Если температура нагрева не превышает предельно допустимую температуру применения арматуры (см. табл. 24 настоящего Руководства), то применяют железобетонные своды.

6.14. Цилиндрический железобетонный свод покрытия теплового агрегата имеет одностороннее армирование, расположенное в менее нагретых слоях бетона, и неподвижные опоры (рис. 51). В зоне сопряжения свода с опорной балкой предусматривается шов. Свод подвергается неравномерному нагреву по высоте сечения со стороны

нижней поверхности и действию равномерно распределенной на-

грузки.

Распор от воздействия температуры определяют как для свода с тремя пластическими шарнирами, расположенными в опорных сечениях и в центре пролета, по формуле

$$H_t = \frac{(\varepsilon_t l - 2\Delta) B}{(1+\eta) k_t r^3}. \tag{307}$$

При этом наибольший распор в своде вычисляют при кратковременном нагреве с учетом рекомендаций п. 1.23 настоящего Руководства.

Продольная сила N_{it} в замке свода (сечение I-I) от воздействия температуры равна распору H_t , а в опорном сечении II-II она вычисляется по формуле

$$N_{2t} = H_t \cos \alpha. \tag{308}$$

Момент в замке от воздействия температуры

$$M_{1t} = -(M_t + H_t l_{\mathbf{k}}), \tag{309}$$

а в опорном сечении

$$M_{2t} = H_t (f - I_K) - M_{t}, \tag{310}$$

При этом расчетный момент в опорном сечении должен удовлетворять условию

$$M_{2t} \leqslant 0.5 H_t h \cos \alpha. \tag{311}$$

Если это условие не удовлетворяется, то момент принимается равным $0.5H_th\cos\alpha$.

В формулах (307) — (311) принято:

 в_t — деформация оси свода в направлении пролета от нагрева, определяемая по формуле (33);

 В — жесткость сечения свода в замке по растянутой зоне, определяемая по формуле (282);

 η — коэффициент, учитывающий влияние продольных сил на величину распора. При температуре бетона более нагретой поверхности свода:

до 400° С —
$$\eta = \frac{k_2 h^2}{12 r^2}$$
; (312)

более 400° С —
$$\eta = \frac{k_2 I_{\Pi}}{r^2 F_{\Pi}}$$
, (313)

где F_{π} и I_{π} — соответственно площадь и момент инерции приведенного сечения свода в замке, определяемые по формулам (6) и (11).

Для свода с высотой сечения $h \le 0.05 \ l$, а также для свода с подъемом $f \ge {}^1/_8 \ l$ и высотой сечения $h \le 0.1 \ l$ величиной коэффициента η можно пренебречь;

$$\Delta = f\theta; \tag{314}$$

$$\theta = \frac{k}{\beta \sigma \bar{\nu}} \left(\frac{1}{\rho_t} + \frac{e_t}{f} \right) \sqrt{\frac{f}{t}}; \tag{315}$$

где

$$\hat{k} = 50 - \frac{100 \,\mu}{7,5 - \mu};\tag{316}$$

 μ — коэффициент армирования свода, %, принимаемый не более 2,5%; при μ =0 k=50, а при μ =2,5% k=0;

 $\frac{1}{
ho_t}$ — кривизна железобетонного свода с трещинами в растянутой зоне, вычисляемая по формуле (34).

При определении угла θ коэффициенты β_6 и $\overline{\nu}$ принимают соответственно по табл. 16 и 18 настоящего Руководства в зависимости от средней температуры бетона в сечении свода. Коэффициент k_1 в формуле (307) и k_2 в формулах (312) и (313) зависят от величины центрального угла свода 2α и принимаются по табл. 60 настоящего Руководства.

Длина жесткой консоли $l_{\rm R}$ в основной системе определяется по формуле

$$l_{K} = r \left(1 - \frac{\sin \alpha}{\alpha} \right). \tag{317}$$

Момент от воздействия температуры в сечениях свода при чистом изгибе определяют с учетом поворота сечений в пластических шарнирах по формуле

$$M_t = \frac{\left(\frac{1}{\rho_t} r\alpha - \theta\right)B}{r\alpha},\tag{318}$$

От действия равномерно распределенной нагрузки и собственного веса в замке и в опорном сечении свода определяют продольную силу и изгибающий момент. В замке свода продольная сила $N_{1\mathbf{n}}$ равна распору $H_{\mathbf{n}}$.

Распор от равномерно распределенной нагрузки и собственного веса определяют как для бесшарнирного свода по формуле

$$H_{\rm H} = \frac{k_3 \, qr}{(1+\eta)} \,\,, \tag{319}$$

где q — равномерно распределенная нагрузка на 1 м пролета свода. Изгибающий момент в замке свода

$$M_{1H} = M_H - H_H l_K$$
: (320)

В опорном сечении свода продольная сила

$$N_{2H} = H_{\rm H} \cos \alpha + 0.5ql \sin \alpha \tag{321}$$

и изгибающий момент

$$M_{2H} = M_H + H_H (f - l_K) - 0.5qr^2 \sin^2 \alpha.$$
 (322)

Изгибающий момент от равномерно распределенной нагрузки при чистом изгибе вычисляют по формуле

$$M_{\rm H} = \frac{0.25k_4qr^2}{\alpha} \ . \tag{323}$$

Таблица 60

Угол дуги свода. град (2α)	<u> Коэффициенты</u>							
	k _i	k ₂	k,	k,	k _s	k ₆	k ₇	
35	0,000118	5019	1,09	0,0186	0,0463	0,000361	0,006330	
40	0,000185	3700	1,06	0,0277	0,0603	0,000597	0,010688	
45	0,00031	2500	1,03	0,0391	0,0766	0,000969	0,01693	
50	0,00056	1295	1	0,0533	0,0937	0,00145	0,02551	
60	0,00175	543	0,97	0,0906	0,134	0,00293	0,05146	
70	0,00361	299	0,94	0,141	0,181	0,00531	0,09215	
80	0,00679	175	0,91	0,206	0,234	0,00883	0,15145	
90	0,0123	105	0,88	0,285	0,293	0,0137	0,23224	
100	0,020	68	0,849	0,38	0,357	0,0202	0,337199	
110	0,0319	45	0,812	0,49	0,426	0,0284	0,46792	
120	0,0479	31	0,784	0,614	0,5	0,0385	0,625000	

Коэффициенты k_3 и k_4 в формулах (319) и (323) принимаются по табл. 60 настоящего Руководства в зависимости от величины

центрального угла свода 2а.

От совместного действия нагрузки, собственного веса и температуры изгибающие моменты и продольные силы алгебраически суммируются. Эксцентрицитет продольной силы относительно оси, проходящей через центр тяжести приведенного сечения, определяется по формуле

$$e_0 = \frac{M}{N} \,, \tag{324}$$

Наиболее напряженные сечения железобетонного свода в замке и на опоре рассчитывают на внецентренное сжатие при кратковременном и длительном нагреве. Сечение железобетонного свода в замке с одиночной верхней арматурой рассматривается как бетонное, если момент M_{1t} меньше момента от собственного веса свода и нагрузки M_{1m} . Прочность опорного сечения свода проверяется без учета арматуры по формуле (69), принимая расчетное сопротивление бетона (см. табл. 14, 15 и 16 настоящего Руководства) как для бетонных конструкций. Коэффициент m_{6t} принимается в зависимости от средней температуры бетона в сечении свода.

Раскрытие трещин в бетоне замка свода при внецентренном сжатии с большим эксцентрицитетом и с продольной силой, расположенной со стороны более нагретой поверхности свода, определяют по

формуле (249).

Выгиб железобетонного или бетонного свода в замке от воздействия температуры определяют по формуле

$$f_t = k_5 \, \varepsilon_t \, r + \frac{k_6 H_t r^3}{B} - \frac{H_t \, r \sin^2 \alpha}{2E_6 \, F_{\Pi}} \, .$$
 (325)

От равномерно распределенной нагрузки и собственного веса прогиб свода при нагреве в замке вычисляют по формуле

$$f_{\rm H} = \frac{H_{\rm H} r \sin^2 \alpha}{2E_6 F_{\rm II}} - \frac{k_5 M_{\rm H} r^2}{B} - \frac{k_6 H_{\rm H} r^3}{B} + k_7 \left(\frac{q r^4}{6B} + \frac{q r^2}{3E_6 F_{\rm II}}\right). \quad (326)$$

В формулах (325) и (326):

 $H_{\rm H}$ и $M_{\rm H}$ — определяют соответственно по формулам (319) и (323); k_5 , k_6 , k_7 — коэффициенты принимаются по табл. 60 настоящего Руководства;

В — жесткость сечения в замке вычисляют по формуле (282) для железобетонного свода и по формуле (281) для бетонного свода.

Прогиб и выгиб свода от совместного воздействия температуры, собственного веса и нагрузки алгебраически суммируются. При наличии в своде сквозных отверстий площадь сечения бетона следует

уменьшить на величину площади отверстий.

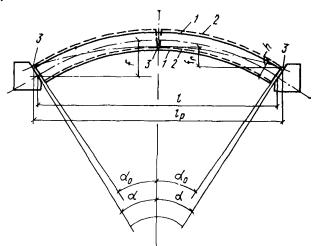
6.15. Цилиндрические бетонные своды применяются при температурах нагрева, превышающих предельно допустимую температуру применения арматуры (см. табл. 24 настоящего Руководства). Толщину цилиндрических бетонных сводов принимают не менее ½0 пролета. Бетонные своды опираются на продольные балки по наклонному шву (пяте), идущему перпендикулярно к осевой линии свода.

Цилиндрический бетонный свод, очерченный по дуге круга, под-

вергается неравномерному нагреву по высоте сечения со стороны нижней поверхности и действию равномерно распределенной вертикальной нагрузки, включающей собственный вес свода. Свод имеет неподвижные опоры. Методика расчета бетонного свода в нагретом состоянии зависит от величины напряжений сжатия в бетоне, вызванных нагрузкой и собственным весом.

Предварительную оценку напряженного состояния производят по средним напряжениям сжатия бетона в замке, определяемых как

для трехшарнирного свода (рис. 52) по формуле


$$\sigma_{\text{6.H}} = \frac{ql^2}{8fbh} , \qquad (327)$$

где b — ширина свода.

Если вычисленные по формуле (327) напряжения сжатия в бетоне замка свода $\sigma_{6.n} \leq 0.5 \text{ кгс/см}^2$, то расчет прочности сечений свода можно не производить.

Рис. 52. Схема paботы трехшарнирного свода при нагреве напряжениями сжатия в бетоне от нагрузки собственного веса до Krc/cm2 0.5

1 — свод до нагрева;
 2 — свод нагретый;
 3 — условный шарнир

Распор от совместного действия собственного веса, равномерно распределенной нагрузки и температуры определяют как для условного трехшарнирного свода с расчетным пролетом $l_{\rm p}$ и стрелой подъема $f_{\rm p}$ по формуле

$$H = \frac{q l_{\rm p}^2}{8 f_{\rm p}} \,, \tag{328}$$

где

$$l_{\rm p} = l + h \sin \alpha; \tag{329}$$

$$f_{\rm p} = f - 0.5h \left(\frac{\sin \alpha}{\cos \alpha} + \cos \alpha \right).$$
 (330)

$$f_t = \sqrt{(s' + \Delta s')^2 - 0.25 t^2} - f,$$
 (331)

$$s' = \sqrt{f^2 + 0.25 \, l^2} \; ; \tag{332}$$

$$\Delta s' = \mathbf{e}_t \, s'; \tag{333}$$

 ε_t — деформация свода от воздействия температуры по оси в направлении пролета, вычисляемая по формуле (23).

Если вычисленные по формуле (327) напряжения сжатия в бетоне замка свода $\sigma_{6.H} > 0.5$ кгс/см², то распор в своде от воздействия температуры определяют по формуле (307), в которой значения ε_t и Δ вычисляются как для бетонного свода и жесткость B — по формуле (281). При определении жесткости β_6 , E_6 и ν принимают по табл. 16, 17 и 18 настоящего Руководства в зависимости от средней температуры бетона свода.

Изгибающий момент от воздействия температуры в замке свода

определяют по формуле

$$M_{1t} = -H_t l_{\kappa} \tag{334}$$

В формуле (334) $l_{\rm K}$ вычисляют по выражению (317).

Изгибающий момент M_{2t} от воздействия температуры в опорном сечении свода II—II вычисляют по формуле (310). При этом расчетное значение M_{2t} должно удовлетворять условию (311).

Распор, изгибающий момент в замке свода, продольную силу и изгибающий момент в опорном сечении от равномерно распределенной нагрузки и собственного веса определяют соответственно по

формулам (319) — (322).

Расчетные изгибающие моменты и продольные силы в замке и в опорном сечении свода от совместного действия собственного веса, нагрузки и температуры определяют алгебраическим суммированием. После определения эксцентрицитетов продольных сил в замке и в опорном сечении производят проверку прочности этих сечений на внецентренное сжатие по формуле (69) для кратковременного и длительного нагревов.

Выгиб свода в замке от воздействия температуры определяют по формуле (325), а прогиб от собственного веса и нагрузки — по

формуле (326).

6.16. Для уменьшения распора и раскрытия трещин в бетоне от воздействия температуры цилиндрические своды рекомендуется проектировать с податливыми опорами. Податливые опоры при нагревании свода могут перемещаться. Перемещение опор регулируется спиральными или тарельчатыми пружинами, установленными в узлах сопряжения стоек с затяжками каркаса, или соответствующей жесткостью каркаса.

В бетонных и железобетонных сводах с податливыми опорами при расчете распора от воздействия температуры по формуле (307) необходимо учитывать перемещение опор.

При перемещении опор без их поворота определение распора от воздействия температуры в бетонном и железобетонном сводах производится по формуле

$$H_{t} = \frac{(\epsilon_{t} \ l - 2\Delta)}{(1 + \eta) \frac{k_{1} r^{3} i}{B} + 2\delta}, \qquad (335)$$

где

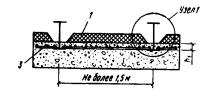
 δ — величина перемещения одной опоры свода от распора H = 1 кгс, приложенного на уровне пересечения осевой линии свода с пятой;

 k_i — коэффициент, принимаемый по табл. 60 настоящего Руководства;

 ϵ_t , l, Δ , η ,B— принимаются согласно пп. 6.14 и 6.15 настоящего Руководства.

Для вычисления Δ по формуле (314) необходимо определить угол θ по формуле (315), в которой коэффициент k находят по формуле

$$k = 20 - \frac{40 \,\mu}{7,5 - \mu} \ . \tag{336}$$


При расчете бетонных сводов с податливыми опорами, когда среднее напряжение сжатия бетона в замке от собственного веса

и нагрузки, вычисленное по формуле (327), более 6 кгс/см² угол θ и величина Δ принимаются равными нулю.

Пружины или жесткость каркаса рекомендуется подбирать с таким расчетом, чтобы перемещение опоры свода от распора, равного 1 кгс, находилось в пределах (0,10—0,20) 10⁻³ см.

Для обеспечения податливости опор свода при нагревании пружины предварительно должны быть поджаты с таким расчетом, чтобы уравновесить распор от собственного веса. При приложении нагрузки рекомендуется производить дальнейшее поджатие пружин для уравновешивания распора, создаваемого нагрузкой. уравновешивании пружинами распора от собственного веса свода и нагрузки он определяется по формуле (319) как для свода с неподвижными опорами.

Расчет прочности сечений свода с податливыми опорами производят на внецентренное сжатие по п. 6.15 настоящего Руководства как для сводов с неподвижными опорами.

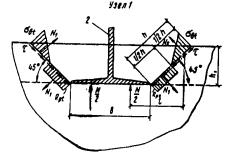


Рис. 53. Расчетная схема определения прочности заделки металлической балки в бетон плиты

1 — теплоизоляция; 2 — несущая металлическая балка; 3 — конструктивная арматурная сетка

8.17. Плоские подвесные покрытия при температурах нагрева до 800° С могут быть выполнены из однослойных бетонных плит, подвешенных к несущим металлическим двутавровым балкам, заделанным в бетон. Плиты армируются сварными сетками (рис. 53).

Расстояние в осях между металлическими балками должно быть не более 1,5 м, а расстояние от оси крайней балки до края плиты—

не более 0,5 м. Глубина заделки металлической балки в бетон принимается не менее 50 мм. Толщина бетона плиты определяется теплотехническим расчетом из условия, что температура заделанной в бетон металлической балки не должна превышать предельно допустимую температуру применения стали согласно табл. 24 настоящего Руководства. Для большей надежности заделки металлической балки в бетон рекомендуется укладывать сетку из арматуры диаметром до 6 мм с размером ячеек не менее 100×100 мм и приваривать ее к нижней полке.

Для образования зазоров в бетоне, компенсирующих значительное температурное расширение металла, заделываемая часть балок

должна покрываться слоем выгорающей обмазки.

Прочность заделки металлической балки в бетоне определяется на основании расчета на действие изгибающего момента от собственного веса плиты бетонного сечения, наклонного к продольной оси балки под углом 45° от нижней полки металлической балки до верхней поверхности бетона.

Нагрузка, передающаяся от плиты на единицу длины металлической балки, должна удовлетворять условию

$$N < \frac{2,3 h_1^2 R_{\rm pf}}{b+3,3h_1} , \tag{337}$$

где h_{1} — глубина заделки балки в бетон;

 \bar{b} — ширина полки балки, см.

6.18. Покрытия при температурах нагрева более 800° С осуществляются из сборных подвесных железобетонных ребристых панелей (рис. 54) с окаймляющими поперечными ребрами или без них.

Отношение высоты полки h_{π} к полной высоте панели h рекомендуется принимать в соответствии с рис. 14. Расстояния между осями ребер должны приниматься: $l_{\pi} \leq 150$ см; $b_{\pi} \leq 150$ см и ширина ребра $b \geqslant h_{\pi, \text{m}}$ высоты полки в сечении с усадочным швом (см. рис. 54). Подвесная панель рассматривается как двухконсольная балка. Расстояния между подвесками l_{π} и длину консоли l_{κ} следует принимать жения. При равномерно распределенном весе q по длине панели это условие выполняется, если $l_{\kappa} \geqslant 0.5 \ l_{\pi}$.

Прочность подвесных панелей, имеющих окаймляющие ребра, проверяют в наиболее напряженных местах: в вертикальном сечении *I—I* и в горизонтальных сечениях *II—II* и *III—III* (рис. 54). Расчет прочности вертикального сечения *I—I* производится на действие изгибающего момента от собственного веса консоли при длительном

нагреве. Этот момент определяют по формуле

$$M = 0,5ql_1^2, (338)$$

где q — расчетная нагрузка от собственного веса подвесной панели, кгс/см.

Расчетный изгибающий момент, вычисленный по формуле (338), должен удовлетворять условию прочности панели согласно выражению (98).

При ширине ребра $b>1,2\,h_{\pi}$ или $b>1,2\,h_{\pi\pi}$ (если есть усадочные швы в полке) расчет панели производят без учета усилий, вызванных температурой.

Расчет прочности горизонтальных сечений II—II и III—III про-

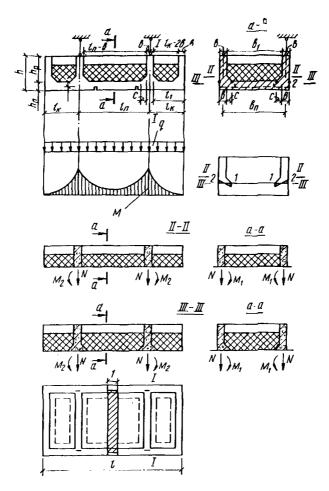


Рис. 54. Расчетная схема определения усилий в подвесной ребристой панели от собственного веса

изводят на действие собственного веса полки и тепловой изоляции, расположенной между ребрами, при длительном нагреве.

Собственный вес полки и тепловой изоляции вызывает в сечениях *II—II* и *III—III* внецентренное растяжение. Напряжения растяжения в точке *I* сечения *II—II* ребра равны

$$\sigma_{\rm p} = \frac{1}{b} \left(N + \frac{3.5 M_1}{b} \right),$$
 (339)

при расчете сечения III—III в формулу (339) вместо b вводится величина b+c;

 N — продольная растягивающая сила от собственного веса панели ниже рассматриваемого сечения;

 M_1 — изгибающий момент, определяемый как для защемленной на двух опорах бетонной балки единичной ширины:

$$M_1 = \frac{q_1 \ b_1^2}{12} \,; \tag{340}$$

где q₁ — равномерно распределенная нагрузка от собственного веса панели ниже расчетного сечения II—II или III—III.

При расчете панели, в которой консоль не имеет окаймляющего поперечного ребра по торцу, необходимо определять также изгибающий момент в месте сопряжения полки с поперечным ребром от собственного веса консоли в сечении *II—II* по формуле

$$M_2 = 0.5 q_1 l_1^2. (341)$$

При расчете сечения III—III в формулу (341) вместо l_1 вводится l_1 —c. При этом в формулу (339) следует подставлять наибольшее значение изгибающего момента, вычисленного по формулам (340) и (341).

Растягивающие напряжения в бетоне, вычисленные по форму-

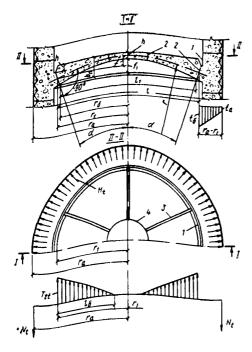
ле (339), должны удовлетворять условию прочности

$$\sigma_{\mathbf{p}} \leqslant 0.7 m_{\mathbf{p}t} R_{\mathbf{p}}. \tag{342}$$

В неравенстве коэффициент $m_{\rm p.f}$ принимают по табл. 16 настоящего Руководства в зависимости от температуры бетона сечения II-II и III-III.

ПЕРЕКРЫТИЯ

6.19. Купола перекрытий часто имеют многочисленные технологические отверстия диаметром 10—50 мм или несколько больших отверстий. Дырчатые купола выполняют из монолитного или сборного бетона. В цилиндрических печах кипящего слоя при диаметре перекрытия до 3 м монолитный дырчатый купол целесообразно разбивать радиальными и кольцевыми швами бетонирования на 3—8 сегментных элемента и один центральный круглый элемент диаметром до 1 м (рис. 55). При диаметре купола перекрытия более 3 м разрешается увеличивать число как радиальных, так и кольцевых швов. Купола из сборных элементов должны иметь такое же расположение швов. Максимальный размер каждого элемента, расположенного между швами, не должен превышать 1,5 м. Радиальный шов в верхней части имеет уширение (рис. 56), которое заполняется жаростойким раствором.


Кольцевые и радиальные стыки между сборными элементами

заполняют жаростойким раствором на всю высоту сечения.

В монолитных бетонных куполах перекрытий без сквозных отверстий следует предусматривать радиальные и кольцевые усадочные швы со стороны нижней сферической поверхности согласно п. 5.48 настоящего Руководства.

Расчет бетонного купола перекрытия с плоской верхней поверхностью на воздействие равномерно распределенной нагрузки, собственного веса и температуры производят согласно п. 6.12 настоящего Руководства как сферическую бетонную оболочку, срединная поверхность которой проходит через середину высоты сечения купола в замке и в пяте (рис. 55). В расчете принимается средняя толщина обо $h + h_n$

лочки $h_{cp} = \frac{h + h_{\pi}}{2}$ с радиусом кривизны оболочки r. Собственный

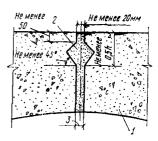


Рис. 56. Радиальный шов в бетонном куполе

1 — бетонный элемент;
 2 — жаростойкий раствор;
 3 — ширина шва в сборных куполах не менее 20 мм, а в монолитных — впритык

Рис. 55. Расчетные схемы бетонного купола перекрытия от воздействия температуры

 Компенсационный шов;
 пята купола;
 радиальный шов;
 кольцевой шов

вес оболочки принимается по средней высоте сечения и равномерно распределенным по длине пролета.

При наличии в куполе сквозных отверстий следует учитывать

ослабление сечения бетона отверстиями.

6.20. Расчет бетонных сводов с плоской верхней поверхностью и нижней цилиндрической поверхностью на воздействие равномерно распределенной нагрузки, собственного веса и температуры производят по аналогии с расчетом цилиндрических сводов, изложенным в п. 6.15 настоящего Руководства. При этом распор от воздействия температуры в сводах с неподвижными опорами вычисляют по формуле (307), а в сводах с податливыми опорами— по формуле (335). Жесткость таких сводов принимается по средней высоте свода в сечении, расположенном на расстоянии одной четверти пролета от опоры.

Для восприятия распора от бетонного свода устраивают доба-

вочное армирование стенки, опорную раму или каркас.

БОРОВА

6.21. Подземные и надземные борова из жаростойкого бетона и железобетона проектируют для отвода дымовых газов. Конструкцию подземных боровов обычно принимают из сборных элементов прямоугольного, круглого, эллиптического и других видов сечения. Выбор формы сечения борова производят в зависимости от температуры отводимых газов. При температурах отводимых газов, не превышающих предельно допустимую температуру применения армату-

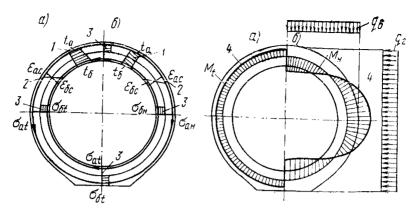


Рис. 57. Расчетные схемы

a — от воздействия температуры; δ — от воздействия нагрузки; 1 — температура; 2 — деформация; 3 — напряжение; 4 — усилия в подземном круглом железобетонном борове

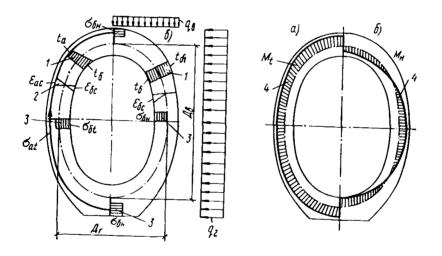


Рис. 58. Расчетные схемы

a — от воздействия температуры; b — от воздействия нагрузки; b — температура; b — деформация; b — напряжение; b — усилия b подземном эллиптическом бетонном борове

ры (см. табл. 24 настоящего Руководства), борова проектируются прямоугольного и круглого сечений с передачей на арматуру больших растягивающих усилий, возникающих от внешних нагрузок и температуры. При температуре отходящих газов более высоких, при которых нельзя использовать работу арматуры на растяжение, целесообразно применять подземные борова эллиптического сечения или из жаростойких бетонных элементов с вентилируемым пространством и несущими железобетонными конструкциями.

Подземный боров круглого сечения из жаростойкого железобетона (рис. 57) рассчитывается по следующим рабочим состояниям:

а) пуск в эксплуатацию. Действуют нагрузки, собственный вес и неравномерный нагрев по высоте сечения стенки борова. Горизонтальные сечения стен борова рассчитывают на изгиб от совместного действия температуры, собственного веса и нагрузки, вертикальные—от нагрузки и собственного веса. Внутренняя арматура в сжатой зоне стенок борова в расчете не учитывается.

Расчетные сопротивления бетона и арматуры принимаются для

кратковременного нагрева;

б) боров находится в эксплуатации. Стенки борова равномерно прогрелись. Вертикальные сечения рассчитываются на действие нагрузки и собственного веса. Наружная арматура в сжатой зоне сечения в расчете не учитывается.

Усилия от нагрузки определяются по правилам строительной механики, а изгибающий момент от неравномерного нагрева по вы-

соте стенки борова — по формуле (46).

При расчете круглых боровов дополнительного учета нормальных сил можно не производить, так как нормальные силы оказывают небольшое влияние на несущую способность железобетонного борова. Неучет нормальных сил идет в запас прочности.

При расположении бетонного или железобетонного борова над землей или в специальном коробе, воспринимающем внешнюю нагрузку, расчет борова производят на изгибающий момент от неравномерного нагрева по высоте стенки и на собственный вес. В этом случае борова могут иметь любое очертание.

- 6.22. При температуре дымовых газов выше предельно допустимой температуры применения арматуры (см. табл. 24 настоящего Руководства) подземный боров из жаростойкого бетона должен иметь поперечное сечение в виде эллипса (рис. 58). Расчет борова производят по следующим рабочим состояниям:
- а) боров находится в земле. Действуют нагрузки и собственный вес. Очертание борова подбирается таким, при котором получаются наименьшие изгибающие моменты от вертикальных и горизонтальных сил. Эллипс должен быть тем больше вытянут в вертикальном направлении, чем больше отношение между интенсивностью вертикального и бокового давления.

При равномерно распределенной нагрузке отношение между вертикальным и горизонтальным диаметрами эллипса должно составлять примерно корень квадратный из отношения вертикального и бокового давления.

Усилия в сечениях стенки борова от нагрузки и собственного веса

находят по формулам строительной механики;

б) пуск в эксплуатацию. Стенки борова неравномерно нагреты. Боковые сечения борова рассчитываются на внецентренное сжатие от действия момента, вызванного неравномерным нагревом по высоте сечения и сжимающей силы от нагрузки. Если по расчету арматура у наружной стороны стенки не требуется, то ее устанавливают конструктивно;

в) боров находится в эксплуатации. Стенки равномерно прогреты. Арматура в работе не учитывается из-за высокой ее температуры. Бетонные сечения борова рассчитываются на сжатие по форму-

ле (69)

Расчетные сопротивления бетона принимаются для длительного нагрева в зависимости от средней температуры бетона сжатой зоны.

Для эллиптических боровов нормальные силы необходимо учи-

тывать, так как при сравнительно малых величинах моментов они значительно снижают эксцентрицитет приложения равнодействующих сил в сжатом сечении.

Наружное армирование стенок должно быть проверено расчетом на монтажные нагрузки.

Примеры расчета элементов бетонных и железобетонных конструкций, работающих в условиях воздействия повышенных и высоких температур

Примеры расчета прочности элементов бетонных конструкций

Пример 1. Расчет прочности внецентренно-сжатого бетонного элемента прямоугольного сечения, односторонне нагретого до 600° С, при приложении продольной силы со стороны менее нагретой грани сечения и $2e' < h_1$.

Дано: размеры сечения свободно опертого элемента b=50 см; h=50 см; расчетная длина $l_0=4,5$ м; элемент неравномерно нагрет по высоте сечения — температура наиболее нагретой грани 600° С; бетон состава № 11 (табл. 11), марки M 250, $R_{\pi p}=110$ кгс/см² (табл. 14), $E_6=165\cdot 10^3$ кгс/см² (табл. 17); расчетные значения продольной силы: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N=70 тс, в том числе от длительно действующих нагрузок $N_{\pi\pi}=52,5$ тс; все нагрузки приложены со стороны менее нагретой грани сечения с эксцентрицитетом, равным 10 см.

Требуется проверить прочность сечения.

Расчет. Из теплотехнического расчета получено изменение тем-

пературы на 1 см высоты сечения, равное 11° С.

Прежде всего необходимо определить эксцентрицитет приложения продольной силы вследствие перемещения положения центра тяжести сечения, вызванного его неравномерным нагревом. Для этого, согласно п. 1.28, сечение разбиваем на две части, средняя температура бетона которых оказывается равной 225 и 500°С, и производим приведение площадей частей к площади ненагретого бетона по формуле (2).

Линия раздела сечения проходит по бетону, имеющему температуру 400° C, и высота каждой части сечения будет равна (см.

рис. 9, б):

$$h_2 = \frac{600 - 400}{11} = 18,18 \text{ cm};$$
 $h_1 = 50 - h_2 = 50 - 18,18 = 31,82 \text{ cm}.$

Значения коэффициентов β_6 и $\overline{\nu}$ (для кратковременного нагрева) принимаем по табл. 16 и 18 соответственно:

при температуре 225° C— $\beta_6 = 0.863$, v = 0.738;

при температуре 500° С— $\beta_6=0.5, \overline{\nu}=0.53$. Для состава № 11, согласно п. 1.28, $k_\pi=0.7$. По формуле (2):

$$F_{\text{п225}} = \frac{50.31,82.0,863.0,738}{0,7} = 1447,57 \text{ cm}^2;$$

$$F_{\text{п500}} = \frac{50.18,18.0,5.0,53}{0.7} = 344,12 \text{ cm}^2.$$

Расстояние от центра тяжести приведенного сечения до грани, наиболее сжатой внешней нагрузкой (в данном случае менее нагретой грани сечения), определяем по формуле (5)

$$y = \frac{1447,57 \cdot 15,91 + 344,12 \cdot 40,91}{1447,57 + 344,12} = 20,71 \text{ cm.}$$

Суммарный эксцентрицитет продольной силы e_0 относительно центра тяжести приведенного сечения определяется по формуле (121).

Величина расчетного эксцентрицитета продольной силы относительно центра тяжести приведенного сечения равна $e_0^{\rm p}=10$ —(25—20,71) = 5,71 см. Определяем величину случайного эксцентрицитета $e_0^{\rm cn}$, согласно п. 1.30, так как свободно опертый элемент является статически определимой конструкцией:

$$e_0^{a\pi} = \frac{h}{30} = \frac{50}{30} = 1,67 \text{ cm} > 1 \text{ cm} > \frac{t_0}{600} = \frac{450}{600} = 0,75 \text{ cm}.$$

Эксцентрицитет от температурного выгиба f_t , вызванного неравномерным нагревом по высоте сечения элемента, определяется, согласно п. 4.26, по формуле (280). Для этого определяем величину кривизны оси элемента от нагрева, согласно п. 1.40, по формуле (24). Коэффициенты α_{6t} и α_{6t_1} , входящие в формулу (24), принима-

коэффициенты α_{6t} и α_{6t_1} , входящие в формулу (24), принимаются в зависимости от температуры бетона менее и более нагретой грани сечения по табл. 20:

при
$$t_6 = 50^{\circ}$$
С $\alpha_{6t} = 6,5 \cdot 10^{-6}$ град⁻¹; при $t_{6i} = 600^{\circ}$ С $\alpha_{6ti} = 3,55 \cdot 10^{-6}$ град⁻¹.

По формуле (24)

$$\frac{1}{\rho_t} = \frac{3,55 \cdot 10^{-6} \cdot 600 - 6,5 \cdot 10^{-6} \cdot 50}{50} \cdot 1,1 = 39,71 \cdot 10^{-6} \text{ cm}^{-1},$$

По формуле (280)

$$f_t = 39,71 \cdot 10^{-6} \cdot \frac{1}{8} \cdot 450^2 = 1,01 \text{ cm}.$$

Вычисляем значение e_0 по формуле (121):

$$e_0 = 5.71 + 1.67 + 1.01 = 8.39$$
 cm.

Для учета влияния прогиба элемента определяем его гибкость $\lambda = \frac{l_0}{r}$, где r вычисляем, согласно п. 3.29, по формуле (125).

Момент инерции приведенного сечения I_{π} определяем по формуле (11):

$$I_{\pi} = \frac{1447,57\cdot31,82^{2}}{12} + \frac{344,12\cdot18,18^{2}}{12} + \frac{1447,57\cdot4,80^{2}+344,12\cdot20,2^{2}=305384,93 \text{ cm}^{4}}{12}.$$

По формуле (125)

$$r = \sqrt{\frac{305384,93}{1447,57 + 344,12}} = 13,055 \text{ cm};$$

$$\lambda = \frac{l_0}{r} = \frac{450}{13,055} = 34,45.$$

Поскольку $\lambda = 34,45 > 14$, учитываем при расчете влияние прогиба на прочность элемента согласно п. 3.3.

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm кр}$ по формуле (88). Для этого предварительно вычисляем значение $t_{\rm мкн}$ по формуле (90), m_{64} принимаем по табл. 16 в зависимости от температуры бетона в центре тяжести приведенного сечения

$$t_{\text{m.T}} = 600 - (50 - 20,71) \, 11 = 278^{\circ}\text{C}; \ m_{6t} = 0,766.$$

Согласно п. 2.10 при длительном нагреве расчетное сопротивление бетона умножаем на коэффициенты $m_{61} = 0.85$ и $m_{65} = 0.9$, принимаемые по табл. 15

$$R_{\rm np} = 110.0,85.0,9 = 84 \text{ krc/cm}^2.$$

По формуле (90)

$$t_{\text{MBH}} = 0.5 - 0.01 \frac{450}{50} - 0.001 \cdot 0.766 \cdot 84 = 0.346$$

Так как
$$\frac{e_0}{h} = \frac{8,39}{50} = 0,168 < t_{\text{мин}} = 0,346$$
, принимаем $t = 0,346$.

Значение k_{π^π} вычисляем по формуле (89). Значение коэффициента β по табл. 39 при $t_{\pi,\tau}{=}278^\circ$ С для состава № 11 равно 1,878,

$$k_{\rm g,n} = 1 + \beta \frac{M_1^{\rm g,n}}{M_1} = 1 + \beta \frac{N_{\rm g,n}}{N} = 1 + 1,878 \frac{52,5}{70} = 2,41$$

По формуле (88)

$$N_{\rm KP} = \frac{6,4 \cdot 165 \cdot 10^3 \cdot 305 \cdot 384,93}{2,41 \cdot 450^2} \left(\frac{0,11}{0,1+0,346} + 0,1 \right) =$$
= 229 297,3 krc = 229,3 rc.

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{70}{229 \ 3}} = 1,44.$$

Эксцентрицитет e', с учетом прогиба, вычисляем по формуле (71):

$$e' = 20,71 - 8,39 \cdot 1,44 = 8,63$$
 cm.

Так как 2e' = 17,26 см $< h_1 = 31,82$ см, то расчет прочности элемента выполняется, согласно п. 3.6, из условия (69).

Для этого предварительно вычисляем F_6 по формуле (74):

$$F_6 = 2.50.8,63 = 863 \text{ cm}^2$$

и определяем значение коэффициента $m_{6t}=1$ по табл. 16 в зависимости от средней температуры бетона сжатой зоны сечения:

$$t_{\text{CW.3}} = 600 - 50.11 + 8.63.11 = 145^{\circ}\text{C}$$

Из условия (69)

$$N_{\text{пред}} = 1.84.863 = 72621,5 \text{ krc} = 72,6 \text{ tc} > N = 70 \text{ tc},$$

т. е. прочность сечения обеспечена.

Пример 2. Расчет прочности внецентренно-сжатого бетонного элемента прямоугольного сечения, односторонне нагретого до 700° С, при приложении продольной силы со стороны менее нагретой грани сечения и $2e' > h_1$.

Дано: размеры сечения свободно опертого элемента b=50 см; h=50 см; расчетная длина $l_0=450$ см; элемент неравномерно нагрет по высоте сечения — температура наиболее нагретой грани 700° С, наименее нагретой грани 100° С; бетон состава № 11 (табл. 11), марки M 250, $R_{\rm пp}=110$ кгс/см² (табл. 14); $E_6=165\cdot 10^3$ кгс/см² (табл. 17); расчетные значения продольной силы: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N=90 тс, в том числе от длительно действующих нагрузок $N_{\rm дл}=27$ тс; все нагрузки приложены со стороны менее нагретой грани сечения с эксцентрицитетом, равным 7 см.

Требуется проверить прочность сечения.

Расчет. Прежде всего необходимо определить эксцентрицитет приложения продольной силы вследствие перемещения центра тяжести сечения, вызванного его неравномерным нагревом. Для этого, согласно п. 1.28, сечение разбиваем на две части, средняя температура которых оказывается равной 250 и 550° С, и производим приведение площадей частей к площади ненагретого бетона по формуле (2).

Линия раздела сечения проходит по бетону, имеющему температуру 400° C, и высота каждой части сечения будет равна: $h_1 = 25$ см, $h_2 = 25$ см.

Значения коэффициентов β_6 и $\overline{\nu}$ (для кратковременного нагрева) принимаем по табл. 16 и 18 соответственно:

при температуре 250° С— β_6 =0,825; $\underline{\nu}$ =0,725; при температуре 550° С— β_6 =0,455; $\underline{\nu}$ =0,477. Для состава № 11, согласно п. 1.28, $k_{\rm n}$ =0,7. По формуле (2):

$$F_{\text{m250}} = \frac{50 \cdot 25 \cdot 0,825 \cdot 0,725}{0,7} = 1068 \text{ cm}^2;$$

$$F_{\text{m550}} = \frac{50 \cdot 25 \cdot 0,455 \cdot 0,477}{0,7} = 387,5 \text{ cm}^2.$$

Расстояние от центра тяжести приведенного сечения до грани, наиболее сжатой внешней нагрузкой (в данном случае менее нагретой грани сечения), определяется по формуле (5)

$$y = \frac{1068 \cdot 12.5 + 387.5 \cdot 37.5}{1068 + 387.5} = 19.2 \text{ cm}.$$

Величина расчетного эксцентрицитета продольной силы относительно центра тяжести приведенного сечения равна

$$e_0^p = 7 - (25 - 19, 2) = 1, 2 \text{ cm}$$

Определяем величину случайного эксцентрицитета e_{0}^{cn} согласно п. 1.302

$$e_0^{\text{cn}} = \frac{h}{30} = \frac{50}{30} = 1,67 \text{ cm} > 1 \text{ cm} > \frac{l_0}{600} = \frac{450}{600} = 0,75 \text{ cm}.$$

Эксцентрицитет от температурного выгиба f_t , вызванного неравномерным нагревом по высоте сечения элемента, определяется, согласно п. 4.26, по формуле (280). Для этого определяем величину кривизны оси элемента от нагрева, согласно п. 1.40, по формуле (24). Коэффициенты α_{61} и α_{611} , входящие в формулу (24), принимаются в зависимости от температуры бетона менее и более нагретой

грани сечения по табл. 20:

при
$$t_6 = 100$$
°C $\alpha_{6t} = 6,5.10^{-6}$ град⁻¹; при $t_{61} = 700$ °C $\alpha_{6t1} = 3,1\cdot10^{-6}$ град⁻¹.

По формуле (24)

$$\frac{1}{\rho_t} = \frac{3,1 \cdot 10^{-6.700} - 6,5 \cdot 10^{-6.100}}{50} 1,1 = 33,44 \cdot 10^{-6} \text{ cm}^{-3}.$$

По формуле (280)

$$f_t = 33,44 \cdot 10^{-6} \cdot \frac{1}{8} \cdot 450^2 = 0,85 \text{ cm}.$$

Вычисляем значение e_0 по формуле (121):

$$e_0 = 1,2+1,67+0,85 = 3,72$$
 cm.

Для учета влияния прогиба элемента определяем его гибкость $\lambda =$ $=\frac{l_0}{r}$, где r вычисляем, согласно п. 3.29, по формуле (125).

Момент инерции приведенного сечения $I_{\mathbf{n}}$ определяем по формуле (11):

$$I_{\pi} = \frac{1068 \cdot 25^{2}}{12} + \frac{387, 5 \cdot 25^{2}}{12} + 1068 (19, 2 - 12, 5)^{2} + \\ + 387, 5 (37, 5 - 19, 2)^{2} = 253493, 5 \text{ cm}^{6}.$$

По формуле (125):

$$r = \sqrt{\frac{253\,493.5}{1068 + 387.5}} = 13.2$$
 cm;

$$\lambda = \frac{l_0}{r} = \frac{450}{13.2} = 34,09$$

Поскольку $\lambda = \frac{l_0}{r} = 34,09 > 14$, учитываем при расчете влияние про-

гиба на прочность элемента согласно п. 3.3.

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (88). Для этого предварительно вычисляем значение $t_{\rm MNH}$ по формуле (90); $m_{6t} = 0,65$ принимаем по табл. 16 для состава № 11 в зависимости от температуры бетона в центре тяжести приведенного сечения:

$$t_{\text{U,T}} = 100 + \frac{(700 - 100)19,2}{50} = 330^{\circ}\text{C}.$$

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициенты $m_{61} = 0.85$ и $m_{65} = 0.9$, принимаемые по табл. 15:

$$R_{\rm np} = 110.0,85.0,9 = 84 \text{ krc/cm}^2$$
.

По формуле (90)

$$t_{\text{MHH}} = 0.5 - 0.01 \frac{450}{50} - 0.001 \cdot 0.65 \cdot 84 = 0.36$$

Так как
$$\frac{e_0}{h} = \frac{3.72}{50} = 0.074 < t_{\text{мин}} = 0.36$$
, принимаем $t = 0.36$.

Значение $k_{\pi\pi}$ вычисляем по формуле (89). Значение коэффициента β по табл. 39 при $t_{\pi,\tau} = 330^\circ$ С для состава № 11 равно 2,62:

$$k_{\rm AR} = 1 + \beta \frac{M_1^{\rm AR}}{M_1} = 1 + \beta \frac{N_{\rm AR}}{N} = 1 + 2,62 \frac{27}{90} = 1,786.$$

По формуле (88)

$$N_{\rm KP} = \frac{6.4 \cdot 165 \cdot 10^3 \cdot 253 \cdot 493.5}{1.786 \cdot 450^2} \left(\frac{0.11}{0.1 + 0.36} + 0.1 \right) = 250.968 \text{ Kpc} = 251 \text{ Tc.}$$

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{90}{251}} = 1,56.$$

Эксцентрицитет e', с учетом прогиба, вычисляем по формуле (71): $e' = 19.2 - 3.72 \cdot 1.56 = 13.4$ см.

Так как 2e' = 26,8 см $> h_1 = 25$ см, то расчет прочности элемента выполняется, согласно п. 3.6, из условия (76).

Для этого необходимо предварительно вычислить Δx по формуле (79). Коэффициенты β_{61} и β_{62} , v_1 и v_2 (для кратковременного нагрева), входящие в эту формулу, принимаем по табл. 16 и 18 для состава № 11 в зависимости от средней температуры бетона участ-

ков сжатой зоны высотой соответственно $h_1 = 25$ см и приближенно назначенной высоты $\Delta x = 3$ см.

для
$$h_1=25$$
 см — $t_{\rm cp}=250^{\circ}$ С, $\beta_{61}=0.825$, $\bar{\nu}_1=0.725$; для $\Delta x=3$ см — $t_{\rm cp}=418^{\circ}$ С, $\beta_{62}=0.602$, $\bar{\nu}_2=0.600$. По формуле (79)

$$\Delta x = -(25 - 13, 4) \pm$$

$$\pm \sqrt{(25-13,4)^2 - \frac{0,825 \cdot 0,725}{0,602 \cdot 0,600}} 25 (25-26,8) = 2,9 \text{ cm.}$$

Полученное значение $\Delta x = 2,9$ см близко по значению к заданному $\Delta x = 3$ см, поэтому в расчете принимаем $\Delta x = 2,9$ см.

По формулам (77) и (78):

$$F_{61} = 50.25 = 1250 \text{ cm}^2;$$

 $F_{62} = 50.2,9 = 145 \text{ cm}^2.$

Коэффициенты m_{5t} определяем по табл. 16 для состава № 11 в зависимости от средней температуры бетона участков сжатой зоны высотой h_1 = 25 см и Δx = 2,9 см соответственно:

для
$$t_{cp} = 250$$
°C, $m_{6t} = 0.85$;
для $t_{cp} = 418$ °C, $m_{6t} = 0.52$.

По условию (76)

$$N_{\text{пред}} = 84.0,85.1250 + 84.0,52.145 = 95.754 \text{ кrc} = 95,75 \text{ тс} > N = 90 \text{ тс},$$

т. е. прочность сечения обеспечена.

Пример 3. Расчет прочности внецентренно-сжатого бетонного элемента прямоугольного сечения, в котором недопустимо появление трещин, при его равномерном нагреве до 200° С.

Дано: размеры сечения b=50 см; h=50 см; расчетная длина $l_0=4$ м; элемент равномерно нагрет до 200° С; бетон состава № 1 (табл. 11), марки M 300, $R_{\pi p}=135$ кгс/см² (табл. 14), естественного твердения, $E_5=290\cdot 10^3$ кгс/см² (табл. 17); расчетные значения продольной силы и изгибающего момента: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N=40 тс, M=3,6 тс·м, в том числе от длительно действующих нагрузок $N_{\pi\pi}=30$ тс, $M_{\pi\pi}=2,7$ тс·м.

Требуется проверить прочность сечения.

Расчет. Согласно п. 2.10, при длительном нагреве расчетные сопротивления бетона умножаем на коэффициенты $m_{61} = 0.85$ и $m_{65} = -0.9$, принимаемые по табл. 15:

$$R_{\text{np}} = 135 \cdot 0,85 \cdot 0,9 = 103 \text{ krc/cm}^2;$$

 $R_{\text{p}} = 10 \cdot 0,85 \cdot 0,9 = 7,7 \text{ krc/cm}^2.$

Значения коэффициентов m_{6t} и m_{pt} , β_6 и $\overline{\nu}$ принимаем по табл. соответственно 16 и 18 при $t=200^\circ$ С: $m_{6t}=0.8$, $m_{pt}=0.5$, $\beta_6=0.6$; $\overline{\nu}=0.7$ (для кратковременного нагрева).

Расчетный элемент является элементом статически неопредели-

мой конструкции, поэтому случайный эксцентрицитет не учитываем, поскольку

$$e_0 = \frac{M}{N} = \frac{360\,000}{40\,000} = 9 \text{ cm} > e_0^{\text{c}\pi} = \frac{h}{30} = \frac{50}{30} = 1,7 \text{ cm}.$$

Для решения вопроса об учете влияния прогиба на прочность элемента определяем его гибкость $\lambda = \frac{l_0}{r}$. Для равномерно нагретого прямоугольного сечения $r = \frac{h}{3,46}$. В плоскости действия изгибающего момента

$$r = \frac{50}{3,46} = 14,45$$
 cm и $\lambda = \frac{400}{14,45} = 27,68 > 14,$

поэтому учитываем влияние прогиба на прочность элемента согласно п. 3.7. Для этого предварительно вычисляем

$$e_0 = \frac{M}{N} = \frac{3.6}{40} = 0.09 \text{ m} = 9 \text{ cm}.$$

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (88). Для этого предварительно вычисляем значение $t_{\rm MNH}$ по формуле (90):

$$t_{\text{MHH}} = 0.5 - 0.01 \frac{400}{50} - 0.001 \cdot 0.8 \cdot 103 = 0.34$$

Так как $\frac{e_0}{h} = \frac{9}{50} = 0.18 < t_{\text{мин}} = 0.34$, согласно п. 3.7, принимаем t = 0.34.

Значение $k_{\pi\pi}$ вычисляем по формуле (89), приняв значение коэффициента β по табл. 39 при $t=200^\circ$ С для состава N 1, равное 1,5:

$$k_{\pi\pi} = 1 + \beta \frac{M_1^{\pi\pi}}{M_1} = 1 + \beta \frac{N_{\pi\pi}}{N} = 1 + 1, 5 \frac{30}{40} = 2,125.$$

Значение I_{π} вычисляем по формуле (1), в которой для состава Ne 1 $k_{\pi}\!=\!0.85$:

$$I_{\pi} = \frac{50 \cdot 50^{3}}{12} \cdot \frac{0.6 \cdot 0.7}{0.85} = 257353 \text{ cm}^{4}.$$

По формуле (88)

$$N_{\rm KP} = \frac{6,4 \cdot 290 \cdot 10^3 \cdot 257 \cdot 353}{2,125 \cdot 400^2} \left(\frac{0,11}{0,1+0,34} + 0,1 \right) =$$

$$= 491 \cdot 696 \text{ kgc} = 492 \text{ Tg},$$

Коэффициент η определяем по формуле (87)

$$\eta = \frac{1}{1 - \frac{40}{409}} = 1,09.$$

Проверку сечения производим согласно п. 3.5. Определяем площадь сечения сжатой зоны по формуле (70):

$$F_6 = 50.50 \left(1 - \frac{2.9.1,09}{50}\right) = 1520 \text{ cm}^2.$$

Из условия (69)

$$N_{\text{пред}} = 0.8 \cdot 103 \cdot 1520 = 125588 \text{ kgc} = 126 \text{ tc} > N = 40 \text{ tc}.$$

Согласно п. 3.6, в связи с тем, что по условию примера в элементе не допускается появление трещин, независимо от расчета из условия (69) необходима проверка сечения с учетом сопротивления бетона растянутой зоны.

Проверку сечения производим из условия (83):

$$N_{\text{пред}} = \frac{1,75 \cdot 0,5 \cdot 7,7 \cdot 50 \cdot 50}{\frac{6 \cdot 9 \cdot 1,09}{50} - 0,8} = 44388 \text{ кгс} = 44 \text{ тс} > N = 40 \text{ тс},$$

т. е. прочность сечения обеспечена.

Пример 4. Расчет прочности внецентренно-сжатого бетонного элемента таврового сечения, односторонне нагретого до 300° С, при приложении продольной силы со стороны более нагретой грани сечения (полки) и $2e' < h_n^*$.

Дано: размеры сечения элемента $b_n'=75$ см; $h_n'=13$ см, b=12 см; h=50 см; расчетная длина $l_0=4$ м; элемент неравномерно нагрет по высоте сечения: наиболее нагретая грань сжатой полки имеет расчетную температуру 300° С, наименее нагретая наружная поверхность ребра имеет расчетную температуру 50° С; бетон состава $N \ge 2$ (табл. 11), марки $M \ge 300$, подвергнут тепловой обработке при атмосферном давлении; $R_{np}=135$ кгс/см² (табл. 14); $E_6=260\cdot 10^3$ кгс/см² (табл. 17); расчетные значения продольной силы и изгибающего момента: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N=100 тс, M=6 тс·м, в том числе от длительно действующих нагрузок $N_{nn}=25$ тс, $M_{nn}=1,5$ тс·м.

Требуется проверить прочность сечения.

Расчет. Определим расстояние от центра тяжести сечения до наиболее сжатой (в данном случае до более нагретой) грани сечения

$$y = \frac{S}{F} = \frac{75 \cdot 13 \cdot 6,5 + 12 (50 - 13) [13 + 0,5 (50 - 13)]}{75 \cdot 13 + 12 (50 - 13)} = 14,32 \text{ cm}.$$

Расчетный эксцентрицитет продольной силы относительно центра тяжести сечения.

$$e_0^{\rm p} = \frac{M}{N} = \frac{600\,000}{100\,000} = 6$$
 cm.

Выгиб элемента, вызванный неравномерным нагревом сечения, уменьшает расчетный эксцентрицитет продольной силы $e_{\,\mathbf{p}}^{\,0}$, потому он не учитывается.

Поскольку расчетный элемент является элементом статически определимой конструкции, то, согласно п. 1.30, учитываем величину случайного эксцентрицитета:

$$e_0^{\text{cn}} = \frac{h}{30} = \frac{50}{30} = 1,67 \,\text{cm} > 1 \,\text{cm} > \frac{l_0}{600} = \frac{400}{600} = 0,67 \,\text{cm}.$$

Вычисляем значение e_0 по формуле (121) при $f_t = 0$:

$$e_0 = 6 + 1,67 = 7,67$$
 cm.

Для учета влияния прогиба элемента определяем его гибкость $\lambda = \frac{l_0}{r}$, где r — радиус инерции сечения.

Определяем момент инерции I относительно центра тяжести сечения:

$$I = \sum_{i=1}^{t} I_{i} + \sum_{i=1}^{t} F_{i} y_{6i}^{2} = \frac{75 \cdot 13^{3}}{12} + \frac{12 (50 - 13)^{3}}{12} + \frac{12 (50 - 13)^{3}$$

$$+75 \cdot 13 (14,32-6,5)^2 + 12 (50-13) [13+0,5 (50-13)-14,32]^2 =$$

= 255 055.51 cm⁴.

Тогда

$$r = \sqrt{\frac{I}{F}} = \sqrt{\frac{255\ 055,51}{75\cdot13 + 12\ (50,-13)}} = 13,41\ \text{cm}$$

$$\lambda = \frac{I_0}{r} = \frac{400}{13,41} = 29,83.$$

Поскольку $\lambda=29.83>14$, учитываем при расчете влияние прогиба на прочность элемента согласно п. 3.3.

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (88). Величину I_n , входящую в формулу (88), определяем по формуле (1). Значения коэффициентов β_0 и ν (для кратковременного нагрева) принимаем соответственно по табл. 16 и 18 для состава № 2 в зависимости от температуры бетона в центре тяжести сечения:

при $t_{\pi,\tau} = 300 - \frac{300 - 50}{50}$ 14,32 = 228°C, $\beta_6 = 0,544$

и
$$\bar{v} = 0,686$$
.

Для состава № 2, согласно п. 1.28, $k_{\rm m}\!=\!0.85.$ По формуле (1)

$$I_{\rm II} = \frac{I\beta_{\rm 0}\bar{\nu}}{k_{\rm II}} = \frac{255\,055,51\cdot0,544\cdot0,686}{0,85} = 111\,979,57\,{\rm cm}^4.$$

Значение $t_{\text{мин}}$ вычисляем по формуле (90), m_{5t} =0,726 принимаем по табл. 16 для состава № 2 в зависимости от температуры бетона в центре тяжести сечения, равной 228° С.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициенты m_{61} =0,85 и m_{65} =0,9, принимаемые по табл. 15:

$$R_{\rm np} = 135.0,85.0,9 = 103 \text{ krc/cm}^2.$$

По формуле (90)

$$t_{\text{MHH}} = 0.5 - 0.01 \frac{400}{50} - 0.001 \cdot 0.726 \cdot 103 = 0.345.$$

Так как

$$rac{e_0}{h} = rac{7.67}{50} = 0,153 < t_{
m MHH} = 0,345$$
, принимаем $t = 0,345$.

Значение $k_{\pi\pi}$ вычисляем но формуле (89). Величина коэффициента β по табл. 39 для состава № 2 при $t_{\pi,\tau}{=}228^{\circ}$ С равна 1,64:

$$k_{\text{g,n}} = 1 + 1,64 \frac{1,5 + 25 \cdot 0,357}{6 + 100 \cdot 0.357} = 1,41.$$

По формуле (88)

$$N_{\text{KP}} = \frac{6,4 \cdot 260 \cdot 10^3 \cdot 111979,57}{1,41 \cdot 400^2} \left(\frac{0,11}{0,1+0,345} + 0,1 \right) =$$
= 286 600 kgc = 286,6 tc.

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{100}{286,6}} = 1,536.$$

Эксцентрицитет e', с учетом прогиба, вычисляем по формуле (71): $e' = 14,32 - 7,67 \cdot 1,536 = 2,54$ см.

Так как 2e' = 5,08 см $< h'_{\Pi} = 13$ см, расчет прочности элемента выполняем, согласно п. 3.6, из условия (69), где F_{0} входящее в это условие, определяем по формуле (70) при $b = b'_{\Pi} = 75$ см:

$$F_6 = 75.50 \left(1 - \frac{2.7,67.1,536}{50} \right) = 1983,75 \text{ cm}^2.$$

Коэффициент m_{6i} принимаем по табл. 16 для состава № 2 в зависимости от средней температуры сжатой зоны бетона F_6

при
$$t_{cp} = 300 - \frac{300 - 50}{50} 2,54 = 287^{\circ}\text{C}$$
 $m_{6t} = 0,539$.

По условию (69)

 $N_{\text{пред}} = 103 \cdot 0,539 \cdot 1983,75 = 110 \cdot 431 \text{ кгс} = 110,4 \text{ тс} > N = 100 \text{ тс},$ т. е. прочность сечения обеспечена.

Пример 5. Расчет прочности внецентренно-сжатого бетонного элемента таврового сечения, односторонне нагретого до 700° С, при приложении продольной силы со стороны более нагретой грани сечения (полки) и $2e'>h'_{\Pi}$.

Дано: размеры сечения элемента b_n^* =75 см; h_n^* =13 см; b=12 см; h=50 см, расчетная длина l_0 =4 м; элемент неравномерно нагрет по высоте сечения: наиболее нагретая грань сжатой полки имеет рас-

четную температуру 700° С, наименее нагретая наружная поверхность ребра имет расчетную температуру 100° С; бетон состава N_2 11 (табл. 11), марки M 250, $R_{\rm пp} = 110~{\rm krc/cm^2}$ (табл. 14), $E_6 = 165 \times 103~{\rm krc/cm^2}$ (табл. 17); расчетные значения продольной силы и изгибающего момента: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) $N = 20~{\rm Tc}$; $M = 0.4~{\rm Tc} \cdot {\rm M}$, в том числе от длительно действующих нагрузок $N_{\rm дл} = 4~{\rm Tc}$; $M_{\rm дл} = -0.08~{\rm Tc} \cdot {\rm M}$.

Требуется проверить прочность сечения.

Pacuet. Из теплотехнического расчета получена средняя температура бетона свесов полки 670° C, средняя температура бетона ребра 322° C.

Определяем эксцентрицитет приложения продольной силы вследствие перемещения положения центра тяжести сечения, вызванного его неравномерным нагревом. Для этого, согласно п. 1.28, сечение разбиваем на две части по границе между ребром и полкой и производим приведение площадей полки и ребра к площади ненагретого бетона по формуле (2).

Значения коэффициентов β_6 и $\overline{\nu}$ (для кратковременного нагрева) принимаем соответственно по табл. 16 и 18:

при температуре 670° С—
$$\beta_6 = 0,347$$
, $\bar{\nu} = 0,351$;

при температуре
$$322^{\circ}$$
 С— $\beta_{6} = 0,722$, $\bar{\nu} = 0,681$.

Для состава № 11, согласно п. 1.28, $k_{\pi} = 0.7$. По формуле (2):

$$F_{\pi 670} = \frac{75 \cdot 13 \cdot 0,347 \cdot 0,351}{0,7} = 169,65 \text{ cm}^2;$$

$$F_{\text{TI322}} = \frac{12(50 - 13)0,722 \cdot 0,681}{0,7} = 311,87 \text{ cm}^2.$$

Расстояние от центра тяжести приведенного сечения до наиболее сжатой грани (в данном случае до более нагретой грани сечения) определяем по формуле (5):

$$y_{\rm II} = \frac{169,65 \cdot 6,5 + 311,87 \left[13 + 0,5 \left(50 - 13\right)\right]}{169,65 + 311,87} = 22,69 \ {\rm cm}.$$

Расстояние от центра тяжести неприведенного сечения до той же грани

$$y = \frac{S}{F} = \frac{75 \cdot 13 \cdot 6.5 + 12 (50 - 13) [13 + 0.5 (50 - 13)]}{75 \cdot 13 + 12 (50 - 13)} = 14.32 \text{ cm}.$$

Расчетный эксцентрицитет продольной силы относительно центра тяжести приведенного сечения

$$e_0^{\rm p} = \frac{M}{N} + (y_{\rm ff} - y) = \frac{40\,000}{20\,000} + (22,69 - 14,32) = 10,37~{\rm cm}.$$

Выгиб элемента, вызванный неравномерным нагревом сечения, уменьшает расчетный эксцентрицитет продольной силы $e_0^{\mathbf{p}}$, поэтому он не учитывается.

Поскольку расчетный элемент является элементом статически определимой конструкции, то, согласно п. 1.30, учитываем величину случайного эксцентрицитета:

$$e_0^{\text{cn}} = \frac{h}{30} = \frac{50}{30} = 1,67 > 1 \text{ cm} > \frac{l_0}{600} = \frac{400}{600} = 0,67 \text{ cm}.$$

Вычисляем значение e_0 по формуле (121) при $f_t = 0$:

$$e_0 = 10,37 + 1,67 = 12,04$$
 cm:

Для учета влияния прогиба элемента определяем его гибкость $\lambda = \frac{l_0}{r}$, где r вычисляем, согласно п. 3.29, по формуле (125).

Момент инерции приведенного сечения I_{π} определяем по формуле (11):

$$I_{\pi} = \frac{169,65 \cdot 13^{2}}{12} + \frac{311,87(50-13)^{2}}{12} + 169,65(22,69-6,5)^{2} + 311,87[13+0,5(50-13)-22,69]^{2} = 106642,54 \text{ cm}^{4}.$$

По формуле (125)

$$r = \sqrt{\frac{106\,642,54}{169,65+311,87}} = 14,88 \text{ cm}$$

И

$$\lambda = \frac{l_0}{r} = \frac{400}{14,88} = 26,88.$$

Поскольку $\lambda=26,88>14$, учитываем при расчете влияние прогиба на прочность элемента согласно п. 3.3. Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (88). Для этого предварительно вычисляем значение $t_{\rm MRH}$ по формуле (90); $m_{\rm 6}t=0,508$ принимаем по табл. 16 в зависимости от температуры бетона в центре тяжести приведенного сечения, равной 428° С.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициенты m_{61} =0,85 и m_{65} =0,9, принимаемые по табл. 15:

$$R_{\rm np} = 110 \cdot 0.85 \cdot 0.9 = 84 \text{ krc/cm}^2.$$

По формуле (90)

$$t_{\text{MHH}} = 0.5 - 0.01 \frac{400}{50} - 0.001 \cdot 0.508 \cdot 84 = 0.377.$$

Так как
$$\frac{e_0}{h} = \frac{12,04}{50} = 0,241 < t_{\text{мин}} = 0,377$$
, принимаем $t = 0,377$.

Значение $k_{\rm дл}$ вычисляем по формуле (89). Значение коэффициента β по табл. 39 при $t_{\rm д.r}{=}428^{\circ}$ С для состава № 11 равно 4,972:

$$k_{\text{дл}} = 1 + 4,972 \frac{0.08 + 4.0.273}{0.4 + 20.0.273} = 1,994.$$

По формуле (88)

$$N_{\text{KP}} = \frac{6,4 \cdot 165 \cdot 10^3 \cdot 106 \ 642,54}{1,994 \cdot 400^2} \left(\frac{0,11}{0,1+0,377} + 0,1 \right) =$$
= 116.840 Krc = 116.84 Tc.

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{20}{116.84}} = 1,206,$$

Эксцентрицитет e', с учетом прогиба, вычисляем по формуле (71): $e' = 22.69 - 12.04 \cdot 1.206 = 8.17$ см.

Так как 2e' = 16,34 см $> h_{\pi}' = 13$ см, то расчет прочности элемента выполняется, согласно п. 3.6, из условия (76).

Для этого необходимо предварительно вычислить Δx по формуле (81). Коэффициенты β_{6n} и β_{62} , ν_n и ν_2 (для кратковременного нагрева), входящие в эту формулу, принимаем по табл. 16 и 18 для состава № 11 в зависимости от средней температуры бетона участков сжатой зоны высотой $h_n'=13$ см и приближенно назначенной высоты $\Delta x=6$ см:

для
$$h_{\rm n}'=13~{\rm cm}-t_{\rm cp}=670^{\circ}{\rm C},~~\beta_{\rm 6n}=0,347,~~\bar{v}_{\rm n}=0,351;$$
 для $\Delta x=6~{\rm cm}-t_{\rm cp}=508^{\circ}{\rm C},~~\beta_{\rm 62}=0,493,~~\bar{v}_{\rm 2}=0,522.$ По формуле (88)

$$\Delta x = -\left(h'_{\Pi} - e'\right) \pm \frac{\Delta x = -\left(h'_{\Pi} - e'\right) \pm \left(h'_{\Pi} - e'\right)^{2} - \frac{\beta_{6\Pi} \bar{v}_{\Pi}}{\beta_{62} \bar{v}_{2}} \frac{b'_{\Pi} h'_{\Pi}}{b} \left(h'_{\Pi} - 2e'\right) = \\ = -\left(13 - 8, 17\right) \pm \frac{\sqrt{(13 - 8, 17)^{2} - \frac{0.347 \cdot 0.351}{0.493 \cdot 0.522} \cdot \frac{75 \cdot 13}{12} \left(13 - 16, 34\right)} = \\ = -4,83 \pm \sqrt{4.83^{2} + 128.44} = -4.83 + 12.32 = 7.49 \text{ cm}.$$

Полученное значение Δx =7,49 см больше заданного значения Δx = =6 см, поэтому вторично назначим высоту Δx =7 см и уточним среднюю температуру бетона и значения коэффициентов β_{62} и ν_2 для этого участка:

$$t_{\rm cp} = 502^{\circ} \, \text{C}, \; \beta_{62} = 0,498; \; \bar{\nu_2} = 0,528.$$

По формуле (88)

$$\Delta x = -4.83 \pm \sqrt{4.83^2 + \frac{0.347 \cdot 0.351}{0.498 \cdot 0.528} \cdot \frac{75 \cdot 13}{12} 3.34} = -4.83 + 12.21 = 7.38 \text{ cm}.$$

Полученное значение $\Delta x = 7.4$ см близко по значению к повторно заданному $\Delta x = 7$ см, поэтому для расчета принимаем $\Delta x = 7.4$ см. По формулам (80) и (78):

$$F_{61} = 75 \cdot 13 = 975 \text{ cm}^2;$$

 $F_{62} = 12 \cdot 7, 4 = 88, 8 \text{ cm}^2.$

Коэффициенты m_{6t} определяем по табл. 16 для состава № 11 в зависимости от средней температуры бетона участков сжатой зоны высотой $h_{\pi} = 13$ см и $\Delta x = 7,4$ см соответственно:

для $t_{\rm cp}$ = 670° С $m_{\rm 61}$ = 0,230; для $t_{\rm cp}$ = 502° С $m_{\rm 61}$ = 0,398. По условию (76)

$$N_{\text{пред}} = 84.0,230.975 + 84.0,398.88,8 = 21 844,5 \text{ кгс} = 21,84 \text{ тс} > N = 20 \text{ тс},$$

т. е. прочность сечения обеспечена.

Примеры расчета прочности элементов железобетонных конструкций

Пример 6. Расчет прочности изгибаемого железобетонного элемента прямоугольного сечения при его равномерном нагреве до 100° C.

Дано: размеры сечения b=30 см, h=80 см, a=7 см; элемент равномерно нагрет до 100° С; бетон состава № 1 (табл. 11), марки М 300, $R_{\pi p} = 135$ кгс/см² (табл. 14); растянутая арматура из стали класса А-III, $R_a = 3600$ кгс/см² (табл. 29) с площадью поперечного сечения $F_{\rm a}\!=\!29,\!45~{
m cm}^2$ (6 Ø 25). Расчетный изгибающий момент от длительно действующей нагрузки M = 55 тс·м.

Требуется проверить прочность сечения.

Расчет. Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент $m_{51} = 0.85$, принимаемый по табл. 15:

$$R_{\rm mp} = 135.0,85 = 115 \text{ krc/cm}^2.$$

Значения коэффициентов m_{6t} , m_{at} и β_a принимаем соответственно по табл. 16 и 35. При температуре 100° С $m_{0t} = 0.9$, $m_{at} = 1$, $\beta_a = 1$

$$h_0 = 80 - 7 = 73$$
 cm.

Проверку прочности сечения производим по пп. 3.17 и 3.18. Из формулы (99) при $F_a = 0$ определяем высоту сжатой зоны

$$x = \frac{1.3600 \cdot 29,45}{0,9 \cdot 115 \cdot 30} = 32,31 \text{ cm}.$$

По формуле (93) определяем граничное значение относительной высоты сжатой зоны бетона Ев, вычислив предварительно значение ξ₀ по формуле (94):

$$\xi_0 = 0.85 - 0.0008 \cdot 0.9 \cdot 115 = 0.77$$
.

В связи с учетом коэффициента $m_{61} = 0.85$, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_{R} = \frac{0,77}{1 + \frac{3600 \cdot 1}{5000 \cdot 1} \left(1 - \frac{0,77}{1,1}\right)} = 0,64.$$

Так как x=32,31 см< $\xi_R h_0=0.64\cdot 73=46,72$ см, проверяем прочность сечения из условия (98) при $F_a^{\bullet}=0$:

$$M_{\text{пред.}} = 0.9 \cdot 115 \cdot 30 \cdot 32,31 (73 - 0.5 \cdot 32,31) =$$

= 56.91 tc·m > $M = 55$ tc·m,

т. е. прочность сечения обеспечена.

Пример 7. Определение площади поперечного сечения растянутой арматуры изгибаемого железобетонного элемента прямоугольного сечения, односторонне нагретого до 200° С, при заданной площади

сечения сжатой арматуры.

Дано: размеры сечения b=30 см; h=70 см; a=5 см; a'=3 см; элемент неравномерно нагрет по высоте сечения; наиболее нагретая сжатая грань сечения имеет температуру 200° С; бетон состава № 1 (табл. 11), марки M 400, $R_{np}=175$ кгс/см² (табл. 14); вся арматура из стали класса A-III, $R_a=3600$ кгс/см² (табл. 29); площадь сечения сжатой арматуры F a=9.42 см² ($3 \varnothing 20$); расчетный изгибающий момент, вызванный длительно действующими нагрузками в условиях систематического воздействия температуры, M=45 тс·м.

Требуется определить площадь сечения растянутой арматуры. Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты сечения, равное 2,5° С. В таком случае температура арматуры равна:

сжатой
$$t'_a = 200 - 3 \cdot 2,5 = 193$$
° С;

растянутой $t_s = 200 - 65 \cdot 2,5 = 38^{\circ}$ С.

Значения коэффициентов m_{at} принимаем по табл. 35 в зависимости от температуры арматуры:

для сжатой $m_{at} = 0.91$; для растянутой $m_{at} = 1$.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{61} =0,85, принимаемый по табл. 15:

$$R_{\rm np} = 175.0,85 = 149 \text{ krc/cm}^2.$$

Согласно примеч. 7 к табл. 16, среднюю температуру бетона сжатой зоны определяем по температуре бетона, расположенного на расстоянии $0.2\ h_0$ от сжатой грани сечения:

$$h_0 = 70 - 5 = 65$$
 cm,

температура бетона сжатой зоны

$$t_{\text{CM-S}} = 200 - 0.2.65.2.5 = 168^{\circ}\text{C}.$$

Для этой температуры бетона по табл. 16 определяем значение коэффициента $m_{6t} = 0.83$.

Расчет производим согласно указаниям п. 3.21. По формуле (110) вычисляем значение A_0 :

$$A_0 = \frac{4500000 - 0.91 \cdot 3600 \cdot 9.42 (65 - 3)}{0.83 \cdot 149 \cdot 30 \cdot 65^2} = 0.17.$$

Для проверки условия $A_0 \lesssim A_R$ определяем значение ξ_R , согласно п. 3.13, по формуле (93), предварительно вычислив значение ξ_0 по формуле (94): $\xi_0 = 0.85 - 0.0008 \cdot 0.83 \cdot 149 = 0.76$.

В связи с учетом коэффициента m_{61} =0,85, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000. Значение коэффициента β_a =1 в зависимости от температуры растянутой арматуры принято по табл. 35:

$$\xi_R = \frac{0.76}{1 + \frac{3600 \cdot 1}{5000 \cdot 1} \left(1 - \frac{0.76}{1.1}\right)} = 0.62.$$

Вычисляем значение A_R по формуле (96):

$$A_R = 0.62 (1 - 0.5 \cdot 0.62) = 0.42.$$

Поскольку $A_0 = 0.17 < A_R = 0.42$, по табл. 41 в зависимости от значения A_0 находим $\xi = 0.19$.

Так как $\xi=0.19>\frac{2a'}{h_0}=\frac{2\cdot 3}{65}=0.09$, определяем необходимую площадь растянутой арматуры по формуле (111):

$$F_a = \frac{0,19 \cdot 30 \cdot 65 \cdot 0,83 \cdot 149}{1 \cdot 3600} + 9,42 \frac{0,91 \cdot 3600}{1 \cdot 3600} =$$
$$= 13.45 + 8.57 = 22.02 \text{ cm}^2.$$

Принимаем 3 Ø 32 ($F_a = 24,18 \text{ см}^2$).

Пример 8. Определение площади поперечного сечения растянутой арматуры изгибаемого железобетонного элемента прямоугольного сечения при одностороннем нагреве до 1100° С.

Дано: размеры сечения b=15 см; h=55 см; a=3,5 см; элемент неравномерно нагрет по высоте сечения; наиболее нагретая сжатая грань имеет температуру 1100° С; бетон состава № 11 (табл. 11), марки M 300, $R_{np}=135$ кгс/см² (табл. 14); растянутая арматура из стали класса A-III, $R_a=3600$ кгс/см² (табл. 29). Расчетный изгибающий момент при длительном нагреве и нагрузке M=3,2 тс·м.

Требуется определить площадь сечения растянутой арматуры. Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты сечения, равное 17,5° С. В таком случае температура арматуры равна

$$t_a = 1100 - (55 - 3,5) 17,5 = 199$$
°C.

Значение коэффициента m_{at} = 0,9 принимаем по табл. 35 в зависимости от температуры арматуры.

В связи с тем, что температура наиболее нагретой грани элемента превышает предельно допустимую температуру применения бетона, указанную в графе 7 табл. 11, сечение, согласно п. 3.19, рассчитывается с неполной высотой. Для этого определяем расстояние x_1 от наиболее нагретой грани до бетона, имеющего предельно допустимую температуру применения, равную для состава № 11 1000° С. Эта температура удовлетворяет требование п. 1.15

$$x_1 = \frac{1100 - 1000}{17.5} = 5.7 \text{ cm}.$$

Укороченная полезная высота сечения по формуле (106) при

$$h_0 = h - a = 55 - 3,5 = 51,5$$
 см равна $h_y = 51,5 - 5,7 = 45,8$ см.

Согласно примеч. 7 к табл. 16, среднюю температуру бетона сжатой зоны в первом приближении определяем по температуре бетона, расположенного на расстоянии $0.2\ h_y$ от сжатой грани сечения.

Температура бетона сжатой зоны

$$t_{\text{CM.S}} = 1000 - 0.2.45.8.17.5 = 841^{\circ}\text{C}.$$

Для этой температуры бетона по табл. 16 определяем значение коэффициента $m_{0t} = 0,1$.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент $m_{01} = 0.85$, принимаемый по табл. 15:

$$R_{\rm IID} = 135.0,85 = 115 \text{ krc/cm}^2$$
.

Вычисляем значение A_{01} по формуле (104):

$$A_{01} = \frac{320\,000}{0,1\cdot115\cdot15\,(51,5-5,7)^2} = 0.8.$$

В связи с тем, что $A_{01} > A_R$, а следовательно и $\xi > \xi_R$, уточняем среднюю температуру бетона сжатой зоны при граничном значении высоты сжатой зоны, равном $0.7 h_y$:

$$t_{\text{CM.3}} = 1000 - 0.35.45.8.17.5 = 720^{\circ}\text{C}.$$

Для этой температуры бетона по табл. 16 определяем значение коэффициента $m_{6t} = 0.186$.

Вычисляем новое значение коэффициента A_{01} по формуле (104):

$$A_{01} = \frac{320\,000}{0,186\cdot115\cdot15\,(51,5-5,7)^2} = 0,44 < A_R = 0,46.$$

В зависимости от значения A_{01} по табл. 41 находим $\xi = 0.66$. Полученное значение ξ близко к принятому граничному значению, поэтому пересчета можно не делать. Действительно, если принять среднее значение $\xi = \frac{0.7 + 0.66}{2} = 0.68$, то для этой высоты

сжатой зоны ее средняя температура будет равна:

$$t_{\text{CM,9}} = 1000 - 0.34.45.8.17.5 = 728^{\circ}\text{C.}$$

 $m_{6t} = 0.181; \quad A_{01} = 0.452; \quad \xi = 0.69.$

Площадь сечения растянутой арматуры определяем по формуле (107):

$$F_a = 15.45, 8.0, 69 \frac{0.181.115}{0.9.3600} = 3.19 \text{ cm}^2.$$

Принимаем 2 Ø 14 ($F_a = 3.08$ см²).

Пример 9. Определение площади поперечного сечения арматуры изгибаемого железобетонного элемента таврового сечения при его равномерном нагреве до 100° С.

Дано: размеры сечения $b_n' = 40$ см; $h_n' = 12$ см; b = 20 см; h =

=60 см; a=6 см; элемент равномерно нагрет до 100° С; бетон состава № 1 (табл. 11), марки М 200, $R_{\rm np}$ =90 кгс/см² (табл. 14); арматура из стали класса А-III, $R_{\rm a}$ =3600 кгс/см² (табл. 29); расчетный изгибающий момент от длительного действия нагрева и нагрузки M==25 тс·м.

Требуется определить площадь сечения арматуры.

Расчет. Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент $m_{61} = 0.85$, принимаемый по табл. 15:

$$R_{\rm mp} = 90.0,85 = 76.5 \text{ krc/cm}^2$$
.

Значения коэффициентов m_{5t} , m_{at} и β_a принимаем соответственно по табл. 16 и 35. При температуре бетона 100° С

$$m_{6t} = 0.9;$$
 $m_{at} = 1;$ $\beta_a = 1;$ $h_0 = 60 - 6 = 54 \text{ cm}.$

Расчет ведем согласно указаниям п. 3.23 и 3.24. Площадь сечения сжатой арматуры определяем по формуле (117). Для этого необходимо сначала определить значение A_R согласно п. 3.13. Вычисляем значение ξ_R по формуле (93), предварительно определив значение ξ_0 по формуле (94):

$$\xi_0 = 0.85 - 0.0008 \cdot 0.9 \cdot 76.5 = 0.8i$$

В связи с учетом коэффициента $m_{61} = 0.85$, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_R = \frac{0.8}{1 + \frac{3600 \cdot 1}{5000 \cdot 1} \left(1 - \frac{0.8}{1.1}\right)} = 0.68.$$

По формуле (96) определяем значение A_R :

Следовательно, сжатой арматуры не требуется.

Согласно п. 3.24, проверяем положение границы сжатой зоны из условия (118) при $F_{\bf a}=0$:

$$M_{\text{пред}} = 0,9 \cdot 76,5 \cdot 40 \cdot 12 (54 - 0,5 \cdot 12) = 15,86 \text{ тс·м} < M = 25 \text{ тс·м}.$$

Значит, граница сжатой зоны проходит в ребре.

Поскольку условие (118) не соблюдается, площадь сечения растянутой арматуры определяем по формуле (119) при $F_a'=0$. Для этого вычисляем значение A_0 по формуле (120) при $F_a'=0$.

$$A_0 = \frac{2500000 - 0.9 \cdot 76.5 (40 - 20) 12 (54 - 0.5 \cdot 12)}{0.9 \cdot 76.5 \cdot 20 \cdot 54^2} = 0.425.$$

Поскольку A_0 , определенное без учета сжатой арматуры, меньше A_{R} , сжатой арматуры не требуется. Как видно, проверка этого критерия проще, чем пробное определение значения F_a .

По табл. 41 при $A_0 = 0{,}425$ находим $\xi = 0{,}613$. Тогда по формуле (119) при $F_a' = 0$

$$F_{\rm a} = \frac{0.613 \cdot 20 \cdot 54 \cdot 0.9 \cdot 76.5 + (40 - 20) \cdot 12 \cdot 0.9 \cdot 76.5}{1 \cdot 3600} = 18,27 \text{ cm}^2.$$

Принимаем 4 Ø 25 ($F_a = 19,64$ см²).

Пример 10. Определение площади поперечного сечения растянутой арматуры изгибаемого железобетонного элемента таврового сечения при одностороннем нагреве до 700° С.

Дано: размеры сечения b_{π}^{\prime} = 70 см; b = 13 см; h_{π}^{\prime} = 12 см; h = =50 см; a = 4 см; элемент неравномерно нагрет по высоте сечения; наиболее нагретая грань полки имеет температуру бетона 700° С; бетон состава № 11 (табл. 11), марки М 300, $R_{\pi p}$ = 135 кгс/см² (табл. 14); арматура из стали класса А-III, R_a = 3600 кгс/см² (табл. 29); расчетный изгибающий момент, вызванный длительно действующей нагрузкой в условиях длительного нагрева, M = 12 тс·м.

Требуется определить площадь сечения растянутой арматуры. Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты ребра, равное 12° С. Средняя температура бетона свесов полки при наличии изоляции равна 650° С, температура арматуры 100° С.

Значение коэффициента $m_{at}=1$ принимаем по табл. 35 в зависи-

мости от температуры арматуры.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{01} =0,85, принимаемый по табл. 15:

$$R_{\rm mp} = 135.0,85 = 115 \text{ krc/cm}^2$$

Значения коэффициента условий работы бетона m_{5t} определяем по табл. 16: для свесов полки — в зависимости от средней температуры бетона полки 650° С, для ребра — в зависимости от температуры бетона, находящегося на расстоянии 0,2 h_0 от сжатой грани сечения:

$$h_0 = 50 - 4 = 46$$
 cm.

Температура бетона сжатой зоны ребра

$$t_{\text{cm.3}} = 700 - 0.2 \cdot 46 \cdot 12 = 590^{\circ}\text{C}.$$

Для свесов полки $m_{6t} = 0.25$, для ребра $m_{6t} = 0.31$.

Согласно п. 3.24, проверяем положение границы сжатой зоны из условия (118) при $F_a=0$:

$$M_{\text{пред}} = 0,25 \cdot 115 \cdot 70 \cdot 12 (46 - 0,5 \cdot 12) = 964 000 \text{krc} \cdot \text{cm} = 9,64 \text{ Tc} \cdot \text{M} < M = 12 \text{ Tc} \cdot \text{M}.$$

Поскольку условие (118) не соблюдается, граница сжатой зоны проходит в пределах ребра и площадь сечения растянутой арматуры определяем по формуле (119) при $F_a'=0$. Для этого вычисляем значение A_0 по формуле (120) при $F_a'=0$:

$$A_0 = \frac{1200000 - 0.25 \cdot 115(70 - 13)12(46 - 0.5 \cdot 12)}{0.31 \cdot 115 \cdot 13 \cdot 46^2} = 0.42.$$

По табл. 41 при $A_0 = 0.42$ находим $\xi = 0.6$. Тогда по формуле (119) при $F_a' = 0$

$$F_{\mathbf{a}} = \frac{0.6 \cdot 13 \cdot 46 \cdot 0.31 \cdot 115 + (70 - 13) \cdot 12 \cdot 0.25 \cdot 115}{1 \cdot 3600} = 9.52 \text{ cm}^2.$$

Принимаем 2 Ø 25 ($F_a = 9.82 \text{ см}^2$).

Пример 11. Определение площади поперечного сечения растянутой арматуры изгибаемого железобетонного элемента таврового сечения при одностороннем нагреве до 1200° С.

Дано: размеры сечения $b_{\Pi}'=70$ см; b=15 см; $h_{\Pi}'=12$ см; h=60 см; a=5 см; элемент неравномерно нагрет по высоте сечения; нанболее нагретая грань полки имеет температуру бетона 1200° С; бетон состава № 19 (табл. 11), марки М 300, $R_{\Pi p}=135$ кгс/см² (табл. 14), арматура из сталн класса А-II, $R_a=2700$ кгс/см² (табл. 29); расчетный изгибающий момент, вызванный длительной нагрузкой в условиях длительного нагрева, M=1 тс·м.

Требуется определить площадь сечения растянутой арматуры. Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты свесов полки 10° С, ребра — 18° С. Таким образом, средняя температура бетона полки равна 1200—10·6==1140° С, температура арматуры 210° С.

Значение коэффициента $m_{at} = 0.83$ принимаем по табл. 35 в за-

висимости от температуры арматуры.

Согласно п. 3.11, поскольку средняя температура бетона полки превышает предельно допустимую температуру применения бетона, указанную в графе 7 табл. 11 (для состава № 19—1100°С), сечение рассчитываем как прямоугольное без свесов полки, причем температура бетона наиболее нагретой грани этого сечения не должна превышать предельно допустимую температуру применения бетона и температуру 1000°С согласно требованиям п. 1.15. Поэтому сечение рассчитываем с неполной высотой. Для этого определяем расстояние x₁ от наиболее нагретой грани до бетона с температурой 1000°С:

$$x_1 = \frac{1200 - 1000}{18} = 11.1 \text{ cm}.$$

Укороченная полезная высота сечения по формуле (106) при $h_0 = 55$ см равна

$$h_y = 55 - 11, 1 = 43,9$$
 cm.

Согласно примеч. 7 к табл. 16, среднюю температуру бетона сжатой зоны в первом приближении определяем по температуре бетона, расположенного на расстоянии $0,2\ h_y$ от сжатой грани сечения.

Температура бетона сжатой зоны

$$t_{\text{c.m.s}} = 1000 - 0.2 \cdot 43.9 \cdot 18 = 842^{\circ}\text{C.}$$

Для этой температуры бетона по табл. 16 определяем значение коэффициента $m_{6t} = 0{,}065$.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{01} =0,85, принимаемый по табл. 15:

$$R_{\rm mp} = 135 \cdot 0.85 = 115 \text{ krc/cm}^2.$$

Вычисляем значение A_{01} по формуле (104):

$$A_{0\bar{1}} = \frac{100\,000}{0,065\cdot115\cdot15\,(55-11,1)^2} = 0,46.$$

По табл. 41 находим ξ =0,7. Полученное значение относительной высоты сжатой зоны ξ =0,7 значительно отличается от принятой при определении температуры бетона сжатой зоны, ξ =0,4.

Определим температуру бетона сжатой зоны для среднего значения относительной высоты сжатой зоны $\xi = \frac{0.7 + 0.4}{2} = 0.55$. При

$$t_{\text{c.m.3}} = 1000 - \frac{0.55}{2} 43.9.18 = 783^{\circ}\text{C.}$$

В соответствии с этой температурой уточняем значения m_{6t} , A_{01} и ξ :

$$m_{6t} = 0.08; \ A_{01} = 0.46 \frac{0.065}{0.08} = 0.374; \ \xi = 0.5.$$

Последующее приближение при $\xi = \frac{0.55 + 0.5}{2} = 0.525$ нам дает:

$$t_{\text{Cж.3}} = 1000 - \frac{0,525}{2} 43,9.18 = 793$$
°C;

$$m_{6t} = 0.077; A_{01} = 0.46 \frac{0.065}{0.077} = 0.388; \xi = 0.525.$$

Площадь сечения растянутой арматуры определяем по формуле (107):

$$F_a = 15.43, 9.0, 525 \frac{0.077.115}{0.83.2700} = 1,36 \text{ cm}^2.$$

Принимаем 2 Ø 10 ($F_a = 1,57$ см²).

Пример 12. Расчет прочности изгибаемого железобетонного элемента таврового сечения при одностороннем нагреве до 350° С; случай переармированного сечения.

Дано: размеры сечения $b_n'=40$ см; $h_n'=8$ см; b=20 см; h=60 см; a=7 см; элемент неравномерно нагрет по высоте сечения; наиболее нагретая грань полки имеет температуру бетона 350° С; бетон состава № 2 (табл. 11), марки М 300, $R_{np}=135$ кгс/см² (табл. 14); арматура из стали класса A-III, $R_a=3600$ кгс/см² (табл. 29), площадь сечения $F_a=19,64$ см² (4 Ø 25); $F_a'=0$; расчетный изгибающий момент, вызванный длительно действующей нагрузкой в условиях длительного нагрева, M=18 тс·м.

Требуется проверить прочность сечения.

Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты свесов полки 4° С, ребра 6° С. Таким образом, средняя температура бетона полки равна 334° С, температура арматуры 32° С.

Значение коэффициента $m_{at} = 1$ и $\beta_a = 1$ принимаем по табл. 35 в зависимости от температуры арматуры.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{51} =0,85, принимаемый по табл. 15:

$$R_{\rm HD} = 135.0.85 = 115 \text{ krc/cm}^2$$
.

Значения коэффициента условий работы бетона m_{64} определяем по табл. 16: для свесов полки — в зависимости от средней температуры бетона полки 344° С, для ребра — в зависимости от температуры бетона, находящегося на расстоянии 0,2 h_0 от сжатой грани сечения:

$$h_0 = 60 - 7 = 53$$
 cm.

Температура бетона сжатой зоны ребра

$$t_{c.x.3} = 350 - 0.2.53.6 = 286$$
°C.

Для свесов полки $m_{6t} = 0.37$; для ребра $m_{6t} = 0.54$.

Проверку прочности сечения производим, согласно п. 3.22, при $F_a' = 0$.

Поскольку $m_{at}R_aF_a=1\cdot 3600\cdot 19,64=66\,776$ кгс больше, чем $m_{6t}R_{\rm np}$ b'_{n} $h'_{n}=0,37\cdot 115\cdot 40\cdot 8=13\,586$ кгс, т. е. условие (113) не соблюдается, граница сжатой зоны проходит в ребре. В этом случае высоту сжатой зоны определяем из формулы (115) при $F'_a=0$:

$$x = \frac{66776 - 0.37 \cdot 115(40 - 20)8}{0.54 \cdot 115 \cdot 20} = 48,40 \text{ cm}.$$

Значение граничной относительной высоты сжатой зоны бетона ξ_R определяем по формуле (93), предварительно определив значение ξ_0 по формуле (94):

$$\xi_0 = 0.85 - 0.0008 \cdot 0.54 \cdot 115 = 0.8$$

В связи с учетом коэффициента m_{6t} = 0,85, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_R = \frac{0.8}{1 + \frac{3600 \cdot 1}{5000 \cdot 1} \left(1 - \frac{0.8}{1.1}\right)} = 0,675;$$

$$x_R = \xi_R h_0 = 0,675 \cdot 53 = 35,78 \text{ cm}.$$

Полученное значение $x=48,4\,$ см больше $x_R=35,78\,$ см, следовательно, сечение переармировано. В этом случае принимаем $x=x_R$ и прочность сечения проверяем из условия (116) при $F_{\bf a}'=0$. При этом:

$$A_R = 0,675 (1 - 0,5 \cdot 0,675) = 0,447;$$

$$M_{\text{пред}} = 0,447 \cdot 0,54 \cdot 115 \cdot 20 \cdot 53^2 + 0,37 \cdot 115 (40 - 20) 8 (53 - 0,5 \cdot 8) =$$

= 1888 245 krc·cm = 18,88 tc·m > M = 18 tc·m.

Прочность сечения обеспечена.

Пример 13. Расчет прочности внецентренно-сжатого железобетонного элемента прямоугольного сечения при равномерном нагреве до 100° С; случай больших эксцентрицитетов ($\xi < \xi_R$).

Дано: размеры сечения b=40 см; h=50 см; a=a'=4 см; расчетная длина $l_0=6$ м; элемент равномерно нагрет до 100° С; бетон состава N=1 (табл. 11), марки M 300, $R_{np}=135$ кгс/см² (табл. 14), подвергнутый тепловой обработке, $E_6=260\cdot 10^3$ кгс/см² (табл. 17); арматура из стали класса A-III, $R_a=R_{a.c}=3600$ кгс/см² (табл. 29); $E_a=2\cdot 10^6$ кгс/см² (табл. 37): площадь сечения арматуры $F_a=F_a'=12.32$ см² (2 \varnothing 28); расчетные значения продольной силы и изгнбающего момента: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N=70 тс; M=21.3 тс·м, в том числе от длительно действующих нагрузок $N_{\pi\pi}=65$ тс; $M_{\pi\pi}=16.5$ тс·м.

Требуется проверить прочность сечения.

Расчет. Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{61} =0,85, принимаемый по табл. 15:

$$R_{\rm HD} = 135.0,85 = 115 \text{ krc/cm}^2$$

Значения коэффициентов m_{6t} и β_{6} , $\overline{\nu}$, m_{at} и β_{a} принимаем соответственно по табл. 16, 18 и 35. При температуре 100° С: m_{6t} = =0,9; β_{6} =0,8; $\overline{\nu}$ =0,7 (для кратковременного нагрева согласно п. 1.28); m_{at} = 1; β_{a} = 1.

Поскольку расчетный элемент является элементом статически определимой конструкции, определяем величину случайного эксцентрицитета e_0^{cn} согласно п. 1.30:

$$e_0^{\text{cn}} = \frac{h}{30} = \frac{50}{30} = 1.7 \text{ cm} > \frac{l_0}{600} = \frac{600}{600} = 1 \text{ cm}.$$

Для равномерно нагретого прямоугольного сечения $r = \frac{h}{3,46}$. В плоскости действия изгибающего момента

$$r = \frac{h}{3,46} = \frac{50}{3,46} = 14,45 \text{ cm H}$$

$$\lambda = \frac{l_0}{r} = \frac{600}{14,45} = 41,52 > 14,$$

поэтому учитываем влияние прогиба на прочность элемента согласно п. 3.29. Для этого предварительно вычисляем значение e_0 по формуле (121):

$$e_0 = \frac{2130000}{70000} + 1,7 = 32,1$$
 cm.

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (123). Для этого предварительно вычисляем значение $t_{\rm MNH}$ по формуле (90):

$$t_{\text{мин}} = 0.5 - 0.01 \frac{600}{50} - 0.001 \cdot 0.9 \cdot 115 = 0.277$$
.
Так как $\frac{e_0}{h} = \frac{32.1}{50} = 0.642 > t_{\text{мин}} = 0.277$, согласно п. 3.7, принима-

em t = 0.642.

Значение $k_{\pi\pi}$ вычисляем по формуле (89), предварительно определив эксцентрицитеты приложения N и $N_{\pi\pi}$ относительно центра тяжести площади растянутой арматуры:

$$e = e_0 + 0.5h - a = 32.1 + 0.5 \cdot 50 - 4 = 53.1 \text{ cm};$$

$$e_{\pi\pi} = \frac{M_{\pi\pi}}{N_{\pi\pi}} + e_0^{\text{ch}} + 0.5h - a = \frac{1650000}{65000} + 1.7 + 0.5 \cdot 50 - 4 = 48.1 \text{ cm};$$

Значение коэффициента β по табл. 39 при $t\!=\!100^\circ$ C для состава $N\!\!_2$ 1 равно 1,4:

$$k_{\text{д,}\text{T}} = 1 + \beta \frac{M_1^{\text{J,}\text{T}}}{M_1} = 1 + \beta \frac{N_{\text{J,}\text{T}} e_{\text{J,}\text{T}}}{Ne} = 1 + 1, 4 \frac{65\,000 \cdot 48, 1}{70\,000 \cdot 53, 1} = 2,18.$$

Согласно п. 3.29, $k_{\rm H} = 1$;

$$\mu_1 = \frac{F_a + F_a'}{bh} = \frac{12,32 + 12,32}{40.50} = 0,012;$$

$$h_0 = 50 - 4 = 46$$
 cm.

По формуле (123)

$$N_{\text{KP}} = \frac{19.2 \cdot 40.50}{41.52^2} \left[\frac{260 \cdot 10^3 \cdot 0.8 \cdot 0.7}{3 \cdot 2.18 \cdot 0.85} \left(\frac{0.11}{0.1 \cdot 0.642} + 0.1 \right) + 0.012 \cdot 2 \cdot 10^6 \cdot 1 \left(\frac{46 - 4}{50} \right)^2 \right] = 521.873 \text{ Krc} = 521.9 \text{ Tc.}$$

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{70}{521.9}} = 1,154.$$

Эксцентрицитет е с учетом прогиба вычисляют по формуле (128):

$$e = 32, 1 \cdot 1, 154 + 0, 5 \cdot 50 - 4 = 58,04$$
 cm.

Проверку прочности сечения производим согласно п. 3.33. Для этого определяем высоту сжатой зоны x из формулы (130).

При
$$R_{at}F_a = R_{a,ct}F'_a$$

$$x = \frac{70\,000}{0.9 \cdot 115 \cdot 40} = 16,94 \,\mathrm{cm}.$$

Для сравнения полученного значения x с граничным по формуле (94) определяем ξ_0 :

$$\xi_0 = 0.85 - 0.0008 \cdot 0.9 \cdot 115 = 0.767$$
.

В связи с учетом коэффициента m_{61} =0,85, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_R = \frac{0,767}{1 + \frac{3600 \cdot 1}{5000 \cdot 1} \left(1 - \frac{0,767}{1,1}\right)} = 0,636;$$

$$x_R = \xi_R h_0 = 0,636.46 = 29,26$$
 cm:

Поскольку $x=16,94 < x_R=29,26$, прочность сечения проверяем из условия (129):

$$M_{\text{пред}} = 0.9 \cdot 115 \cdot 40 \cdot 16.94 (46 - 0.5 \cdot 16.94) + 1 \cdot 3600 \cdot 12.32 (46 - 4) = 4.386 249 \text{ kgc} \cdot \text{cm} = 43.86 \text{ Tc} \cdot \text{m} > Ne = 70 \cdot 0.58 = 40.6 \text{ Tc} \cdot \text{m},$$

т. е. прочность сечения в плоскости изгиба обеспечена.

Расчет из плоскости изгиба

Определяем раднус инерции из плоскости изгиба:

$$r = \frac{h}{3,46} = \frac{40}{3,46} = 11,56 \text{ cm}.$$

Так как гибкость из плоскости изгиба $\lambda = \frac{l_0}{r} = \frac{600}{11,56} = 51,9$ превышает гибкость в плоскости изгиба $\lambda = \frac{l_0}{r} = 41,52$, согласно п. 3.29, проверяем прочность сечения из плоскости изгиба, принимая эксцентрицитет e_0 равным случайному эксцентрицитету e_0^{cn} .

Поскольку длина элемента $l_0=6$ м $< 20h=20\cdot0,4=8$ м, расчет производим, согласно п. 3.37, без учета арматуры:

при
$$h > 20$$
 см $m = 1$;
при $\frac{N_{\text{дл}}}{N} = \frac{65}{70} = 0,93$ и $\frac{l_0}{h} = \frac{600}{40} = 15$ по

табл. 44 находим значение коэффициента ф6=0,782;

при
$$F_a = F_a' = 0$$
; $\alpha = 0$ $\phi = \phi_6$:

Для вычисления значения коэффициента a по формуле (144) по табл. 46 определяем значение $a_{\rm пp}\!=\!0,7$, а по табл. 47 — значение $\lambda_{\rm np}\!=\!85$:

$$a = 1 - \frac{(1 - 0.7)(51.9 - 14)}{85 - 14} = 0.84.$$

Прочность сечения проверяем из условия (141) при $F_a = 0$:

$$N_{\text{пред}} = 0.84 \cdot 1 \cdot 0.782 (0.9 \cdot 115 \cdot 40 \cdot 50 + 0) = 135\,974 \text{ krc} = 136 \text{ Tc} > N = 70 \text{ Tc}.$$

т. е. прочность сечения из плоскости изгиба обеспечена.

Пример 14. Расчет прочности внецентренно-сжатого железобетонного элемента прямоугольного сечения при равномерном нагреве до 100° С; случай малых эксцентрицитетов ($\xi > \xi_R$).

Дано: размеры сечения b=40 см; h=50 см; a=a'=4 см; расчетная длина $l_0=6$ м; элемент равномерно нагрет до 100° С; бетон состава № 1 (табл. 11), марки M 400, $R_{\pi p}=175$ кгс/см² (табл. 14), подвергнутый тепловой обработке, $E_5=300\cdot 10^3$ кгс/см² (табл. 17); арматура из стали класса A-III, $R_a=R_{a.o}=3600$ кгс/см² (табл. 29), $E_a=2\cdot 10^6$ кгс/см² (табл. 37); площадь сечения арматуры $F_a=F_a^*=14.73$ см² ($3\varnothing 25$); расчетные значения продольной силы и изги-

бающего момента: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N=200 тс, M=15,3 тс·м, в том числе от длительно действующих нагрузок $N_{\pi\pi}=200$ тс, $M_{\pi\pi}=5$ тс·м.

Требуется проверить прочность сечения.

Расчет. Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{61} =0,85, принимаемый по табл. 15:

$$R_{\text{IID}} = 175.0,85 = 149 \text{ krc/cm}^2$$
.

Значения коэффициентов m_{6t} и β_6 , \overrightarrow{v} , m_{at} и β_a принимаем соответственно по табл. 16, 18 и 35. При температуре 100° С: m_{6t} = 0,9; β_6 = 0,8; \overrightarrow{v} = 0,7 (для кратковременного нагрева согласно п. 1.28); m_{at} = 1; β_a = 1.

Поскольку расчетный элемент является элементом статически определнмой конструкции, определяем величину случайного эксцентрицитета $e_0^{\rm cn}$ согласно п. 1.30:

$$e_0^{\text{c.t.}} = \frac{h}{30} = \frac{50}{30} = 1.7 \text{ cm} > \frac{l_0}{600} = \frac{600}{600} = 1 \text{ cm}.$$

Для равномерно нагретого прямоугольного сечения $r=\frac{h}{3,46}$. В плоскости действия изгибающего момента $r=\frac{h}{3,46}=\frac{50}{3,46}=14,45$ см и $\lambda=\frac{l_0}{r}=\frac{600}{14,45}=41,52>14$, поэтому учитываем влияние прогиба на прочность элемента согласно п. 3.29. Для этого предварительно вычисляем значение e_0 по формуле (121):

$$e_{\theta} = \frac{1530000}{200000} + 1.7 = 9.35 \text{ cm}.$$

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm HD}$ по формуле (123). Для этого предварительно вычисляем значение $t_{\rm MBH}$ по формуле (90):

$$t_{\text{MHH}} = 0.5 - 0.01 \cdot \frac{600}{50} - 0.001 \cdot 0.9 \cdot 149 = 0.246$$

Так как
$$\frac{e_0}{h} = \frac{9,35}{50} = 0,187 < t_{\text{мин}} = 0,246$$
, принимаем $t = 0,246$.

Значение $k_{\pi\pi}$ вычисляем по формуле (89), предварительно определив эксцентрицитеты приложения N и $N_{\pi\pi}$ относительно центра тяжести площади растянутой арматуры:

$$e=e_0+0,5h-a=9,35+0,5\cdot50-4=30,35$$
 см;
$$e_{\pi\pi}=\frac{M_{\pi\pi}}{N_{\pi\pi}}+e_0^{c\pi}+0,5h-a=$$

$$=\frac{500\,000}{200\,000}+1,7+0,5\cdot50-4=25,2$$
 см.

Значение коэффициента β по табл. 39 при $t=100^{\circ}\,\mathrm{C}$ для состава N_2 1 равно 1,4:

$$k_{\text{R,n}} = 1 + \beta \frac{M_1^{\text{R,n}}}{M_1} = 1 + \beta \frac{N_{\text{R,n}} e_{\text{R,n}}}{\text{Ne}} =$$

= 1 + 1,4 \frac{200 000 \cdot 25,2}{200 000 \cdot 30,35} = 2,16.

Согласно п. 3.29, $k_{\rm H}=1$;

$$\mu_1 = \frac{F_a + F_a'}{bh} = \frac{14,73 + 14,73}{40.50} = 0,0147;$$

$$h_0 = 50 - 4 = 46 \text{ cm}.$$

По формуле (123) имеем

$$N_{\rm KP} = \frac{19.2 \cdot 40.50}{41.52^2} \left[\frac{260 \cdot 10^3 \cdot 0.8 \cdot 0.7}{3 \cdot 2.16 \cdot 0.85} \left(\frac{0.11}{0.1 + 0.246} + 0.1 \right) + 0.0147 \cdot 2 \cdot 10^6 \cdot 1 \left(\frac{46 - 4}{50} \right)^2 \right] = 708 \ 182 \ {\rm KFC} = 708 \ {\rm TC}.$$

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{200}{708}} = 1,39.$$

Эксцентрицитет e, с учетом прогиба, вычисляем по формуле (128):

$$e = 9.35 \cdot 1.39 + 0.5 \cdot 50 - 4 = 34$$
 cm.

Проверку прочности сечения производим согласно п. 3.33. Для этого определяем высоту сжатой зоны x из формулы (130). При

$$R_{at} F_a = R_{a.ct} F'_a$$

 $x = \frac{200\,000}{0.9.149.40} = 37,35 \text{ cm}.$

Для сравнения полученного значения x с граничным по формуле (94) определяем ξ_0 :

$$\xi_0 = 0.85 - 0.0008 \cdot 0.9 \cdot 149 = 0.743.$$

В связи с учетом коэффициента m_{61} =0,85, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_R = \frac{0,743}{1 + \frac{3600 \cdot 1}{5000 \cdot 1} \left(1 - \frac{0,743}{1,1}\right)} = 0,609;$$

$$x_R = \xi_R h_0 = 0,609 \cdot 46 = 28,01 \text{ cm}.$$

Поскольку $x=37,35>x_R=28,01$, прочность сечения проверяем из ус-

ловия (129), определяя расчетную высоту сжатой зоны из формулы (132):

$$\xi = \frac{(200\,000 - 1.3600.14,73)\,(1 - 0,609) + 1.3600.14,73\,(1 + 0,609)}{0,9.149.40.46\,(1 - 0,609) + 2.1.3600.14,73} = 0,708 > \xi_R = 0,609.$$

Прочность сечения проверяем из условия (129): при $\xi = 0.708$

$$x = \xi h_0 = 0,708 \cdot 46 = 32,57$$
 cm;

$$M_{\text{пред}} = 0.9 \cdot 149 \cdot 40 \cdot 32.57 (46 - 0.5 \cdot 32.57) + 1.3600 \cdot 14.73 (46 - 4) = 7.286 008.4 \text{ krc} \cdot \text{cm} = 72.86 \text{ tc} \cdot \text{m} > Ne = 200 \cdot 0.34 = 68 \text{ tc} \cdot \text{m},$$

т. е. прочность сечения в плоскости изгиба обеспечена.

Расчет из плоскости изгиба

Определяем радиус инерции из плоскости изгиба

$$r = \frac{h}{3,46} = \frac{40}{3,46} = 11,56 \text{ cm}.$$

Так как гибкость из плоскости изгиба $\lambda = \frac{l_0}{l} = \frac{600}{11.56} = 51,9$ превышает гибкость в плоскости изгиба $\lambda = \frac{l_0}{r} = 41,52$, согласно п. 3.29, проверяем прочность сечения из плоскости изгиба, принимая эксцентрицитет e_0 равным случайному эксцентрицитету $e_0^{\mathtt{cm}}$.

Поскольку длина элемента $l_0=6$ м $<20h=20\cdot0,4=8$ м, расчет производим, согласно п. 3.37, с учетом арматуры.

При h>20 см m=1; при $\frac{N_{\rm д, \pi}}{N}=1$ и $\frac{l_0}{h}=\frac{600}{40}=15$ по табл. 44 находим значение коэффициента $\phi_6 = 0.79$ и по табл. 45 — значение коэффициента $\varphi_{ik} = 0.855$.

По формуле (143) определяем

$$\alpha = \frac{3600 \cdot 2 \cdot 7,37}{0,9 \cdot 149 \cdot 40 \cdot 50} = 0,186.$$

По формуле (142) определяем значение φ:

$$\varphi = 0.79 + 2(0.855 - 0.79)0.186 = 0.814.$$

Для вычисления значения коэффициента a по формуле (144) по табл. 46 определяем значение $a_{\rm пp}$ = 0,7, a по табл. 47 значение $\lambda_{\rm np}$ = =85:

$$a = 1 - \frac{(1 - 0.7)(51.9 - 14)}{85 - 14} = 0.84$$

Прочность сечения проверяем из условия (141) при $F_{\rm a} = F_{\rm a}' =$ =7,37 cm²:

$$N_{\text{пред}} = 0.84 \cdot 1 \cdot 0.814 [0.9 \cdot 149 \cdot 40 \cdot 50 + 1 \cdot 3600 \cdot 14.73] =$$

= 217 629 krc = 218 rc > 200 rc.

т. е. прочность сечения из плоскости изгиба обеспечена.

Пример 15. Расчет прочности сжатого железобетонного элеменпрямоугольного сечения $(e_0 = e_0^{cn})$ при равномерном нагреве до 150° С.

Дано: размеры сечения b=40 см; h=40 см; a=a'=4 см; расчетная длина $l_0=6$ м; элемент равномерно нагрет до 150° С; бетон состава № 1 (табл. 11), марки М 300, $R_{\rm np}=135$ кгс/см² (табл. 14), подвергнутый тепловой обработке, $E_6=260\cdot 10^3$ кгс/см² (табл. 17); арматура из стали класса А-III, $R_{\rm a}=R_{\rm a.c}=3600$ кгс/см² (табл. 29), $E_{\rm a} = 2 \cdot 10^6 \ {\rm krc/cm^2}$ (табл. 37); площадь сечения арматуры $F_{\rm a} = F_{\rm a}^{\prime} =$ $=8.04~{\rm cm}^2~(4\varnothing16)$; расчетное значение продольной силы от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N = 150 тс, в том числе от длительно действующих нагрузок $N_{\pi\pi} = 130$ тс.

Требуется проверить прочность сечения.

Расчет. Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент $m_{01} = 0.85$, принимаемый по табл. 15

$$R_{\rm IID} = 135 \cdot 0.85 = 115 \text{ krc/cm}^2.$$

Значения коэффициентов m_{6t} и β_6 , $\overline{\nu}$, m_{at} и β_a принимаем соответственно по табл. 16, 18 и 35. При температуре 150° С: m_{6t} =0,85; $\beta_{5}=0.7; v=0.7$ (для кратковременного нагрева согласно п. 1.28); $m_{at} = 0.95$; $\beta_a = 0.98$.

Поскольку расчетный элемент является элементом статически определимой конструкции, определяем величину случайного эксцентрицитета $e_0^{\mathbf{c}n}$ согласно п. 1.30

$$e_0^{\text{c.t.}} = \frac{h}{30} = \frac{40}{30} = 1,33 \text{ cm} > \frac{l_0}{600} = \frac{600}{600} = 1 \text{ cm}.$$

Так как $e_0 = e_0^{cn}$ и $l_0 = 600 < 20h = 20.40 = 800$ см, производим приближенный расчет по п. 3.37. Для этого определяем значения величин, входящих в условие (141):

При
$$h>20$$
 см $m=1$; при $\frac{N_{\pi^{\pi}}}{N}=\frac{130}{150}=0,87$ и $\frac{l_0}{h}=\frac{600}{40}=15$ по табл. 44 находим значение коэффициента $\phi_6=0,803$, а по табл. 45A значение коэффициента $\phi_{\pi^{\pi}}=0,859$.

Определяем значение коэффициента а по формуле (143):

$$\alpha = \frac{0.95 \cdot 3600 \cdot 8.04 + 0.95 \cdot 3600 \cdot 8.04}{0.85 \cdot 115 \cdot 40 \cdot 40} = 0.332.$$

Значение коэффициента ф определяем по формуле (142):

$$\phi = 0.803 + 2(0.859 - 0.803) \cdot 0.332 = 0.84$$
.

Для вычисления значения коэффициента a по формуле (144) по табл. 46 определяем значение $a_{\rm пp} = 0.65$, а по табл. 47 значение $\lambda_{\text{пр}} = 116$. При $\lambda = \frac{3,46 \cdot l_0}{h} = \frac{3,46 \cdot 600}{40} = 51,9$

$$a = 1 - \frac{(1 - 0.65)(51.9 - 14)}{116 - 14} = 0.87.$$

Прочность сечения проверяем из условия (141):

$$N_{\text{пред}} = 0.87 \cdot 1 \cdot 0.84 \ (0.85 \cdot 115 \cdot 40 \cdot 40 + 0.95 \cdot 3600 \cdot 16.08) =$$

= 152 254 krc = 152 rc > N = 150 rc,

т. е. прочность сечения обеспечена.

Проверим прочность сечения, согласно п. 3.33, с учетом влияния прогиба элемента согласно п. 3.29. Для этого определяем значение $N_{\rm кр}$ по формуле (123), предварительно вычислив значения входящих в формулу коэффициентов.

Вычисляем $t_{\text{мин}}$ по формуле (90):

$$t_{\text{MiH}} = 0.5 - 0.01 \frac{600}{40} - 0.001 \cdot 0.85 \cdot 115 = 0.253.$$

Так как
$$\frac{e_0}{h} = \frac{1,33}{40} = 0,033 < t_{\text{мин}} = 0,253$$
, принимаем $t = 0,253$.

Значение $k_{\pi^{;i}}$ вычисляем по формуле (89), предварительно определив эксцентрицитеты приложения N и $N_{\pi^{;i}}$ относительно центра тяжести площади растянутой или слабосжатой арматуры:

$$e = e_0 + 0.5h - a = 1.33 + 0.5 \cdot 40 - 4 = 17.33$$
 cm;
 $e_{\pi\pi} = e$.

Значение коэффициента β по табл. 39 при $t=150^{\circ}\,\mathrm{C}$ для состава N_2 1 равно 1,45:

$$k_{\mu\pi} = 1 + \beta \frac{M_1^{\mu\pi}}{M_1} = 1 + \beta \frac{N_{\mu\pi} e_{\mu\pi}}{Ne} = 1 + \beta \frac{N_{\mu\pi}}{N} = 1 + 1,45 \frac{130}{150} = 2,26.$$

Согласно п. 3.29, $k_{\rm H}=1$;

$$\mu_1 = \frac{F_a + F_a'}{bh} = \frac{8.04 + 8.04}{40.40} = 0.01;$$

$$h_0 = 40 - 4 = 36 \text{ cm}.$$

По формуле (123) имеем

$$\begin{split} N_{\rm KP} &= \frac{19,2\cdot 40\cdot 40}{51,9^2} \left[\frac{260\cdot 10^3\cdot 0,7\cdot 0,7}{3\cdot 2,26\cdot 0,85} \left(\frac{0,11}{0,1+0,253} + 0,1 \right) + \\ &+ 0,010\cdot 2\cdot 10^6\cdot 0,98 \left(\frac{36-4}{40} \right)^2 \right] = 246\,831\ {\rm krc} = 246,8\ {\rm Tc}. \end{split}$$

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{150}{246.8}} = 2,55.$$

Эксцентрицитет е, с учетом прогиба, вычисляем по формуле (128):

$$e = 1,33 \cdot 2,55 + 0,5 \cdot 40 - 4 = 19,39 \text{ cm}$$

Проверку прочности сечения производим согласно п. 3.33. Для этого определяем высоту сжатой зоны x из формулы (130). При

$$R_{at}F_a = R_{a.ct}F_a'$$

 $x = \frac{150\,000}{0.85\cdot115\cdot40} = 38,45 \text{ cm.}$

Для сравнения полученного значения x с граничным по формуле (94) определяем ξ_0 :

$$\xi_0 = 0.85 - 0.0008 \cdot 0.85 \cdot 115 = 0.772.$$

В связи с учетом коэффициента m_{61} =0,85, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_R = \frac{0,772}{1 + \frac{3600 \cdot 0,95}{5000 \cdot 0,98} \left(1 - \frac{0,772}{1,1}\right)} = 0,647;$$

$$x_R = \xi_R h_0 = 0,647,36 = 23,29 \text{ cm}.$$

Поскольку $x=38,45 > x_R=23,29$, прочность сечения проверяем из условия (129), определяя расчетную высоту сжатой зоны из формулы (132):

$$\xi = \frac{(150\ 000-0.95\cdot3600\cdot8.04)\ (1-0.647)+0.95\cdot3600\cdot8.04(1+0.647)}{0.85\cdot115\cdot40\cdot36\ (1-0.647)+2\cdot0.95\cdot3600\cdot8.04} = \\ = 0.852 > \xi_R = 0.642; \\ x = \xi h_0 = 0.852 \cdot 36 = 30.67\ \text{cm}.$$

Прочность сечения проверяем из условия (129) при $\xi = 0.852$:

$$M_{\text{пред}} = 0.85 \cdot 115 \cdot 40 \cdot 30.67 (36 - 0.5 \cdot 30.67) +$$

+ $0.95 \cdot 3600 \cdot 8.04 (36 - 4) = 3.303704 \text{ krc·cm} =$
= $33.04 \text{ Tc·m} > Ne = 150 \cdot 0.194 = 29.1 \text{ Tc·m},$

т. е прочность сечения обеспечена.

Пример 16. Определение площадей поперечного сечения растянутой и сжатой арматур внецентренно-сжатого железобетонного элемента прямоугольного сечения при одностороннем нагреве до 250° С. Дано: размеры сечения b=30 см; h=50 см; a=4 см; a'=6 см;

Дано: размеры сечения b=30 см; h=50 см; a=4 см; a'=6 см; расчетная длина $l_0=6,3$ м; элемент неравномерно нагрет по высоте сечения, температура наиболее нагретой (сжатой) грани 250° С; бетон состава № 2 (табл. 11), марки M 300, $R_{\pi p}=135$ кгс/см² (табл. 14), подвергнутый тепловой обработке: $E_0=260\cdot10^3$ кгс/см² (табл. 17); арматура из стали класса A-III, $R_a=R_{a.c}=3600$ кгс/см² (табл. 29), $E_a=2\cdot10^6$ кгс/см² (табл. 37); расчетные значения продольной силы и изгибающего момента: от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) N=60 тс, M=

 \approx 16,2 тс·м, в том числе от длительно действующих нагрузок $N_{\rm дл}$ = \approx 40 тс и $M_{\rm пл}$ = 10 тс·м.

Требуется определить площади сечений арматур $F_{\mathbf{a}}$ и $F_{\mathbf{a}}'$.

Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты сечения, равное 4° C, тогда температура растянутой арматуры $F_{\rm a}$ равна

$$t_a = 250 - 46.4 = 66^{\circ} \text{ C};$$

сжатой арматуры F'

$$t_a' = 250 - 6.4 = 226^{\circ} \text{ C}.$$

Значения коэффициентов m_{at} принимаем по табл. 35 в зависимости от температуры:

для растянутой арматуры $m_{at} = 1$;

для сжатой арматуры $m_{at} = 0.835$.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{61} =0,85, принимаемый по табл. 15:

$$R_{\rm mp} = 135.0,85 = 115 \text{ krc/cm}^2.$$

Значения коэффициентов $m_{6,t}$ и β_6 , $\overline{\nu}$ и β_a принимаем соответственно по табл. 16, 18 и 35.

Согласно примеч. 7 табл. 16, среднюю температуру бетона сжатой зоны определяем по температуре бетона, расположенного на расстоянии $0.2h_0$ от сжатой грани сечения:

$$h_0 = 50 - 4 = 46$$
 cm,

температура бетона сжатой зоны

$$t_{\text{CM-3}} = 250 - 0.2 \cdot 46 \cdot 4 = 213^{\circ} \text{ C}.$$

Для этой температуры по табл. 16 определяем значение коэффициента $m_{5t}=0.76$; в зависимости от температуры бетона в центре тяжести сечения (см. п. 3.38), равной $250-25\cdot 4=150^{\circ}$ С, по табл. 16 определяем значение $\beta_{6}=0.7$, а по табл. 18-3 значение $\nu=0.7$ (для кратковременного нагрева согласно п. 1.28); для средней температуры арматуры, примерно равной 150° С, из табл. 35 $\beta_{a}=0.98$.

Определение требуемого количества продольной арматуры производим согласно п. 3.35. Поскольку расчетный элемент является элементом статически определимой конструкции, определяем величину случайного эксцентрицитета $e_0^{\rm cn}$ согласно п. 1.30:

$$e_0^{\text{c.n}} = \frac{h}{30} = \frac{50}{30} = 1.7 \text{ cm} > \frac{l_0}{600} = \frac{630}{600} = 1.05 > 1 \text{ cm}.$$

Для неравномерно нагретого прямоугольного сечения с температурой наиболее нагретой грани до 400° C, согласно п. 3.29, r может быть принят равным $\frac{h}{3.46}$. В плоскости действия изгибающего мо-

мента
$$r = \frac{h}{3,46} = \frac{50}{3,46} = 14,45$$
 и $\lambda = \frac{l_0}{r} = \frac{630}{14,45} = 43,6 > 14$, поэтому учитываем влияние прогиба на прочность элемента согласно

п. 3.29. Для этого предварительно вычисляем значение e_0 по формуле (121) при f_t =0, поскольку температурный выгиб уменьшает расчетный эксцентрицитет продольной силы:

$$e_0 = \frac{1620000}{60000} + 1,7 = 28,8 \text{ cm}.$$

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm кp}$ по формуле (123). Для этого предварительно вычисляем значение $t_{\rm мин}$ по формуле (90):

$$t_{\text{MMH}} = 0.5 - 0.01 \frac{630}{50} - 0.001 \cdot 0.76 \cdot 115 = 0.287$$

Так как
$$\frac{e_0}{h} = \frac{28.8}{50} = 0.576 > t_{\text{мин}} = 0.287$$
, принимаем $t = 0.576$.

Значение $k_{\pi\pi}$ вычисляем по формуле (89), предварительно определив эксцентрицитеты приложения N и $N_{\pi\pi}$ относительно центра тяжести площади растянутой арматуры:

$$e=e_0+0.5h-a=28.8+0.5\cdot 50-4=49.8$$
 cm,
$$e_{\pi^{\pi}}=\frac{M_{\pi^{\pi}}}{N_{\pi^{\pi}}}+e_0^{c\pi}+0.5h-a=$$

$$=\frac{1\ 000\ 000}{40\ 000}+1.7+0.5\cdot 50-4=47.7$$
 cm.

Значение коэффициента β по табл. 39 для температуры центра тяжести сечения (см. п. 3.7), равной 150° С, для состава № 2 равно 1.45:

$$k_{\mu,n} = 1 + \beta \frac{M_1^{\mu,n}}{M_1} = 1 + \beta \frac{N_{\mu,n} e_{\mu,n}}{Ne} =$$

= 1 + 1,45 \frac{40 000 \cdot 47,7}{60 000 \cdot 49,8} = 1,925.

Согласно п. 3.29, $k_{\rm H} = 1$.

Согласно п. 3.38, задаемся ориентировочно, что требуемое количество арматуры $F_a + F_a'$ находится в первом интервале армирования (см. табл. 48), которому соответствует $\mu_1 = 0.01$. Тогда по формуле (123) имеем

$$\begin{split} N_{\rm KP} &= \frac{19,2\cdot30\cdot50}{43,6^2} \left[\frac{260\cdot10^3\cdot0,7\cdot0,7}{3\cdot1,925\cdot0,85} \left(\frac{0,11}{0,1+0,576} + 0,1 \right) + \\ &+ 0,01\cdot2\cdot10^6\cdot0,98 \left(\frac{46-6}{50} \right)^2 \right] = 293\ 452\ {\rm krc} = 293,5\ {\rm Tc}. \end{split}$$

Коэффициент п определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{60}{293.5}} = 1,26.$$

Эксцентрицитет е с учетом прогиба вычисляем по формуле (128):

$$e = 28,8 \cdot 1,26 + 0,5 \cdot 50 - 4 = 57,3$$
 cm.

Площади сечения сжатой и растянутой арматур определяем, согласно п. 3.35, по формулам (135) и (136):

$$F_{\mathbf{a}}' = \frac{60\,000 \cdot 57,3 - 0,4 \cdot 0,81 \cdot 115 \cdot 30 \cdot 46^2}{0,835 \cdot 3600\,(46 - 6)} = 9,49 \text{ cm}^2;$$

$$F_{\mathbf{a}} = \frac{0,55 \cdot 0,81 \cdot 115 \cdot 30 \cdot 46 - 60\,000 + 0,835 \cdot 3600 \cdot 9,49}{1 \cdot 3600} = 11,03 \text{ cm}^2.$$

Проверяем суммарный коэффициент армирования по формуле (145):

$$\mu_1 = \frac{9,49+11,03}{30.50} = 0,014 = 1,4\%.$$

Так как полученный коэффициент армирования соответствует принятому интервалу (от 0,8 до 1,8% по табл. 48), то расчет считается законченным.

Принимаем
$$F_a' = 8,04 \text{ cm}^2 (4 \varnothing 16); F_a = 12,56 \text{ cm}^2 (4 \varnothing 20).$$

Пример 17. Расчет прочности внецентренно-сжатого железобетонного элемента прямоугольного сечения при одностороннем нагреве до 250° С; случай больших эксцентрицитетов ($\xi < \xi_R$). По данным примера 16, при $F_a' = 8,04$ см² и $F_a = 12,56$

проверить прочность сечения.

Расчет. Вычисляем значение коэффициента η согласно пп. 3.7 и 3.29 настоящего Руководства. Для этого определяем $N_{\text{кр}}$ по формуле (123) при

$$\mu_{\rm I} = \frac{F_{\rm a} + F_{\rm a}'}{F} = \frac{12,56 + 8,04}{30 \cdot 50} = 0,014;$$

$$N_{\rm KP} = \frac{19,2 \cdot 30 \cdot 50}{43,6^2} \left[\frac{260 \cdot 10^3 \cdot 0,7 \cdot 0,7}{3 \cdot 1,925 \cdot 0,85} \left(\frac{0,11}{0,1 + 0,576} + 0,1 \right) + 0,014 \cdot 2 \cdot 10^6 \cdot 0,98 \left(\frac{46 - 6}{50} \right)^2 \right] = 369 \, 469 \, \, {\rm krc} = 369,5 \, \, {\rm Tc} \, .$$

Коэффициент у определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{60}{369.5}} = 1,19.$$

Эксцентрицитет e, с учетом прогиба, вычисляем по формуле (128):

$$e = 28,8 \cdot 1,19 + 0,5 \cdot 50 - 4 = 55,27$$
 cm.

Проверку прочности сечения производим согласно п. 3.33 настоящего Руководства. Для этого определяем высоту сжатой зоны х из формулы (130):

$$x = \frac{60\,000 + 1.3600 \cdot 12,56 - 0,835 \cdot 3600 \cdot 8,04}{0.81 \cdot 115 \cdot 30} = 28,65 \text{ cm}.$$

Сравним полученное значение х с граничным:

$$x_R = \xi_R h_0 = 0.65 \cdot 46 = 29.9 \text{ cm}.$$

Так как $x=28,65 < x_R=29,9$ см, прочность сечения проверяем из условия (129) при x=28,65 см. В связи с небольшой разницей в значениях высоты сжатой зоны, принятой при определении ее средней температуры и полученной по расчету, пересчета значения x не делаем:

$$M_{\text{пред}} = 0.81 \cdot 115 \cdot 30 \cdot 28.65 (46 - 0.5 \cdot 28.65) +$$
+ $0.835 \cdot 3600 \cdot 8.04 (46 - 6) = 3.443 479.6 \text{ кгс-см} =$
= $34.43 \text{ тс-м} > Ne = 60 \cdot 0.553 = 33.18 \text{ тс-м},$

т. е. прочность сечения в плоскости изгиба обеспечена.

Расчет из плоскости изгиба

Определяем радиус инерции из плоскости изгиба:

$$r = \frac{h}{3,46} = \frac{30}{3,46} = 8,67 \text{ cm}.$$

Так как гибкость из плоскости изгиба $\lambda = \frac{l_0}{r} = \frac{630}{8,67} = 72,66$ значительно превышает гибкость в плоскости изгиба $\lambda = \frac{l_0}{r} = 43,6$, согласно п. 3.29, проверяем прочность сечения из плоскости изгиба, принимая, что сечение равномерио нагрето до средней температуры 150° С и эксцентрицитет e_0 равен случайному эксцентрицитету $e_0^{\text{сл}}$. Поскольку длина элемента $l_0 = 6,3$ м $> 20h = 20 \cdot 0,3 = 6$ м, расчет пронзводим, согласно п. 3.33, без учета арматуры.

Значение коэффициента $m_{6t} = 0.85$ принимаем по табл. 16 для

температуры бетона 150° С.

Определяем величину случайного эксцентрицитета $e_0^{\text{сл}}$ согласно п. 1.30:

$$e_0^{\text{c.t.}} = \frac{I_0}{600} = \frac{630}{600} = 1,05 > \frac{h}{30} = \frac{30}{30} = 1 \text{ cm}.$$

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (123). Для этого предварительно вычисляем значение $t_{\rm MBH}$ по формуле (90):

$$t_{\text{MHH}} = 0.5 - 0.01 \cdot \frac{630}{30} - 0.001 \cdot 0.85 \cdot 115 = 0.192$$

Так как $\frac{e_0}{h} = \frac{1,05}{30} = 0,035 < t_{\text{мен}} = 0,192$, принимаем t = 0,192.

Значение $k_{\rm дл}$ вычисляем по формуле (89) при $\beta = 1.45$:

$$k_{\Lambda \pi} = 1 + \beta \frac{M_1^{\Lambda \pi}}{M_1} = 1 + \beta \frac{N_{\Lambda \pi} e_{\Lambda \pi}}{Ne} = 1 + 1.45 \frac{N_{\Lambda \pi}}{N} = 1 + 1.45 \frac{40}{60} = 1.967.$$

Согласно п. 3.29, $k_{\rm H} = 1$.

По формуле (123) при $\mu_1 = 0$ имеем

$$N_{\text{KP}} = \frac{19,2 \cdot 30 \cdot 50}{72,66^2} \left(\frac{260 \cdot 10^3 \cdot 0,7 \cdot 0,7}{3 \cdot 1,967 \cdot 0,85} \left(\frac{0,11}{0,1+0,192} + 0,1 \right) + 0 \right] = 66 051,53 \text{ krc} = 66 \text{ Tc.}$$

Ввиду близости значений $N\!=\!60$ тс и $N_{\rm kp}\!=\!66$ тс необходимо предусмотреть конструктивное армирование длинных сторон сечения. Пусть $\mu_1\!=\!0,\!006$, тогда при $h_0\!=\!30\!-\!4\!=\!26$ см:

$$N_{\rm KP} = \frac{19.2 \cdot 30 \cdot 50}{72.66^2} \left[\frac{260 \cdot 10^3 \cdot 0.7 \cdot 0.7}{3 \cdot 1.967 \cdot 0.85} \left(\frac{0.11}{0.1 + 0.192} + 0.1 \right) + 0.006 \cdot 2 \cdot 10^6 \cdot 0.98 \left(\frac{26 - 4}{30} \right)^2 \right] = 100565 \text{ kgc} = 100.6 \text{ gc},$$

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{60}{100.6}} = 2,475.$$

Эксцентрицитет e с учетом прогиба вычисляем по формуле (128): $e = 1,05 \cdot 2,475 + 0,5 \cdot 30 - 4 = 13,6$ см.

Для проверки прочности сечения, согласно п. 3.33, определяем высоту сжатой зоны x из формулы (130), приняв $F_a = F_a' = 0.003 \times 50(30-4) = 3.9$ см², или точнее 4.02 см² (2Ø16) из стали класса A-III:

$$x = \frac{60\,000 + 0.95 \cdot 3600 \cdot 4.02 - 0.95 \cdot 3600 \cdot 4.02}{0.85 \cdot 115 \cdot 50} = 12.3 \text{ cm}.$$

Для сравнения полученного значения x с граничным определяем ξ_0 по формуле (94):

$$\xi_0 = 0.85 - 0.0008 \cdot 0.85 \cdot 115 = 0.772$$
.

В связи с учетом коэффициента m_{61} =0,85, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_R = \frac{0,772}{1 + \frac{3600 \cdot 0,95}{5000 \cdot 0,98} \left(1 - \frac{0,772}{1,1}\right)} = 0,647;$$

$$x_R = \xi_R h_0 = 0,647 \cdot 26 = 16,82 \text{ cm};$$

Так как $x=12,3 < x_R=16,82$ см, прочность сечения проверяем из условия (129):

$$M_{\text{пред}} = 0.85 \cdot 115 \cdot 50 \cdot 12.3 (26 - 0.5 \cdot 12.3) + 0.95 \cdot 3600 \cdot 4.02 (26 - 4) =$$

$$= 1.476 374.6 \text{ кгс} \cdot \text{см} = 14.76 \text{ тс} \cdot \text{м} >$$

$$> Ne = 60 \cdot 0.136 = 8.16 \text{ тс} \cdot \text{м},$$

т. е. прочность сечения из плоскости изгиба обеспечена.

Пример 18. Определение площади поперечного сечения растянутой арматуры внецентренно-сжатого железобетонного элемента пря-

моугольного сечения при одностороннем нагреве до 700° С.

Дано: размеры сечения b=50 см; h=50 см; a=4 см; расчетная длина $l_0 = \hat{6}$ м; элемент неравномерно нагрет: со стороны нагрева дина t_0 —0 м, элемен неравномерно нагретов С: бетон состава № 11 (табл. 11), марки М 300, $R_{\rm np}$ =135 кгс/см² (табл. 14), E_6 ==175·10³ кгс/см² (табл. 17); арматура из стали класса А-III; R_a == R_{ac} =3600 кгс/см² (табл. 29); E_a =2·10³ кгс/см² (табл. 37); расчетные значения продольной силы от всех нагрузок (нагрузки, суммарная длительность действия которых мала, отсутствуют) $N\!=\!45\,$ тс, в том числе от длительно действующих нагрузок $N_{\rm д} = 38,5$ тс.

Требуется определить площадь сечения продольной арматуры. Расчет. Прежде всего необходимо определить эксцентрицитет приложения продольной силы вследствие перемещения положения центра тяжести сечения, вызванного его неравномерным нагревом. Для этого, согласно п. 1.28, сечение разбиваем на две части, средняя температура которых оказывается равной 250 и 550° С, и производим приведение площадей частей к площади ненагретого бетона по формуле (2).

Линия раздела сечения, имеющая температуру 400° C, проходит посередине сечения, следовательно, высота каждой части равна

25 см.

Значения коэффициентов β_0 и ν (для кратковременного нагрева) принимаем по табл. 16 и 18 соответственно:

при температуре 250° C $\beta_6 = 0.825$, $\nu = 0.725$; при температуре 550° С $\beta_6 = 0.455$, v = 0.477. Для состава № 11, согласно п. 1.28, $k_{\rm H} = 0.7$.

По формуле (2):

$$F_{n250} = \frac{50 \cdot 25 \cdot 0,825 \cdot 0,725}{0,7} = 1068 \text{ cm}^2;$$

$$F_{n550} = \frac{50 \cdot 25 \cdot 0,455 \cdot 0,477}{0.7} = 387,5 \text{ cm}^2.$$

Расстояние от центра тяжести приведенного сечения до грани, растянутой внешней нагрузкой (менее нагретой грани сечения), определяем по формуле (5):

$$y = \frac{1068 \cdot 12,5 + 387,5 \cdot 37,5}{1068 + 387,5} = 19,2 \text{ cm}.$$

Расчетный эксцентрицитет продольной силы

$$e_0^{\rm p} = 25 - 19.2 = 5.8$$
 cm:

Выгиб элемента, вызванный неравномерным нагревом сечения, уменьшает расчетный эксцентрицитет продольной силы $e_0^{\, p}$, поэтому он не учитывается.

Поскольку расчетный элемент является элементом статически определимой конструкции, определяем величину случайного эксцентрицитета $e_0^{\text{сл}}$ согласно п. 1.30

$$e_0^{\text{cn}} = \frac{h}{30} = \frac{50}{30} = 1,7 \text{ cm} > \frac{t_0}{600} = \frac{600}{600} = 1 \text{ cm}.$$

Вычисляем значение e_0 по формуле (121):

$$e_0 = 5.8 + 1.7 = 7.5$$
 cm.

Для учета влияния прогиба элемента определяем его гибкость $\lambda = \frac{l_0}{r}$, где r вычисляем по формуле (125). Входящий в формулу (125) момент инерции приведенного сечения определяем по формулам (11) и (12) при $F_{\mathbf{1L}\mathbf{8}} = F_{\mathbf{1L}\mathbf{8}}' = 0$:

$$I_{\Pi} = \frac{1068 \cdot 25^{2}}{12} + \frac{387,5 \cdot 25^{2}}{12} + 1068 (19,2 - 12,5)^{2} + \\ + 387,5 \cdot (37,5 - 19,2)^{2} = 253493,5 \text{ cm}^{4};$$

$$r = \sqrt{\frac{253493,5}{1455,5}} = 13,2 \text{ cm};$$

$$\lambda = \frac{l_{0}}{r} = \frac{600}{132} = 45,45 < \lambda_{np} = 58,$$

где $\lambda_{\pi p}$ принято по табл. 47 в зависимости от температуры центра тяжести сечения:

$$t_{\text{u,T}} = 100 + \frac{(700 - 100) \, 19, 2}{50} = 330^{\circ} \, \text{C}.$$

Поскольку $\lambda = 45,45 > 14$, учитываем при расчете влияние прогиба на прочность элемента согласно п. 3.29.

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (122). Для этого предварительно вычисляем значение $t_{\rm MH}$ по формуле (90); m_{0t} =0,65 принято по табл. 16 в зависимости от $t_{\rm T,T}$ =330° С.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{61} =0,85, принимаемый по табл. 15:

$$R_{\rm IIP} = 135 \cdot 0.85 = 115 \text{ krc/cm}^2;$$

$$t_{\rm MHH} = 0.5 - 0.01 \frac{600}{50} - 0.001 \cdot 0.65 \cdot 115 = 0.305.$$

Так как $\frac{e_0}{h} = \frac{7.5}{50} = 0.15 < t_{\text{мин}} = 0.305$, принимаем t = 0.305.

Значение $k_{\pi\pi}$ вычисляем по формуле (89), предварительно определив эксцентрицитеты приложения N и $N_{\pi\pi}$ относительно центра тяжести площади растянутой арматуры:

$$e = 7,5 + 0,5.50 - 4 = 28,5$$
 cm;

$$e_{AA} = e$$
.

$$k_{AA} = 1 + \beta \frac{M_1^{AA}}{M_1} = 1 + \beta \frac{N_{AA} e_{AA}}{Ne} = 1 + \beta \frac{N_{AA}}{N} = 1 + 2,62 \frac{38,5}{45} = 3,24.$$

Согласно п. 3.29, $k_{\rm H}=1$.

В связи с тем, что по условиям нагрева арматура устанавливается только у одной из граней сечения элемента I_a в формуле (122), согласно п. 3.29, принимается равным нулю.

Значения β_6 и $\overline{\nu}$ определяем соответственно по табл. 16 и 18 при температуре 330° С: $\beta_6 = 0.71$, $\overline{\nu} = 0.67$ (для кратковременного нагрева согласно п. 1.28).

По формуле (122) имеем

$$N_{\text{KP}} = \frac{6.4}{600^2} \left[\frac{175 \cdot 10^3 \cdot 253493.5}{3.24} \left(\frac{0.11}{0.1 + 0.305} + 0.1 \right) + 0 \right] = 90061.4 \text{ kpc} = 90 \text{ Tc.}$$

Коэффициент у определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{45}{90}} = 2.$$

Эксцентрицитет е, с учетом прогиба, вычисляем по формуле (128):

$$e = 7.5 \cdot 2 + 0.5 \cdot 50 - 4 = 36$$
 cm:

Согласно п. 3.36, проверяем условие (139). Для этого определяем граничное значение высоты сжатой зоны по п. 3.13. Для определения средней температуры сжатой зоны принимаем $\xi_R = 0.7$. Тогда при $h_0 = h - a = 50 - 4 = 46$ см.

$$t_{\text{c.m.s}} = 700 - \frac{(700 - 100) \cdot 0, 5 \cdot 0, 7 \cdot 46}{50} = 507^{\circ} \text{ C.}$$

По табл. 16 для этой температуры $m_{6t} = 0.393$. Температура арматуры

$$t_a = 100 + \frac{700 - 100}{50} 4 = 148^{\circ} \text{ C}.$$

По табл. 35 $m_{at} = 0.95$, $\beta_a = 0.98$.

По формуле (94) определяем значение Ео:

$$\xi_0 = 0.8 - 0.0008 \cdot 0.393 \cdot 115 = 0.76.$$

В связи с учетом коэффициента $m_{61} = 0.85$, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000:

$$\xi_R = \frac{0.76}{1 + \frac{3600 \cdot 0.95}{5000 \cdot 0.98} \left(1 - \frac{0.76}{1.1}\right)} = 0.63.$$

Уточняем температуру сжатой зоны при $\xi_R = 0.63$:

$$t_{\text{cm.s}} = 700 - \frac{(700 - 100) \ 0.5 \cdot 0.63 \cdot 46}{50} = 526^{\circ} \ \text{C};$$

$$m_{6t} = 0.374$$
;

$$\xi_0 = 0.8 - 0.0008 \cdot 0.374 \cdot 115 = \sim 0.77$$
.

Следовательно, ξ_R может быть принято равным 0.63.

Значение A_R определяем по формуле (96):

$$A_R = 0.63 (1 - 0.5.0.63) = 0.43.$$

Определяем величины:

$$A_R m_{6t} R_{np} bh_0^2 = 0,43 \cdot 0,374 \cdot 115 \cdot 50 \cdot 46^2 = 1952443 \text{ kgc} \cdot \text{cm} = 19,5 \text{ Tc} \cdot \text{m}$$

и $Ne = 45\,000 \cdot 36 = 1\,620\,000$ кгс \cdot см = 16,2 тс \cdot м.

Поскольку удовлетворяется условие (139):

$$Ne = 16,2 < A_R m_{6t} R_{HD} bh_0^2 = 19,5 \text{ TC-M},$$

искомую площадь поперечного сечения продольной арматуры определяем следующим образом. Из формулы (135), в которой A_R заменяется на A_0 , находим эту величину при $F_a=0$:

$$A_0 = \frac{45\,000 \cdot 36}{0.374 \cdot 115 \cdot 50 \cdot 46^2} = 0.357,$$

По табл. 41 в зависимости от A_0 определяем значение $\xi=0,465$. Так как коэффициент m_{0t} был определен при $\xi_R=0,63$, уточняем температуру бетона сжатой зоны при среднем значении $\xi=0,53$:

$$t_{\text{Cж.3}} = 700 - \frac{(700 - 100) \, 0.5 \cdot 0.53 \cdot 46}{50} = 554^{\circ} \, \text{C};$$

$$m_{6t} = 0.346.$$

$$A_0 = \frac{45 \, 000 \cdot 36}{0.346 \cdot 115 \cdot 50 \cdot 46^{2}} = 0.386; \quad \xi = 0.522,$$

что достаточно близко к заданному.

Площадь поперечного сечения растянутой арматуры определяем по формуле (137) при $F_a = 0$:

$$F_a = \frac{0.522 \cdot 0.346 \cdot 115 \cdot 50 \cdot 46 - 45000}{0.95 \cdot 3600} = 0.83 \text{ cm}^2.$$

Принимаем конструктивно $4\emptyset12$ ($F_a=4,52$ см²).

Пример 19. Расчет прочности внецентренно-сжатого железобетонного элемента таврового сечения при одностороннем нагреве до 500° C; случай больших эксцентрицитетов ($\xi < \xi_R$).

500° С; случай больших эксцентрицитетов ($\xi < \xi_R$). Дано: размеры сечения элемента $b_\Pi' = 75$ см; $h_\Pi' = 13$ см; b = 12 см; h = 50 см; a = 5 см, расчетная длина $l_0 = 5$ м; элемент неравномерно нагрет по высоте сечения, наиболее нагретая грань сжатой полки имеет расчетную температуру 500° С; бетон состава № 11 (табл. 11), марки М 300, $R_{\Pi p} = 135$ кгс/см² (табл. 14), $E_0 = 175 \cdot 10^3$ кгс/см² (табл. 17); растянутая арматура из стали класса А-III, $R_a = 3600$ кгс/см² (табл. 29), $E_a = 2 \cdot 10^8$ кгс/см² (табл. 37); площадь сечения арматуры $F_a = 6.28$ см² (2Ø20); $F_a' = 0$.

Расчетные изгибающий момент и нормальная сила, вызванные кратковременным действием температуры, $M_t = 7.9$ тс·м, $N_t = 25$ тс. Требустся проверить прочность сечения.

Расчет. Из теплотехнического расчета получена температура арматуры 130° С, наружной поверхности ребра — 90° С, средняя температура бетона свесов полки — 480° С, средняя температура бетона ребра — 270° С.

Определяем эксцентрицитет приложения продольной силы вследствие перемещения положения центра тяжести сечения, вызванного его неравномерным нагревом. Для этого, согласно п. 1.28, сечение разбиваем на две части по границе между ребром и полкой и производим приведение площадей полки и ребра к площади ненагретого бетона по формуле (2).

Значения коэффициентов β_{0} и $\overline{\nu}$ принимаем соответственно по табл. 16 и 18:

при температуре 480° С β_6 =0,52, $\overline{\nu}$ =0,55;

при температуре 270° С $\beta_6 = 0.71$, $\sqrt{v} = 0.71$. Для состава № 11, согласно п. 1.28, $k_n = 0.7$.

По формуле (2):

$$F_{\pi 480} = \frac{75 \cdot 13 \cdot 0,52 \cdot 0,55}{0,7} = 398,4 \text{ cm}^2;$$

$$F_{\pi 270} = \frac{12 \cdot (50 - 13) \cdot 0,71 \cdot 0,71}{0,7} = 319,7 \text{ cm}^2.$$

Расстояние от центра тяжести приведенного сечения до грани, растянутой внешней нагрузкой (менее нагретой грани сечения), определяем по формуле (5):

$$y_n = \frac{398,4(50-6,5)+319,7\cdot0,5(50-13)}{398,4+319,7} = 32,37 \text{ cm}_s$$

Расстояние от центра тяжести неприведенного сечения до той же грани

$$y = \frac{S}{F} = \frac{75 \cdot 13 (50 - 6.5) + 12 \cdot 0.5 (50 - 13)^2}{75 \cdot 13 + 12 (50 - 13)} = 35,68 \text{ cm}.$$

Расчетный эксцентрицитет продольной силы

$$e_0^{\rm p} = \frac{M}{N} + (y - y_{\rm fl}) = \frac{790\,000}{25\,000} + (35,68 - 32,37) = 35$$
 cm.

Выгиб элемента, вызванный неравномерным нагревом сечения, уменьшает расчетный эксцентрицитет продольной силы $e_0^{\mathbf{p}}$, поэтому он не учитывается.

Поскольку расчетный элемент является элементом статически неопределимой конструкции, величину случайного эксцентрицитета e_0^{cn} , согласно и. 1.30, также не учитываем, так как

$$e_0 = 35 \text{ cm} > e_0^{\text{cn}} = \frac{h}{30} = \frac{50}{30} = 1,7 \text{ cm}.$$

Для учета влияния прогиба элемента определяем его гибкость $\lambda = \frac{l_0}{r}$, где r вычисляем по формуле (125). Входящий в формулу

(125) момент инерции приведенного сечения I_{π} определяем по формулам (11) и (12) при $F_{\pi,\bullet} = F'_{\pi,\bullet} = 0$:

$$I_{\pi} = \frac{398,4 \cdot 13^{2}}{12} + \frac{319,7 \cdot 37^{2}}{12} + 398,4 (50 - 0,5 \cdot 13 - 32,37)^{2} + \\ + 319,7 (32,37 - 0,5 \cdot 37)^{2} = 152937,1 \text{ cm}^{4};$$

$$r = \sqrt{\frac{152937,1}{718,1}} = 14,59 \text{ cm};$$

$$\lambda = \frac{l_{0}}{r} = \frac{500}{14.59} = 34,27.$$

Поскольку $\lambda=34,27>14$, учитываем при расчете влияние прогиба на прочность элемента согласно п. 3.29.

Для вычисления коэффициента п, на который должна быть умножена величина e_0 , определяем значение $N_{\rm HP}$ по формуле (122). Для этого предварительно вычисляем значение $t_{\rm MBH}$ по формуле (90); $m_{6t} = 0.97$ принимаем по табл. 16 для кратковременного нагрева (см. условие примера) в зависимости от температуры центра тяжести приведенного сечения, равной:

$$t_{\text{II},T} = 90 + \frac{500 - 90}{50} 32,37 = 355^{\circ} \text{ C};$$

 $t_{\text{MMH}} = 0,5 - 0,01 + \frac{500}{50} - 0,001 \cdot 0,97 \cdot 135 = 0,27.$

Так как
$$\frac{e_0}{h} = \frac{35}{50} = 0.7 > t_{\text{мин}} = 0.27$$
, принимаем $t = 0.7$.

 $k_{\pi\pi} = 1$, так как $M_{\pi\pi} = 0$.

Согласно п. 3.29, $k_{\rm H} = 1$.

В связи с тем, что по условиям нагрева арматура устанавливается только у олной из граней сечения элемента, Іа в формуле (122). согласно п. 3.29, принимается равным нулю.

Значения во и у определяем соответственно по табл. 16 и 18 при температуре 355° С: $\beta_6 = 0,68$, $\nu = 0,65$. По формуле (122) имеем

$$N_{\text{KP}} = \frac{6.4}{500^2} \left[\frac{175 \cdot 10^3 \cdot 152937, 1}{1} \left(\frac{0.11}{0.1 + 0.7} + 0.1 \right) + 0 \right] = 163\,068\,\text{kgc} = 163\,\text{tc}.$$

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{25}{163}} = 1,18.$$

Эксцентрицитет e, с учетом прогиба, вычисляем по формуле (128):

$$e = 35 \cdot 1,18 + 32,37 - 5 = 68,67 \text{ cm}$$

Проверку прочности сечения производим, согласно п. 3.40, в зависимости от положения границы сжатой зоны.

Проверяем соблюдение условия (146) при $h_0 = h - a = 50 - 5 = 45$ см и $F_0' = 0$.

Значение коэффициента $m_{64} = 0.91$ для средней температуры бетона полки 480° С определяем по табл. 16 для кратковременного нагрева (см. условие примера):

$$Ne = 25\,000\cdot68,67 = 1\,716\,750\,\mathrm{krc}\cdot\mathrm{cm} = 17,17\,\mathrm{tc}\cdot\mathrm{m};$$

 $m_{6t}\,R_{\mathrm{np}}\,b_{\mathrm{n}}'\,h_{\mathrm{n}}'\,\left(h_0-0.5h_{\mathrm{n}}'\right) = 0.91\cdot135\cdot75\cdot13\,\left(45-0.5\cdot13\right) =$
 $= 4\,611\,479\,\mathrm{krc}\cdot\mathrm{cm} = 46,11\,\mathrm{tc}\cdot\mathrm{m},$

Поскольку условие (146) соблюдается, граница сжатой зоны проходит в полке и расчет сечения производится как для прямоугольного сечения шириной $b=b_{\Pi}'=75$ см в соответствии с указаниями пп. 3.33 и 3.34 настоящего Руководства.

Определяем значение коэффициента $m_{at} = 0.935$ по табл. 35 для температуры 130° С при кратковременном нагреве.

Вычисляем высоту сжатой зоны из формулы (130):

$$x = \frac{25\,000 + 0.935 \cdot 3600 \cdot 6.28}{0.91 \cdot 135 \cdot 75} = 4.88 \,\mathrm{cm} < h_{\mathrm{n}}' = 13 \,\mathrm{cm}.$$

Прочность сечения проверяем из условия (129) при $F_a'' = 0$:

$$M_{\text{пред}} = 0.91 \cdot 135 \cdot 75 \cdot 4.88 (45 - 0.5 \cdot 4.88) =$$

= 1 913 630 kgc cm = 19.14 tc·m > Ne = 17.17 tc·m,

т. е. прочность сечения обеспечена.

Пример 20. Расчет прочности внецентренно-сжатого железобетонного элемента таврового сечения при одностороннем нагреве до 800° С; случай малых экспентрицитетов $(\xi > \xi_R)$.

Дано: размеры сечения элемента $b_n'=75$ см; $h_n'=13$ см; b=12 см; h=50 см; a=5 см; расчетная длина $l_0=5$ м; элемент неравномерно нагрет по высоте сечения, наиболее нагретая грань сжатой полки имеет расчетную температуру 800° С; бетон состава № 11 (табл. 11), марки M 300, $R_{\pi p}=135$ кгс/см² (табл. 14), $E_6=175 \times 10^3$ кгс/см² (табл. 17); растянутая арматура из стали класса A-III, $R_a=3600$ кгс/см² (табл. 29), $E_a=2\cdot10^6$ кгс/см² (табл. 37); площадь сечения арматуры $F_a=6,28$ см² (2Ø20), $F_a=0$; расчетное значение продольной силы от всех нагрузок (кроме нагрузок, суммарная длительность действия которых мала) N=20 тс, в том числе от длительно действующих нагрузок $N_{\pi\pi}=4$ тс.

Требуется проверить прочность сечения.

Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты ребра, равное 15° С. Средняя температура бетона свесов полки при наличии изоляции равна 750° С, температура наружной поверхности бетона ребра 50° С, арматуры 125° С. Средняя температура бетона ребра 330° С.

Определяем эксцентрицитет приложения продольной силы вследствие перемещения положения центра тяжести сечения, вызванного неравномерным нагревом. Для этого, согласно п. 1.28, сечение разбиваем на две части по границе между ребром и полкой и произво-

дим приведение площадей полки и ребра к площади ненагретого бетона по формуле (2).

Значения коэффициентов в и у (для кратковременного нагрева) принимаем соответственно по табл. 16 и 18:

при температуре 750° С $\beta_6 = 0.295$, v = 0.277; при температуре 330° С β_6 =0,712, $\overline{\nu}$ =0,674. Для состава N_2 11, согласно п. 1.28, $k_{\pi} = 0.7$. По формуле (2):

$$F_{\pi750} = \frac{75 \cdot 13 \cdot 0,295 \cdot 0,277}{0,7} = 113,81 \text{ cm}^2;$$

$$F_{\pi830} = \frac{12 (50 - 13) 0,712 \cdot 0,674}{0.7} = 304,33 \text{ cm}^2.$$

Расстояние от центра тяжести приведенного сечения до грани, растянутой внешней нагрузкой (менее нагретой грани сечения), определяем по формуле (5):

$$y_{\rm ff} = \frac{113.81 (50 - 6.5) + 304.33 \cdot 0.5 (50 - 13)}{113.81 + 304.33} = 25.3 \, \text{cm}.$$

Расстояние от центра тяжести неприведенного сечения до той же грани:

$$y = \frac{S}{F} = \frac{75 \cdot 13 (50 - 6.5) + 12 \cdot 0.5 (50 - 13)^2}{75 \cdot 13 + 12 (50 - 13)} = 35,68 \text{ cm}.$$

Расчетный эксцентрицитет продольной силы

$$e_0^{\rm p} = y - y_{\rm n} = 35,68 - 25,3 = 10,38 \text{ cm}.$$

Выгиб элемента, вызванный неравномерным нагревом сечения, уменьшает расчетный эксцентрицитет продольной силы $e_{\mathbf{0}}^{\mathbf{p}}$, поэтому он не учитывается.

Поскольку расчетный элемент является элементом статически определимой конструкции, определяем величину случайного эксцентрицитета e_0^{cn} согласно п. 1.30:

$$e_0^{\text{cn}} = \frac{h}{30} = \frac{150}{30} = 1,7 \text{ cm} > 1 \text{ cm} > \frac{t_0}{600} = \frac{500}{600} = 0,83 \text{ cm}.$$

Вычисляем значение e_0 по формуле (121):

$$e_0 = 10,38 + 1,7 = 12,1$$
 cm.

Для учета влияния прогиба элемента определяем его гибкость $\lambda = \frac{l_0}{r}$, где r вычисляем по формуле (125). Входящий в формулу (125) момент инерции приведенного сечения $I_{\rm m}$ определяем по формулам (11) и (12) при $F_{\pi,a} = F'_{\pi,a} = 0$:

$$I_{\pi} = \frac{113,81 \cdot 13^{2}}{12} + \frac{304,33 \cdot 37^{2}}{12} + 113,81 (50 - 0,5 \cdot 13 - 25,3)^{2} + + 304,33 (25,3 - 0,5 \cdot 37)^{2} = 88091,3 \text{ cm}^{4};$$

$$r = \sqrt{\frac{88091,3}{418,14}} = 14,51 \text{ cm};$$

$$\lambda = \frac{l_0}{r} = \frac{500}{14.51} = 34,46.$$

Поскольку $\lambda=34,46>14$, учитываем при расчете влияние прогиба на прочность элемента согласно п. 3.29.

Для вычисления коэффициента η , на который должна быть умножена величина e_0 , определяем значение $N_{\rm KP}$ по формуле (122). Для этого предварительно вычисляем $t_{\rm Muh}$ по формуле (90); $m_{6t}=-0.505$ принимаем по табл. 16 в зависимости от температуры центра тяжести приведенного сечения, равной

$$t_{\text{II.T}} = 50 + \frac{800 - 50}{50} 25,3 = 430^{\circ} \text{ C}.$$

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{61} =0,85, принимаемый по табл. 15:

$$R_{\rm mp} = 135 \cdot 0,85 = 115 \, {\rm krc/cm^2};$$

$$t_{\rm mhh} = 0,5 - 0,01 \, \frac{500}{50} - 0,001 \cdot 0,505 \cdot 115 = 0,342.$$

Так как
$$\frac{e_0}{h} = \frac{12.1}{50} = 0.242 < t_{\text{мин}} = 0.342$$
, принимаем $t = 0.342$.

Значение $k_{\pi\pi}$ вычисляем по формуле (89), предварительно определив эксцентрицитеты приложения N и $N_{\pi\pi}$ относительно центра тяжести площади растянутой арматуры:

$$e = 12, 1 + 25, 3 - 5 = 32, 4 \text{ cm};$$

 $e_{\pi\pi} = e.$

Значение коэффициента β по табл. 39 при $t\!=\!430^\circ$ C для состава $N\!\!:\!11$ равно 5,02:

$$k_{\mu\pi} = 1 + \beta \frac{M_1^{\mu\pi}}{M_1} = 1 + \beta \frac{N_{\mu\pi}}{N} = 1 + 5,02 \frac{4}{20} = 2.$$

Согласно п. 3.29, $k_{\rm H}=1$.

В связи с тем, что по условиям нагрева арматура устанавливается только у одной из граней сечения элемента, I_a в формуле (122), согласно п. 3.29, принимается равным нулю.

Значения β_6 и $\overline{\nu}$ определяем соответственно по табл. 16 и 18 при температуре 430° C; β_6 =0,59, $\overline{\nu}$ =0,59 (для кратковременного нагрева согласно п. 1.28).

По формуле (122) имеем

$${}^{-}N_{\text{KP}} = \frac{6.4}{500^2} \left[\frac{175 \cdot 10^3 \cdot 88091,3}{2} \left(\frac{0.11}{0.1 + 0.342} + 0.1 \right) + 0 \right] = 68.866 \, \text{Kpc} = 68.9 \, \text{Tc}.$$

Коэффициент η определяем по формуле (87):

$$\eta = \frac{1}{1 - \frac{24}{68.9}} = 1,53.$$

Эксцентрицитет e, с учетом прогиба, вычисляем по формуле (128)

$$e = 12, 1 \cdot 1, 53 + 25, 3 - 5 = 38, 8 \text{ cm};$$

Проверку прочности сечения производим, согласно п. 3.40, в зависимости от положения границы сжатой зоны.

Проверяем соблюдение условия (146) при

$$h_0 = h - a = 50 - 5 = 45 \text{ cm in } F_a' = 0.$$

Значение коэффициента $m_{5i} = 0.165$ для средней температуры полки 750° С определяем по табл. 16:

$$Ne = 2400 \cdot 38, 8 = 931\ 200\ \mathrm{krc} \cdot \mathrm{cm} = 9,31\ \mathrm{tc} \cdot \mathrm{m};$$
 $m_{6t}\ R_{\mathrm{np}}\ b_{\mathrm{n}}'\ h_{\mathrm{n}}'\ \left(h_0 - 0,5h_{\mathrm{n}}'\right) = 0,165 \cdot 115 \cdot 75 \cdot 13\ (45 - 0,5 \cdot 13) = 710\ 000\ \mathrm{krc} \cdot \mathrm{cm} = 7,1\ \mathrm{tc} \cdot \mathrm{m}.$

Поскольку условие (146) не соблюдается, граница сжатой зоны проходит в ребре, поэтому расчет сечения производим как для таврового сечения в соответствии с пп. 3.40 и 3.43 настоящего Руководства.

Согласно примеч. 7 к табл. 16, значение коэффициента условий работы бетона m_{6t} для ребра определяем по табл. 16 в зависимости от температуры бетона, находящегося на расстоянии $0.2h_0$ от сжатой грани сечения:

$$t_{\text{cm,s}} = 800 - \frac{800 - 50}{50} \, 0.2.45 = 665^{\circ} \, \text{C}; \quad m_{6t} = 0.235.$$

Значение коэффициента $m_{at} = 0.975$ принимаем по табл. 35 в зависимости от температуры $l_a = 125^{\circ}$ С.

Определяем высоту сжатой зоны x из формулы (148) при $F_a^{"}=0$:

$$n = \frac{24\,000 + 0,975 \cdot 3600 \cdot 6,28 - 0,165 \cdot 115\,(75 - 12)\,13}{0,235 \cdot 115 \cdot 12} = 90,6\,\mathrm{cm},$$

Поскольку x>h, а следовательно и $\xi>\xi_R$, граница сжатой зоны проходит в ребре или все сечение сжато. В этом случае прочность сечения проверяем из условия (147), а высоту сжатой зоны—из формулы (149).

Для определения граничного значения высоты сжатой зоны ξ_R по формуле (93) определяем величину ξ_0 по формуле (94), предварительно приняв значение коэффициента m_{6t} по табл. 16 в зависимости от средней температуры сжатой зоны при ее высоте, равной $0.7h_0$:

$$t_{a.x.s} = 800 - \frac{800 - 50}{50} 0,35.45 = 564^{\circ} \text{ C}; \quad m_{6t} = 0,336;$$

 $\xi_0 = 0,8 - 0,0008.0,336.115 = 0,77.$

В связи с учетом коэффициента m_{61} =0,85, согласно п. 3.13, в формуле (93) вместо величины 4000 принята величина 5000. Значение $\beta_{\rm A}$ =0,99 определяем по табл. 35:

$$\xi_R = \frac{0,77}{1 + \frac{3600 \cdot 0,975}{5000 \cdot 0,99} \left(1 - \frac{0,77}{1,1}\right)} = 0,64.$$

При средней температуре бетона сжатой зоны, отвечающей высоте $0.64h_0$;

$$t_{\text{GM},8} = 800 - \frac{800 - 50}{50} \text{ 0,32.45} = 584^{\circ} \text{ C}; \quad m_{6t} = 0,316;$$

 $\xi_0 = 0,8 - 0,0008.0,316.115 = 0,77; \quad \xi_R = 0,64.$

Определяем значение ξ по формуле (149) при $F_{\bullet} = 0$:

$$\xi = \frac{ [24\,000 - 0,165\cdot115\,(75 - 12)13]\,(1 - 0,64) +}{0,316\cdot115\cdot12\cdot45\,(1 - 0,64) +} \rightarrow \frac{+0,975\cdot3600\cdot6,28\,(1 + 0,64)}{+2\cdot0.975\cdot3600\cdot6,28} = 0,76 > \xi_R = 0,64.$$

Прочность сечения проверяем из условия (147) при $F_{\bf g} = 0$ и $x = \xi h_0 = 0.76 \cdot 45 = 34.2$ см:

$$M_{\text{пред}} = 0.316 \cdot 115 \cdot 12 \cdot 34.2 (45 - 0.5 \cdot 34.2) + 0.165 \cdot 115[75 - 12] \cdot 13(45 - 0.5 \cdot 13) = 101 \cdot 220 \text{ kgc/cm} = 10.12 \text{ tc·m} > Ne = 9.31 \text{ te·m}.$$

Прочность сечения обеспечена.

Пример 21. Расчет прочности внецентренно-растянутого железобетонного элемента прямоугольного сечения при одностороннем на-

греве до 200° С; случай малых эксцентрицитетов. Дано: размеры сечения b=30 см; h=25 см; a=a'=5 см; элемент неравномерно нагрет, при этом температура арматуры A'=200° С, арматуры A=100° С; бетон состава № 2 (табл. 11), марки М 300; арматура из стали класса A-III, $R_a=3600$ кгс/см² (табл. 29); площадь сечения арматуры $F_a=F_a'=12,56$ см² (4Ø20); расчетное значение продольной силы N=60 тс, изгибающего момента M=

=1,8 тс·м.

Требуется проверить прочность сечения.

 $\it Pacuer.$ Определяем значения коэффициента $\it m_{at}$ по табл. 35 в зависимости от температуры соответствующей арматуры:

для арматуры $A' m_{at} = 0.9$; для арматуры $A m_{at} = 1$.

В соответствии с п. 3.47 определяем расстояния от растягивающей силы N до равнодействующих усилий в арматуре A(e) и A'(e'). Для этого предварительно определяем эксцентрицитет продольной силы N при h_0 =25—5=20 см:

$$e_0 = \frac{M}{N} = \frac{180\,000}{60\,000} = 3\,\mathrm{cm} < 0.5\,(h_0 - a') = 0.5\,(20 - 5) = 7.5\,\mathrm{cm}.$$

Следовательно, продольная сила приложена между равнодействующими усилий в арматуре A и A'.

По формуле (169)

$$e = e_{II} - e_0 = 0.5h - a - e_0 = 0.5 \cdot 25 - 5 - 3 = 4.5 \text{ cm}.$$

По формуле (170)

$$e' = h_0 - e_{11} + e_0 - a' = 20 - 0.5 \cdot 25 + 5 + 3 - 5 = 10.5$$
 cm.

Проверку прочности сечения производим, согласно п. 3.46, из условия (163):

$$M_{\text{пред}} = 0,9.3600.12,56 (20 - 5) = 576 504 \,\text{krc} \cdot \text{см} > Ne = 60 000.4,5 = 270 000 \,\text{krc} \cdot \text{см}$$

и из условия (164):

$$M_{\text{пред}} = 1.3600 \cdot 12,56 (20 - 5) = 640\,560 \,\text{кгс·см} > Ne' = 60\,000 \cdot 10,5 = 630\,000 \,\text{кгс·см};$$

Прочность сечения обеспечена.

Пример 22. Определение площади поперечного сечения растянутой арматуры внецентренно-растянутого железобетонного элемента прямоугольного сечения при одностороннем нагреве до 150° С; случай малых эксцентрицитетов.

Дано: размеры сечения b=100 см; h=50 см; a=a'=4 см; элемент неравномерно нагрет, при этом температура арматуры $A'-150^\circ$ С, арматуры $A-50^\circ$ С; бетон состава N=1 (табл. 11), марки M 200; арматура из стали класса A-III, $R_a=3600$ кгс/см² (табл. 29); расчетное значение продольной силы N=70 тс, изгибающего момента M=6 тс·м.

Требуется определить площадь сечения продольной рабочей арматуры.

Расчет. Определяем значения коэффициента mat по табл. 35 в зависимости от температуры соответствующей арматуры:

для арматуры $A' m_{at} = 0.95$;

для арматуры $A m_{2t} = 1$.

В соответствии с п. 3 47 определяем расстояния от растягивающей силы N до равнодействующих усилий в арматуре A(e) и A'(e'). Для этого предварительно определяем эксцентрицитет продольной силы N при $h_0 = h - a = 50 - 4 = 46$ см:

$$e_0 = \frac{M}{N} = \frac{600\,000}{70\,000} = 8,57\,\mathrm{cm} < 0,5\,(h_0 - a') = 0,5\,(46 - 4) = 21\,\mathrm{cm}$$

Следовательно, продольная сила приложена между равнодействующими усилий в арматуре A и A'.

По формуле (169)

$$e = e_{\mathbf{u}} - e_{\mathbf{0}} = 0,5h - a - e_{\mathbf{0}} = 0,5 \cdot 50 - 4 - 8,57 = 12,43$$
см. По формуле (170)

$$e' = h_0 - e_1 + e_0 - a' = 46 - 0.5 \cdot 50 + 4 + 8.57 - 4 = 29.57$$
 cm.

Определение площади поперечного сечения арматуры производим согласно п. 3.48. Так как e'=29,57 см $< h_0-a'=46-4=42$ см, необходимые площади сечения арматуры F_a и F_a' определяем: по формулам (176)

$$F_{\rm a} = \frac{70\,000 \cdot 29,57}{1 \cdot 3600\,(46-4)} = 14,5\,{\rm cm}^2;$$

и (177)

$$F_a'' = \frac{70\,000 \cdot 12,43}{0,95 \cdot 3600\,(46-4)} = 6,4\,\mathrm{cm}^2,$$

Принимаем

$$F_a = 15.7 \text{ cm}^2 (5 \varnothing 20) \text{ H } F_a' = 7.69 \text{ cm}^2 (5 \varnothing 14).$$

Пример 23. Определение площади поперечного сечения симметричной арматуры внецентренно-растянутого элемента прямоугольного сечения при его равномерном нагреве до 100° С; случай больших эксцентрицитетов.

Дано: размеры сечения b=40 см; h=20 см; a=a'=4 см; элемент равномерно нагрет до 100° С; бетон состава № 1 (табл. 11), марки M 200, $R_{\pi p}=90$ кгс/см² (табл. 14); арматура из стали класса A-III, $R_a=3600$ кгс/см² (табл. 29); расчетные значения от длительно действующей нагрузки: продольной силы N=17 тс, изгибающего момента M=2.75 тс·м.

Требуется определить площадь сечения продольной симметрич-

ной арматуры.

Pacuer. Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент m_{61} =0,85, принимаемый по табл. 15:

$$R_{\rm IID} = 90.0,85 = 76,5 \,\mathrm{krc/cm^2}$$
.

Определяем значения коэффициентов m_{6t} и m_{at} соответственно по табл. 16 и 35 для температуры 100° С: $m_{5t} = 0.9$; $m_{at} = 1$.

В соответствии с п. 3.47 определяем расстояния от растягивающей силы N до равнодействующей усилий в арматуре A(e) и A'(e'). Для этого предварительно определяем эксцентрицитет продольной силы N при $h_0 = h - a = 20 - 4 = 16$ см:

$$e_0 = \frac{M}{N} = \frac{275\,000}{17\,000} = 16.2\,\mathrm{cm} > 0.5\,(h_0 - a') = 0.5\,(16 - 4) = 6\,\mathrm{cm}$$

Следовательно, продольная сила приложена за пределами расстояния между равнодействующими усилий в арматуре A и A':

по формуле (171)

$$e = e_0 - e_{\text{II}} = e_0 - 0.5h + a = 16.2 - 0.5 \cdot 20 + 4 = 10.2 \text{ cm};$$

по формуле (170)

$$e' = h_0 - e_{\text{II}} + e_0 - a' = h_0 - 0.5h + a + e_0 - a' =$$

= $16 - 0.5 \cdot 20 + 4 + 16.2 - 4 = 22.2 \text{ cm}.$

Площадь сечения арматуры определяем согласно п. 3.48. Определяем значение коэффициента A_0 из формулы (172), заменив A_R на A_0 , без учета сжатой арматуры, т. е. при $F_a'=0$:

$$A_0 = \frac{17\,000 \cdot 10,2}{0,9 \cdot 76,5 \cdot 40 \cdot 16^2} = 0,246.$$

По табл. 41 в зависимости от полученного значения A_0 определяем значение $\xi=0,287$. Так как $\xi=0,287<\frac{2a'}{h_0}=\frac{2\cdot 4}{16}=0,5$,

требуемую площадь продольной арматуры находим по формуле (175), в которой коэффициент v определяем по табл. 41 при $A_0 =$ =0.246; v=0.857:

$$F_{\mathbf{a}} = \frac{17\,000\,(10,2+0,857\cdot16)}{1\cdot3600\cdot0.857\cdot16} = 8,72\,\mathrm{cm}^2.$$

Принимаем $F_a = F'_a = 9,41 \text{ см}^2 (3 \varnothing 20).$

Пример 24. Определение площадей поперечного сечения анкеров и пластины закладной детали колонны при ее нагреве до 300° С со стороны, противоположной расположению закладной детали, и действии на закладную деталь сдвигающей силы и изгибающего мо-

Дано: к закладной детали колонны ссчением 40×40 см приварен столик для опирания балки, создающей вертикальную нагрузку Q ==4 тс, приложенную на расстоянии 10 см от наружной поверхности колонны (закладной детали); размеры закладной детали: ширина ---15 см, высота — 28 см; колонна со стороны, противоположной расположению закладной детали, подвергается длительному нагреву до 300° C; анкеры из стали класса A-III, $R_a = 3600$ кгс/см² (табл. 29), бетон колонны состава № 2 (табл. 11), марки М 300, $R_{\pi p} =$ =135 кгс/см², R_p=10 кгс/см² (табл. 14).

Требуется запроектировать анкеры закладной детали и определить толщину пластины.

Расчет. Из теплотехнического расчета получено изменение температуры на 1 см высоты сечения колонны, равное 5° С.

Принимаем 4 анкера, приваренных втавр, расположенных в два

ряда $(n_{\text{ан}}=2)$ при расстоянии между рядами анкеров z=20 см. Определяем наибольшие растягивающие и сжимающие усилия в одном ряду анкеров соответственно по формулам (214) и (216) при N=0, поскольку на закладную часть действуют только изгибающий момент M и сдвигающая сила Q:

$$N_{\rm ah} = N'_{\rm ah} = \frac{4000 \cdot 10}{20} = 2000 \, \rm krc.$$

Сдвигающую силу, приходящуюся на один ряд анкеров, определяем по формуле (215):

$$Q_{\rm aH} = \frac{4000 - 0.3 \cdot 2000}{2} = 1700 \; \rm krc.$$

Значение коэффициента k_1 определяем по формуле (217), прини-

мая
$$\omega = 0.3 \frac{N_{\rm aH}}{Q_{\rm aH}}$$
, поскольку $N_{\rm aH}' > 0$: $\omega = 0.3 \frac{2000}{1700} = 0.353$;

$$k_1 = \frac{1}{\sqrt{1+0.353}} = 0.86 > 0.15.$$

Для определения коэффициента k по формуле (218) вычисляем ряд расчетных характеристик.

Согласно п. 2.10, при длительном нагреве расчетные сопротивления бетона умножаем на коэффициент $m_{61} = 0.85$, принимаемый по табл. 15:

$$R_{\text{np}} = 135 \cdot 0.85 = 115 \,\text{krc/cm}^2;$$

 $R_{\text{D}} = 10 \cdot 0.85 = 8.5 \,\text{krc/cm}^2.$

Значения коэффициентов m_{6i} и β_{6} , ν принимаем соответственно по табл. 16 и 18 в зависимости от температуры бетона в месте расположения закладной детали: $t_{3,\pi} = 300 - 5 \cdot 40 = 100^{\circ}$ C; $m_{6i} = 0.9$; $\beta_{6} = 0.8$; $\nu = 0.7$ (для кратковременного нагрева).

Значение коэффициента по определяем по формуле (219) при

 $k_6=1$ (для состава \hat{N}_2 2):

$$n_6 = 1.0, 8.0, 7 = 0,56$$

Значение коэффициента m_{at} принимаем по табл. 35 в зависимости от температуры t_a конца анкера. При длине анкера, равной 300 мм:

$$t_a = 300 - 5 \cdot 10 = 250^{\circ} \text{ C}; \quad m_{at} = 0.825.$$

Для определения коэффициента k по формуле (218) задаемся площадью анкерного стержня $f_{\rm an}\!=\!1,\!54$ см² (\varnothing 14 мм). Тогда по формуле (218):

$$k = \frac{7 \cdot 0.56 \sqrt[3]{0.9 \cdot 115}}{(1 + 0.15 \cdot 1.54) \cdot \sqrt{0.825 \cdot 3600}} = 0.282.$$

Суммарную площадь поперечного сечения анкеров определяем по формуле (213):

$$F_{\text{ah}} = \frac{1.1 \sqrt{\frac{2000^2 + \left(\frac{1700}{0.282 \cdot 0.86}\right)^2}{0.825 \cdot 3600}} = 2.86 \text{ cm}^2.$$

Принимаем $2\emptyset14$ ($F_a=3.08$ см²) в каждом ряду.

Из условия размещения анкеров в колоние длина анкеров принята равной 30 см, что меньше минимально допустимой длины анкеров, равной $30d=30\cdot1.4=42$ см, поэтому на концах анкеров привариваем круглые анкерные пластинки диаметром 50 мм и проверяем бетон на смятие под пластинками и на выкалывание. При этом длина анкера 30 см $> 10d=10\cdot1.4=14$ см, т. е. допустимо для анкеров с усилением на конце.

Расчет на смятие ведем согласно п. 3.73. Площадь смятия $F_{\text{ом}}$

под анкерной пластинкой одного анкера равна

$$F_{\text{CM}} = F_{\text{RM}} - F_{\text{AH}} = \frac{3,14\cdot5^2}{4} - 1,54 = 18,1 \text{ cm}^2$$

Поскольку $l_{\rm R}\!=\!30$ см $>\!15d\!=\!15\cdot1,\!4\!=\!21$ см, а в колонне в месте установки анкеров возможны растягивающие напряжения и образование трещин, $N_{\rm cm}$ определяем по формуле (227):

$$N_{\rm cm} = \frac{N_{\rm aH}}{n_{\rm a}} = \frac{2000}{2} = 1000 \, \rm krc.$$

Проверяем условие (226). Для этого предварительно определяем значение коэффициента m_{6t} по табл. 16 в зависимости от температуры бетона в месте расположения анкерных пластинок, равной 250° С, $m_{6t} = 0.65$:

$$2.5m_{6t}R_{\text{pp}}F_{\text{cm}} = 2.5 \cdot 0.65 \cdot 115 \cdot 18.1 = 3380 \text{ kgc} > N_{\text{cm}} = 1000 \text{ kgc},$$

т. е. прочность на смятие обеспечена.

Расчет на выкалывание ведем согласно п. 3.71.

Поскольку $N'_{ah} > 0$ и концы анкеров с усилением не заведены за продольную арматуру колонны, расположенную у противоположной от закладной детали грани, расчет ведем из условия (224):

$$\Pi_1 = (5 + 2.30) 40 - 2 \frac{3.14.5^2}{4} = 2560 \text{ cm}^2.$$

Значение коэффициента m_{pt} определяем по табл. 16 в зависимости от температуры бетона в середине длины анкера, т. е. на расстоянии 25 см от наиболее нагретой грани колонны:

$$t_{\rm a} = 300 - 5.25 = 175^{\circ} \,\text{C}; \qquad m_{\rm p}t = 0.55;$$

 $0.5\Pi_1 R_{\rm p}t = 0.5.2560.0.55.8.5 = 5984 \,\text{kgc} > N_{\rm ah} = 2000 \,\text{kgc},$

т. е. прочность на выкалывание обеспечена.

Принятые расстояния между анкерами в направлении поперек и вдоль сдвигающей силы, соответственно равные 7 см $>4d=4\cdot1,4=$ =5,6 см и 20 см $>6d=6\cdot1,4=8,4$ см, удовлетворяют конструктивным требованиям.

Определяем необходимую толщину пластины закладной детали по формуле (221), в которой значение коэффициента m_{at} при R_{cp} определяем по табл. 35 в зависимости от температуры пластины, равной 100° C, как для арматуры класса A-I, $m_{at} = 0.95$:

$$\delta_{\pi} = 0,25 \cdot 1,4 \frac{0.825 \cdot 3600}{0.95 \cdot 1300} = 0.8 \text{ cm}.$$

Из условия сварки анкеров под слоем флюса на автоматах толщина пластины должна быть не менее $0.65d = 0.65 \cdot 1.4 = 0.91$ см. Принимаем толщину пластины $\delta_n = 10$ мм.

Пример 25. Определение площадей поперечного сечения анкеров и пластины закладной детали колонны при ее равномерном нагреве до 100° С и действии на закладную деталь растягивающей и сдвигающей силы и изгибающего момента.

Дано: к закладной детали колонны сечением 60×40 см приварены элементы стальных конструкций, работающие на растяжение (узел примыкания элементов и усилия в них по рис. 59); колонна и элементы конструкций подвергаются длительному равномерному нагреву до 100° С; анкеры закладной детали из стали класса A-III, $R_a = 3600$ кгс/см² (табл. 29), бетон колонны состава № 1 (табл. 11), марки М 400, $R_{\pi p} = 175$ кгс/см², $R_p = 12$ кгс/см² (табл. 14).

Требуется запроектировать анкеры закладной детали, опреде-

лить толщину пластины и проверить выкалывание бетона.

Расчет. Принимаем расположение анкеров, как показано на

Усилие в раскосе раскладываем на нормальную силу, приложенную к закладной детали с эксцентрицитетом $e_0 = 5$ см, и сдвигающую силу Q:

$$N = 14\,000\cos 43^{\circ}45' + 8000 = 18\,050 \,\mathrm{krc};$$

 $Q = 14\,000\sin 43^{\circ}45' = 9700 \,\mathrm{krc};$

При z=42 см и $M=Ne=18\,050\cdot 5=90\,250$ кгс·см определяем наибольшее растягивающее усилие в одном ряду анкеров по формуле (214):

$$N_{\rm ah} = \frac{90\,250}{42} + \frac{18\,050}{4} = 6660\,{\rm krc}.$$

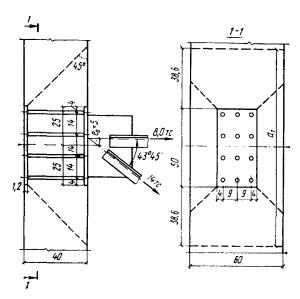


Рис. 59. Закладные детали колонны при действии растягивающих и сдвигающих сил и изгибающего момента

Наибольшее сжимающее усилие в одном ряду анкеров вычисляем по формуле (216):

$$N'_{\rm ah} = \frac{90\,250}{42} - \frac{18\,050}{4} = -2363~{\rm krc} < 0.$$

Сдвигающее усилие Q_{an} , приходящееся на один ряд анкеров, определяем по формуле (215), принимая $N'_{an}=0$:

$$Q_{aR} = \frac{9700}{4} = 2425 \,\mathrm{krc}.$$

Так как
$$N_{ah} < 0$$
,

$$\omega = 0.6 \frac{N}{Q} = 0.6 \frac{18050}{9700} = 1.12.$$

Значение коэффициента k_1 определяем по формуле (217):

$$k_1 = \frac{1}{\sqrt{1+1,12}} = 0,687 > 0,15.$$

Для определения коэффициента k по формуле (218) вычисляем

ряд расчетных характеристик.

Согласно п. 2.10, при длительном нагреве расчетное сопротивление бетона умножаем на коэффициент $m_{61} = 0.85$, принимаемый по табл. 15:

$$R_{\text{mp}} = 175 \cdot 0.85 = 149 \text{ krc/cm}^2;$$

 $R_{\text{p}} = 12 \cdot 0.85 = 10 \text{ krc/cm}^2.$

Значения коэффициентов m_{6t} , m_{pt} и β_6 , $\overline{\nu}$, m_{at} принимаем соответственно по табл. 16, 18 и 35: m_{6t} =0,9; m_{pt} =0,7; β_6 =0,8; $\overline{\nu}$ =0,7 (для кратковременного нагрева); m_{at} =1 (для стали А-III); m_{at} ==0.95 (для стали пластины).

Значение коэффициента n_6 определяем по формуле (219) при $k_6 = 1$ (для состава N = 1):

$$n_6 = 1.0, 8.0, 7 = 0.56$$
.

Задаемся площадью анкерного стержня $f_{\rm an}=1,13~{\rm cm^2}~(\varnothing 12~{\rm мм}),$ тогда по формуле (218)

$$k = \frac{7 \cdot 0.56 \sqrt[3]{0.9 \cdot 149}}{(1 + 0.15 \cdot 1.13) \sqrt{1.3600}} = 0.294.$$

Суммарную площадь поперечного сечения анкеров определяем по формуле (213):

$$F_{\text{aH}} = \frac{1.1 \sqrt{\frac{6660^2 + \left(\frac{2425}{0.294 \cdot 0.687}\right)^2}{1.3600}}}{1.3600} = 4.44 \text{ cm}^2.$$

Принимаем три анкера диаметром 14 мм в каждом ряду ($F_{an} = 4,61 \text{ см}^2$).

Проверим необходимое значение $F_{\rm ah}$ при коэффициенте k, соответствующем принятому диаметру 14 мм ($f_{\rm ah}=1,54$ см²):

$$F_{\text{aH}} = \frac{7 \cdot 0.56 \sqrt[3]{0.9 \cdot 149}}{(1 + 0.15 \cdot 1.54) \sqrt{1 \cdot 3600}} = 0.28;$$

$$F_{\text{aH}} = \frac{1.1 \sqrt{\frac{6660^{3} + \left(\frac{2425}{0.28 \cdot 0.687}\right)^{3}}}{1 \cdot 3600}} = 4.61 \text{ cm}^{2}.$$

Окончательно принимаем три анкера Ø 14 мм.

Необходимая толщина пластины из условия прочности (221) равна

$$\delta_{\pi} = 0.25 \cdot 1.4 \frac{1 \cdot 3600}{0.95 \cdot 1300} = 0.96 \text{ cm}.$$

Из условия сварки в отверстия с раззенковкой

$$\delta_{\rm n} = 0,75d_{\rm ah} = 0,75 \cdot 1,4 = 1,05$$
 cm.

Принимаем $\delta_n = 12$ мм.

Принятые расстояния между осями анкеров вдоль и поперек сдвигающей силы, соответственно равные $14 \text{ см} > 6d = 6 \cdot 1, 4 = 8, 4 \text{ см}$ и 9 см $> 4d = 4 \cdot 1, 4 = 5, 6$ см, удовлетворяют комструктивным требованиям.

Концы анкеров привариваем к аналогичной закладной детали, расположенной на противоположной грани колонны.

Проверяем бетон на выкалывание согласно п. 3.71.

Поскольку $N_{\rm am} < 0$ и концы анкеров имеют усиления, проверяем условие (222).

Определяем площадь проекции поверхности выкалывания (см. рис. 59) за вычетом площади закладной детали, равной:

$$F_{8,\pi} = 50 \cdot 26 = 1300 \text{ cm}^2;$$

$$a_1 = 50 + 2 \cdot 38, 8 = 127, 6 \text{ cm};$$

$$a_2 = 60 \text{ cm};$$

$$\Pi = a_1 a_2 - F_{3,\pi} = 127, 6 \cdot 60 - 1300 = 6356 \text{ cm}^2;$$

$$e_1 = e_0 = 5 \text{ cm}; \quad e_2 = 0;$$

$$\frac{0.5\Pi R_{\text{pf}}}{1 + 3.5 \frac{e_1}{a_1}} = \frac{0.5 \cdot 6356 \cdot 0.7 \cdot 10}{1 + 3.5 \frac{5}{127,6}} = 19730 \text{ krc} > N = 18050 \text{ krc},$$

т. е. прочность бетона на выкалывание обеспечена.

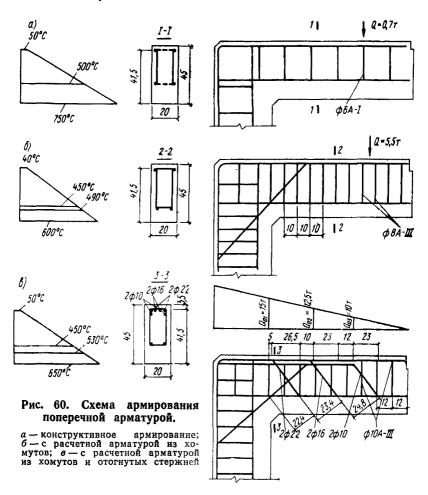
Пример 26. Расчет прочности наклонных сечений изгибаемого элемента из жаростойкого бетона без поперечной арматуры от действия поперечной силы при неравномерном нагреве до 750° С.

Дано: Ригель теплового агрегата имеет высоту h=45 см и ширину b=20 см. Ригель выполнен из жаростойкого бетона марки M300 на портландцементе с тонкомолотой шамотной добавкой и шамотными заполнителями (состав № 11, табл. 11 настоящего Руководства).

На ригель действует расчетная поперечная сила, равная 700 кгс. Температура крайней грани сжатой зоны бетона ригеля равна 750° С. Продольная рабочая арматура расположена с наружной стороны агрегата и ее температура равна 50° С (рис. 60, а). Необходимо проверить прочность элемента по наклонным сечениям:

$$h_0 = 45 - 3.5 = 41.5 \text{ cm}.$$

Для жаростойкого бетона марки М 300 (состав № 11) при средней температуре по высоте сечения элемента 400° С при длительном действии нагрева по табл. 14, 15 и 16 настоящего Руководства находим: $R_p = 8.7$ кгс/см²; $m_{0.1} = 0.85$ и $m_{p.t} = 0.3$.


Предельную поперечную силу, которую может воспринять поперечное сечение элемента при длительном действии нагрева, вычисляем по формуле (180) при k_1 , равном 0,4:

$$Q = 0,4.8,7.0,85.0,30.20.41,5 = 740 \text{ krc.}$$

Поперечная сила, воспринимаемая бетоном, равна 740 кгс, что больше действующей поперечной силы, равной 700 кгс, т. е. вся дей-

ствующая поперечная сила может быть воспринята бетонным сечением элемента.

Исходя из конструктивных соображений, ставим поперечную арматуру из стали класса A-I Ø 6 мм через 200 мм в виде двух каркасов. При этом хомуты обрываются в сжатой зоне бетона там, где температура арматуры не будет превышать 450° С согласно табл. 24 настоящего Руководства.

Пример 27. Расчет прочности наклонных сечений и ширины раскрытия наклонных трещин изгибаемого элемента из жаростойкого бетона с хомутами от действия поперечной силы при неравномерном нагреве до 600° С.

Дано: на ригель рамы действует расчетная поперечная сила 5,5 тс и поперечная сила от нормативной нагрузки, равная 5 тс. Ригель теплового агрегата имеет высоту h=45 см, ширину b=20 см и выполняется из жаростойкого бетона марки M 400 на портландцементе с тонкомолотой шамотной добавкой и шамотными заполнителями (состав № 11, табл. 11 настоящего Руководства). Ригель армируется двумя сварными каркасами. Поперечные стержни выполняются из стали класса A-III периодического профиля. Температура крайней грани сжатой зоны бетона 600° С (рис. 60,6). Температура продольной арматуры 40° С. Максимальная температура нагрева хомутов (согласно табл. 24 настоящего Руководства) может быть допущена до 450° С. Для жаростойкого бетона марки M 400 для средней температуры бетона по высоте сечения ригеля, равной 320° С, при длительном действии нагрева, согласно табл. 14,15 и 16 настоящего Руководства, находим:

$$R_{\rm np}=175\,{
m krc/cm^2};$$
 $R_p=9.8\,{
m krc/cm^2};$ $m_{61}=0.85;$ $m_{6.t}=0.67\,{
m m}\,m_{\rm p.t}=0.38.$

Рабочая высота ригеля

$$h_0 = 45 - 3.5 = 41.5 \,\mathrm{cm}$$

Величина максимально возможной поперечной силы, воспринимаемой заданным сечением бетона, определяется из условия (179):

$$Q \le 0.35 \cdot 175 \cdot 0.85 \cdot 0.67 \cdot 20 \cdot 41.5 = 28952 \,\mathrm{krc} > 5500 \,\mathrm{krc}$$
.

Следовательно, условие (179) соблюдено и размеры поперечного сечения допустимы.

Предельная поперечная сила, воспринимаемая бетоном при средней температуре бетона по высоте сечения ригеля 320° С и $k_1 = 0.4$, согласно формуле (180), равна

$$Q = 0.4.9.8.0.85.0.38.20.41.5 = 1044 \text{ kgc} < 5500 \text{ kgc}.$$

Сечения бетона недостаточно. Требуется установка поперечной арматуры. Принимаем хомуты из арматуры класса A-III $2 \varnothing 8$ мм $F_x = 1,01$ см². Хомуты устанавливаем через 100 мм. Усилие, воспринимаемое хомутами на единицу длины балки, определяют по формуле (187), в которой принимают $R_{a.x} = 2900$ кгс/см², и для максимальной температуры хомутов 450° С $m_{a.x} = 0,475$ (см. табл. 29 и 35 настоящего Руководства):

$$q_{\rm x} = \frac{2900 \cdot 0,475 \cdot 1,01}{10} = 115 \,{\rm krc/cm}.$$

Длину проекции невыгоднейшего наклонного сечения на продольную ось элемента определяем по формуле (185), в которой коэффициент условия работы $m_{\mathrm{p.t}}$ — для средней температуры сжатой зоны сечения. При неравномерном нагреве по высоте сечения среднюю температуру бетона сжатой зоны допускается принимать равной температуре бетона на расстоянии $0.2~h_0$ от нагреваемой грани, которая равна 490° С. Для этой температуры по табл. 16 настоящего Руководства находим $m_{\mathrm{pt}} = 0.21$. Длительное действие нагрева учитывается коэффициентом $m_{61} = 0.85$ (см. табл. 15 настоящего Руководства).

Коэффициент k2 для температуры 490° С принимается равным 3:

$$c_0 = \sqrt{\frac{3.9,8.0,85.0,21.20.41,5^2}{115}} = 40 \, \text{cm}.$$

При воздействии температуры, превышающей предельно допустимую температуру применения арматуры, установленной по расчету (см. табл. 24 настоящего Руководства), допускается принимать поперечную арматуру, укороченную по высоте сечения элемента. Минимально допустимая длина хомутов устанавливается не менее 2/3

 h_0 и она равна $\frac{2.41,5}{3} = 27,7$ см. Величина поперечной силы, вос-

принимаемая укороченными хомутами и бетоном в наклонном сечении, определяется по формуле (188):

$$Q_{\mathbf{x.6}} = 2 \sqrt{3.9,8.0,85.0,21.20.41,5^2.115} - 40.115 \left(\frac{415-27,7}{41,5}\right) = 7678 \text{ kgc.}$$

Сечение элемента с укороченной поперечной арматурой необходимо проверить по формуле (186), в которой вместо h_0 принимается условная рабочая высота сечения h_y , равная длине хомутов и толщине защитного слоя бетона у менее нагретой грани:

$$h_{\rm v}=27.7+3.5=31.2\,{\rm cm}$$
.

Температура условной сжатой зоны бетона укороченной высоты равна 380° С. Коэффициент условий работы бетона $m_{pt} = 0.32$ (см. табл. 16 настоящего Руководства) и $k_2 = 2.4$:

$$Q_{x,6} = 2\sqrt{2,4\cdot9,8\cdot0,85\cdot0,32\cdot20\cdot31,2^2\cdot115} = 7526 \text{ kgc}.$$

За расчетную поперечную силу принимается наименьшая, полученная по формуле (186), равная 7526 кгс, что больше действующей

поперечной силы, равной 5500 кгс.

Наибольшее расстояние между поперечными стержнями должно быть не более величины, определенной по формуле (190), в которой для средней температуры бетона сжатой зоны 490° С $k_2=3$ и $m_{\rm pt}=-0.21$:

$$u_{\text{max}} = \frac{0.75 \cdot 3.9.8 \cdot 0.85 \cdot 0.21 \cdot 20.41.5^{2}}{5500} = 24.7 \sim 25 \,\text{cm}.$$

Принятое расстояние между хомутами 10 см меньше $u_{\max} = 25$ см, что является вполне допустимым.

Для определения ширины раскрытия наклонных трещин от действия нормативной поперечной силы 5 тс предварительно вычислим по формуле (259) величину

$$t = \frac{5000}{20.41.5} = 6.02 \,\mathrm{krc/cm^2}.$$

Коэффициент насыщения поперечными стержнями, нормальными к продольной оси элемента, определяется по формуле (257):

$$\mu_{\mathbf{x}} = \frac{1.01}{20.10} = 0.00505.$$

Ширина раскрытия трещин, наклонных к продольной оси элемента a_{τ} , в изгибаемых элементах, армированных поперечной арматурой, определяется по формуле (254), в которой:

$$c_{\rm A}=1.5; \quad k=(20-1200\cdot0.00505)\cdot10^8=14\cdot10^3; \eta=1 \text{ m} \mu_{\rm H}=0.00505.$$

Для температуры хомутов 450° С $\beta_a = 0.86$ (см. табл. 35 настоящего Руководства) и $E_a = 2\,000\,000$ кгс/см²:

$$a_{\rm T} = 1,5 \cdot 14 \cdot 10^{8} (41,5 + 30 \cdot 0,8) \frac{1,0}{0,00505} \frac{6,02^{3}}{2\,000\,000^{2} \cdot 0,86^{3}} =$$

= 0,003 cm = 0,03 mm.

что вполне допустимо.

Пример 28. Расчет прочности наклонных сечений и ширины раскрытия наклонных трещин изгибаемого элемента из жаростойкого железобетона с хомутами и отогнутой арматурой от действия поперечной силы при неравномерном нагреве до 650° С.

Дано: на ригель теплового агрегата действует равномерно распределенная нагрузка с максимальной расчетной поперечной силой 15 тс. Поперечная сила от нормативной нагрузки 12 тс. Длина участка эпюры поперечных сил 200 см (рис. 60, θ), размеры сечения ригеля: h=45 см и b=20 см.

Ригель выполнен из жаростойкого бетона марки М 250 на портландцементе с тонкомолотой шамотной добавкой и шамотными заполнителями (состав № 11, табл. 11 настоящего Руководства). Температура крайней грани сжатой зоны бетона 650° С. Отогнутые стержни и хомуты из арматуры класса А-III. Максимальная температура применения отогнутых стержней и хомутов не должна превышать 450° С (см. табл. 24 настоящего Руководства). Температура продольной арматуры, расположенной у менее нагретой грани, 50° С.

Необходимо проверить достаточность поперечного сечения изгибаемого элемента при действии поперечных сил, подобрать сечение поперечной арматуры и определить ширину раскрытия наклонных трещин в невыгоднейшем наклонном сечении от действия нормативной поперечной силы:

 $h_0 = 45 - 3.5 = 41.5 \,\mathrm{cm}$

Средняя температура по высоте ригеля равна 350° С.

Максимально возможную поперечную силу, воспринимаемую заданным сечением, определяем из зависимости (179), в которой при длительном нагреве для средней температуры ригеля 350°C по табл. 14, 15 и 16 настоящего Руководства принимаем:

$$R_{\rm np} = 110\,{\rm krc/cm^2}; \quad m_{\rm 61} = 0.85; \quad m_{\rm 6.t} = 0.625;$$
 $R_{\rm p} = 8\,{\rm krc/cm^2}; \quad m_{\rm p.t} = 0.35\,{\rm m}$ $Q \le 0.35 \cdot 110 \cdot 0.85 \cdot 0.625 \cdot 20 \cdot 41.5 = 17\,{\rm rc} > 15\,{\rm rc}.$

Следовательно, условие (179) соблюдено и размеры поперечного сечения изгибаемого элемента допустимы.

Предельная поперечная сила, воспринимаемая бетоном, определяется по формуле (180), в которой при средней температуре по высоте сечения ригеля 350° С k_1 =0,4,

$$Q \ll 0.4 \cdot 8 \cdot 0.85 \cdot 0.35 \cdot 20 \cdot 41.5 = 796 \,\mathrm{krc} < 15\,000 \,\mathrm{krc}$$
, т. е. необходим расчет поперечной арматуры.

Принимаем двухветвевые хомуты диаметром 10 мм через 12 см, площадью $F_{\rm x} = 1,57$ см². Средняя температура сжатой зоны на расстоянии $0.2h_0$ равна 540° С. Для этой температуры $m_{\rm pt} = 0.158$.

Принятое расстояние между хомутами должно быть не более максимально допустимого, определяемого по формуле (190), в которой $k_2 = 3,2$ согласно п. 3.54 настоящего Руководства:

$$u_{\text{max}} = \frac{0.75 \cdot 3.2 \cdot 8 \cdot 0.85 \cdot 0.158 \cdot 20 \cdot 41.5^{2}}{15.000} = 5.9 \text{ cm}.$$

Для класса стали A III при температуре хомутов 450° С и длительном нагреве по табл. 29 и 35 настоящего Руководства находим $R_{ax} = 2900 \text{ кгс/см}^2 \text{ и } m_{at} = 0.475.$

Предельное усилие в хомутах на единицу длины элемента определяем по формуле (187):

$$q_{\rm x} = \frac{2900 \cdot 0,475 \cdot 1,57}{12} = 149 \, {\rm krc/cm}$$
:

Длину проекции невыгоднейшего наклонного сечения на продольную ось элемента вычисляем по формуле (185):

$$c_0 = \sqrt{\frac{3,2 \cdot 8 \cdot 0,85 \cdot 0,158 \cdot 20 \cdot 41,5^2}{149}} = 28,1 \text{ cm}.$$

Поперечную силу, воспринимаемую бетоном сжатой зоны и хомутами в невыгоднейшем наклонном сечении, находим по формуле (186):

$$Q_{x.6} = 2\sqrt{3,2 \cdot 8 \cdot 0,85 \cdot 0,158 \cdot 20 \cdot 41,5^2 \cdot 149} = 8,8 \text{ Tc.}$$

Проверяем прочность наклонного сечения при укороченной высоте, равной $h_x = \frac{2}{3}h_0 = 27,7$ см:

$$h_{y.0} = h_x + a = 27.7 + 3.5 = 31.2 \text{ cm}$$

Средняя температура бетона высоты сжатой зоны на расстоянии $0.2h_{y.0} = 41.5 - 31.2 + 0.2 \cdot 31.2 = 16.54$ см от нагреваемой грани равна 415° С.

$$m_{\rm pt} = 0,285 \text{ M } k_2 = 2,55.$$

 $R_{pt} = 8.0,285.0,85 = 1,94 \text{ krc/cm}^2$.

Тогда по формуле (188)

$$Q_{x.6} = 2\sqrt{8.0,85.0,285.2,55.20.41,5^2.149} -$$
 $-28,1.149 \frac{41,5-27,7}{41,5} = 10078 - 1392 = 8686 \,\mathrm{krc}.$

За расчетную поперечную силу принимается наименьшая поперечная сила, равная 8,686 тс, полученная по формуле (188). Она составляет величину, меньшую действующей поперечной силы, равной 15 тс, поэтому необходимо увеличить площадь сечения хомутов или поставить отогнутые стержни. Сечение отогнутых стержней арматуры определяется по формуле (193):

$$F_{01} = \frac{15\,000 - 8686}{1140 \cdot 0.707} = 7,83 \,\mathrm{cm}^2.$$

Принимаем 2Ø22A-III (F_{01} =7,6 см²). В конце первой плоскости отгибов находим поперечную силу Q_2 , приняв расстояние от грани опоры до начала первого отгиба 5 см:

$$Q_2 = \frac{15\,000}{200} [200 - (5 + 27,7)] = 12\,548\,\mathrm{kr} > 8800\,\mathrm{kr};$$

$$F_{02} = \frac{12\,548 - 8686}{1140\cdot 0.707} = 4,79\,\mathrm{cm}^2.$$

Принимаем 2Ø16 (F_{02} =4,02 см²);

$$Q_{8} = \frac{15\,000}{200} \left[200 - (5 + 27.7 + 10 + 23) \right] = 10\,073 \,\mathrm{kr} > 8800 \,\mathrm{kr};$$

$$F_{03} = \frac{10\,073 - 8686}{1140 \cdot 0,707} = 1,72\,\mathrm{cm}^2.$$

Принимаем 2Ø10 (F_{03} =1,57 см²);

$$Q_4 = \frac{15\,000}{200} [200 - (5 + 27,7 + 10 + 23 + 10 + 23)] = 7597,5 \,\mathrm{krc}$$

Эта величина поперечной силы меньше силы, воспринимаемой бетоном и хомутами.

Отогнутые стержни и хомуты должны располагаться там, где температура их нагрева не будет превышать предельно допустимую температуру применения данной марки стали.

Ширину раскрытия трещин, наклонных к продольной оси элемента $a_{\rm T}$, в изгибаемых элементах, армированных поперечной арматурой, определяем по формуле (254). Для определения ширины раскрытия наклонных трещин в сечении с наибольшей нормативной поперечной силой Q=12 тс предварительно вычислим величину t, которая для первого отгиба равна

$$t = \frac{12\,000}{20.41,5} = 14,46\,\mathrm{krc/cm^2}.$$

Коэффициент насыщения поперечными стержнями, нормальными к продольной оси элемента, определим по формуле (257):

$$\mu_{\mathbf{x}} = \frac{1.57}{20.12} = 0.0065$$

Коэффициент насыщения отогнутыми стержнями в первом отгибе, наклонными к продольной оси элемента, вычисляем по формуле (258):

$$\mu_0 = \frac{7.83}{20.22,4} = 0.0174;$$

$$\mu_{\rm n} = \mu_{\rm x} + \mu_{\rm 0} = 0.0065 + 0.0174 = 0.0239$$
.

Для арматуры периодического профиля $\eta = 1$. При длительно действующей нагрузке

$$c_{\pi\pi} = 1.5 \text{ H } k = (20 - 1200 \cdot 0.0121) \cdot 10^3 = 5.48 \cdot 10^3.$$

Принимаем $k = 8 \cdot 10^3$:

$$a_{\rm T} = 1,5 \cdot 8 \cdot 10^{\rm 3} (41,5 + 30 \cdot 2,2) \frac{1}{0,0239} \frac{14,46^{\rm 2}}{2\,000\,000 \cdot 0,86^{\rm 2}} =$$

= 0,04 < 0,3 mm.

Пример 29. Расчет прогиба предварительно-напряженной железобетонной плиты перекрытия, работающей при равномерном нагреве по сечению при температуре 100° С.

Дано: предварительно-напряженная железобетонная ребристая плита перекрытия (рис. 61). Помещение, перекрываемое плитой, име-

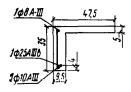


Рис. 61. Поперечное сечение предваригельно-напряженной железобетонной ребристой плиты перекрытия

ет нормальный влажностный режим. Марка обычного бетона М 300 (состав № 1 согласно табл. 11 настоящего Руководства). По табл. 13 и 14 настоящего Руководства определяем расчетные сопротивления бетона: $R_{пр11} = 180 \text{ krc/cm}^2$; $R_{p} = 15 \text{ krc/cm}^2$; $R_{np} = 135 \text{ krc/cm}^2$; $R_{p} = 10 \text{ krc/cm}^2$. По табл. 17 модуль упругости бетона: $E_6 = 2.6 \times 10^3 \text{ krc/cm}^2$.

Предварительно-напряженная арматура из стали класса A-IIIв с $R_{\rm aII}$ =5500 кгс/см², $R_{\rm a}$ =4500 кгс/см² (см. табл. 25 настоящего Руководства); $E_{\rm a}$ =2·108 кгс/см² (см. табл. 37 настоящего Руководства); ненапрягаемая арматура из горячекатаной стали класса A-III с $R_{\rm aII}$ =4000 кгс/см², $R_{\rm a}$ =3600 кгс/см²; $E_{\rm a}$ =2·108 кгс/см²; площадь сечения арматуры A: предварительно-напряженной $F_{\rm m}$ =4,91 см² (1Ø25); ненапрягаемая $F_{\rm a}$ =0,785 см² (1Ø10); площадь сече-

ния арматуры $A' - F_a' = 0,503$ см² (1Ø8); натяжение стержней осуществляется электротермическим способом; расчетный пролет плиты l = 570 см; нормативная равномерно распределенная нагрузка длительно действующая q = 2600 кгс/м.

Требуется определить прогиб плиты.

Определяем геометрические характеристики сечения без учета температуры.

Находим площадь приведенного сечения по формуле (6):

$$F_{\pi} = 47,5 \cdot 5 + 30 \cdot 9,5 + (4,91 + 0,785 + 0,503)7,69 = 570,2 \text{ cm}^3$$

$$n = \frac{E_a}{E_6} = \frac{2 \cdot 10^6}{2.6 \cdot 105} = 7,69.$$

Определяем статический момент относительно нижней грани ребра по формуле (7):

$$S_n = 237,5 \cdot 32,5 + 285 \cdot 15 + 4,91 \cdot 7,69 \cdot 4 + 0,785 \cdot 7,69 \cdot 2 + 0,503 \cdot 7,69 \cdot 32,5 = 12283 \text{ cm}^3$$

Определяем расстояние от центра тяжести приведенного сечения до нижней грани по формуле (5):

$$g = \frac{12283}{570.2} = 21,54 \,\mathrm{cm}$$

Определяем момент инерции приведенного сечения относительно его центра тяжести по формуле (11):

$$I_{\rm II} = \frac{47,5\cdot5^{3}}{12} + 47,5\cdot5 (32 - 21,54)^{2} + \frac{9,5\cdot30^{3}}{12} + + 9,5\cdot30 (21,54 - 15)^{2} + 4,91\cdot7,69 (21,54 - 4)^{2} + + 0,785\cdot7,69 (21,54 - 2)^{2} + 0,503\cdot7,69 (21,54 - 32,5)^{2} = = 76974,4 cm^{4}.$$

Определяем эксцентрицитет усилия предварительного обжатия относительно центра тяжести приведенного сечения:

$$e_{OH} = y - a = 21,54 - 4 = 17,54$$
 cm.

Предельно допустимое отклонение предварительного напряжения равно

$$p = 300 + \frac{3600}{1} = 300 + \frac{3600}{6} = 900 \,\mathrm{krc/cm^2},$$

где l — длина напрягаемого стержня, м.

Величину напряжения принимаем равной

$$\sigma_0 = R_{aII} - p = 5500 - 900 = 4600 \,\mathrm{krc/cm^2}$$
.

Қоэффициент точности предварительного напряжения арматуры равен

$$m_{\rm T}=1+\Delta m_{\rm T}$$

где

$$\Delta m_{\rm T}=0.5\,\frac{p}{\sigma_0}\left(1+\frac{1}{\sqrt{n_0}}\right);$$

здесь p — предельно допустимое отклонение, кгс/см²;

σ₀ — величина напряжения, кгс/см²;

no — число стержней в сечении;

$$\Delta m_T = 0.5 \frac{900}{4600} \left(1 + \frac{1}{\sqrt{3}} \right) = 0.15;$$

$$m_T = 1 + 0.15 = 1.15.$$

Определяем потери предварительного напряжения по табл. 4 главы СНиП II-21-75.

Первые потери, происходящие до окончания обжатия бетона: от релаксации напряжений в арматуре

$$\sigma_1 = 0.03 \cdot 4600 = 138 \,\mathrm{krc/cm^2}$$

от деформации бетона при быстронатекающей ползучести.

Для этого определяем напряжения в бетоне об на уровне центра тяжести напрягаемой арматуры от усилия предварительного обжатия, с учетом влияния собственного веса элемента.

Усилие предварительного обжатия N_{01} равно

$$N_{\rm ei} = m_{\rm t} \, \sigma_0 F_{\rm H} = 1,15.4600.4,91 = 26\,000 \, {\rm kgc}.$$

Момент от собственного веса плиты в середине пролета

$$M_{\rm c.B} = \frac{q_{\rm c.B} l_{\rm p}^2}{8} ,$$

где
$$q_{\text{c.в}} = \frac{P}{2l} = \frac{1700}{2.600} = 1,42 \,\text{krc/cm};$$

p — вес плиты;

$$M_{\text{c.B}} = \frac{1,42.570^2}{8} = 57\,500\,\text{kgc.cm}.$$

Напряжение в бетоне равно

$$\sigma_{6} = \frac{N_{01}}{F_{\Pi}} + \frac{N_{01}e_{0H}}{I_{\Pi}}y_{H} - \frac{M_{c,B} \cdot y_{H}}{I_{\Pi}} = \frac{26\,000}{570,2} + \frac{26\,000 \cdot 17,54}{76974,4} \, 17,54 - \frac{57500 \cdot 17,54}{76974,4} = 45,5 + 104 - 13,1 = 136,4 \, \text{kpc/cm}^{2}.$$

Потери от деформации бетона при быстронатекающей ползуче-

сти равны при
$$m=\frac{\sigma_6}{R_0}=\frac{136,4}{230}=0,595$$

$$\sigma_6 = 0.85 \cdot 500 \frac{\sigma_6}{R_0} = 0.85 \cdot 500 \cdot 0.595 = 253 \,\mathrm{krc/cm^2}$$

Первые потери равны

$$\sigma_{\text{m1}} = \sigma_1 + \sigma_6 = 138 + 253 = 391 \text{ kgc/cm}^2$$
.

Определяем вторые потери, происходящие после окончания обжатия бетона:

потери от усадки бетона — $\sigma_8 = 350 \text{ кгс/см}^2$;

потери от ползучести бетона — $\sigma_9 = 0.85 \cdot 2000 \frac{\sigma_6}{R_*} = 0.85 \cdot 2000 \times$ $\times 0.595 = 1010 \text{ krc/cm}^2$.

Коэффициент 0,85 в первых и вторых потерях учитывает наличие тепловлажностной обработки бетона.

Вторые потери $\sigma_{n2} = 350 + 1010 = 1360$ кгс/см². Полные потери при нормальной температуре равны $\sigma_{nx} = 391 +$ $+1360=1751 \text{ krc/cm}^2$.

Геометрические характеристики с учетом температуры.

Площадь приведенного сечения по формуле (6):

$$F_{\Pi 1} = \frac{237,5 \cdot 0,8 \cdot 0,7}{0,85} = 156 \text{ cm}^2;$$

$$F_{\Pi 2} = \frac{285 \cdot 0,8 \cdot 0,7}{0,85} = 188 \text{ cm}^8;$$

$$F_{\Pi 3} = \frac{(4,91 + 0,785) \cdot 2 \cdot 10^6 \cdot 1}{2,6 \cdot 10^5} = 44 \text{ cm}^2;$$

$$F'_{\Pi 3} = \frac{0,503 \cdot 2 \cdot 10^6 \cdot 1}{2 \cdot 6 \cdot 10^5} = 4 \text{ cm}^2;$$

$$F_{\rm m} = 156 + 188 + 44 + 4 = 392 \, \text{cm}^2$$
.

Статический момент относительно нижней грани ребра по формуле (7):

$$S_{\pi} = 156.32, 5 + 188.15 + 44.4 + 4.32, 5 = 8196 \text{ cm}^3$$

Расстояние от центра тяжести приведенного сечения до грани ребра по формуле (5):

$$y = \frac{8196}{392} = 20,9 \text{ cm}.$$

Момент инерции приведенного сечения по формуле (11):

$$I_{\pi} = \frac{156 \cdot 5^{2}}{12} + \frac{188 \cdot 30^{2}}{12} + 156 \cdot 11,6^{2} + 188 \cdot 5,9^{2} +$$

$$+ (4,91 + 0,785) \cdot 16,9^{2} + 0,503 \cdot 11,6^{2} = 43,655 \text{ cm}^{4}.$$

Эксцентрицитет усилия обжатия: $e_{0} = y - a = 20,9 - 4 = 16,9$ см. Дополнительные потери предварительного напряжения от воздействия температуры определяем по табл. 7 настоящего Руководства:

потери от усадки — 600 кгс/см2;

потери от релаксации напряжений в арматуре — σ_{3t} = =0,001 (100—20) 4600 = 368 кгс/см².

Дополнительные температурные потери равны — $\sigma_{\rm n.r}$ = 600+368 = 968 кгс/см².

Полные потери равны $\sigma_n = \sigma_{n.x} + \sigma_{n.r} = 1751 + 968 = 2719 \text{ кгс/см}^2$. Усилие обжатия с учетом всех потерь — $N_{02} = 4.91 (4600 - 2719) - 0.785 \cdot 2719 - 0.503 \cdot 2719 = 5743 \text{ кгс}$.

Момент в середине пролета (для половины сечения плиты) равен

$$M = \frac{2,6\cdot5,7^2}{2\cdot8} = 5,28 \text{ Tc} \cdot M$$

Определяем момент трещиноообразования M_{τ} по формуле (237), для этого по формуле (239) находим W_{τ} , где γ_i , γ_1' , μ_1 , μ_1' , n по формулам (240) — (244) соответственно:

$$\begin{split} \gamma_{1}^{'} &= \frac{2 \left(47, 5 - 9, 5\right) 5}{9, 5 \cdot 35} = 1,143; \qquad \gamma_{1} = 0; \\ \mu_{1}^{'} &= \frac{0,503}{9,5 \cdot 35} = 0,002; \\ \mu_{1} &= \frac{4,91 + 0,785}{9,5 \cdot 35} = 0,017; \\ n &= \frac{2 \cdot 10^{6} \cdot 1}{2,6 \cdot 10^{5} \cdot 0,8} = 9,615; \\ W_{T} &= [0,292 + 0,75 \cdot 2 \cdot 0,017 \cdot 9,615 + \\ + 0,075 \left(1,143 + 2 \cdot 0,002 \cdot 9,615\right)] 9,5 \cdot 35^{2} = 7285 \text{ cm}^{3}. \end{split}$$

Далее определяем $M_{06}^{\rm H}$ по формуле (124) главы СНиП II-21-75, для этого находим:

по формуле (238)
$$W_0 = \frac{43\,665}{20,9} = 2089 \text{ см}^3$$
;
по формуле (234): $r_y = 0.8 \frac{2089}{392} = 4,26 \text{ см}$;
 $M_{06}^{\pi} = 5734 (16,9 + 4,26) 1 = 121\,350 \text{ кгс} \cdot \text{см}$;
 $M_T = 0.7 \cdot 15 \cdot 7285 + 121\,350 = 197\,843 \text{ кгс} \cdot \text{см} = 1.98 \text{ тс} \cdot \text{м} < 5.28 \text{ те} \cdot \text{м}$.

т. е. трещины будут.

Следовательно, прогиб плиты определяем как для элемента с трещинами.

Определяем кривизну плиты в середине пролета от длительного действия нагрузки.

Заменяющий момент при действии внешнего момента M при $e_{\mathbf{x}} =$ =0 равен $M_3 = M = 5,28$ тс м.

Определяем относительную высоту сжатой зоны бетона ξ по формуле (266), для чего находим:

по формуле (267)
$$L = \frac{528\,000}{0,9\cdot180\cdot9,5\cdot31^2} = 0,357;$$
по формуле (269)
$$\mathbf{v}' = \frac{(47,5-9,5)\,5 + \frac{9,615}{0,7}\,0,503}{9,5\cdot31} = 0,682;$$
по формуле (268):
$$T = 0,682\left(1 - \frac{5}{2\cdot31}\right) = 0,627;$$

$$\mu n = \frac{4,91+0,785}{9,5\cdot31}\,9,615 = 0,183;$$

$$e_{\rm ac} = \frac{M_3}{N_{\rm o}} = \frac{528\,000}{5734} = 92,08\,{\rm cm},$$

Относительная высота сжатой зоны равна

$$\xi = \frac{1}{1,8 + \frac{1+5(0,357+0,627)}{10\cdot0,183}} + \frac{1,5+0,682}{11,5\frac{92,08}{31} - 5} = 0,274 > \frac{h_{\Pi}}{h_{\Omega}} = \frac{5}{31} = 0,161.$$

Плечо внутренней пары сил Z_1 определяем по формуле (271):

$$z_1 = 31 \left[1 - \frac{\frac{5}{31} \, 0,682 + 0,274^2}{2 \, (0,682 + 0,274)} \right] = 28 \, \mathrm{cm}.$$

Затем по формуле (273) находим коэффициент т:

$$m = \frac{0.7 \cdot 15 \cdot 7285}{528\,000 - 121\,350} = 0.188;$$

по формуле (272) определяем фа:

$$\psi_{\mathbf{a}} = 1,25 - 0,8 \cdot 0,188 - \frac{1 - 0,188^2}{(3,5 - 1,8 \cdot 0,188) \frac{92,08}{31}} = 1.$$

Определяем кривизну плиты в середине пролета по формуле (265):

$$\begin{split} \frac{1}{\rho} &= \frac{528\,000}{31\cdot28} \left[\frac{1}{2\cdot10^6\,(0,785+4,91)\,1} + \right. \\ &+ \frac{0,9}{(0,682+0,274)\,9,5\cdot31\cdot2,6\cdot105\cdot0,8\cdot0,15} \right] - \\ &- \frac{5734\cdot1}{31\cdot2\cdot10^6\,(4,91+0,785)} = 99,48\cdot10^{-6}\,\frac{1}{\text{cm}} \,. \end{split}$$

Кривизна от выгиба определяется по формуле (156) главы СНиП II-21-75:

$$\frac{1}{\rho_{BR}} = \frac{2213}{31 \cdot 2 \cdot 10^6 \cdot 1} = 35,69 \cdot 10^{-6} \frac{1}{cM}$$

Прогиб плиты

$$f = \frac{5}{48} (99,48 - 35,69) \cdot 10^{-6} \cdot 570^2 = 2,16 \text{ cm} < 2,5 \text{ cm},$$

т. е. прогиб плиты меньше предельно допустимого (см. табл. 4 настоящего Руководства).

Пример 30. Расчет железобетонной плиты фундамента на не-

равномерный нагрев от центра к краям.

Дано: плита из жаростойкого бетона на портландцементе с шамотными заполнителями (состав № 11 по табл. 11 настоящего Руководства), марки М 250 с характеристиками (см. табл. 13 и 14 настоящего Руководства), $R_{\pi p II} = 145$ кгс/см², $R_{p II} = 13$ кгс/см²; $R_{\pi p} = 110$ кгс/см², $E_6 = 1.65 \cdot 10^3$ кгс/см². Плита армируется по контуру арматурой класса А-III с $R_a = 3600$ кгс/см² (табл. 29 настоящего Руководства). Геометрические размеры плиты указаны на рис. 62, на нем же указано распределение температуры от центра плиты к периферии. Требуется определить необходимое количество арматуры от кратковременного воздействия на плиту неравномерного нагрева от центра к краям.

Наибольшие усилия от температурного перепада будут возни-

кать по длинным сторонам плиты.

Для определения необходимого количества арматуры для восприятия этих усилий плиту мысленно разрезаем по оси a-a и ведем расчет статически неопределимой балки с сечением, указанным на рис. 62, δ , загруженной по концам температурным моментом.

Определяем минимальный процент армирования продольных сторон полуплиты по формуле (45):

$$F_{\rm a} = \frac{110 \cdot 33 \cdot 230}{25 \cdot 3600} = 9,82 \, \rm cm^2.$$

Принимаем 4Ø18A-III ($F_a = 10,18 \text{ см}^2$).

Определяем момент, который может воспринять сечение, по формулам (98) и (99), в которых коэффициент $m_{5.1}$ определяется соглас-

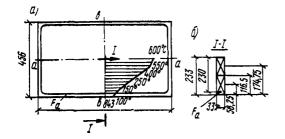


Рис. 62. Прямоугольная фундаментная железобетонная плита

 $a \leftarrow$ план плиты; $b \leftarrow$ расчетное сечение $b \leftarrow 1$ полуплиты

но примечанию к табл. 16, а m_{at} — по табл. 35 согласно температуре арматуры, m_{6t} = 0,825; m_{at} = 0,975,

$$x = \frac{3600 \cdot 10,18 \cdot 0,975}{110 \cdot 33 \cdot 0.825} = 11,25 \, \text{cm}.$$

По формуле (98)

$$M = 110 \cdot 0,825 \cdot 33 \cdot 11,25 \left(230 - \frac{11,25}{2}\right) = 7570000 \,\mathrm{krc} \cdot \mathrm{cm} = 75,7 \,\mathrm{tc} \cdot \mathrm{m}$$

Разбиваем сечение полуплиты на две части (рис. 62, δ) и определяем площадь приведенного сечения по формуле (6), в которой коэффициенты β_5 , ν и β_a находим по табл. 16, 18 и 35 настоящего Руководства при температурах в центре тяжести частей сечения и арматуры. Для данного состава бетона значение $k_n = 0.7$:

$$F_{\text{ni}} = \frac{0.5 \cdot 233 \cdot 33 \cdot 0.455 \cdot 0.477}{0.7} = 1192 \text{ cm}^2;$$

$$F_{\text{n2}} = \frac{0.5 \cdot 233 \cdot 33 \cdot 0.825 \cdot 0.725}{0.7} = 3285 \text{ cm}^2;$$

$$F_{\text{na}} = \frac{10.18 \cdot 2 \cdot 10^6 \cdot 0.98}{1.65 \cdot 10^5} = 121 \text{ cm}^2;$$

$$F_{\text{na}} = 1192 + 3285 + 121 = 4598 \text{ cm}^2;$$

Затем по формуле (9) определяем:

$$p_1 = \frac{0.5 \cdot 233 (2 \cdot 0.41 + 0.625)}{3 (0.41 + 0.625)} = 54,22 \text{ cm};$$

$$p_2 = \frac{0.5 \cdot 233 (2 \cdot 0.625 + 1)}{3 (0.625 + 1)} = 53,77 \text{ cm}.$$

По формуле (8) определяем:

$$y_1 = 0.5 \cdot 233 + 54.22 = 170.22 \text{ cm};$$

 $y_2 = 53.77 \text{ cm}.$

По формуле (7) определяем статический момент сечения:

$$S_{\pi} = 1192 \cdot 170,22 + 3285 \cdot 53,77 + 121 \cdot 3 = 379899 \text{ cm}^3$$

Затем по формуле (5) определяем

$$y = \frac{379\,899}{4598} = 82,6\,\mathrm{cm}.$$

По формулам (13) и (14) находим:

$$y_{61} = 170,22 - 82,6 = 87,62$$
 cm;
 $y_{62} = 53,77 - 82,6 = -28,83$ cm;
 $y_{a} = 82,6 - 3 = 79,6$ cm.

По формуле (11) определяем момент инерции сечения, для чего по формуле (12) находим:

$$I_{\Pi I} = \frac{1192 \cdot 116,5^{2}}{12} = 1348177 \text{ cm}^{4};$$

$$I_{\Pi 2} = \frac{3285 \cdot 116,5^{2}}{12} = 3715403 \text{ cm}^{4};$$

$$I_{\Pi} = 1348177 + 3715403 + 1192 \cdot 87,62^{2} + 3285 \cdot 28,83^{2} + 121 \cdot 79,6^{2} = 17711943 \text{ cm}^{4};$$

По формуле (239) определяем W_{τ} , для чего находим величины n, μ , γ_1 по формулам (244), (242), (241):

$$n = \frac{2 \cdot 10^{6} \cdot 0,98}{1,65 \cdot 10^{5} \cdot 0,455} = 26,1;$$
$$\mu = \frac{10,18}{33 \cdot 230} = 0,00134;$$

$$\mu n = 0.00134 \cdot 26.1 = 0.035; \quad \gamma' = 0;$$

 $W_{\rm T} = [0.292 + 0.75 \cdot 2 \cdot 0.00134 \cdot 26.1] 33 \cdot 233^2 = 618000 \, \text{cm}^8.$

Определяем момент образования трещин по формуле (237) при $\sigma_{6t}\!=\!0$:

$$M_{\rm T} = 13.0,725.618000 = 58,2 \,{\rm Tc\cdot M} < 75,38 \,{\rm Tc\cdot M}.$$

Следовательно, сечение будет работать с трещинами в растянутой зоне.

Далее определяем коэффициент приведения по формуле (44):

$$k_M = e^{\left(-\frac{(75,7-58,2)}{1,25\cdot58,2}\right)} = 0.8.$$

Затем определяем удлинение оси и кривизну каждого элемента сечения полуплиты по формулам (19), (20) и (21) настоящего Руководства:

$$\epsilon_{t1} = \frac{[5.600.54, 22 + 6, 25.400 (116, 5 - 54, 22)] \cdot 10^{-6}}{116, 5} = 2733 \cdot 10^{-6} \text{ cm};$$

$$[6, 25.400.53, 77 + 8, 5.100 (116, 5 - 53, 77)] \cdot 10^{-6} = 1612 \cdot 10^{-6}$$

$$\epsilon_{t2} = \frac{[6,25\cdot400\cdot53,77+8,5\cdot100\ (116,5-53,77)]\ 10^{-6}}{116,5} = 1612\cdot10^{-6}\ \text{cm};$$

$$\begin{split} \epsilon_{a} &= 12,5 \cdot 150 \cdot 10^{-6} = 1875 \cdot 10^{-6} \text{ cm}; \\ \frac{1}{\rho_{t1}} &= \frac{(5 \cdot 600 - 6,25 \cdot 400) \cdot 10^{-6}}{0,5 \cdot 233} = 4,27 \cdot 10^{-6} \cdot \frac{1}{\text{cm}}; \\ \frac{1}{\rho_{t2}} &= \frac{(6,25 \cdot 400 - 8,5 \cdot 100) \cdot 10^{-6}}{0,5 \cdot 233} = 14,16 \cdot 10^{-6} \cdot \frac{1}{\text{cm}}. \end{split}$$

Кривизна сечения без трещин по формуле (18) будет равна

$$\frac{1}{\rho_t} = \frac{[1192.87, 62.2733 + 3285 (-28,83) 1612 + }{17711943}$$

$$\rightarrow$$
 + 121 (-79,6) 1875 + 4,27·1 348 177 + 14,16·3 715 403] 10⁻⁶ 1,1 =

$$=10,7\cdot10^{-6}\frac{1}{cm}$$

Кривизну сечения полуплиты с трещинами находим по формуле (34), для этого определяем по формуле (68) коэффициент температурного расширения арматуры в бетоне, принимая по табл. 36

$$k = 0,9$$
 при $\frac{M_1}{M} = 1$ и $\mu < 0,2\%$;

$$\alpha_{ato} = [8 + (12, 5 - 8) \, 0.9] \, 10^{-6} = 12.05 \cdot 10^{-6}$$

Кривизна сечения полуплиты равна

$$\frac{1}{\rho_{I_1}} = \frac{(5.600 - 12,05.150) \cdot 10^{-6}}{230} \cdot 1, 1 = 5, 7.10^{-6} \cdot \frac{1}{c_{M}}$$

Приведенная кривизна сечения полуплиты по формуле (43) будет равна

$$\frac{1}{\rho_{nt}} = [5,7 + (10,7-5,7) \, 0.8] \, 10^{-6} = 9.7 \cdot 10^{-6} \, \frac{1}{c_{M}}$$

Жесткость сечения полуплиты без трещин по формуле (281) равна

 $B_1 = 0.85 \cdot 17711943 \cdot 1.65 \cdot 10^8 = 248.41 \cdot 10^{10} \,\mathrm{kgc} \cdot \mathrm{cm}^2$

Жесткость сечения полуплиты с трещинами определяем по формуле (286) при $k_1 = 0.53$ и $k_2 = 0.23$, принятых по табл. 52:

$$B = \frac{7538000 \cdot 0,53 \cdot 2 \cdot 10^{6} \cdot 0,98 \cdot 230^{2} \cdot 10,18}{7538000 - 0,23 \cdot 33 \cdot 233^{2} \cdot 13 \cdot 0,725} = 115,35 \cdot 10^{10} \, \text{kgc} \cdot \text{cm}^{2}.$$

Приведенная жесткость полуплиты по формуле (36) равна $B_{\rm m} = [115,35 + (248,41 - 115,35) \, 0,8] \, 10^{10} = 220,3 \cdot 10^{10} \, {\rm krc} \cdot {\rm cm}^2$.

Момент от воздействия температуры по формуле (46):

$$M_1 = 9,7 \cdot 220,3 \cdot 10^4 = 213 \text{ TC} \cdot M > M = 75,7 \text{ TC} \cdot M$$

полученный момент больше прочности сечения, следовательно, необходимо увеличение армирования.

Принимаем $8\varnothing 18$ с $F_a = 20,36$ см² и делаем пересчет:

$$x = \frac{3600 \cdot 20, 36 \cdot 0, 975}{110 \cdot 33 \cdot 0, 825} = 22,5 \text{ cm};$$

$$M = 110 \cdot 0, 825 \cdot 33 \cdot 22, 5 \left(230 - \frac{22,5}{2}\right) = 147,5 \text{ Tc·m};$$

$$F_{na} = \frac{20, 36 \cdot 2 \cdot 10^6 \cdot 0, 98}{1,65 \cdot 10^5} = 242 \text{ cm}^2;$$

$$F_{n} = 1192 + 3285 + 242 = 4719 \text{ cm}^2;$$

$$S_{n} = 1192 \cdot 170, 22 + 3285 \cdot 53, 77 + 242 \cdot 3 = 380 \cdot 225 \text{ cm}^3;$$

$$y = \frac{380 \cdot 225}{4719} = 80,5 \text{ cm};$$

$$y_{61} = 170, 22 - 80, 5 = 89, 72 \text{ cm};$$

$$y_{62} = 53, 77 - 80, 5 = -26, 73 \text{ cm};$$

$$y_{8} = 80, 5 - 3 = 77, 5 \text{ cm};$$

$$I_{n} = 1 \cdot 348 \cdot 177 + 3 \cdot 715 \cdot 403 + 1192 \cdot 89, 72^2 + 3285 \cdot 26, 73^3 + 300 \cdot 77, 5^2 = 18 \cdot 813 \cdot 580 \text{ cm}^4;$$

$$n = 26, 1; \quad \mu = \frac{20, 36}{33 \cdot 230} = 0,00268;$$

$$\mu n = 0,070;$$

$$\gamma' = 0;$$

$$W_{T} = [0,292 + 0,75 \cdot 2 \cdot 0,07] \cdot 33 \cdot 233^2 = 710 \cdot 000 \text{ cm}^3;$$

$$M_{T} = 13 \cdot 0,725 \cdot 710 \cdot 000 = 67, 1 \text{ Tc·m};$$

$$\frac{(147, 6 - 67, 1)}{1,25 \cdot 67, 1} = 0,38;$$

$$\frac{1}{9t} = \frac{[1192 \cdot 89, 72 \cdot 2733 + 3285 \cdot (-26,73) \cdot 1612 + 242 \cdot (-77,5) \cdot 1874 + 323 \cdot 18813 \cdot 580}{18 \cdot 813 \cdot 580 \cdot 1,65 \cdot 10^2 = 263,84 \cdot 10^{10} \text{ rc/cm}^2;}$$

$$B = \frac{14750000 \cdot 0.52 \cdot 2 \cdot 10^{6} \cdot 0.98 \cdot 230^{2} \cdot 20.36}{14750000 - 0.23 \cdot 33 \cdot 233^{2} \cdot 13 \cdot 0.725} = 148 \cdot 10^{10} \text{ krc} \cdot \text{cm}^{2};$$

$$B_{\Pi} = [148 + (263.84 - 148) \cdot 0.38] \cdot 10^{10} = 192 \cdot 10^{10} \text{ krc/cm}^{2};$$

$$M_{f} = 7.4 \cdot 10^{-6} \cdot 192 \cdot 10^{10} = 142 \text{ trcm} < M = 147.5 \text{ tc.m},$$

т е. условие прочности соблюдается.

Далее определяем ширину раскрытия трещины, для этого находим:

по формуле (267)

$$L = \frac{14200000}{33 \cdot 230^2 \cdot 1,05 \cdot 145} = 0,0535;$$

$$y' = 0; \quad T = 0; \quad \mu n = 0,07;$$

по формуле (266)

$$\xi = \frac{1}{1.8 + \frac{1 + 5.0,0535}{10.0.07}} = 0,277;$$

по формуле (271)

$$z_1 = 230 \left[1 - \frac{0.277}{2}\right] = 198 \text{ cm};$$

напряжения в арматуре будут равны

$$\sigma_a = \frac{14\ 200\ 000}{198\cdot 20.36\cdot 1.1} = 3200\ \text{krc/cm}^2;$$

ширина раскрытия трещины будет равна (249):

$$a_{\rm T} = 20 (3.5 - 100.0,00268) \frac{3}{1000} \left[\frac{3200}{2.10^6.0,98} + (12.05 - 8) 150.10^{-6} \right] = 0.38 \,\mathrm{mm} < 0.6 \,\mathrm{mm},$$

т. е. ширина раскрытия трещин вполне допустима для данной конструкции и для этих условий ее работы (см. табл. 3 настоящего Руководства).

Пример 31. Расчет прочности и ширины раскрытия трещин двухшарнирной портальной рамы из жаростойкого железобетона.

Дано: пролет рамы в свету 174 см, высота стоек в свету 260 см.

Сечение рамы по стойкам и ригелю одинаково.

Максимальная температура в центре рамы достигает 1000° С. За расчетное сечение рамы принимаем тавровый участок ребристой панели с высотой ребра $h\!=\!50$ см при ширине $b\!=\!12$ см, ширина

полки
$$b'_n = 75 \,\mathrm{cm}$$
, $h'_n = 13 \,\mathrm{cm}$.

Ребристые панели выполнены из жаростойкого бетона марки М 300 на портландцементе с тонкомолотым шамотом и шамотным заполнителем (состав № 11, табл. 11 настоящего Руководства), арматура периодического профиля класса A-III.

Требуется определить необходимое количество арматуры, располагаемой в ребрах рамы, для восприятия температурных усилий и собственного веса конструкции, а также проверить ширину раскрытия трешин.

Расчетные размеры рамы (рис. 63):

$$l_{\rm p} = 174 + 2h'_{\rm n} = 174 + 26 = 200 \,{\rm cm};$$

 $l_{\rm cm} = 260 + h'_{\rm n} = 260 + 13 = 273 \,{\rm cm}.$

Расчет рамы на прочность от воздействия температуры и собственного веса

Расчет производим при кратковременном нагреве до температуры 500° С, вызывающей максимальные усилия в конструкциях из данного состава бетона (см. п. 1.23 настоящего Руководства).

На основании теплотехнического расчета температура на арматуре при этих условиях будет 130° С.

Для первого приближения армирование определяем по формуле (45):

$$F_{\rm a} = \frac{135 \cdot 12 \cdot 45}{25 \cdot 3600} = 0.86 \, \rm cm^2.$$

Принимаем $2\emptyset10 \text{ с } F_a = 1,57 \text{ см}^2$, при этом

$$\mu = \frac{1.57}{12.45} = 0.003.$$

Для определения усилий в П-образной раме воспользуемся методом сил. За расчетную схему принимаем двухшарнирную раму, являющуюся один раз статически неопределимой системой. Выбираем основную систему, отбрасывая лишнюю связь. Ее действие заменяем приложением к основной системе распора X (рис. 62).

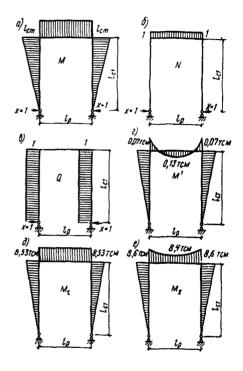


Рис. 63. Эпюра в портальной раме $a \leftarrow$ моментов; $b \leftarrow$ продольных сил; $b \leftarrow$ поперечных сил, вызванных единичной силой; $a \leftarrow$ моментов от собст

 θ — поперечных сил, вызванных единичной силой; e — моментов от собственного веса; ∂ — моментов от воздействия температуры; e — суммарных моментов

Для определения неизвестного усилия X составляем каноническое уравнение перемещения

$$egin{aligned} egin{aligned} oldsymbol{\delta_{11}}X + \Delta_{it} + \Delta_{iq} &= 0, \ X &= -rac{\Delta_{it} + \Delta_{iq}}{\delta_{11}}. \end{aligned}$$

Пля определения коэффициента δ_{ii} , перемещений Δ_{it} и Δ_{iq} к основной системе прикладываем силу X=1 и строим эпюры моментов и продольных сил (рис. 63, а, б).

Перемещение А: определяем по формуле (37).

Предварительно определяем все величины, входящие в эту формулу, для чего находим момент, который может воспринять сечение рамы при данных температурных условиях.

Проверим условие $R_{at} F_a \ll R_{npt} b_n' h_n'$. Значение коэффициента m_{at} определяется по табл. 35 настоящего Руководства при $t_a = 180^{\circ}$ C:

$$R_{at} F_a = 0.985 \cdot 3600 \cdot 1.57 = 5258 \text{ kpc}$$
.

Значение коэффициента m_{6t} определяем по табл. 16 при $t_6 =$ $=400^{\circ}$ С (на расстоянии 0.2 h_0 от сжатой грани сечения):

$$R_{\rm npt} = 0.95 \cdot 135 = 128 \,\mathrm{krc/cm^2};$$

 $R_{\rm npt} \, b_{\rm n}' \, h_{\rm n}' = 128 \cdot 75 \cdot 13 = 124 \,800 \,\mathrm{krc} > 5258 \,\mathrm{krc}.$

Усилие, которое может воспринять арматура, меньше усилия, воспринимаемого полкой сечения рамы. Следовательно, нейтральная ось проходит в полке, расчет будет производиться как для прямоугольного сечения. Из условия (99) находим высоту сжатой зоны бетона

$$x = \frac{3349 \cdot 1,57}{128 \cdot 75} = 0,55 \,\mathrm{cm},$$

отсюда по формуле (98) находим

$$M = 0.95 \cdot 135 \cdot 75 \cdot 0.64 \left(45 - \frac{0.55}{2}\right) = 237\,000\,\text{kgc} \cdot \text{cm} = 2.37\,\text{tc} \cdot \text{m}.$$

Определяем площадь приведенного сечения по формуле (6), для чего разбиваем на два элемента полку и ребро, и по формуле (2) находим:

$$F_{\text{m1}} = \frac{13.75.0,625.0,615}{0,7} = 535 \text{ cm}^2;$$

$$F_{\text{m2}} = \frac{37.12.0,81.0,72}{0.7} = 370 \text{ cm}^2;$$

по формуле (3):
$$F_{\text{па}} = \frac{1,57 \cdot 2 \cdot 10^6 \cdot 0,99}{1,75 \cdot 10^5} = 18 \text{ cm}^2;$$

$$F_{\pi} = 535 + 370 + 18 = 923 \, \text{cm}^2.$$

В формуле (6) коэффициенты β_6 и $\overline{\nu}$ находим по табл. 16 и 18 настоящего Руководства.

Затем по формуле (9) определяем:

$$p_1 = \frac{13(2 \cdot 0.5 + 0.625)}{3(0.5 + 0.625)} = 6.26 \text{ cm};$$

$$p_2 = \frac{37(2 \cdot 0.625 + 1)}{3(0.625 + 1)} = 17.08 \text{ cm}.$$

По формуле (8) определяем:

$$y_1 = 37 + 6,26 = 43,26 \text{ cm};$$

 $y_2 = 17,08 \text{ cm}.$

По формуле (7) определяем статический момент сечения:

$$S_{\pi} = 535.43,26 + 370.17,08 + 18.5 = 29553 \text{ cm}^3$$

Затем по формуле (5) определяем

$$y = \frac{29553}{923} = 32 \text{ cm}.$$

Затем по формуле (13) определяем:

$$y_6 = 43,26 - 32 = 11,26 \text{ cm};$$

$$y_{6} = 17,08 - 32 = -14,92 \text{ cm},$$

а по формуле (14)

$$y_a = 32 - 5 = 27 \text{ cm}$$

По формуле (11) определяем момент инерции сечения, для чего по формуле (12) находим:

$$I_{\text{mi}} = \frac{535 \cdot 13^2}{12} = 7535 \, \text{cm}^4;$$

$$I_{\pi_2} = \frac{370 \cdot 37^2}{12} = 42211 \text{ cm}^4;$$

$$I_{\pi} = 7585 + 42211 + 535 \cdot 11,26^{2} + 370 \cdot 14,92^{2} + 18 \cdot 27^{2} =$$

= 213 064 cm⁴.

По формуле (239) определяем W_{τ} , для чего находим величины γ_1^* и n по формулам (241) и (244):

$$\gamma_1' = \frac{2(75-12)13}{12.50} = 2,73;$$

$$n = \frac{2 \cdot 10^8 \cdot 0.99}{1.75 \cdot 10^8 \cdot 0.625} = 18.1;$$

$$\mu = 0,003; \quad \gamma = 0; \quad \mu_1'' = 0;$$

$$W_T = [0,292 + 0,75 \cdot 2 \cdot 0,003 \cdot 18,1 + 0,075 \cdot 2,73] \cdot 12 \cdot 50^3 = 17346 \text{ cm}^3.$$

Затем определяем момент трещинообразования по формуле (228) при $\sigma_{61} = 0$:

$$M_T = 13.0,73.17346 = 164614 \text{ krc} \cdot \text{cm} = 1,65 \text{ Tc} \cdot \text{m}.$$

Далее определяем коэффициент приведения по формуле (44);

$$k_{\rm M} = e^{-\frac{(2,37-1,65)}{1,25\cdot 1,65}} = 0,71,$$

Теперь по формуле (18) определяем кривизну сечений без трещин, для этого находим: коэффициент температурного расширения бетона, определяемый по табл. 20, при температуре нагрева крайнего

волокна бетона, т. е. при
$$t_{6\pi} = 500^{\circ}$$
 С $-\alpha_{6t} = 5,5 \cdot 10^{-6} \frac{1}{\text{град}}$; при темпе-

ратуре
$$t_{61} = 400^{\circ} \text{ C} - \alpha_{6t} = 6,25 \cdot 10^{-6} \frac{1}{\text{град}}$$
; при $t_{62} = 100^{\circ} \text{ C} - \alpha_{6t} = 8,5 \times 10^{-6} \frac{1}{\text{град}}$

По формуле (19) находим удлинение оси и по формуле (20) кривизну для каждой из частей сечения:

$$\varepsilon_{t1} = \frac{[5, 5 \cdot 500 \cdot 6, 26 + 6, 25 \cdot 400 (13 - 6, 26)] \cdot 10^{-6}}{13} = 2620 \cdot 10^{-6} \text{ cm};$$

$$\varepsilon_{t2} = \frac{[6,25\cdot400\cdot17,08+8,5\cdot100(37-17,08)]10^{-6}}{37} = 1612\cdot10^{-6} \text{ cm};$$

$$\varepsilon_a = 12,5 \cdot 10^{-6} \cdot 130 = 1625 \cdot 10^{-6} \text{ cm};$$

$$\frac{1}{\rho_{f1}} = \frac{(5,5\cdot500 - 6,25\cdot400) \cdot 10^{-6}}{13} = 19,23\cdot10^{-6} \cdot \frac{1}{\text{cm}};$$

$$\frac{1}{\rho_{f2}} = \frac{(6,25\cdot400 - 8,5\cdot100) \cdot 10^{-6}}{37} = 44,59\cdot10^{-6} \cdot \frac{1}{\text{cm}}:$$

Удлинение сечения без трещин будет равно

$$\varepsilon_{t1} = \frac{(535 \cdot 2620 + 370 \cdot 1612 + 18 \cdot 1625) \cdot 10^{-6}}{923} \cdot 1, 1 = 2416 \cdot 10^{-6} \text{ cm};$$

Кривизна сечения без трещин будет равна

$$\frac{1}{\rho_{t1}} = \frac{[535 \cdot 11, 26 \cdot 2620 + 370 (-14, 82) \cdot 1612 + 18 (-27) \cdot 1625 +}{213 \cdot 064}$$

$$+19.23.7535 + 44.59.42211] \cdot 10^{-6}$$
 $\cdot 1.1 = 42.10^{-6} \frac{1}{cm}$

Кривизну с трещинами определяем по формуле (34), для этого находим по формуле (68) коэффициент температурного расширения арматуры в бетоне

$$\alpha_{aig} = 8 \cdot 10^{-6} + (12.5 - 8.0) \cdot 10^{-6} \cdot 0.93 = 12.2 \cdot 10^{-6}$$

Здесь коэффициенты α_{6t} и α_{at} определяем соответственно по табл. 20 и 35 настоящего Руководства при температуре арматуры $t_a = 130^{\circ}$ С. Коэффициент k определяем по табл. 36 настоящего Руководства при $\mu = 0.3\%$.

Кривизна с трещинами равна

$$\frac{1}{\rho_t} = \frac{5.5 \cdot 10^{-6} \cdot 500 - 12.2 \cdot 10^{-6} \cdot 130}{45} \, 1,1 = 28,45 \cdot 10^{-6} \, \frac{1}{\text{cm}} \, .$$

Приведенная кривизна будет равна (43)

$$\frac{1}{\rho_{\rm nt}} = [28,45 + (42 - 28,45) \, 0,7] \, 10^{-6} = 37,95 \cdot 10^{-6} \, \frac{1}{c_{\rm M}} \, ,$$

Удлинение оси для сечений с трещинами определяем по формуле (33):

$$\varepsilon_{t} = \left\{ \frac{5.5 \cdot 500 \cdot 10^{-6} \left[45 - (32 - 5) \right] + 12.2 \cdot 130 \cdot 10^{-6} \left(32 - 5 \right)}{45} \right\} 1, 1 = 2257 \cdot 10^{-6} \text{ cM}.$$

Приведенное удлинение определяем по формуле (42):

$$\mathbf{e}_{nt} = [2257 + (2416 - 2257) \, 0,7)] \, 10^{-6} = 2370 \cdot 10^{-6} \, \text{cm};$$

Жесткость сечения определяем по формуле (41), для чего находим:

жесткость сечений без трещин по формуле (281):

$$B_1 = 0.85 \cdot 213064 \cdot 1.75 \cdot 109 = 3.17 \cdot 10^{10} \, \text{kgc/cm}^2;$$

жесткость сечений с трещинами по формуле (282), для этого определяем:

по формуле (269)

$$\gamma' = \frac{(75-12)\,13}{12.45} = 1,52;$$

по формуле (267)

$$L = \frac{237\,000}{0.95 \cdot 170 \cdot 12 \cdot 45^2} = 0.06;$$

по формуле (268)

$$T = 1,52\left(1 - \frac{13}{2.45}\right) = 1,3;$$

по формуле (266)

$$\xi = \frac{1}{1,8 + \frac{1 + 5(0,06 + 1,3)}{10 \cdot 0,003 + \frac{2 \cdot 10^{8} \cdot 0,99}{1,75 \cdot 105 \cdot 0,625}}} = 0,062;$$

по формуле (271)

$$Z_1 = 45 \left[1 - \frac{\frac{13}{45} \, 1,52 + 0,062^2}{2 \, (1,52 + 0,062)} \right] = 38,7 \, \text{cm};$$

по формуле (272)

$$\psi_a = 1,25 - 1,1 \frac{1,65}{2,37} = 0,48.$$

Затем определяем жесткость сечения с трещинами

$$B = \frac{45.38,7}{0.48} = \frac{0.9}{2.10^{6}.0.99 \cdot 1.57} + \frac{0.9}{(1.52 + 0.062) \cdot 45.12 \cdot 1.75 \cdot 10^{5}.0.325} = 1.0 \cdot 10^{10} \text{ krc·cm}^{2}$$

по формуле (36) определяем приведенную жесткость сечения:

$$B_{\rm II} = [1 + (3, 17 - 1) \, 0, 7] \, 10^{10} = 2, 52 \cdot 10^{10} \, \text{kg} \cdot \text{cm}^2$$

Для вычисления Δ_{it} , Δ_{ia} воспользуемся способом Верещагина. В этом случае

$$\Omega_{M_1} = 2 \frac{l_{cm}}{2} l_{cm} + l_{cr} l_p = 74529 + 54600 = 129129 \text{ cm}^2;$$

$$\Omega_{N_1} = 1; \quad l_p = 273 \text{ cm}^2;$$

перемещение Δ_{it} :

$$\Delta_{it} = (37.95 \cdot 129129 + 273 \cdot 2370)10^{-6} = 5.55 \text{ cm};$$

перемещение от равномерно распределенной нагрузки (собственный вес q=4 кгс/пог. см) равно

$$\Delta_{lq} = \frac{q l_{\rm p}^3 \ l_{cm}}{12 B_{\rm m}} = \frac{4 \cdot 200^3 \cdot 273}{12 \cdot 2 \cdot 52 \cdot 10^{10}} = 0,0289 \, {\rm cm}.$$

Значение коэффициента б11 определяем по формуле (38) без учета продольной силы:

$$\delta_{11} = \frac{2 \cdot 273 \cdot \frac{1}{2} \cdot 273 \cdot \frac{2}{3} \cdot 273 + 273 \cdot 200 \cdot 273}{2 \cdot 52 \cdot 10^{10}} = 0,00113.$$

Распор будет равен

$$X = \frac{5,6+0,0289}{0.00113} = 4930.$$

Умножая единичную эпюру M (рис. 63, a) на X = 4930, получаем эпюру момента, действующего в раме при данных температурных *<u>условиях:</u>*

$$M_t = 273.4930 = 13,45 \text{ TC} \cdot \text{M} > 2,36 \text{ TC} \cdot \text{M}.$$

Следовательно, условие прочности не соблюдается и двух стержней

 \emptyset 10 мм не достаточно для восприятия усилий, действующих в раме. Принимаем 2 \emptyset 22 с F_a =7,6 см² и μ = $\frac{7,6}{12(50-5)}$ =0,014 и снова проводим расчет — определяем:

несущую способность:

$$x = \frac{3349 \cdot 7, 6}{128 \cdot 75} = 2,66 \text{ cm},$$

$$M = 128 \cdot 75 \cdot 2,66 \left(45 - \frac{2,66}{2}\right) = 11,1 \text{ Tc·m};$$

площадь приведенного сече

$$F_{\text{na}} = \frac{7,6 \cdot 2 \cdot 10^{6} \cdot 0,99}{1,75 \cdot 10^{8}} = 86 \text{ cm}^{2},$$

$$F_{\text{n}} = 535 + 370 + 86 = 991 \text{ cm}^{2};$$

статический момент:

$$S_{\pi} = 536.43, 26 + 370.17, 08 + 86.5 = 29900 \text{ cm}^3,$$

$$y = \frac{29900}{991} = 30, 1 \text{ cm},$$

$$y_{6_1} = 43, 26 - 30, 1 = 13, 16 \text{ cm},$$

$$y_{6_1} = 17, 08 - 30, 1 = -13, 02 \text{ cm},$$

$$y_{9} = 30, 1 - 5 = 25, 1 \text{ cm};$$

момент инерции:

$$I_{\pi} = 7535 + 42211 + 535 \cdot 13, 16^{2} + 370 \cdot 13, 02^{2} + 86 \cdot 25, 1^{2} = 259546 \text{ cm}^{4},$$

$$\gamma_1'' = 2,73, \quad n = 18,1, \quad \mu_1 = 0,014, \quad \gamma_1 = 0, \quad \mu_1'' = 0;$$

момент сопротивления

$$W_{\mathbf{r}} = [0,292+0,75\cdot2\cdot0,014\cdot18,1+0,075\cdot2,73]$$
 12·50² = 20 300 см³; момент трещинообразования

$$M_{\pi} = 13.0.73.20300 = 1.93 \text{ TC} \cdot \text{M}$$
:

коэффициент приведения

$$k_{M} = e^{-\frac{(11,1-1,93)}{1,25\cdot 1,93}} = 0,02;$$

удлинение сечения без трещин

$$\mathbf{e}_{t_1} = \frac{(535 \cdot 2620 + 370 \cdot 1612 + 86 \cdot 1625) \cdot 10^{-6}}{991} \cdot 1, 1 = 2260 \cdot 10^{-6} \text{ cm};$$

кривизну сечения без трещин

$$\frac{1}{\rho_{t_{1}}} = \frac{[535 \cdot 13, 16 \cdot 2620 + 370 (-13, 02) 1612 + 86 (-25, 1) 1625 +}{259 546} \rightarrow \frac{+19, 23 \cdot 7535 + 44, 59 \cdot 42211 10^{-6}}{259 546} 1, 1 = 39 \cdot 10^{-6} \frac{1}{CM};$$

кривизну с трещинами:

$$\alpha_{atc} = [8 + (12, 5 - 8) 1] 10^{-6} = 12, 5 \cdot 10^{-6};$$

$$\frac{1}{\rho_t} = \frac{5, 5 \cdot 10^{-6} \cdot 500 - 12, 5 \cdot 10^{-6} \cdot 130}{45} 1, 1 = 27, 5 \cdot 10^{-6} \frac{1}{\text{cm}};$$

приведенную кривизну

$$\frac{1}{\rho_{\rm nf}} = [27, 5 + (39 - 27, 5) \ 0,02] \ 10^{-6} = 27, 4 \cdot 10^{-6} \frac{1}{\rm cm};$$

удлинение оси сечений с трещинами

$$e_{\mathbf{f}} = \left\{ \frac{5, 5 \cdot 500 \cdot 10^{-6} \left[45 - (30, 1 - 5) \right] +}{45} \rightarrow +12, 5 \cdot 130 \cdot 10^{-6} \cdot (30, 1 - 5) \cdot 1^{-6} \right\} \cdot 1, 1 = 2330 \cdot 10^{-6} \text{ cm};$$

приведенное удлинение

 $\mathbf{z}_{nt} = [2330 + (2260 - 2330) \ 0,02] \ 10^{-6} = 2329 \cdot 10^{-6} \ \text{см};$ жесткость сечений без трещин

 $B_1 = 0,85 \cdot 259 \ 546 \cdot 1,75 \cdot 105 = 3,86 \cdot 10^{10} \ {
m Krc} \cdot {
m cm}^2;$ жесткость сечений с трещинами:

$$\gamma' = 1,52; \quad L = \frac{1110000}{0,95 \cdot 170 \cdot 12 \cdot 45^2} = 0,283,$$

$$T = 1,3,$$

$$\frac{1}{1,8 + \frac{1+5(0,283+1,3)}{10 \cdot 0,014 + \frac{2 \cdot 10^8 \cdot 0,99}{1,75 \cdot 10^8 \cdot 0,625}} = 0,188,$$

$$z_1 = 45 \left[1 - \frac{\frac{13}{45} 1,52 + 0,188^2}{2(1,52+0,188)} \right] = 38,8 \text{ cm},$$

$$\psi_a = 1,25 - 1,1 \frac{1,93}{11.1} = 1,$$

$$B = \frac{45.38,8}{\frac{1}{2 \cdot 10^{6} \cdot 0,99 \cdot 7,6} + \frac{0,9}{(1,52 + 0,188) \cdot 45 \cdot 12 \cdot 1,75 \cdot 10^{5} \cdot 0,325}}$$
$$= 2.08 \cdot 10^{10} \text{ krc} \cdot \text{cm}^{2};$$

приведенную жесткость

 $B_{\rm II} = [2,08 + (3,86 - 2,08) \cdot 0,02] \, 10^{10} = 2,12 \cdot 10^{10} \, {\rm KFC} \cdot {\rm cm}^2;$ перемещение Δ_{it}

$$\Delta_{it} = (27, 4.129129 + 273.2329)10^{-6} = 4.18 \, \text{cm}$$

перемещение Δ_{iq}

$$\Delta_{lq} = \frac{4 \cdot 200^8 \cdot 273}{12 \cdot 2 \cdot 12 \cdot 10^{10}} = 0,0344 \text{ cm};$$

коэффициент бы

$$\delta_{11} = \frac{2 \cdot 273 \cdot \frac{1}{2} \cdot 273 \cdot \frac{2}{3} \cdot 273 + 273 \cdot 200 \cdot 273}{2 \cdot 12 \cdot 10^{10}} = 0,00135$$

распор X

$$X = \frac{4,18 + 0,0344}{0,00135} = 3120 \,\mathrm{krc}$$

и момент от температурного воздействия

$$M_t = 273.3120 = 8,53 \text{ TC} \cdot \text{M}.$$

Моменты от собственного веса равны (рис. 63, e): в пролете рамы

$$M' = \frac{ql_{\rm p}^2 + 2ql_{\rm cr} l_{\rm p}}{24 + 16 \frac{l_{\rm cr}}{l_{\rm p}}} = \frac{4 \cdot 200^2 + 2 \cdot 4 \cdot 273 \cdot 200}{24 + 16 \frac{273}{200}} = 0,13 \text{ TC-M};$$

в углах

$$M_{\rm B}' = M_{\rm C}' = \frac{q l_{\rm p}^2}{12 + 8 \frac{l_{\rm CT}}{l_{\rm p}}} = \frac{4 \cdot 200^{\rm a}}{12 + 8 \frac{273}{200}} = 0,07 \text{ TC} \cdot M.$$

Суммарные моменты в раме равны (рис. 63, e): в углах

$$M_{\rm B} = M_{\rm C} = M_t + M_{\rm B}' = 8,53 + 0,07 = 8,6 \text{ TC} \cdot M;$$

в пролете

$$M = M_t - M' = 8,53 - 0,13 = 8,4 \text{ TC} \cdot M_t$$

Суммарный действующий в раме момент $M_{\rm B}\!=\!8,6$ тс·м меньше прочности сечения рамы $M\!=\!11,1$ тс·м, следовательно, условие прочности удовлетворяется и двух стержней \varnothing 22 достаточно для восприятия усилий, действующих в раме.

Определяем ширину раскрытия трещин от действия момента, возникающего при нагреве внутренней поверхности рамы до 500° С и собственного веса.

Напряжения в арматуре равны

$$\sigma_{\rm a} = \frac{M_{\rm B}}{F_{\rm a} \cdot z_{\rm 1} \cdot n_{\rm f}} = \frac{860\,000}{7,6\cdot38,8\cdot1,1} = 2660\,{\rm krc/cm^2}_{\rm 1}$$

Раскрытие трещин определяем по формуле (249):

$$a_{\rm T} = 1 \cdot 1 \cdot 20 (3.5 - 100 \cdot 0.014) \sqrt[3]{22} \left[\frac{2660}{2 \cdot 10^6 \cdot 0.99} + (12.5 - 8) 10^{-6} \cdot 130 \right] = 0.227 \,\text{mm} < 0.3 \,\text{mm},$$

т. е. ширина раскрытия трещин находится в допустимых пределах (см. табл. 3 настоящего Руководства).

Пример 32. Расчет прочности, деформаций и ширины раскрытия трещин свободно опертой плиты покрытия из жаростойкого железобетона при длительном одностороннем нагреве до 520° С.

Дано: плита покрытия длиной 320 см с расчетным пролетом l = 290 см, шириной b = 100 см и высотой h = 35 см. Плита выполнена из жаростойкого бетона марки M 300 на портландцементе с тонкомолотой шамотной добавкой и шамотными заполнителями (состав № 11 по табл. 11). Для армирования плиты используется арматура периодического профиля диаметром 16 мм из горячекатаной стали класса A-III. Продольная рабочая арматура расположена с нижней более нагретой стороны плиты с защитным слоем 92 мм, равным примерно 6 диаметрам.

Согласно теплотехническому расчету, при температуре рабочего пространства теплового агрегата $t_{\rm B}\!=\!550^{\circ}$ С и температуре наружного воздуха $t_{\rm R}\!=\!25^{\circ}$ С температура арматуры равна 400° С, температура верхнего крайнего волокна сжатой зоны бетона $t_{\rm G}\!=\!90^{\circ}$ С, средняя температура бетона сжатой зоны, принимаемая по температуре бетона на расстоянии $0.2h_{\rm O}\!=\!5$ см от верхней менее нагретой грани, $t_{\rm Go}\!=\!162^{\circ}$ С, и температура более нагретой грани сечения пли-

ты равна 520° С.

Расчет прочности

Расчет прочности плиты производим по сечению с наибольшим изгибающим моментом в центре пролета. Нагрузка на 1 м от собственного веса плиты при объемном весе железобетона в сухом состоянии $\gamma = 1,95 \text{ т/m}^3$ и коэффициенте перегрузки n = 1,1:

$$q = nbh\gamma = 1, 1 \cdot 1 \cdot 0, 35 \cdot 1, 95 = 0,75 \text{TC}/\cdot \text{M}$$
:

Изгибающий момент в центре пролета свободно опертой плиты

$$M = \frac{ql^2}{8} = \frac{0.75 \cdot 2.9^2}{8} = 0.79 \text{ TC} \cdot M = 79000 \text{ krc} \cdot cM;$$

Принимаем арматуру в количестве 5Ø16, $F_{\rm a}$ =10,05 см², расположенной с шагом 200 мм по ширине плиты. При длительном нагреве по табл. 16 при $t_{\rm 5c}$ =162° С, $m_{\rm 5.t}$ =1, а по табл. 35 при $t_{\rm a}$ =400° С, $m_{\rm at}$ =0,5. При марке М 300 по табл. 14 расчетное сопротивление бетона сжатию $R_{\rm \pi p}$ =135 кгс/см².

По табл. 15 коэффициент условий работы бетона при длительном нагреве m_{51} —0,85. Расчетное сопротивление арматуры класса А-III при температуре 20°C, согласно табл. 29, R_a =3600 кгс/см².

Определяем высоту сжатой зоны бетона по формуле (99):

$$x = \frac{3600 \cdot 0.5 \cdot 10.05}{135 \cdot 1 \cdot 0.85 \cdot 100} = 1.5 \, \text{cm};$$

Условие прочности плиты с односторонним армированием проверяем по формуле (98):

$$M = 79\,000\,\text{krc}\cdot\text{cm} < 0.85\cdot135\cdot100\cdot1.5\left(25 - \frac{1.5}{2}\right) = 422\,000\,\text{krc}\cdot\text{cm}.$$

Следовательно, условие прочности плиты удовлетворяется с большим запасом.

Расчет деформаций

Проверяем возможность образования трещин в бетоне от нагрузки, вызванной собственным весом плиты. Для этой цели вычисляем момент трещинообразования $M_{\rm T}$ по формуле (237) при $\sigma_{6\ell} = 0$.

Для данной конструкции плиты при
$$\delta = \frac{\dot{a}}{h} = \frac{10}{35} = 0,286 > 0,1;$$

коэффициент армирования μ_1 в формуле (239) при определении $W_{\mathtt{T}}$ необходимо умножить на $k=1-26=1-2\cdot 0,286=0,428$:

$$\mu_1 = \frac{F_a}{F_6} = \frac{10,05}{100 \cdot 35} = 0,0029$$
 при $t_6 = t_a = 400^{\circ}$ C;

по табл. 16 $m_{\rm pt}$ =0,3, для бетона М 300 по табл. 13 $R_{\rm p}^{\rm H}$ =13 кгс/см².

При температуре бетона 400° С на уровне арматуры по табл. 16 $\beta_0 = 0.63$, при $t_a = 400^{\circ}$ С по табл. 35 $\beta_a = 0.88$

$$n = \frac{E_{\rm a} \, \beta_{\rm a}}{E_{\rm 6} \, \beta_{\rm 6}} = \frac{2 \cdot 10^{\rm 6} \cdot 0.88}{175\,000 \cdot 0.63} = 16;$$

$$W_T = (0.292 + 0.75 \cdot 2 \cdot 0.0029 \cdot 0.428 \cdot 16) 100 \cdot 35^2 = 39418 \text{ cm}^3;$$

$$M_{\mathbf{T}} = \mathbf{W}_{\mathbf{T}} R_{\mathbf{D}}^{\mathbf{H}} m_{\mathbf{D}t} = 39418 \cdot 13 \cdot 0, 3 = 153730 \,\mathrm{krc} \cdot \mathrm{cm}_{\mathbf{A}}$$

Изгибающий момент в центре пролета при нагрузке от собственного веса без коэффициента перегрузки:

$$q = bh\gamma = 1.0,35.1,95 = 0,68 \text{ Tc·m};$$

$$M = \frac{ql^2}{8} = \frac{0,68.2,9^2}{8} = 0,71 \text{ Tc·m} = 71000 \text{ krc·cm}.$$

Так как $M = 71~000~{\rm krc} \cdot {\rm cm} < M_{\rm T} = 153~730~{\rm krc} \cdot {\rm cm}$, то от собственного

веса плиты трещины в растянутой зоне бетона не образуются. При коэффициенте армирования плиты $\mu = \frac{F_a}{bh_0} = \frac{10,05}{100 \cdot 25} = -0.004 = 0.4\%$ и температуре арматуры $t_a = 400^\circ$ C, согласно п. 4.3, плита будет работать с трещинами в бетоне растянутой зоны, вызванными разностью коэффициентов температурного расширения арматуры и бетона. В соответствии с этим при определении сасс коэффициент k=0.75 согласно данным табл. 36 при $\frac{M_1}{M}=0.5$ и $\mu=0.4\%$.

При $t_a = 400^{\circ}$ С соответственно по табл. 20 и 35 имеем $\alpha_{6,t} =$ $=4,75\cdot 10^{-6}$ и $\alpha_{a,t}=14\cdot 10^{-6}$. По формуле (68)

$$\alpha_{afc} = 4,75 \cdot 10^{-6} + (14 \cdot 10^{-6} - 4,75 \cdot 10^{-6}) \ 0,75 = 11,7 \cdot 10^{-6}.$$

Кривизну от воздействия температуры определяем по формуле (35) при $n_t = 1$. При $t_0 = 90^{\circ}$ С по табл. 20 $\alpha_{0t} = 6.5 \cdot 10^{-6}$:

$$\frac{1}{\rho_t} = \frac{11,7 \cdot 10^{-6} \cdot 400 - 6,5 \cdot 10^{-6} \cdot 90}{25} \quad 1 = 164 \cdot 10^{-6} \frac{1}{\text{cm}}$$

Прогиб плиты в центре пролета от неравномерного нагрева определяем по формуле (280):

$$f_t = \frac{290^2}{8} 164 \cdot 10^{-6} = 1,7 \text{ cm} = 17 \text{ mm}.$$

Определяем прогиб плиты в центре пролета от собственного веса.

При марке бетона M 300 по табл. 13 $R_{\rm np}^{\rm H} = 170$ кгс/см².

По формуле (267)

$$L = \frac{71\,000}{100 \cdot 25^2 \cdot 170} = 0,0067.$$

При $t_{\rm a}\!=\!400^{\rm o}$ С по табл. 35 $\beta_{\rm a}\!=\!0.88$ и при $t_{\rm 6c}\!=\!162^{\rm o}$ С по табл. 16 $\beta_{\rm 6}\!=\!0.94$. При марке бетона М 300 по табл. 17 $E_{\rm 6}\!=\!175\,000$ кгс/см², а по табл. 37 $E_{\rm a}\!=\!2\!\cdot\!10^{\rm 6}$ кгс/см²,

$$n = \frac{2 \cdot 10^6 \cdot 0,88}{175\,000 \cdot 0.94} = 10,7,$$

Относительную величину сжатой зоны бетона определяем по формуле (266):

$$\xi = \frac{1}{1.8 + \frac{1 + 5.0,0067}{10.0,004 \cdot 10.7}} = 0.24.$$

Величина z_1 определяется по формуле (271):

$$z_1 = 25 (1 - 0.5 \cdot 0.24) = 22 \text{ cm}.$$

По формуле (273) вычисляем значение m:

$$m = \frac{13 \cdot 0, 3 \cdot 39418}{71,000} = 2,16.$$

Так как m=2,16>1, то за расчетную величину принимаем m=1. Коэффициент ψ_a определяем по формуле (272):

$$\psi_a = 1,25 - 0,8 \cdot 1 = 0,45$$
.

По формуле (265) определяем кривизну от собственного веса плиты при $\psi_6=0.9$. При $t_{6c}=162^{\circ}$ С по табл. 19 v=0.12, а при $t_{a}=400^{\circ}$ С по табл. 38 $v_{a}=0.3$:

$$\frac{1}{\rho} = \frac{71\,000}{25\cdot22} \left(\frac{0,45}{2\cdot10^6\cdot0,88\cdot10,05\cdot03} + \frac{0,9}{0,24\cdot100\cdot25\cdot0,12\cdot175\,000\cdot0,94} \right) =$$

$$= 129\,(0,084\cdot10^{-6} + 0,076\cdot10^{-6}) = 20,6\cdot10^{-6}\,\frac{1}{000}.$$

По формуле (287) определяем прогиб от собственного веса плиты:

$$f_{\rm M} = 20,6 \cdot 10^{-6} \, \frac{5}{48} \, 290^2 = 0,18 \, {\rm cm} = 1,8 \, {\rm mm}.$$

Определяем полный прогиб:

$$f = f_t + f_M = 17 + 1.8 = 18.8 \text{ mm}.$$

Прогиб плиты $f = \frac{18,8}{2900} l = \frac{1}{154} l$ не превышает допустимого $\frac{1}{150} l$ согласно п. 1.29.

Расчет ширины раскрытия трещин

Ширину раскрытия трещин, нормальных к продольной оси плиты, определяем по формуле (249), в которой: $c_n = 1,5; k = 1; \eta = 1;$

$$\mu = 0.004$$
; $\beta_a = 0.88$; $d = 16$ mm; $\alpha_{atc} = 11, 7 \cdot 10^{-6}$; $\alpha_{bt} = 4, 75 \cdot 10^{-6}$.

Напряжение в арматуре од определяем по формуле (252):

$$\sigma_{\rm a} = \frac{71\,000}{10,05\cdot22} = 321\,\,{\rm krc/cm^2};$$

$$a_{\rm T} = 1\cdot1\cdot20\,(3.5-100\cdot0.004)\,\,{\rm V}\,\,\overline{$$

Ширина раскрытия трещин в железобетонной плите $a_{\rm T} = 0.48$ мм не превышает допускаемую величину $a_{\rm T}$ = 0,5 мм согласно табл. 3.

Пример 33. Расчет прочности и ширины раскрытия трещин сферического купола и опорного кольца из жаростойкого железобетона

при одностороннем кратковременном нагреве.

Дано: Сферический купол пролетом 5 м перекрывает рабочее пространство теплового агрегата с температурой 700° С. Температура окружающего воздуха в зимний период равна 15°C, а в летний 25° С.

Геометрические параметры купола согласно рис. 49: h=240 мм; $r_{\rm B} = 5000$ MM; r = 5120 MM; $r_{\rm H} = 5240$ MM; $r_{\rm G} = 2500$ MM; $r_{\rm I} = 2560$ MM; $r_a = 2900$ MM; $r_2 = 2950$ MM; $r_2 - r_1 = 390$ MM; $r_a - r_1 = 340$ MM; $h_1 = 390$ MM; $r_2 - r_1 = 340$ MM; $h_2 = 390$ MM; $h_3 = 390$ MM; $h_4 = 39$ =b=310 мм и $\alpha=30^{\circ}$.

Стрела подъема срединной поверхности купола равна f = r.

 $(1-\cos\alpha) = 5120(1-\cos30^\circ) = 5120(1-0.866) = 690^\circ$ MM.

Расчетный пролет купола $l=2r_1=2\cdot 2560=5120$ мм. Для изготовления купола принят жаростойкий бетон состава № 11 (по табл. 11) марки М 300 на портландцементе с шамотным заполнителем. Для одностороннего армирования купола со стороны менее нагретой поверхности в кольцевом и радиальном направлениях и опорного кольца используется арматура диаметром соответственно 14 и 16 мм периодического профиля класса A-III.

С наружной стороны опорного кольца предусматривается тепловая изоляция в виде асбестоцементной штукатурки толщиной 20 мм для уменьшения перепада температуры по высоте сечения кольца и, следовательно, для уменьшения усилий от воздействия температуры.

Нагрузка на 1 см² купола от его собственного веса при объемном весе железобетона в сухом состоянии $\gamma = 1,95$ т/м³ и коэффициенте перегрузки n=1,1 равна

$$q = n\gamma h = 1, 1 \cdot 1, 95 \cdot 0, 24 = 0, 5 \text{ TC/M}^2 = 0, 05 \text{ KFC/CM}^2$$
.

Требуется произвести:

1) теплотехнический расчет купола и опорного кольца;

2) расчет прочности купола и опорного кольца в момент пуска теплового агрегата в зимний период;

3) расчет ширины раскрытия трещин в бетоне купола и опорного кольца.

Теплотехнический расчет купола при температуре более нагретой поверхности 500° С в зимний период.

При температуре 500° С в статически неопределимых конструкциях из жаростойкого бетона на портландцементе, согласно п. 1.23, возникают наибольшие усилия от воздействия температуры.

Принимаем температуру менее нагретой поверхности купола t_{6_1} =120° С. Средняя температура бетона $t_{\rm cp}=\frac{500+120}{9}=310^{\circ}$ С.

При $t_{\rm cp} = 310^{\circ}$ С по табл. 9 коэффициент теплопроводности бетона $\lambda_{\rm i} = 0.72$. При $t_{\rm f_i} = 120^{\circ}$ С по табл. 8 $\alpha_{\rm H} = 13$ ккал/(м²·ч·° С).

При высоте сечения купола h=24 см:

$$R_1 = \frac{0.24}{0.72} = 0.33;$$
 $\frac{1}{\alpha_R} = \frac{1}{13} = 0.08;$ $R_0 = 0.33 + 0.08 = 0.41 \text{ м}^2 \cdot \text{ч} \cdot \text{°C/ккал};$ $Q = \frac{t_6 - t_B}{R_0} = \frac{500 - 15}{0.41} = 1183 \text{ ккал/(м}^2 \cdot \text{ч});$ $t_{61} = t_6 - QR_1 = 500 - 1183 \cdot 0.33 = 110^{\circ} \text{ C}.$

Полученная температура $t_{61} = 110^{\circ}\,\mathrm{C}$ незначительно отличается от ранее принимавшейся для расчета $t_{61} = 120^{\circ}$ С.

Температура арматуры при защитном слое 30 мм и расстоянии от центра тяжести арматуры до наружной поверхности бетона а= =44 MM:

$$t_a = 110 + \frac{4.4}{24} (500 - 110) = 190^{\circ} \text{ C}.$$

Теплотехнический расчет опорного кольца при температуре нижней поверхности купола 500° С в зимний период

Средняя температура бетона в куполе

$$t_{\rm cp} = \frac{500 + 110}{2} = 305^{\circ} \, \rm C.$$

Принимаем температуру внутренней, более нагретой поверхности опорного кольца, равной средней температуре бетона в куполе, т. е. $t_6 = t_{\rm cp} = 305^{\circ}$ С, температуру наружной поверхности тепловой изоляции $t_{\text{от}} = 50^{\circ}\,\text{C}\,$ и менее нагретой поверхности бетона $t_{\text{б1}} = 90^{\circ}\,\text{C}.$

Средняя температура бетона в сечении опорного кольца

$$t_{\rm cpi} = \frac{305 + 90}{2} = 197^{\circ} \, \rm C.$$

При $t_{\text{орі}}=197^{\circ}$ С по табл. 9 коэффициент теплопроводности бетона $\lambda_1=0.75$. При $t_{\text{сr}}=50^{\circ}$ С по табл. 8 $\alpha_{\text{H}}=10$ ккал/(м²·ч·°С). Коэффициент теплопроводности асбестоцементной штукатурки λ_2 = =0.18.

При высоте сечения опорного кольца в радиальном направлении: $h = r_2 - r_1 = 39$ cm:

$$R_{1} = \frac{0.39}{0.75} = 0.52;$$

$$R_{2} = \frac{0.02}{0.18} = 0.11; \quad \frac{1}{\alpha_{H}} = \frac{1}{10} = 0.1;$$

$$R_0 = 0.52 + 0.11 + 0.10 = 0.73;$$

$$Q = \frac{305 - 15}{0.73} = 397 \text{ ккал/(м·ч)};$$

$$t_1 = 305 - 397 \cdot 0.52 = 99^{\circ} \text{ C};$$

$$t_{CT} = 305 - 397 \cdot (0.52 + 0.11) = 55^{\circ} \text{ C}.$$

Температура кольцевой арматуры в опорном кольце при $\alpha = 50$ мм: $t_a = 99 + \frac{5}{39}(305 - 99) = 125$ ° С.

Расчет прочности купола и опорного кольца при воздействии собственного веса и наибольших усилий от кратковременного нагрева до 500° С.

Кольцевую и радиальную арматуру в куполе располагаем со стороны верхней менее нагретой поверхности с шагом u=190 мм.

Согласно п. 6.11, при расчете прочности купола при воздействии температуры определяются распор H_t , усилие сжатия T_{2t} и изгибающий момент M_t в кольцевом направлении. Коэффициент армирования купола кольцевой арматурой при диаметре стержня 14 мм с площадью сечения $f_a = 1,54$ см², защитным слоем 30 мм, a = 37 мм и $h_0 = h - a = 24 - 3,7 = 20,3$ см равен

$$\mu = \frac{f_a}{uh_0} = \frac{1.54}{19 \cdot 20.3} = 0.004 = 0.4\%$$

а коэффициент $\mu_1 = \frac{f_a}{uh} = \frac{1.54}{19.24} = 0.0034 = 0.34\%.$

Количество арматуры для расчетного сечения купола шириной $b=1\,\mathrm{cm}$ равно

 $F_{\rm a}=\frac{f_{\rm a}}{u}=\frac{1.54}{19}=0.08~{\rm cm}^2.$

Определяем изгибающий момент M_t в сечении купола шириной b=1 см в кольцевом направлении, вызванный перепадом температуры по высоте сечения.

Сначала определяем среднюю температуру бетона сжатой зоны на расстоянии $0.2h_0=0.2\cdot 20.3=4$ см от более нагретой поверхности купола согласно примечанию 7 к табл. 16, которая равна $t_{6c}=435^{\circ}$ С. Для бетона состава № 11 и марки М 300 (по табл. 13) $R_{\rm pli}=13$ кгс/см², $R_{\rm npli}=170$ кгс/см²; по табл. 17 $E_{\rm 5}=175$ 000 кгс/см² и по табл. 14 $R_{\rm np}=135$ кгс/см². По табл. 16 для бетона состава № 11 при $t_6=t_a=190^{\circ}$ С $m_{\rm pt}=0.67$, $\beta_6=0.91$, а при $t_{6c}=435^{\circ}$ С $\beta_6=0.58$, $m_{6t}=0.93$ и $\nu=0.3$. По табл. 20 при $t_6=190^{\circ}$ С $\alpha_{6t}=7.6\cdot 10^{-8}$. Для арматуры класса A-III по табл. 37 $E_{\rm a}=2\cdot 10^{8}$ кгс/см², а по табл. 29 $R_{\rm a}=3600$ кгс/см². При температуре арматуры $t_a=190^{\circ}$ С по табл. 35 $m_{at}=0.95$, $\alpha_{at}=12.9\cdot 10^{-8}$ и $\beta_{\rm a}=0.96$.

Высоту сжатой зоны бетона вычисляем по формуле (99) при

 $F'_{a} = 0$ и b = 1 см, т. е.

$$x = \frac{R_{at} F_a}{R_{mot} b} = \frac{0.95 \cdot 3600 \cdot 0.08}{0.93 \cdot 135 \cdot 1} = 2.1 \text{ cm}.$$

В первом приближении принимаем M_t равным правой части неравенства (98) при $F_a^{\prime}=0$ и b=1 см:

$$M_t = M = 0.93 \cdot 135 \cdot 2,1 (20.3 - 0.5 \cdot 2.1) = 5100 \text{ krc} \cdot \text{cm}.$$

Для определения жесткости сечения купола с трещиной B и кривизны от воздействия температуры $\frac{1}{\Omega_a}$ вычисляем:

по формуле (244) при $t_0 = t_a = 190^\circ$ С

$$n = \frac{2 \cdot 10^6 \cdot 0,96}{175,000 \cdot 0,91} = 12;$$

по формуле (239), согласно п. 4.6, при $\delta = \frac{a}{h} = \frac{3.7}{24} = 0.15$,

$$k = 1 - 2\delta = 1 - 2 \cdot 0,15 = 0,7 \text{ is } b = 1 \text{ cm}$$

$$W_{T} = (0.292 + 0.75 \cdot 2 \cdot 0.0034 \cdot 0.7 \cdot 12) 24^{3} = 193 \text{ cm}^{3}$$

по формуле (273) при $M = M_t = 5100 \ \mathrm{kg} \cdot \mathrm{c} \cdot \mathrm{cm}$

$$m = \frac{13 \cdot 0,67 \cdot 193}{5100} = 0,33;$$

по формуле (272) при s=1,1 и нулевом значении последнего члена $\psi_a=1,25-1,1\cdot0,33=1,25-0,36=0,89;$

по формуле (267) при $M_3 = M_t$ и b = 1 см

$$L = \frac{5100}{20.3^2 \cdot 170 \cdot 0.93} = 0,078;$$

по формуле (266) при T = 0

$$\xi = \frac{1}{1,8 + \frac{1 + 5 \cdot 0,078}{10 \cdot \frac{0,004 \cdot 2 \cdot 10^6 \cdot 0,97}{175 \cdot 000 \cdot 0,58}}} = 0,27;$$

по формуле (271) при $\gamma' = 0$

$$z_1 = 20,3 (1 - 0,5 \cdot 0,27) = 17,6 \text{ cm};$$

по формуле (282) при $v_a = 1$, b = 1 см и $\psi_6 = 0.9$

$$B = \frac{20,3 \cdot 17,6}{0,89} = \frac{0,89}{2 \cdot 10^{6} \cdot 0,96 \cdot 0,08} + \frac{0,9}{0,27 \cdot 20,3 \cdot 175 \cdot 000 \cdot 0,58 \cdot 0,30} = \frac{357 \cdot 10^{6}}{5,8 + 5,4} = 31,9 \cdot 10^{6} \text{ kgc} \cdot \text{cm}^{2}.$$

Для определения α_{atc} коэффициент k принимаем в первом при-ближении:

по табл. 36 при
$$\frac{M_t}{M}$$
 =1 и μ =0,4% равным 0,95;

по формуле (68)

$$\alpha_{\rm afc} = 7,6\cdot 10^{-6} + (12,9\cdot 10^{-6} - 7,6\cdot 10^{-6})\ 0,95 = 12,6\cdot 10^{-6};$$
 по формуле (34) при $\alpha_{6t} = 5,5\cdot 10^{-6}$ и $n_t = 1,1$

$$\frac{1}{04} = \frac{(5.5 \cdot 10^{-6} \cdot 500 - 12.6 \cdot 10^{-6} \cdot 190) \cdot 1.1}{20.3} = 19.5 \cdot 10^{-6} \cdot \frac{1}{\text{cm}};$$

по формуле (46)

$$M_f = 19.5 \cdot 10^{-6} \cdot 31.9 \cdot 10^6 = 620 \text{ kgc} \cdot \text{cm}.$$

Полученный момент $M_t = 620$ кгс·см значительно отличается от момента $M_t = 5100$ кгс·см, принимавшегося для первого приближения. Для второго приближения принимаем среднее значение $M_t = \frac{5100 + 620}{2} = 2860$ кгс·см. Опуская промежуточные расчеты, для третьего приближения принимаем $M_t = 1800$ кгс·см. В этом случае по формуле (273)

$$m = \frac{13 \cdot 0,67 \cdot 193}{1800} = 0,93;$$

по формуле (272)

$$\psi_a = 1,25 - 1,1 \cdot 0,93 = 0,25$$

по формуле (267) при $M_3 = M_t$

$$L = \frac{1800}{20,3^2 \cdot 170 \cdot 0,93} = 0.028;$$

по формуле (266) при T = 0 и $\gamma' = 0$

$$\xi = \frac{1}{1,8 + \frac{1 + 5 \cdot 0.028}{10 \cdot 0.004 \cdot 2 \cdot 10^6 \cdot 0.97}} = 0,30;$$

по формуле (271) при $\gamma' = 0$

$$z_1 = 20,3 (1 - 0,5 \cdot 0,3) = 17,2 \text{ cm};$$

по формуле (282)

$$B = \frac{20,3\cdot17,2}{2\cdot10^6\cdot0,96\cdot0,08} + \frac{0,9}{0,3\cdot20,3\cdot175\,000\cdot0,58\cdot0,3} = \frac{350\cdot10^6}{1,63+4,85} = 54\cdot10^6 \,\mathrm{krc}\cdot\mathrm{cm}^2.$$

При $\frac{M_t}{M} = \frac{1800}{5100} = 0,35$ и $\mu = 0,4\%$ по табл. 36 k = 0,67. По формуле (68):

 $\alpha_{a/c} = 7,6 \cdot 10^{-6} + (12,9 \cdot 10^{-6} - 7,6 \cdot 10^{-6}) \ 0,67 = 11,1 \cdot 10^{-6};$ $\frac{1}{\rho_f} = \frac{(5,5 \cdot 10^{-6} \cdot 500 - 11,1 \cdot 10^{-6} \cdot 190)1,1}{20,3} = 35,2 \cdot 10^{-6} \frac{1}{c_M};$

$$M_t = 35, 2 \cdot 10^{-6} \cdot 54 \cdot 10^6 = 1900 \text{ kgc} \cdot \text{cm}.$$

Разница между полученным моментом $M_t = 1900$ кгс см и моментом $M_t = 1800$ кгс см, принимавшимся для третьего приближения, равна

20-374

5,2%, т. е. находится в допускаемых пределах ±5%, поэтому дальнейшее уточнение момента можно не производить.

Переходим к определению распора H_t от воздействия темпе-

ратуры.

Кольцевую арматуру опорного кольца принимаем в количестве пяти стержней диаметром 16 мм. Площадь сечения арматуры $F_a = -5 \cdot 2.01 = 10.05$ см². При расстоянии от центра тяжести арматуры до наружной поверхности опорного кольца a = 50 мм, высоте сечения $h_0 = (r_2 - r_1) - a = 39 - 5 = 34$ см и $b = h_1 = 31$ см коэффициент армирования равен:

$$\mu = \frac{F_a}{bh_0} = \frac{10,05}{31 \cdot 34} = 0,0095 = 0,95\%;$$

$$\mu_1 = \frac{F_a}{bh} = \frac{10,05}{31 \cdot 39} = 0,0083 = 0,83\%.$$

При t_6 =305° С по табл. 20 α_{6t} =7·10-6. В данном случае при высоте сечения опорного кольца в радиальном направлении h_0 =34 см>>0,1 r_a =0,1·290=29 см, согласно п. 6.11, необходимо определить изгибающий момент M_{t1} в опорном кольце.

Принимаем в первом приближении $\frac{M_{t1}}{M}$ =0,7 и ψ_a =0,7. При $\frac{M_{t1}}{M}$ =

=0,7 и μ =0,95 по табл. 36 k=1 и $\alpha_{atc}=\alpha_{at}$. При t_a =125° С по табл. 35 α_{at} =12,25·10-6, а β_a =0,99.

При марке бетона М 300 для состава № 11 по табл. 17 E_6 = 175 000 кгс/см², а при температуре бетона 305° С по табл. 16 B_6 = 0.75, а по табл. 18 v = 0.7.

По формуле (297) определяем значение *s* при жесткости купола *B*=54·10° кгс/см²:

$$s = \sqrt[4]{\frac{175\,000 \cdot 0.75 \cdot 0.7 \cdot 24}{4 \cdot 54 \cdot 10^6 \cdot 512^2}} = \sqrt[4]{390 \cdot 10^{-10}} = 0.014.$$

Распор от воздействия температуры на 1 см периметра опорного кольца определяем по формуле (295) при $n_t = 1,1$:

$$H_t = \frac{(7 \cdot 10^{-6} \cdot 305 \cdot 250 - 12,25 \cdot 10^{-6} \cdot 125 \cdot 290) \cdot 1,1}{0,25} = \frac{0,25}{4 \cdot 54 \cdot 10^{6} \cdot 0,014^{3}} + \frac{290^{2} \cdot 0,7}{2 \cdot 10^{6} \cdot 0,99 \cdot 10,05} = \frac{534 \cdot 000 - 444 \cdot 000}{420 + 2950} = \frac{90 \cdot 000}{3370} = 26,7 \text{ kgc};$$

Усилие сжатия бетона в кольцевом направлении от воздействия температуры в опорном сечении I-I (рис. 49) шириной 1 см определяем по формуле (299):

$$T_{2t} = \frac{26,7 \cdot 175\,000 \cdot 0,75 \cdot 0,7 \cdot 24 \cdot 0,25}{4 \cdot 54 \cdot 10^{6} \cdot 0,014^{3} \cdot 250} = 100 \; \mathrm{krc_{3}}$$

Кольцевое усилие сжатия в опорном сечении І-І шириной 1 см

от собственного веса купола вычисляем по формуле (303) при $\cos \alpha = \cos 30^\circ = 0.866$ и $\cos^2 30^\circ = 0.75$:

$$T_{\rm 2H} = \frac{0.05.512(0.75 + 0.866 - 1)}{1 + 0.866} = 8.6 \text{ kgc.}$$

Расчетная сжимающая сила от воздействия температуры и собственного веса в опорном сечении $I\!-\!I$ купола

$$T_2 = T_{2t} + T_{2H} = 100 + 8,6 = 108,6 \text{ krc}.$$

Проверка прочности опорного сечения купола I-I при внецентренном сжатии.

При температуре более нагретой грани сечения I-I, равной в данном случае 500° С, разбиваем сечение, согласно п. 1.28, на две площади с линией раздела, проходящей по бетону с температурой 400° С. Для первой площади высотой $h_1=18$ см при средней температуре бетона $t_{cp1}=255^{\circ}$ С $\beta_6=0.83$ и v=0.725. Для второй площади высотой $h_2=6$ см при средней температуре бетона $t_{cp2}=450^{\circ}$ С $\beta_6=0.56$ и v=0.57.

При ширине сечения b=1 см $F_1=bh_1=18$ см², а $F_2=bh_2=6$ см². Для бетона состава № 11, согласно п. 1.28, $k_{\pi}=0.7$. Площади бетона, приведенные к ненагретому бетону, по формуле (2):

$$F_{\text{ni}} = \frac{18 \cdot 0,83 \cdot 0,725}{0,7} = 15,5 \text{ cm}^2;$$

$$F_{\text{n2}} = \frac{6 \cdot 0,56 \cdot 0,57}{0,7} = 3 \text{ cm}^2.$$

Площадь сечения I-I, приведенная к ненагретому бетону, по формуле (6):

$$F_n = 15,5 + 3 = 18,5 \text{ cm}^2$$
.

При расстояниях центров тяжести площадей до наименее нагретой грани сечения $y_1 = 9$ см и $y_2 = 21$ см, пренебрегая растянутой арматурой, по формуле (7) определяем статический момент:

$$S_n = 15,5.9 + 3.21 = 139,5 + 63 = 202,5 \text{ cm}^3$$

Расстояние от центра тяжести приведенного сечения до наименее нагретой грани по формуле (5):

$$y = \frac{202,5}{18,5} = 11 \text{ cm}.$$

Эксцентрицитет сжимающей силы T_2 в опорном сечении $I\!-\!I$ относительно центра тяжести приведенного сечения:

$$e_0 = \frac{M_t}{T_2} = \frac{1900}{108.6} = 17.4 \text{ cm}.$$

Эксцентрицитет силы T_2 в опорном сечении I-I относительно центра тяжести растянутой кольцевой арматуры купола по формуле (128) при $\eta=1$ и $e_\pi=y-a=11-4,4=6,6$ см:

$$e = 17.4 + 6.6 = 24$$
 cm.

Высота сжатой зоны бетона по формуле (130) при $N=T_2=108,6$ кг, $R_a=3600$ кгс/см², b=1 см и $F_a'=0$:

$$x = \frac{108.6 + 0.95.3600.0.08}{0.93.135} = 3 \text{ cm}.$$

По формуле (94) при a=0.8 для состава бетона № 11:

$$\xi_0 = 0.8 - 0.0008 \cdot 0.93 \cdot 135 = 0.8 - 0.1 = 0.7$$

По формуле (93) при $\tau_A = m_{at}R_a = 0.95 \cdot 3600 = 3230$ кгс/см², согласно пункту (3.13), и $\beta_a = 0.96$:

$$\xi_R = \frac{0.7}{1 + \frac{3230}{4000 \cdot 0.96} \left(1 - \frac{0.7}{1.1}\right)} = \frac{0.7}{1.31} = 0.53.$$

В данном случае при $\frac{x}{h_0} = \frac{3}{20.3} = 0.13 < \xi_R = 0.53$ прочность сечения I-I в куполе при внецентренном сжатии должна удовлетворять условию (129) при $F_a' = 0$ и b = 1 см, т. е.

$$T_2e = 108,6.24 = 2600 \text{ krc} \cdot \text{cm} < 0,93.135.3 (20,3-0,5.3) = 7080 \text{ krc} \cdot \text{cm}.$$

Следовательно, условие прочности опорного сечения купола I-I при внецентренном сжатии удовлетворяется.

Расчет прочности опорного кольца

Усилие растяжения в арматуре опорного кольца от распора, вызванного воздействием температуры, вычисляем по формуле (298):

$$N_t = 26.7 \cdot 290 = 7743 \text{ krc.}$$

Распор в опорном кольце от собственного веса купола определяем по формуле (301)

$$H_{\rm H} = \frac{0.05 \cdot 512 \cdot 0.866}{1 + 0.866} = 12 \text{ kgc};$$

Усилие в арматуре опорного кольца от собственного веса купола определяем по формуле (302):

$$N_{\rm H} = 12.256 = 3072 \, \rm krc.$$

Расчетное усилие растяжения в опорном кольце от воздействия температуры и собственного веса купола

$$N = N_t + N_H = 7743 + 3072 = 10815 \text{ kgc}$$

Определяем изгибающий момент $M_{m{t}_1}$ в опорном кольце от воздействия температуры:

действия температуры: при $t_{\rm a}\!=\!125^{\circ}$ С $m_{\rm a\,f}\!=\!0.99$; $\beta_{\rm a}\!=\!0.99$; $\beta_{\rm 6}\!=\!0.98$; $\alpha_{\rm a\,f}\!=\!12.25\cdot10^{-8}$, $m_{\rm p\,f}\!=\!0.76$ и $\nu_{\rm a}\!=\!1$;

при $t_6=305^\circ$ С по табл. 20 $\alpha_{5t}=7\cdot 10^{-8}$, а при $t_6=t_a=125^\circ$ С $\alpha_{5t}=8,25\cdot 10^{-8}$.

При средней температуре бетона сжатой зоны, принимаемой, со-

гласно примечания 7 к табл. 16, на расстоянии $0.2h_0=0.2\cdot 34=6.8$ см от внутренней поверхности опорного кольца и равной $t_{6c}=264^\circ$ C, $m_{6t}=1.04,\ \beta_6=0.80,\ \nu=0.38.$

Определяем высоту сжатой зоны х при внецентренном растяже-

нии опорного кольца по формуле (166) при $F_a = 0$:

$$x = \frac{0.99 \cdot 3600 \cdot 10.05 - 10.815}{1.04 \cdot 135 \cdot 31} = \frac{33.828 - 10.815}{4350} = 5.3 \text{ cm}.$$

Определяем значение правой части выражения (165):

$$M = Ne = 1,04 \cdot 135 \cdot 31 \cdot 5,3 (34 - 0,5 \cdot 5,3) = 723000 \text{ kgc} \cdot \text{cm}.$$

При расчете в первом приближении принимаем M_{t1} =0,7M=0,7·723 000=506 000 кгс·см.

По формуле (305) при $e_1 = 0.5h$ — $a = 0.5 \cdot 39$ —5 = 14.5 см

$$e_0 = 14.5 + \frac{506\,000}{10\,815} = 14.5 + 46.8 = 61.3$$
 cm.

По формуле (244) при $t_a = t_6 = 125^{\circ}$ С

$$n = \frac{2 \cdot 10^6 \cdot 0,99}{175\,000 \cdot 0.98} = 11,5.$$

По формуле (239) при $\mu_1' = 0$:

$$W_T = (0.292 + 0.75 \cdot 2 \cdot 0.0083 \cdot 11.5) 31 \cdot 39^2 = 0.435 \cdot 31 \cdot 39^2 = 20.510 \text{ cm}^3$$
.

По формуле (236) при $F_a' = 0$ и $F = 31 \cdot 39 = 1209$ см²

$$r_y = \frac{20510}{1209 + 2 \cdot 11.5 \cdot 10.05} = 14 \text{ cm}.$$

По формуле (233)

$$M_b^{\rm g} = 10815(61,3+14) = 814370 \text{ kgc}\cdot\text{cm}.$$

По формуле (273):

$$m = \frac{13 \cdot 0.76 \cdot 20510}{814370} = 0.25;$$

$$e_{\rm a} = e = \frac{M_{\rm fl}}{N} = \frac{506000}{10815} = 46.8 \text{ cm}.$$

По формуле (272) определяем коэффициент фа:

$$\psi_{a} = 1,25 - 1,1 \cdot 0,25 - \frac{1 - 0,25^{2}}{(3,5 - 1,8 \cdot 0,25) \frac{46,8}{34}} = 0,75.$$

По формуле (244) при $t_{6c} = 264$ ° С и $\beta_6 = 0.8$

$$n = \frac{2 \cdot 10^6 \cdot 0,99}{175\,000 \cdot 0,8} = 14.$$

По формуле (267) при
$$M_3 = M_{t1}$$
 и $m_{5t} = 1,04$
$$L = \frac{506\,000}{31.34^2.170.1.04} = 0.086.$$

По формуле (266) при T=0 и $\gamma'=0$

$$\xi = \frac{1}{1,8 + \frac{1 + 5 \cdot 0,086}{10 \cdot 0,0095 \cdot 14}} - \frac{1,5}{11,5 + \frac{46,8}{34} + 5} = 0,348 - 0,072 = 0,28.$$

По формуле (271) при $\gamma' = 0$

$$z_1 = 34 (1 - 0.5 \cdot 0.28) = 29.2 \text{ cm}.$$

По формуле (283) определяем жесткость опорного кольца по

Сечению с трещиной при
$$v_a = 1$$
:
$$B = \frac{0.75}{2 \cdot 10^6 \cdot 0.99 \cdot 10.05} (46.8 + 29.2) + \frac{0.9 \cdot 46.8}{0.28 \cdot 31 \cdot 34 \cdot 175000 \cdot 0.8 \cdot 0.38} = \frac{60.858 \cdot 10^6}{2.86 + 2.68} = 10.94 \cdot 10^9 \text{ кгс·см}^2.$$

При
$$\frac{M_{ti}}{M}$$
 = 0,7 и μ = 0,95% по табл. 36 k = 0,99.

По формуле (68)

$$\alpha_{atc} = 7 \cdot 10^{-6} + (12,25 \cdot 10^{-6} - 7 \cdot 10^{-6}) \, 0.99 = 12.2 \cdot 10^{-6}$$

По формуле (34) при $n_t = 1,1$

$$\frac{1}{\rho_{\ell}} = \frac{(7 \cdot 10^{-6} \cdot 305 - 12, 2 \cdot 10^{-6} \cdot 125)}{34} \, 1, 1 = \frac{(2135 - 1525)10^{-6} \cdot 1, 1}{34} =$$

$$=19,7\cdot10^{-6}\frac{1}{c_{\rm M}}$$
.

По формуле (46) определяем M_{t1} :

$$M_{t1} = 19,7 \cdot 10^{-6} \cdot 10,94 \cdot 10^9 = 215\,500 \text{ kgc} \cdot \text{cm}.$$

Полученное значение $M_{t1} = 215\,500$ кгс·см значительно отличается от ранее принимавшегося для расчета $M_{t1} = 506\,000$ кгс·см, поэтому делаем перерасчет.

Для второго приближения принимаем среднее значение момента

$$M_{t1} = \frac{506\,000 + 215\,500}{2} = 360\,750\,\text{kgc} \cdot \text{cm}.$$

Опуская промежуточные расчеты, для третьего приближения принимаем $M_{t1} = 280\,000$ кгс см:

$$e_{\mathbf{e}} = 14.5 + \frac{280\ 000}{10\ 815} = 14.5 + 26 = 40.5\ \text{cm};$$

$$e_{\mathbf{a}} = \frac{280\ 000}{10\ 815} = 26\ \text{cm};$$

$$M_{\rm B}^{\pi} = 10\,815\,(40,5+14) = 589\,417\,\,{\rm кгс\cdot cm};$$

$$m = \frac{13\cdot0.76\cdot20\,510}{589\,417} = 0.34.$$
При $\frac{e_{\rm a}}{h_0} = \frac{26}{34} = 0.76 < \frac{1.2}{s} = \frac{1.2}{1.1} = 1.09\,\,{\rm принимаем};$

$$\frac{e_{\rm a}}{h_0} = \frac{1.2}{s} = 1.09\,\,{\rm согласно}\,\,{\rm п.}\,\,4.21;$$

$$\psi_{\rm a} = 1.25 - 1.1\cdot0.34 - \frac{1-0.34^2}{(3.5-1.8\cdot0.34)\,1.09} = 1.25 - 0.37 - 0.28 = 0.60;$$

$$L = \frac{280\,000}{31\cdot34^2\cdot170} = 0.046;$$

$$\xi = \frac{1}{1.8 + \frac{1+5\cdot0.046}{10\cdot0.0095\cdot14}} - \frac{1.5}{11.5\,\frac{26}{34} + 5} = 0.367 - 0.108 = 0.255;$$

$$z_{\rm I} = 34\,(1-0.5\cdot0.255) = 29.7\,\,{\rm cm};$$

$$40.5\cdot34\cdot29.7$$

$$B = \frac{40.897\cdot10^6}{2\cdot10^6\cdot0.99\cdot10.05}\,(26+29.7) + \frac{0.9\cdot26}{0.255\cdot31\cdot34\cdot0.175\cdot10^6\cdot0.8\cdot0.38} = \frac{40.897\cdot10^6}{1.68 + 1.63} = 12.35\cdot10^9\,\,{\rm krc\cdot cm}^2.$$
При
$$\frac{M_{\rm fi}}{M} = \frac{280\,000}{723\,000} = 0.39\,\,{\rm h}\,\,\mu = 0.95\%\,\,\,\text{no ta6}...\,36\,\,k = 0.87;$$

$$\alpha_{\rm afc} = 8.25\cdot10^{-6} + (12.25\cdot10^{-6} - 8.25\cdot10^{-6})\,0.87 = 11.7\cdot10^{-6};$$

$$\frac{1}{0f} = \frac{7\cdot10^{-6}\cdot305-11.7\cdot10^{-6}\cdot125}{34}\,1.1 = \frac{(2135-1462)10^{-6}}{34}\,1.1 = 21.8\cdot10^{-6}\,\frac{1}{\rm cm};$$

 $M_{ti} = 21,8 \cdot 10^{-6} \cdot 12,35 \cdot 10^{9} = 269230 \text{ kgc} \cdot \text{cm}$

Разница между полученным моментом M_{t1} =269 230 кгс·см и моментом M_{t1} =280 000 кгс·см, принимавшимся ранее для третьего приближения, составляет 3,8%, т. е. меньше 5%, поэтому дальнейшее уточнение M_{t1} не требуется.

Прочность сечения опорного кольца при внецентренном растяжении должна удовлетворять условию (165) при x=5,3 см и $m_{6i}=1.04$.

$$Ne = M_{t1} = 269\ 230\ \text{krc} \cdot \text{cm} < 1,04 \cdot 135 \cdot 31 \cdot 5,3\ (34 - 0,5 \cdot 5,3) = 723\ 000\ \text{krc} \cdot \text{cm}.$$

Следовательно условие прочности опорного кольца при внецентренном растяжении удовлетворяется.

Расчет ширины раскрытия трещин.

Ширину раскрытия трещин в куполе $a_{\rm T}$ определяем в сечении II-II в центре пролета только от действия $M_{\rm I}$; усилиями от собственного веса пренебрегаем вследствие их малой величины.

Расчетные данные согласно п. 4.10: k=1; $\eta=1$; $c_{\pi}=1$; d=14 мм; $\mu=0,004$; $\beta_{\pi}=0,97$; $\alpha_{\alpha t \alpha}=11,1\cdot 10^{-6}$; $\alpha_{0t}=7,6\cdot 10^{-6}$ и $z_{1}=17,2$ см.

Напряжение в арматуре определяем по формуле (252) с некоторым запасом при расчетном моменте $M_t = 1900$ кгс см:

$$\sigma_a = \frac{1900}{0.08 \cdot 17.2} = 1381 \text{ krc/cm}^2.$$

Ширина раскрытия трещин по формуле (249)

$$a_{\rm T} = 20 (3.5 - 100.0,004) \sqrt[3]{14} \left[\frac{1381}{2 \cdot 10^6 \cdot 0,96} + (11.1 \cdot 10^{-6} - 7.6 \cdot 10^{-6}) 190 \right] = 20 \cdot 3.1 \cdot 2.42 \times (0.000718 + 0.000665) = 0.21 \text{ mm}.$$

Ширина раскрытия трещин в опорном кольце.

Расчетные данные согласно п. 4.10: k=1,2; $\eta=1$, d=16 мм; $\mu=0,0095$; $c_{\pi}=1$; $\beta_{a}=0,99$; $\alpha_{atc}=11,8\cdot10^{-6}$; $\alpha_{6t}=8,3\cdot10^{-6}$; N=10.815 кгс; $e_{a}=26$ см и $z_{1}=29,7$ см.

Напряжение в арматуре по формуле (253):

$$\sigma_{a} = \frac{10815 (26 + 29,7)}{10,05 \cdot 29,7} = 2018 \text{ kgc/cm}^{2};$$

$$a_{T} = 1,2 \cdot 1 \cdot 20 (3,5 - 100 \cdot 0,0095) \sqrt[3]{16} \left[\frac{2018}{2 \cdot 10^{6} \cdot 0,99} + (11,7 \cdot 10^{-6} - 8,25 \cdot 10^{-6}) 125 \right] = 24 \cdot 2,55 \cdot 2,52 \times (0,00102 + 0,000431) = 0,22 \text{ mm}.$$

Ширина раскрытия трещин в куполе не превышает 0,6 мм, допускаемого, согласно табл. 3, при кратковременном нагреве элементов конструкций третьей категории трещиностойкости, эксплуатирующихся в закрытом помещении при температуре нагрева арматуры выше 130° С. Ширина раскрытия трещин в опорном кольце не превышает 0,4 мм, допускаемого, согласно тем же данным, при температуре нагрева арматуры до 130° С.

Пример 34. Расчет прочности и прогиба цилиндрического свода

Пример 34. Расчет прочности и прогиба цилиндрического свода из жаростойкого бетона с податливыми опорами при одностороннем

нагреве до 1080° С.

Дано: Свод пролетом 6 м перекрывает рабочее пространство теплового агрегата с температурой 1100° С. Температура окружающего воздуха в зимний период равна 15° С, а в летний — 30° С. Геометрические параметры свода в соответствии с рис. 51:

метрические параметры свода в соответствии с рис. 51: $l_1 = 6000$ мм, $f_1 = 800$ мм, $r_B = 6000$ мм, $\alpha = 30^\circ$; l = 6175 мм, f = 830 мм, r = 6175 мм, h = 350 мм.

В расчете рассматривается участок свода шириной b=1000 мм. На свод сверху действует постоянная равномерно распределенная по поверхности свода расчетная внешняя нагрузка 0.5 тс/м^2 . Для изготовления свода принят жаростойкий бетон состава M_2 18 по табл. 11, марки M 200 на жидком стекле с тонкомолотым магнезитом и заполнителем из шамота. Объемный вес бетона состава M_2 18 по табл. 11 с естественной влажностью $\gamma = 2.2 \text{ т/m}^3$, а в сухом состоянии с учетом удаленной влаги весом 150 кг, согласно п. 2.15, $\gamma = 2.05 \text{ т/m}^3$. Податливость каждой опоры в горизонтальном направлении при нагреве свода от распора 1 кг равна $\delta = 0.1 \cdot 10^{-3} \text{ см}$.

Требуется произвести теплотехнический расчет свода и опре-

делить:

 прочность свода в момент пуска теплового агрегата в зимний период;

 прочность свода при длительном воздействии рабочей температуры, собственного веса и внешней нагрузки в летний период;

перемещение свода в центре пролета при его длительной эксплуатации.

Теплотехнический расчет свода

а) При температуре более нагретой поверхности свода 600° С в

зимний период.

При температуре 600° С в статически неопределимых конструкциях из жаростойкого бетона на жидком стекле, согласно п. 1.23, возникают наибольшие усилия от кратковременного воздействия температуры при первом нагреве теплового агрегата.

Задаемся температурой менее нагретой поверхности $t_{61} = 110^{\circ}$ С.

Средняя температура бетона

$$t_{\rm cp} = \frac{600 + 110}{2} = 355^{\circ} \, \rm C.$$

При $t_{\text{сp}}\!=\!355^{\circ}\,\text{C}$ коэффициент теплопроводности бетона по табл. 9 $\lambda\!=\!0,\!82.$

При $t_{61} = 110^{\circ}$ С по табл. 8 $\alpha_{\rm H} = 12,5$ ккал/($M^2 \cdot q \cdot {}^{\circ}$ C):

$$\frac{1}{\alpha_{\rm H}} = \frac{1}{12.5} = 0.08;$$

$$R = \frac{\delta}{\lambda} = \frac{0.35}{0.82} = 0.43;$$

$$R_0 = R + \frac{1}{\alpha_{\rm H}} = 0.43 + 0.08 = 0.51 \text{ M}^2 \cdot \text{Ч} \cdot \text{°C/ккал};$$

$$Q = \frac{t_6 - t_{\rm H}}{R_0} = \frac{600 - 15}{0.51} = 1146 \text{ ккал/(M}^2 \cdot \text{Ч});$$

$$t_{61} = t_6 - QR = 600 - 1146 \cdot 0.43 = 107 \text{°C}.$$

б) При рабочей температуре среды в подсводовом пространстве $t_{\rm B} = 1100^{\circ}$ С в летний период.

Задаемся $t_{61} = 180^{\circ}$ C, температура более нагретой поверхности свода $t_6 = 1080^{\circ}$ C.

$$t_{\rm cp} = \frac{1080 + 180}{2} = 630^{\circ} \,\rm C;$$

при
$$t_{\text{cp}} = 630^{\circ}$$
 С $\lambda = 0.95$; при $t_{\text{B}} = 1100^{\circ}$ С по табл. 8 $\alpha_{\text{B}} = 120$ ккал/м²·ч·°С; при $t_{\text{G}1} = 180^{\circ}$ С $\alpha_{\text{H}} = 16$;
$$\frac{1}{\alpha_{\text{B}}} = \frac{1}{120} = 0.008;$$

$$R = \frac{0.35}{0.95} = 0.37;$$

$$\frac{1}{\alpha_{\text{M}}} = \frac{1}{16} = 0.062;$$

$$R_{\text{O}} = 0.008 + 0.37 + 0.062 = 0.44 \text{ m²·ч·°C/ккал;}$$

$$Q = \frac{1100 - 30}{0.44} = 2430 \text{ ккал/(м²·ч)}.$$

По формуле (47):

$$t_1 = 1100 - 2430 \cdot 0,008 = 1080^{\circ} \text{ C};$$

 $t_{6i} = 1100 - 2430 \cdot (0,008 + 0,37) = 180^{\circ} \text{ C}.$

Расчет прочности свода при кратковременном нагреве до 600° C. Определяем распор, продольные силы и изгибающие моменты от воздействия температуры. По табл. 20: при $t_6 = 600^{\circ}$ С $\alpha_{6i} = 6.75 \cdot 10^{-6}$;

при $t_{61} = 107^{\circ}$ С $\alpha_{6t} = 5 \cdot 10^{-6}$.

По формуле (23) при y=0.5h и $n_t=1.1$

$$\mathbf{e}_t = \frac{(6,75 \cdot 10^{-6} \cdot 600 + 5 \cdot 10^{-6} \cdot 107)}{2} \, 1,1 = 2,52 \cdot 10^{-3}.$$

По формуле (24) при $n_t = 1,1$

$$\frac{1}{\rho_t} = \frac{(6.75 \cdot 10^{-6} \cdot 600 - 5 \cdot 10^{-6} \cdot 107)}{35} \, 1.1 = 11 \cdot 10^{-5} \, \frac{1}{\text{cm}} \, .$$

При средней температуре бетона в сечении $t_{\rm cp} = 353^{\circ}$ С по табл. 16 $\beta_6 = 1,07$, а по табл. 18 $\nu = 0,46$.

По формуле (315) вычисляем угол θ при k=20 согласно (336):

$$\theta = \frac{20}{1,07 \cdot 0,46} \left(11 \cdot 10^{-\frac{5}{2}} + \frac{2,52 \cdot 10^{-3}}{83} \right) \sqrt{\frac{83}{617,5}} = 0,0022.$$

По формуле (314) $\Delta = f\theta = 83 \cdot 0,0022 = 0,18$ см. По табл. 60 при $2\alpha = 60^{\circ}$ $k_1 = 0,00175$ и $k_2 = 543$.

При определении жесткости свода без трещин его неравномерно нагретое сечение высотой 35 см приводим к ненагретому бетону. Для этого сечение свода разбиваем на две площади с зоной раздела по температуре бетона 400° С. Первая площадь имеет высоту h_1 — =14 см и среднюю температуру бетона $t_{\text{ср1}} = \frac{600 + 400}{2} = 500^{\circ} \text{ C}.$

Вторая площадь имеет высоту $h_2=21$ см и среднюю температуру бетона $t_{\rm cp2}=\frac{400+107}{2}=253^{\circ}\,{\rm C}$:

По табл. 16 и 18 соответственно при $t_{\rm cpi} = 500^{\circ}$ С $\beta_6 = 1$ и v = -0.35; при $t_{\rm cpi} = 253^{\circ}$ С $\beta_6 = 1.1$ и v = 0.575.

При ширине сечения b = 100 см:

$$F_1 = bh_1 = 100 \cdot 14 = 1400 \text{ cm}^2;$$

 $F_2 = bh_2 = 100 \cdot 21 = 2100 \text{ cm}^2.$

Для бетона состава № 18, согласно п. 1.28, $k_{\rm n} = 0.7$. Площади бетона, приведенные к ненагретому бетону, по формуле (2):

$$F_{\text{mi}} = \frac{1400 \cdot 1 \cdot 0,35}{0,70} = 700 \text{ cm}^2;$$

$$F_{\text{m2}} = \frac{2100 \cdot 1,1 \cdot 0,575}{0.7} = 1900 \text{ cm}^2.$$

Площадь сечения свода, приведенная к ненагретому бетону, по формуле (6):

$$F_{\rm H} = 700 + 1900 = 2600 \, \text{cm}^2$$
.

При расстояниях центров тяжести площадей до менее нагретой грани сечения $y_1 = 28$ см и $y_2 = 10,5$ см по формуле (7) определяем статический момент:

$$S_{\rm II} = 700 \cdot 28 + 1900 \cdot 10, 5 = 39550 \text{ cm}^3.$$

Расстояние от центра тяжести приведенного сечения до менее нагретой грани по формуле (5):

$$y = \frac{39550}{2600} = 15 \text{ cm};$$

$$y_{0_1} = y_1 - y = 28 - 15 = 13 \text{ cm};$$

$$y_{0_2} = y - 0.5 h_2 = 15 - 10.5 = 4.5 \text{ cm};$$

По формуле (12):

$$I_{\pi_1} = \frac{700 \cdot 14^2}{12} = 11 \, 430 \, \text{cm}^4;$$

$$I_{\pi_2} = \frac{1900 \cdot 21^2}{12} = 69\,825 \text{ cm}^4$$
.

По формуле (11) при $F_{\rm na} = 0$ и $F_{\rm na}^* = 0$

$$I_{\rm m} = 11430 + 69825 + 700 \cdot 13^2 + 1900 \cdot 4,5^2 = 238000 \, \text{cm}^4$$

Жесткость приведенного сечения по формуле (281) при

$$E_6 = 185\,000 \text{ krc/cm}^2 \text{ H } c = 1$$
:
 $B_n = 0.7 \cdot 185\,000 \cdot 238\,000 = 3.08 \cdot 10^{10} \text{ krc} \cdot \text{cm}^2$.

Коэффициент η по формуле (313):

$$\eta = \frac{543 \cdot 238\ 000}{617.5^2 \cdot 2600} = 0.13.$$

Распор от воздействия температуры по формуле (335):

$$H_{t} = \frac{2,52 \cdot 10^{-3} \cdot 617,5 - 2 \cdot 0,18}{(1+0,13) \frac{0,00175 \cdot 617,5^{3}}{3,08 \cdot 10^{10}} + 2 \cdot 0,0001} = \frac{1,56 - 0,36}{0,000015 + 0,0002} = 5570 \text{ krc} = 5,57 \text{ rc.}$$

Продольная сила:

в замке свода (в сечении I-I, рис. 51)

$$N_{1t} = H_t = 5570 \text{ kgc};$$

в опорном сечении ІІ-ІІ по формуле (308)

$$N_{2i} = 5570 \cdot 0,866 = 4800 \text{ kgc}$$

Изгибающий момент по формуле (318):

$$M_t = \frac{(11 \cdot 10^{-5} \cdot 617, 5 \cdot 0, 5236 - 0,0022) \cdot 3,08 \cdot 10^{10}}{617,5 \cdot 0,5236} = 31,8 \cdot 10^{5} \,\mathrm{krc} \cdot \mathrm{cm}.$$

Длина жесткой консоли $l_{\rm K}$ в основной системе по формуле (317):

$$l_{\rm K} = 617.5 \left(1 - \frac{0.5}{0.5236}\right) = 30 \text{ cm}.$$

Изгибающий момент в сечении І-І по формуле (334):

$$M_{1t} = -5570 \cdot 30 = -167000 \text{ kgc} \cdot \text{cm}.$$

Изгибающий момент в опорном сечении II-II (рис. 51) по формуле (310):

$$M_{2t} = 5570 (83 - 30) - 31,8 \cdot 10^5 = 2,95 \cdot 10^5 - 31,8 \cdot 10^5 = -28,85 \cdot 10^5 \text{ kgc} \cdot \text{cm}.$$

Изгибающий момент M_{2t} должен удовлетворять условию (311). В данном случае при

 $|M_{2\ell}| = 28,85 \cdot 105 \ \mathrm{krc} \cdot \mathrm{cm} > 0,5 \cdot 5570 \cdot 35 \cdot 0,866 = 0,85 \cdot 105 \ \mathrm{krc} \cdot \mathrm{cm}$ это условие не удовлетворяется. Следовательно, согласно п. 6.14, расчетное значение $M_{2\ell}$ в этом случае следует принимать равным правой части неравенства (311) только со знаком минус, т. е.

$$M_{2t} = -0.85 \cdot 10^{6} \text{ krc} \cdot \text{cm}$$

Распор, продольные силы и изгибающие моменты от собственного веса свода и внешней нагрузки.

Расчетная нагрузка от собственного веса свода на 1 м с коэффициентом перегрузки n=1,1 при b=1 м:

$$q' = n\gamma hb = 1.1 \cdot 2.05 \cdot 0.35 = 0.79 \text{ Tc/M}.$$

или, приводя нагрузку к горизонтальной проекции свода, получаем

$$q_1 = \frac{q' \alpha}{\sin \alpha} = \frac{0.79 \cdot 0.5236}{0.5} = 0.8 \text{ Tc/m}.$$

Расчетная равномерно распределенная внешняя нагрузка

$$q_2 = 0.5 \text{ TC/M}$$
:

Полная расчетная нагрузка

$$q = q_1 + q_2 = 0.8 + 0.5 = 1.3 \text{ TC/M} = 13 \text{ KFC/CM}.$$

Распор в своде от нагрузки определяем по формуле (319). По табл. 60 при $2\alpha = 60^{\circ}~k_s = 0,97$. Радиус кривизны принимаем по средней оси действительного сечения свода, так как уточнение величины радиуса по приведенному сечению незначительно влияет на результат расчета:

$$H_{\rm H} = \frac{0.97 \cdot 1.3 \cdot 6.175}{1 + 0.13} = 6.7 \text{ Tc.}$$

Продольная сила: в сечении *I—I*

$$N_{iH} = H_H = 6,7 \text{ TC};$$

в опорном сечении II—II по формуле (321)

$$N_{2H} = 6.7 \cdot 0.866 + 0.5 \cdot 1.3 \cdot 6.175 \cdot 0.5 = 7.8 \text{ TC}.$$

Изгибающий момент по формуле (323) при $k_4 = 0.0906$:

$$M_{\rm H} = \frac{0.25 \cdot 0.0906 \cdot 1.3 \cdot 6.175^2}{0.5236} = 2.16 \text{ TC-M}.$$

Изгибающий момент в сечении I—I по формуле (320):

$$M_{1H} = 2,16 - 6,7 \cdot 0,3 = 0,15 \text{ TC} \cdot M.$$

Изгибающий момент в опорном сечении ІІ—ІІ по формуле (322):

$$M_{2H} = 2,16 + 6,7 (0,83 - 0,3) - 0,5 \cdot 1,3 \cdot 6,175^2 \cdot 0,25 =$$

= 2,16 + 3,55 - 6,19 = -0,48 tc·m.

Расчетные продольные силы и изгибающие моменты от совместного действия температуры, собственного веса и нагрузки:

$$N = N_{1t} + N_{1H} = 5,57 + 6,7 = 12,27 \text{ TC},$$

 $M = M_{1t} + M_{1H} = -1,67 + 0,15 = -1,52 \text{ TC} \cdot M;$

в опорном сечении ІІ-ІІ

$$N = 4.8 + 7.8 = 12.6 \text{ rc},$$

 $M = -0.85 - 0.48 = -1.33 \text{ rc} \cdot \text{m}.$

Расчет прочности сечения I-I в замке (см. рис. 51).

Прочность сечения проверяем на внецентренное сжатие силой N=12.27 тс по формуле (69).

Эксцентриситет продольной силы относительно центра тяжести приведенного сечения

$$e_0 = \frac{M}{N} = \frac{-152\,000}{12\,270} = -12$$
 cm.

Знак минус означает, что продольная сила приложена ниже центра тяжести приведенного сечения со стороны более нагретой грани.

При кратковременном действии нагрузки по формуле (89) коэффициент $k_{\pi\pi}=1$.

Расчетную длину свода определяем как для бесшарнирной арки по табл. 33 главы СНиП II-21-75:

$$t_0 = 0,365s = \frac{0,365 \cdot 2 \cdot 3,14 \cdot 6175}{6} = 236 \text{ cm};$$

$$t = \frac{e_0}{h} = \frac{12}{35} = 0,34.$$

При температуре бетона в центре тяжести приведенного сечения 318° С по табл. 16 m_{6t} =1. Для бетона марки М 200 по табл. 14 $R_{\pi p} = 90 \text{ krc/cm}^2$.

По формуле (90)

$$t_{\text{MRH}} = 0.5 - 0.01 \frac{236}{35} - 0.001.90 = 0.5 - 0.07 - 0.09 = 0.34.$$

Так как t=0.34 равно $t_{\rm MRH}=0.34$, то, согласно п. 3.7, принимаем $t = t_{\text{MBH}} = 0.34$.

По формуле (88)

$$N_{KP} = \frac{6,4 \cdot 185\,000 \cdot 238\,000}{236^2} \left(\frac{0,11}{0,1+0,34} + 0,1\right) =$$
$$= \frac{6,4 \cdot 185\,000 \cdot 238\,000 \cdot 0,35}{236^2} = 1\,770\,000\,\text{kgc.}$$

По формуле (87)

$$\eta = \frac{1}{1 - \frac{12270}{1770000}} = 1,01.$$

По формуле (71) при y=20 см, согласно рис. 9, a, $e'=20-12 \times$ $\times 1.01 = 8$ cm (в данном случае 2e' = 16 см $> h_1 = 14$ см).

При этом условии, согласно п. 3.6, необходимо определить до-

полнительную высоту сжатой зоны бетона Δx по формуле (79). При средней температуре бетона сжатой зоны высотой $h_1 =$ = 14 см 500° С по табл. 16 β_{61} = 1, а по табл. 18 ν_1 = 0,35. Задаваясь средней температурой бетона 390° С сжатой зоны высотой Δx , определяем при этой температуре по тем же таблицам $\beta_{62} = 1,05$ и $v_2 = 0.42$

$$\Delta x = -(14 - 8) \pm \sqrt{(14 - 8)^2 - \frac{0.35 \cdot 14 \cdot (14 - 2 \cdot 8)}{1.05 \cdot 0.42}} =$$

$$= -6 \pm \sqrt{36 + \frac{0.35 \cdot 14 \cdot 2}{1.05 \cdot 0.42}} = -6 \pm 7.6; \quad \Delta x = 1.6 \text{ cm}_s$$

Средняя температура бетона сжатой зоны высотой $\Delta x = 1,6\,$ см (см. рис. 9,a) равна 391° C, что незначительно отличается от принимавшейся ранее для расчета температуры 390° С.

При температурах 500 и 391° С по табл. 16 соответственно име $e_{\text{M}} m_{6t} = 0.95$ и $m_{6t} = 0.97$.

По формуле (77)

$$F_{61} = 100 \cdot 14 = 1400 \text{ cm}^2$$
;

по формуле (78)

$$F_{62} = 100 \cdot 1, 6 = 160 \text{ cm}^2.$$

Проверяем условие прочности сечения свода І--І в замке по формуле (76) с учетом $m_{65} = 0.9$ согласно табл. 15:

$$N = 12\,270 \text{ krc} < 0.9 (0.95.90.1400 + 0.97.90.160) = 3$$

= 0.9 (119 700 + 13 968) = 120 300 krc.

Таким образом, условие прочности сечения свода в замке удов-

летворяется с большим запасом.

Продольная сила в опорном сечении II—II от совместного действия собственного веса свода, нагрузки и температуры по своей величине незначительно превышает продольную силу в замке и приложена с меньшим эксцентриситетом $e_0 = 10,5$ см также со стороны более нагретой грани сечения. Учитывая большой запас прочности, полученный для сечения І--І в замке, прочность опорного сечения II—II при кратковременном действии нагрузки и температуры, с учетом собственного веса свода, можно не проверять.

Расчет прочности свода при длительном нагреве до 1080° С. Определяем распор от воздействия температуры: при $t_6=1080^\circ$ С $\alpha_{6t}=5,1\cdot10^{-6}$; при $t_{6i}=180^\circ$ С $\alpha_{6t}=5,4\cdot10^{-6}$;

$$\varepsilon_t = \frac{5,1\cdot 10^{-6}\cdot 1080 + 5,4\cdot 10^{-6}\cdot 180}{2} \, 1,1 = 3,55\cdot 10^{-8};$$

$$\frac{1}{\rho_f} = \frac{(5,1 \cdot 10^{-6} \cdot 1080 - 5,4 \cdot 10^{-6} \cdot 180) \cdot 1,1}{35} = 14,2 \cdot 10^{-\frac{5}{2}} \frac{1}{\text{cm}}.$$

При средней температуре бетона в сечении $t_{\rm cp} = 630^{\circ}\,{\rm C}$ $\beta_{\rm 6} = 0.80$

$$\theta = \frac{20}{0.8 \cdot 0.32} \left(14.2 \cdot 10^{-\frac{5}{5}} + \frac{3.55 \cdot 10^{-3}}{83} \right) \sqrt{\frac{83}{617.5}} = 0.0053;$$

$$\Delta = f\theta = 83 \cdot 0.0053 = 0.44 \text{ cm}.$$

При определении жесткости свода без трещин его неравномерно нагретое сечение приводим к ненагретому бетону. Для этого сечение свода разбиваем на две площади с зоной раздела по температуре бетона $t_6 = 400^{\circ}$ С.

Первая площадь имеет высоту $h_1 = 26.5$ см и среднюю температуру бетона $t_{\rm cp_1} = \frac{1080 + 400}{2} = 740^{\circ}\,{\rm C.}$ Вторая площадь имеет высоту $h_2 = 8,5$ см и среднюю температуру бетона

$$t_{\rm cp_2} = \frac{400 + 180}{2} = 290^{\circ} \,\rm C:$$

при
$$t_{\rm cp} = 740^{\circ} \, {\rm C} \, \, \beta_6 = 0,63 \, \, {\rm H} \, \, \bar{\nu} = 0,26;$$

при
$$t_{\text{ср}_2} = 290^{\circ} \text{ C } \beta_6 = 1,1$$
 и $\overline{\nu} = 0,51$;
 $F_1 = bh_1 = 100 \cdot 26,5 = 2650 \text{ см}^2$;
 $F_2 = bh_2 = 100 \cdot 8,5 = 850 \text{ см}^2$.

Площади бетона, приведенные к ненагретому бетону:

$$F_{\pi 1} = \frac{2650 \cdot 0,63 \cdot 0,26}{0,7} = 620 \text{ cm}^2;$$

$$F_{\pi 2} = \frac{850 \cdot 1,1 \cdot 0,51}{0,7} = 680 \text{ cm}^2;$$

$$F_{\pi} = F_{\pi 1} + F_{\pi 2} = 620 + 680 = 1300 \text{ cm}^2.$$

При расстояниях центров тяжести площадей до менее нагретой грани сечения $y_1 = 21,75$ см и $y_2 = 4,25$ см определяем статический момент:

$$S_n = 620 \cdot 21,75 + 680 \cdot 4,25 = 16390 \text{ cm}^3.$$

Расстояние от центра тяжести приведенного сечения до менее нагретой грани:

$$y = \frac{16390}{1300} = 12,6 \text{ cm};$$

$$y_{61} = y_1 - y = 21,75 - 12,6 = 9,15 \text{ cm};$$

$$y_{62} = y - 0,5 h_2 = 12,6 - 0,5 \cdot 8,5 = 8,35 \text{ cm};$$

$$I_{\Pi 1} = \frac{620 \cdot 26,5^2}{12} = 36300 \text{ cm}^4;$$

$$I_{\Pi 2} = \frac{680 \cdot 8,5^2}{12} = 4100 \text{ cm}^4;$$

$$I_{\pi} = 36\,300 + 4100 + 620.9, 15^2 + 680.8, 35^2 = 139\,800$$
 cm⁴.

При средней температуре бетона в сечении $t_{\rm cp}$ =630° С по экстраполяции данных табл. 50 коэффициент c можно принять равным 21,5. Жесткость приведенного сечения по формуле (281):

$$B_{\rm m} = \frac{0.7 \cdot 185\,000 \cdot 139\,800}{21\,,5} = 0.83 \cdot 10^9 \,\,{\rm krc} \cdot {\rm cm}^2;$$

$$\eta = \frac{543 \cdot 139\,800}{617.5^2 \cdot 1300} = 0.15.$$

Распор от воздействия температуры:

$$H_{t} = \frac{3,55 \cdot 10^{-3} \cdot 617,5 - 2 \cdot 0,44}{(1+0,15) \frac{0,00175 \cdot 617,5^{3}}{0,83 \cdot 10^{9}} + 2 \cdot 0,0001} = \frac{2,20 - 0,88}{0,00057 + 0,0002} = 1700 \text{ kpc;}$$

$$N_{1t} = H_{t} = 1,7 \text{ Tc.}$$

$$M_{1t} = -1,7 \cdot 0,3 = -0,51 \text{ Tc·m.}$$

Расчетные усилия в сечении І-І (в замке):

$$N = N_{1t} + N_{1H} = 1.7 + 6.7 = 8.4 \text{ TC};$$
 $M = M_{1t} + M_{1H} = -0.51 + 0.15 = -0.36 \text{ TC-M};$
 $e_0 = \frac{M}{N} = \frac{-36000}{8400} = -4.3 \text{ cm}.$

При температуре бетона в центре тяжести приведенного сечения 566° С для жаростойкого бетона на жидком стекле состава № 18 в табл. 39 нет данных для определения коэффициента β, входящего в формулу (89). В этом случае при расчете прочности свода, согласно прим. 2 к табл. 39, необходимо отбросить часть сечения с температурой бетона выше 800° С с таким расчетом, чтобы получить температуроў бетона в центре тяжести оставшейся приведенной части сечения, не превышающую 500° С. При этом расчетная высота сечения свода с температурой бетона от 800 до 180° С h'=24 см. При делении расчетного сечения высотой 24 см на две площади с зоной раздела по температуре бетона 400° С получаем для первой площа-

ди
$$h_1 = 15,5$$
 см и среднюю температуру бетона $t_{\text{ср}_1} = \frac{800 + 400}{2} =$

$$=600^{\circ}$$
 С и для второй площади $h_2=8,5$ см и $t_{\text{с}\,\text{p}2}=\frac{400+180}{2}=$ $=290^{\circ}$ С.

При $t_{\text{срi}} = 600^{\circ}$ С $\beta_{\text{б}} = 0.85$ и $\overline{v} = 0.325$;

$$F_1 = bh_1 = 100 \cdot 15, 5 = 1550 \text{ cm}^2;$$

$$F_{\rm m1} = \frac{1550 \cdot 0,85 \cdot 0,325}{0.7} = 610 \text{ cm}^2.$$

Согласно ранее сделанному приведению сечения с полной высотой F_{m2} =680 см² при h_2 =8,5 см и t_{0p2} =290° С

$$F_{\rm II} = F_{\rm III} + F_{\rm II2} = 610 + 680 = 1290 \, \text{cm}^2$$
.

Для приведенного сечения с h'=24 см, $y_1=16,25$ см и $y_2=4,25$ см $S_\pi=690\cdot 16,25+680\cdot 4,25=11\cdot 200+2890=14\cdot 090$ см².

Расстояние от центра тяжести приведенного сечения с $h'\!=\!24$ см до менее нагретой грани

$$y = \frac{14\,090}{1290} = 11$$
 cm.

При температуре бетона в центре тяжести приведенного сечения свода высотой h'=24 см $t_{\pi,\tau}=464^\circ$ С по табл. 39 для бетона состава № 18 коэффициент $\beta=28,5$.

По формуле (89) при $M_1^{\pi_n} = M_1$:

$$k_{\rm A,B} = 1 + 28,5 = 29,5;$$

$$t = \frac{e_0}{h'} = \frac{4.3}{24} = 0.18.$$

При температуре бетона в центре тяжести приведенного сечения 464° С $m_{6t} = 0.29$.

По формуле (90):

$$t_{\text{MBH}} = 0.5 - 0.01 \frac{236}{24} - 0.001 \cdot 0.29 \cdot 90 = 0.5 - 0.1 - 0.02 = 0.38;$$

$$N_{\text{KP}} = \frac{6.4 \cdot 185\ 000 \cdot 139\ 800}{29.5 \cdot 236^2} \left(\frac{0.11}{0.1 + 0.38} + 0.1\right) =$$

$$= \frac{6.4 \cdot 185\ 000 \cdot 139\ 800 \cdot 0.33}{29.5 \cdot 236^2} = 33\ 200\ \text{kgc}.$$

По формуле (87)

$$\eta = \frac{1}{1 - \frac{8400}{33\,200}} = \frac{1}{1 - 0.25} = 1.3.$$

В данном случае расстояние от центра тяжести приведенного сечения до его наиболее напряженной грани, согласно рис. 9, a, при рабочей высоте сечения h'=24 см y=24-11=13 см.

По формуле (71) при y = 13 см

$$e' = 13 - 4.3 \cdot 1.3 = 7 \text{ cm}$$

В данном случае $2e'=2\cdot7=14$ см $< h_1=15,5$ см. По формуле (74)

$$F_6 = 2 \cdot 100 \cdot 7 = 1400 \text{ cm}^2$$
.

Температура бетона в центре тяжести сжатой зоны на расстоянии e'=7 см от более нагретой грани сечения высотой h'=24 см равна 619° С. При $t_6=619$ ° С по табл. 16 $m_{6t}=0,14$.

Проверяем условие прочности сечения свода I-I (в замке) высотой h'=24 см, согласно выражению (69), с учетом $m_{61}=0.85$ и $m_{65}=0.9$:

$$N = 8400 \text{ kgc} < 0.85 \cdot 0.9 \cdot 90 \cdot 0.14 \cdot 1400 = 13494 \text{ kgc}.$$

Таким образом, условие прочности сечения свода в замке при длительном воздействии собственного веса, нагрузки и высокой температуры удовлетворяется.

Условие прочности опорного сечения свода *II—II* при длительном воздействии собственного веса, нагрузки и температуры, как показали аналогичные расчеты, также удовлетворяется.

Определение прогиба свода в центре пролета при длительном действии собственного веса, нагрузки и температуры.

Выгиб свода в центре пролета от воздействия температуры по формуле (325):

$$f_t = 0,134 \cdot 3,55 \cdot 10^{-8} \cdot 617,5 + \frac{0,00293 \cdot 1700 \cdot 617,5^8}{0,83 \cdot 10^9} - \frac{1700 \cdot 617,5 \cdot 0,25}{2 \cdot 185 \cdot 000 \cdot 1300} = 0,29 + 1,40 - 0,0005 = 1,69 \text{ cm}.$$

Прогиб свода от равномерно распределенной нагрузки $q=13\ \mathrm{krc/c}$, с учетом собственного веса, по формуле (326):

$$\begin{split} f_{\rm H} &= \frac{6700 \cdot 617, 5 \cdot 0, 25}{2 \cdot 185\,000 \cdot 1300} - \frac{0,134 \cdot 216\,000 \cdot 617, 5^2}{0,83 \cdot 10^9} - \\ &- \frac{0,00293 \cdot 6700 \cdot 617, 5^8}{0,83 \cdot 10^9} + 0,05146 \left(\frac{13 \cdot 617, 5^4}{6 \cdot 0,83 \cdot 10^9} + \right. \\ &+ \left. \frac{13 \cdot 617, 5^2}{3 \cdot 185\,000 \cdot 1300} \right) = 0,002 - 13,3 - 5,56 + 19,5 = 0,64 \, \text{cm}_4 \end{split}$$

Суммарный прогиб свода от длительного воздействия собственного веса, нагрузки и температуры:

$$f = f_t + f_H = 1,69 - 0,64 = 1,05$$
 cm,

т. е. свод будет иметь выгиб вверх, равный 1,05 см.

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ ЖАРОСТОЙКОГО БЕТОНА В ЭЛЕМЕНТАХ КОНСТРУКЦИЙ

			Рекомен- дуемый
Наименование теплового агрегата	Элементы из жаростой- кого бетона	Темпера- тура рабо- чего про- странства печи, °С	состав бетона по табл. 11 настоящего Руководства
1. F	в черной металлургии		
Доменная печь	Фурменные прибо-	1300	16,19
	ры Шахта, пень, леща- ди, борова	1200	11
	Газоотводы и на- клонный газопровод, пылеуловитель	800	23,24
Вагранки для плавки чугуна	Станы колосника и плавильного пояса	1300	19
Воздухонагреватели доменной печи	Стены (нижняя часть), днище	1200	11
	Борова	800	23,24
Обжиговые машины агломерационного про- изводства	Нижний и верхний коллекторы и газоот-	800	23,24
Нагревательные ко-	Стены рабочих яче-	1300	19,21
Методические нагре- вательные печи	Изоляция глиссаж- ных труб и стены на высоту 1 м	1200	19
Ямные печи для за- медленного охлаждения	Стены	800	23,24
Коксовые батареи	Фундаменты и бо- рова	600	23,24
ti. F	В цветной металлургии		
Графитировочные печи	Стены І	1200	11
Печи кипящего слоя	Своды и решетка	1100	11,15
Алюминиевые и маг- ниевые электролизеры	Днища	1000	10,11
Электролизеры сверх-чистого алюминия	»	1000	10,11
Термические нагрева- тельные, отжигательные печи	Стены, свод и под	1200	11,19
Пылевые камеры Печи для оплавления	Стены и покрытие Стены и свод	800 1000	15 15
лома алюминия Надземные газоходы нли подземные в галере- ях	Днище, стены и свод	1100	11,15

		рооолжені	ie iipun. 1
Наименование теплового агрегата	Элементы из жаростой- кого бетона	Темпера- тура рабо- чего про- странства печи, °С	Рекомен- дуемый состав бе- тона по табл. 11 настояще- го Руково- дства
Фосфорные электро-	Свод	1100	15
Ферросплавные печи Камерные печи Электролитические ванны цветной метал- лургии	Днище и стены Свод, стены, под Стены	1000 1200 1000	10,11 19 10,11
III. В нефтеперерабатыва	ющей и нефтехимическ	ой промыц	иленности
Трубчатые печи	Стены и своды ка-	1000	31
	Стены и своды ка-	1000	23,24, 25,26
Вертикально-секци-	Стены камеры ра-	900	31
Трубчатые печи бес- пламенного горения ти- па Б	Фундаменты, стены, свод, под, перевальные стенки	800	10,11
Трубчатые печи бес- пламенного горения ти- па 3Р	Стены, свод, под	850 1100	23—30
Трубчатые печи на- стильные типа ЗД	То же	900— 1100	23—30
Трубчатые печи секци- онные типа В	»	800	22
Вертикально-факель- ные типа ГС	Стены камер кон- векции и радиации, свод, подовая часть	900	23—26
Объемно-настильные печи с разделительной стенкой типа ГН	То же	900— 1100	2326
Цилиндрические, фа- кельные типа ЦС	Стены камер кон- векции и радиации, свод, подовая часть	800— 1100	23—30
Цилиндрические печи типа ЦД настильные с дифференцированным подводом воздуха	То же	800— 1100	23—30
Каталитического риформинга и гидроочистки типа Р многокамерные	Стены, свод, подо- вая часть	1250	23—26

		poodiment	ec repun. 1
Наименование теплового агрегата	Элементы из жаростой- кого бетона	Температура рабочего просстранства печи, °С	Рекомен- дуемый состав бе- тона по табл. II настояще- го Руково- дства
Надземные газоходы трубчатых печей	Все элементы	600	23—26
Подземные газоходы трубчатых печей	То же	800	10,11, 23
IV. В промышле	енности строительных м	атериалов	•
Туннельные печи для обжига обыкновенного глиняного кирпича	Стены и своды зон подогрева и охлаж- дения, подины ваго- неток	1000	10,11
	Стены и своды зо-	1300	19,21
Вращающаяся печь для обжига цемента Туннельные печи для	Зона цепной завесь и откатная голов-	1000	10,11
обжига эмалированных санитарно-технических изделий	Стены и свод	1200	19
Кольцевые печи для обжига кирпича	Покрытие, стены, днище	1100	10,11
V. В разны	х отраслях промышлени	ЮСТИ	
Борова и газоходы для температур до 350° C	Стены, свод	350	2-4
Борова и газоходы для температур выше 350, но не более 800° С	То же	800	6—9, 23
Паровые котлы, эко- номайзеры, котлы-утили- заторы	Футеровка стен	800	10,11
Фундаменты тепловых агрегатов	Элементы, нагревающиеся до температур выше 200°С, но не более 800°С	800	6—9
Полы горячих цехов Колпаковые печи для	=	800	7—8 10,11
обжига металла Обжиговые печи элек-		1400	20,21
тродной промышленно- сти	Hovertue cress.	1000	10,11
Сушильные печи	Покрытие, ст ены, под	1000	10,11
Котлы различного на- значения	Футеровка экрани- рованных стен	800	23-30

Продолжение прил. 1

Элементы из жаростой- кого бетона	Темпера- тура рабо- чего про- странетва печи, °С	табл. 11
Стены, под, глис- сажные и опорные	1200	19,21
трубы Стены, свод, под	1000	15—18
Свод, стены	1100	19
	кого бетона Стены, под, глис- сажные и опорные трубы Стены, свод, под	Элементы из жаростой- кого бетона Тура рабочего про- странства печи, °С Стены, под, глис- сажные и опорные трубы Стены, свод, под 1000

ДАННЫЕ ПО АРМАТУРНЫМ СТАЛЯМ
Основные виды арматурных сталей и области их применения в железобетонных конструкциях в зависимости от характера действующих нагрузок и расчетной температуры (знак плюс означает «допускается», знак минус — «не допускается»)

			знак мі				словия	жсплуат	ации ко	нструкц	 ਸ ਲੋ		
						еские н	агрузки Эзд ух е в	1 B HeO-		ряющ	н много неся наг рытом во	рузки	
Вид арматуры и до-	ļ]		эданиях	тапл	иваемых	эдания: гемперат	K EEDDER 3	цания	тапл	иваемых четной	RNHARE	K IIDH
тирующие качество до общей до		Марка стали	Диаметр, ми	в отапливаемым з	до30° С вклю-	ниже —30° С до —40° С включн- тельно	ниже —40° С до —55° С вилючи- тельно	ниже —55° С до —70° С включн- тельно	в отапливаемых зданиях	до — 30° С вклю- чительно	ниже —30° С до —40° С включи- тельно	ниже —40° С до -55° С включи- тельно	ниже —55° С до —70° С включи- тельно
Стержневая го- рячекатаная глад- кая, ГОСТ 5781— 75	A-I	СтЗспЗ СтЗпсЗ СтЗспЗ ВСтЗсп2 ВСтЗпс2 ВСтЗкп2 ВСтЗГпс2	6—40 6—40 6—40 6—40 6—40 6—40 6—18	+++++	++++++	++1++1+	+++	+*	++++++	++++++	 ++-+-++	+++	
Стержневая горячекатаная	A-II	ВСт5сп2 ВСт5пс2	10—40 10—16	+++	++	++	+* +*	+•	+	++		_	<u></u>
периодического профиля, ГОСТ 5781—75		ВСт5пс2 18Г2С 10ГТ	18—40 40—80 10—32	+++	++++	 - + -	 + +	 - +* -	 + + +	+*	 - + -	 - + +	 +* +
	A-III	35ГС 25Г2С	6—40 6—40	+ +	+++	++	+*	 +**	+++	++	+*	<u>-</u> +**	=
	A-IV	80С 20ХГ2Ц	10—18 10—22	+++	++	<u>-</u>	- +**	_ +**	++	-	+	+**	_
	A-V	23Х2Г2Т	10—22	+	+	+	+	 **	+	+	+	+	+**
Стержневая термически упрочненная периодического профиля, ГОСТ 10884—71	AT-IV AT-V AT-VI	_	10—25 10—25 10—25	+++	++++	+++			+** +** +**	+** +** +**	- 	 +*** +***	_
Обыкновенная арматурная проволока гладкая, ГОСТ 6727—53*	B-I	_	35	+	+	+	+	+	+	+	+	+	+

			<u> </u>			У	словия :	жсплуат	ицин ко	нструкц	нй		<u> </u>					
					статич	еские н	агрузка		д	OPFINALIA IRGOTEON	жие и м ощиеся	ногократ нагрузкі	HO I					
Вид арматуры и до- кументы, регламен-									эданиях	Taru	рытом в иваемых счетной	: здания	х при	даниях	Tan	рытом в пнваемых счетной	С ЗДАНИЯ	IX DDH
тирующие качество	тирующие качество	Класс арматуры	Марка сталн	Диаметр, мм	в отапливаемых з	до —30° С вклю- чительно	ниже —30° С до —40° С включи- тельно	ниже —40° С до —55° С включи- тельно	ниже —55° С до —70° С вилючи- тельно	в отапливаемых эданиях	до30° С вклю- чительно	ниже —30° С до —40° С включи- тельно	ниже —40° С до —55° С вилючи- тельно	ниже —55° С до —70° С включи- тельно				
Обыкновенная арматурная проволока периодического профиля, ТУ 14-4-659-75	Bp-I		3—5	+	+	+	+	+	+	+	+	+	+					
Высокопрочная арматурная про- волока гладкая, ГОСТ 7348—63	B-II	_	38	+	+	+	+	+	+	+	+	+	+					
Высокопрочная арматурная проволока периодического профиля, ГОСТ 8480—63	Bp-II		3-8	+	+	+	+	+	+	+	+	+	+					
Арматурные ка- наты, ГОСТ 13840—68*	K-7	_	4,5—15	+	+	+	+	-	+	+	+	+	+					

^{*} Допускается применять только в вязаных каркасах и сетках.

** Следует применять только в виде целых стержней мерной длины.

*** Применение термически упрочненной допускается при гарантируемой величине равномерного удлинения бриеменее 2%. Термически упрочненные стали не допускается применять в случаях, когда требуется расчет конструкций на выносливость.

Примечания: 1. Расчетная температура принимается согласно указаниям п. 1.3 главы СНиП II-21-75. 2. В данной таблице к динамическим следует относить нагрузки, если доля этих нагрузки при расчете конструкций по прочности превышает 0,1 статической нагрузки; к многократно повторяющимся нагрузкам — нагрузки, при которых коэффициент условий работы арматуры m_{a1} по табл. 25 главы СНиП II-21-75 меньше единицы.

ПРИЛОЖЕНИЕ 3

ОБЛАСТИ ПРИМЕНЕНИЯ УГЛЕРОДИСТЫХ СТАЛЕЙ ДЛЯ ЗАКЛАДНЫХ ДЕТАЛЕЙ ЖЕЛЕЗОБЕТОННЫХ И БЕТОННЫХ КОНСТРУКЦИЙ

		Расчетная температура эксплуатации конструкций							
Характеристика закладных деталей	Класс стали	до —30° С вкл	онакетиро	ниже —30° С до —40° С вклю- чительно					
		марка стали по ГОСТ 380—71*	толщива проката, мм	марка сталн по ГОСТ 380—71*	толщина проката, м м				
1. Закладные детали, рассчитываемые на усилия от статических нагрузок	C38/23	ВСт3кп2	4—30	ВСт3пс6	425				
2. Закладные детали, рассчитываемые на усилия от динамических и многократно повторяющихся нагрузок	C38/23	ВСт3пс6 ВСт3Гпс5 ВСт3спБ	4—10 11—30 11—25	ВСт3пс6 ВСт3Гпс5 ВСт3сп5	4-10 11-30 11-25				
3. Закладные детали конструктивные, не рассчитываемые на силовые воздействия	C38/23	ВСт3кп2 ВСт3кп2	4—10 4—30	ВСт3кп2 ВСт3кп2	410 430				

Примечания: 1. Класс стали устанавливается в соответствии с главой СНиП по проектированию стальных конструкций.

2. Расчетная температура принимается согласно п. 1.3 главы СНиП II-21-75.

3. При температуре ниже —40° С выбор марки стали для закладных деталей следует производить как для стальных сварных конструкций в соответствии с требованиями главы СНиП по проектированию стальных конструкций.

ОСНОВНЫЕ ТИПЫ СВАРНЫХ СОЕДИНЕНИЙ СТЕРЖНЕВОЙ АРМАТУРЫ

Тип соединения	Условное обозначение типов соединений по го- сударственным стандар-	Схема конструкции соединения	Положение стержней при сварке	Способ сварки	Класс стали	Диаметр стержней, мм	Дополнительные указания
1. Крестооб- разное, ГОСТ 14098—68	KT-2	£	Горизон- тальное	Қонтактная точечная	A-I A-II A-III B-I Bp-I	6—40 10—80 6—40 3—5 3—5	шего диаметра стержня к большему составляет 0,25—1.
	KT-3		То же	То же	A-I A-II A-III	6—40 10—80 6—40	из одинаковых

·							
Тип соединения	Условное обозначение тилов соединений по го- сударственным стандартам	Схема конструкции соединения	Положение стержней при сварке	Способ сварки	Класс стали	Диаметр стержней, мм	Дополнительные указания
							Возможно вертикальное положение стержней, как правило, при сварке подвесными клещами.
	кс-о		Горизон- тальное	Контактная стыковая	A-I A-II	10—40 10—80	
2. Стыковое ГОСТ 14098— 68 и ГОСТ 19293—73*	КС-Р		*	То же	A-III A-IV A-V	10—40 10—22 10—22	
	КС-М		>	*	A-II A-III A-IV A-V	10—80 10—40 10—22 10—22	

3. Стыковое, ГОСТ 14098— 68	ВО-Б		Горизон- тальное	Ванная одно- электродная	A-I A-II A-III	20—40	Сварка выпол- няется в инвен- тарных формах		
	ВП-Г		То же	Ванная полу- автоматиче- ская под флю- сом	A-I A-II A-III	20—40			
	ВМ-1		>	Ванная мно- гоэлектродная	A-I A-II A-III	20—40 20—80 20—40	Тоже		
	ВП-В		Вертикаль- ное	Ванная полу- автоматичес- кая под флю- сом	A-II	20—40			
	BM-2		Горизон- тальное	Ванная мно- гоэлектродная	A-I A-II A-III	20—40 20—80 20—40	также применение		

Тип соединения	Условное обозначение типов соединений по го- сударственным стан- дартам	Схема конструкции соединения	Положение стержней при сварке	Способ сварки	Класс стали	Диаметр стержней, ми	Дополнительные указания
4. Стыковое	_		Горизон- тальное	Ванная одно- электродная с желобчатой подкладкой		20—32 20—32 20—32	
			,	Ванно-шов- ная с желоб- чатой наклад- кой	A-I	2040	Сварка откры- той дугой голой
5. »	_		Горизон- тальное и вер- тикальное	Полуавто- матическая многослойны- ми швами с желобчатой накладкой	A-II A-III	20—80 20—40	проволокои допу-

22 6. Стыко вое 22— 374			Горизон- гальное	Многослой- ными швами с желобчатой подкладкой или без нее	A-I A-II A-III	20—40 20—80 20—40	
7. Стык о вое,	_	(6d) (10d)	Горизон- тальное и вер- тикальное	Дуговая фланговыми швами	A-II A-III A-IV A-V	10—40 10—80 10—40 10—22 10—22	
FOCT 19293— 73		(3d)	Горизон- тальное	То же	A-II A-III A-III	10—40 10—80 10—40	
8. Нахлесточ- ное	_	(6d)	Горизон- тальное и вер- тикальное	*	A-II A-III A-III	10—40 10—25 10—25	двухсторонние
9. То же 33		(3d) (5d)	То же	*	A-I A-II A-III A-IV A-V	10—40 10—40 10—40 10—22 10—22	

ō 						**	poodsime repair. 1
Тип соединения	Условиое обозначение типов соединений по го- сударственным стан- дартам	Схема конструкции соединения	Положение стержней при сварке	Способ сварки	Класс стали	Диаметр стержией, ым	Допоминтельные указания
10. Нахлесточное, ГОСТ 19292—73	H-1		Горизон- тальное	Контактная рельефная	A-I A-II A-III	6—14 10—14 6—14	
	H-2		То же	То же	A-I A-II A-III	6—16 10—16 6—16	
11. Тавровое из плоскости пластины, ГОСТ 19292—73	T-1		Вертикаль- ное	Под флюсом без присадочного электродного материала	A-II	8—40 10—40 8—40	

Примечание. На чертежах поз. 7, 8 и 9 в скобках указана соответствующая длина фланговых швов: $6\,d$ и $3\,d$ — для арматуры класса A-I; $10\,d$ и $5\,d$ — для арматуры классов A-IV и A-V.

СОРТАМЕНТ АРМАТУРНОЙ СТАЛИ

Сортамент стержневой арматуры

Номи- нальный диаметр, мм	Расчетная площадь по- перечного сечения, см²	Теорети- ческий вес 1 м, кг	Номи- нальный диаметр, мм	Расчетная площадь по- перечного се- чения, см²	Теорети- ческий вес 1 м, иг
6 7 8 9 10 12 14 16	0,283 0,385 0,503 0,636 0,785 1,131 1,54 2,01	0,222 0,302 0,395 0,499 0,617 0,888 1,21 1,58	18 20 22 25 28 —	2,54 3,14 3,8 4,91 6,15 —	2 2,47 2,98 3,85 4,83 — —

Сортамент арматурной проволоки

диа-	площадь сечения,	Теоретический вес 1 м, кг		дка-	площадь о сече	Теоретический вес 1 м, кг	
Номинальный метр, мм	Расчетная пло поперечного се см²	классов В-І, В-ІІ в Вр-ІІ	класса Вр-І	Номинальный метр, мм	Расчетная пло поперечного с ния, см³	классов В-І, В-ІІ в Вр-ІІ	класса Вр-І
3 4 5	0,071 0,126 0,196	0,055 0,099 0,154	0,051 0,09 0,139	6 7 8	0,283 0,385 0,503	0,222 0,302 0,395	

Сортамент арматурных канатов К7

Номиналь- ный диа- метр, мм	Расчетная площадь поперечно-го сечения, см²	Теорети- ческий вес 1 м, кг	Номиналь- ный диа- метр, мм	Расчетная площадь поперечно-го сечения, см³	Теорети- ческий вес 1 м, кг
4,5	0,127	0,1	9	0,51	0,402
6	0,227	0,173	12	0,906	0,714
7,5	0,354	0,279	15	1,416	1,116

Примечание. Номинальный диаметр арматуры (номер сечения) соответствует для:

горячекатаной и термически упрочненной арматурной стали периодического профиля — номинальному диаметру равновеликих по площади поперечного сечения гладких стержней;

обыкновенной и высокопрочной арматурной проволоки периодического профиля — номинальному диаметру проволоки до придания ей периодического профиля;

арматурных канатов — диаметру их описанных окружностей.

ПРИЛОЖЕНИЕ 6

ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

Усилия от воздействия нагрузки и температуры в поперечном сечении элемента

- М и N изгибающий момент и продольная сила от совместного действия усилий, вызванных температурой и нагрузкой;
- $M_{
 m H}$ и $M_{\it t}$ изгибающий момент соответственно от воздействия внешней нагрузки и гемпературы;
- $N_{\rm H}$ и $N_{\it t}$ продольная сила соответственно от воздействия нагрузки и температуры;
- $Q_{\rm H}$ и $Q_{\rm f}$ поперечная сила соответственно от воздействия нагрузки и температуры.

Характеристика предварительно-напряженного элемента

- N_0 усилие предварительного обжатия определяется по формуле (9) главы СНиП II-21-75 при σ_0 и σ_0' , с учетом первых и вторых основных потерь;
- σ_0 и σ_0' предварительные напряжения соответственно в напрягаемой арматуре A и A', которые принимаются согласно п. 1.29 главы СНиП II-21-75 с учетом первых и вторых основных потерь;
 - $e_{0,H}$ эксцентриситет усилия предварительного обжатия N_0 относительно центра тяжести приведенного сечения, определяемого по формуле (10) главы СНиП II-21-75, при величинах σ_0 и σ_0^* , с учетом первых и вторых основных потерь;

об — установившееся напряжение в бетоне на уровне центров тяжести продольной арматуры А и А' после проявления всех основных потерь, которое определяется по формуле (16) настоящего Руководства.

Характеристики материалов при воздействии температуры

- $R_{
 m np}_t = R_{
 m np} \, m_{
 m 0}_t \, {
 m u} \, R_{
 m p} \, _t = R_{
 m p} \, m_{
 m p}_t \, \, {
 m pacчетноe} \, {
 m сопротивлениe} \, {
 m бетонa} \, {
 m осевому} \, {
 m сжатию} \, {
 m u} \, {
 m pacтяжению} \, {
 m для} \, {
 m предельных} \, {
 m состояний} \, {
 m первой} \, {
 m группы};$
- $R_{
 m nptII} = R_{
 m npII} m_{
 m 6t}$ и $R_{
 m ptII} = R_{
 m pII} m_{
 m pt}$ расчетные сопротивления бетона осевому сжатию и растяжению для предельных состояний второй группы;
- $R_{\mathrm{a}t}=R_{\mathrm{a}}\,m_{\mathrm{a}t}$ и $R_{\mathrm{a}t\mathrm{II}}=R_{\mathrm{a}\mathrm{II}}\,m_{\mathrm{a}t}$ расчетные сопротивления арматуры растяжению для предельных состояний соответственно первой и второй групп;
 - а) продольной;
 - б) поперечной при расчете сечений, наклонных к продольной оси элемента, на действие изгибающего момента;
 - $R_{a,xt} = R_{a,x} \; m_{at}$ расчетное сопротивление поперечной арматуры растяжению для предельных состояний первой группы при расчете сечений, наклонных к продольной оси элемента на действие поперечной силы;
 - $R_{act} = R_{ac} \ m_{at}$ расчетное сопротивление арматуры сжатию для предельных состояний первой группы;
 - $R_{at11} = R_{a11} \ m_{at}$ расчетное сопротивление арматуры растяжению для предельных состояний второй группы;
 - E_{6} начальный модуль упругости бетона при сжатии и растяжении;
 - E_{6t} модуль упругости бетона при воздействии температуры;
 - E_a модуль упругости арматуры при нормальной температуре;
 - E_{at} модуль упругости арматуры при воздействии температуры;

- оа и об напряжение в растянутой арматуре и в сжатой зоне бетона в сечении с трещиной;
- от в бетоне сжатой зоны на участках между трещинами;
 - σ_{at} и σ_{6t} напряжение в растянутой арматуре и в сжатой зонс бетона в сечении с трещиной от воздействия температуры;
- об.н напряжение в растянутой арматуре и в сжатой зоне бетона от нагрузки в сечении с трещиной;
- $lpha_{
 m p}$, $lpha_{
 m y}$, $lpha_{
 m 6}t$ коэффициенты линейного температурного расширения, температурной усадки и температурной деформации бетона;
 - $lpha_{at}$ коэффициент линейного температурного расширения арматуры A и A';
 - α_{atc} коэффициент температурного расширения растянутой арматуры в бетоне, с учетом влияния работы бетона между трещинами, определяемый по формуле (68).

Характеристики положения продольной арматуры в поперечном сечении элемента

А — обозначение продольной арматуры:

- а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения — расположенной в растянутой зоне;
- б) при полностью сжатом от действия внешней нагрузки сечении расположенной у менее сжатой грани сечения;
- в) при полностью растянутом от действия внешней нагрузки сечении:

для внецентренно-растянутых элементов — расположенной у более растянутой грани сечения;

для центрально-растянутых элементов — всей в поперечном сечении элемента;

А' — обозначение продольной арматуры:

- а) при наличии сжатой и растянутой от действия внешней нагрузки зон сечения расположенной в сжатой зоне,
- б) при полностью сжатом от действия внешней нагрузки сечении расположенной у более сжатой грани сечения,
- в) при полностью растянутом от действия внешней нагрузки сечении внецентренно-растянутых элементов расположенной у менее растянутой грани сечения.

Геометрические характеристики

- $\frac{1}{\rho_t} = \frac{1}{\rho_y}$ кривизна оси элемента от воздействия температуры при нагреве и остывании;
 - b ширина прямоугольного сечения, ширина ребра таврового и двутаврового сечений;
- $b_{\rm in}$ и $b_{\rm in}'$ ширина полки таврового или двутаврового сечения соответственно в растянутой и сжатой зонах;
 - h высота прямоугольного, таврового или двутаврового сечения;
 - а и а' расстояние от равнодействующей усилий соответственно в арматуре A и A' до ближайшей грани сечения;
 - h_0 и h_0' рабочая высота сечения, равная соответственно h-a и h-a';
 - $h_{0 \text{ щ}}$ рабочая высота сечения у шва, равная h_{m} —а;
 - h_n и h'_n высота полки таврового или двутаврового сечения соответственно в растянутой и сжатой зонах;
 - e_0 эксцентрицитет продольной силы N относительно центра тяжести приведенного сечения, определяемый в соответствии с п. 1.30 настоящего Руководства;
 - e_a расстояние от точки приложения продольной силы N до центра тяжести площади сечения арматуры A;
 - l пролет элемента:
 - l_0 расчетная длина элемента, подвергающегося действию сжимающей продольной силы; величина l_0 принимается по табл. 42, 43 и п. 3.30 настоящего Руководства;
 - г радиус инерции поперечного сечения элемента относительно центра тяжести сечения;
 - d номинальный диаметр арматурных стержней;
 - F площадь всего бетона в поперечном сечении;
 - F₆ площадь сечения сжатой зоны бетона;
 - $F_{6,p}$ площадь сечения растянутой зоны бетона;
 - F_{Π} площадь приведенного сечения элемента, определяемая в соответствии с п. 1.28 настоящего Руководства;
 - $F_{\rm cm}$ площадь смятия бетона;
 - е и е' расстояние от точки приложения продольной силы N до равнодействующей усилий соответственно в арматуре A и A';

- $F_{\bf a}$ и $F_{\bf a}'$ площадь сечения ненапрягаемой и напрягаемой арматуры соответственно A и A';
 - $F_{\rm x}$ площадь сечения хомутов, расположенных в одной нормальной к продольной оси элемента плоскости, пересекающих наклонное сечение;
 - δ и δ' относительное расстояние от ближайшего края сечения до арматуры: $\delta = \frac{a}{h_0}; \; \delta' = \frac{a'}{h_0};$
 - х высота сжатой зоны бетона;
 - ξ относительная высота сжатой зоны бетона, равная $\frac{x}{h_0}$
 - f_0 площадь сечения одного стержня продольной арматуры;
 - μ коэффициент армирования, определяемый как отношение площади сечения арматуры A к площади поперечного сечения элемента bh_0 без учета сжатых и растянутых полок;
- $S_{6,o}$ и $S_{6,p}$ статические моменты площадей сечения соответственно сжатой и растянутой зон бетона относительно нулевой линии:
- $S_{a,0}$ и $S_{a,0}'$ статические моменты площадей сечения соответственно арматуры A и A' относительно нулевой линии;
 - I момент инерции сечения бетона относительно центра тяжести сечения элемента, вычисляемый без учета температуры как для ненагретого бетона;
 - Іп момент инерции приведенного сечения элемента относительно его центра тяжести, определяемый в соответствии с п. 1.28 настоящего Руководства;
 - I_a момент инерции площади сечения арматуры относительно центра тяжести сечения элемента;
 - 1_{6.0} момент инерции площади сечения сжатой зоны бетона относительно нулевой линии;
- $I_{a.0}$ и $I'_{a.0}$ моменты инерции площадей сечения соответственно арматуры A и A' относительно нулевой линии;
 - у расстояние от центра тяжести приведенного сечения до растянутой грани в формулах (5), (14) и (15), до волокна бетона, в котором определяется напряжение в формуле (16) и до менее нагретой грани в формулах (23) и (29);
 - y_a и y_a'' расстояния от центра тяжести приведенного сечения элемента до равнодействующей усилий в арматуре A и A';

 f_t , ϵ_t и ϵ_y — расчетные величины прогиба, удлинения и укорочения элемента от воздействия температуры;

 $a_{\rm T}$ — средняя расчетная величина раскрытия трещин;

- F_0 площадь сечения отогнутых стержней, расположенных в одной наклонной к продольной оси элемента плоскости, пересекающей наклонное сечение;
- u_0 расстояние между плоскостями отогнутых стержней, измеренное по нормали к ним;

 f_{x} — площадь сечения одного стержня хомута;

 и— расстояние между хомутами, измеренное по длине элемента;

to — температура бетона;

 t_a и t_a' — температура арматуры A и A';

 $t_{\rm B}$ — температура среды со стороны источника тепла;

t_н — температура воздуха с наружной стороны элемента.

СОДЕРЖАНИЕ

(
Предисловие
1. Основные положения
Общие указания
2. Материалы для бетонных и железобетонных конструкций
Бетон
3. Расчет элементов бетонных и железобетонных конструкций по предельным состояниям первой группы
Расчет бетонных элементов по прочности Внецентренно-сжатые элементы
оси элемента
Изгибаемые элементы прямоугольного, таврового.
двутаврового, кольцевого сечений
Расчет прямоугольных сечений
Расчет тавровых и двутавровых сечений
Расчет кольцевых сечений
Внецентренно-сжатые элементы прямоугольного, тав-
рового, двутаврового, кольцевого сечений
Расчет прямоугольных сечений
Расчет тавровых и двутавровых сечении
Расчет элементов кольцевого сечения
Центрально-растянутые элементы
Внецентренно-растянутые элементы
Расчет прямоугольных сечений
Расчет по прочности сечений, наклонных к продольной оси
элемента
Расчет сечений, наклонных к продольной оси элемен-
та, на действие поперечной силы
Расчет сечений, наклонных к продольной оси элемен-
та, на действие изгибающего момента
Расчет железобетонных элементов на местное действие на-
грузок
Расчет на местное сжатие
Расчет на продавливание
Расчет на отрыв
Расчет закладных деталей
Расчет железобеточных элементов на выносливость

Расче	стояниям второй группы ст железобетонных элементов по образованию трещин
	Расчет по образованию трещин, нормальных к про-
	дольной оси элемента
	Расчет по образованию трещин, наклонных к продольной оси элемента
Расче	ет железобетонных элементов по раскрытию трещин
	Расчет по раскрытию трещин, нормальных к продольной оси элемента
	Расчет по раскрытию трещин, наклонных к продольной оси элемента
Расче циям	т элементов железобетонных конструкций по деформа
	Определение кривизны железобетонных элементов на участках без трещин в растянутой зоне
	Определение кривизны железобетонных элементов на участках с трещинами в растянутой зоне
	Определение прогибов
	Определение жесткости сечений элементов
	Приближенный метод расчета деформаций и жест кости элементов
5. Конс [.]	груктивные требования
	Минимальные размеры сечения элементов
	Защитный слой бетона
	Минимальные расстояния между стержнями арматуры
	Анкеровка ненапрягаемой арматуры
	Продольное армирование элементов
	Поперечное армирование элементов
	Сварные соединения арматуры
	Стыки ненапрягаемой арматуры внахлестку (без сварки)
	Стыки элементов сборных конструкций
	Отлельные конструктивные треоования
в. Р асче	Требования, указываемые в проектах
8. Расч е	Требования, указываемые в проектах
6. Расче	Требования, указываемые в проектах
6. Расче	Требования, указываемые в проектах
6. Расче	Требования, указываемые в проектах
в. Расче	ет и конструирование некоторых элементов конструкций Фундаменты Стены Покрытия Перекрытия Борова
6. Расче	Требования, указываемые в проектах
. Расче	Требования, указываемые в проектах

		Стр.
Приложение 1	. Указания по применению жаростойкого бетона в элементах конструкций .	324
Приложение 2	. Данные по арматурным сталям	328
Приложение 3	. Области применения углеродистых сталей для закладных деталей желе- зобетонных и бетонных конструкций	332
Приложение 4	. Основные типы сварных соединений стержневой арматуры	333
Приложение 5	. Сортамент арматурной стали	339
Приложение 6	. Основные буквенные обозначения	340

НИИЖБ Госстроя СССР РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ РАБОТЫ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОВЫШЕННЫХ И ВЫСОКИХ ТЕМПЕРАТУР

Редакция инструктивно-нормативной литературы
Зав. редакцией Г.А.Жигачева
Редактор В.В.Петрова
Мл. редакторы Л.М.Климова, С.А.Зудилина
Технический редактор Г.В.Климушкина
Корректоры О.В.Стигнеева, Л.П.Бирюкова

Сдано в набор 23.XI.1977 г. Подписано в печать 26.V.1978 г. Формат 84×108¹/₃₂. Бумага типографская № 2. Гарнитура—литерат., печать—высокая. 18,48 усл. печ. л. (22,91 уч.-изд. л.). Тираж 19 000 экз. Зак. № 374. Цена 1 р. 30 к.

Стройнадат 103006, Москва, Каляевская, 23a

Владимирская типография «Союзполиграфпрома» при Государственном комитете Совета Министров СССР по делам издательств, полиграфии и книжной торговли

600000, г. Владимир, Октябрьский проспект, д. 7