4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций действующих веществ пестицидов в воде, почве, зеленой массе, зерне и соломе зерновых культур, семенах и масле рапса, зерне гороха, семенах и масле льна

Сборник методических указаний по методам контроля МУК 4.1.3020—12; 4.1.3022—12; 4.1.3045—12

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций действующих веществ пестицидов в воде, почве, зеленой массе, зерне и соломе зерновых культур, семенах и масле рапса, зерне гороха, семенах и масле льна

Сборник методических указаний по методам контроля МУК 4.1.3020—12; 4.1.3022—12; 4.1.3042—12; 4.1.3045—12

ББК 51.21+51.23 ИЗ7

Измерение концентраций действующих веществ пестицидов в воде, почве, зеленой массе, зерне и соломе зерновых культур, семенах и масле рапса, зерне гороха, семенах и масле льна: Сборник методических указаний по методам контроля.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013.—58 с.

ISBN 978-5-7508-1178-6

- 1. Разработаны сотрудниками ГНУ «Всероссийский НИИ защиты растений» Россельхозакадемии, ФГУП «Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева».
 - 2. Введены в действие с момента утверждения.
 - 3. Введены впервые.

ББК 51.21+51.23

[©] Роспотребнадзор, 2013

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013

Содержание

Измерение остаточных количеств мепикват хлорида в воде, почве, зеленой массе, зерне и соломе зерновых культур, семенах и масле рапса методом высокоэффективной жидкостной хроматографии с масс-	
спектрометрическим детектированием: МУК 4.1.3020—12	4
Измерение остаточных количеств эсфенвалерата в семенах и масле рапса	
методом газожидкостной хроматографии: МУК 4.1.3022—12	20
Измерение остаточных количеств имазалила в зерне гороха методом	
капиллярной газожидкостной хроматографии: МУК 4.1.3042—12	32
Измерение остаточных количеств тебуконазола в зерне гороха, семенах и	
масле льна методом капиллярной газожидкостной хроматографии:	
МУК 4.1.3045—12	45

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

3 июля 2012 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение остаточных количеств мепикват хлорида в воде, почве, зеленой массе, зерне и соломе зерновых культур, семенах и масле рапса методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием

Методические указания МУК 4.1.3020—12

Свидетельство о метрологической аттестации от 9.04.2012 № 01.5.04.072/01.00043/2012.

Настоящие методические указания устанавливают метод измерения массовой доли мепикват хлорида в воде в диапазоне 0.001—0.01 мг/дм³, в почве 0.025—0.25 мг/кг, в зерне зерновых, семенах и масле рапса в диапазоне концентраций 0.02—0.2 мг/кг, в зеленой массе и соломе зерновых – 0.05—0.5 мг/кг.

Название действующего вещества по ICO: мепикват хлорид. Название действующего вещества по IUPAC: 1,1-диметилпиперидин. Структурная формула:

Эмпирическая формула: $C_7H_{16}CIN$. Молекулярная масса: 149,7.

Гигроскопичные кристаллы без цвета и запаха. Температура плавления: > 300 °C. Давление паров при 20 °C < $1 \cdot 10^{-11}$ мПа. Коэффициент распределения н-октанол/вода: K_{ow} log P = -3.55 (pH 7).

Растворимость в воде при $20 \,^{\circ}\text{C} > 50 \,^{\circ}\text{C}$ (вес.); в органических растворителях (г/100 мл при $20 \,^{\circ}\text{C}$) – в метаноле 48.7, п-октаноле – 0,962, ацетонитриле – 0,280, дихлорметане – 0,051, ацетоне – 0,002, в толуоле, п-гептане и этилацетате – < 0,001.

Стабилен в водных растворах (30 дней при рН 3, 5, 7 и 9, 25 °C). Стабилен при воздействии солнечного света.

Краткая токсикологическая характеристика

Острая оральная токсичность ($\dot{L}D_{50}$) для крыс — 270 мг/кг, подкожная > 1 160 мг/кг, не ирритант для кожи и глаз (кролики); ингаляционная токсичность ($\dot{L}C_{50}$) для крыс — более 2,84 мг/дм³ воздуха (7 ч). Класс токсичности по BO3 — III. $\dot{D}T_{50}$ в почве 11—40 дней при 20 °C.

Область применения препарата - регулятор роста растений.

1. Погрешность измерений

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности P=0.95 не превышает значений, приведенных в табл. 1 для соответствующих диапазонов концентраций.

Таблица 1 Метрологические параметры

Диапазон измерений, массовая доля, мг/кг (мг/дм ³)	Показатель повторяе-мости (от-носительное среднеквадратическое отклонение повторяемости), ол, %	Показатель промежуточной прецизионности (относительное среднеквадратическое отклонение в условиях вариации факторов «время», «оператор» в одной лаборатории), оклу %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), σ_R , %	Показатель точности* (границы относительной погрешности при вероятности $P = 0.95$), $\pm \delta$, %
1	2	3	4	5
Вода от 0,001 до 0,01 вкл.	7	9	12	25
Почва от 0,025 до 0,25 вкл.	7	9	12	25
Зеленая масса от 0,05 до 0,5 вкл.	6	8	11	24

Продолжение табл. 1

I	2	3	4	5
Солома от 0,05 до 0,5 вкл.	6	8	11	24
Зерно от 0,02 до 0,2 вкл.	6	8	11	24
Семена рапса от 0,02 до 0,2 вкл.	6	8	11	24
Масло рапса от 0,02 до 0,2 вкл.	6	7	8	16

^{*} Соответствует расширенной неопределенности U_{omn} при коэффициенте охвата k=2

Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для полного диапазона концентраций (n=20) приведены в табл. 2.

Таблица 2

Объект анализа	Предел обнаруже- ния, мг/кг (мг/дм ³)	Диапазон из- меряемых концентраций, мг/кг (мг/дм ³)	Среднее значение опреде- ления, %	Стан- дартное отклоне- ние, S, %	Доверительный интервал сред- него результа- та, ± %
Вода	0,001	0,0010,01	97	3,6	3,3
Почва	0,025	0,025—0,25	90	4,9	4,5
Зеленая масса	0.05	0,05—0,5	85	4,2	3,8
Солома	0.05	0,050,5	83	4,3	3,9
Зерно	0.02	0,020,2	94	4.0	3,6
Семена рапса	0,02	0,02-0,2	88	5,2	4,7
Масло рапса	0,02	0,020,2	90	4,8	4,4

2. Метод измерений

Методика основана на определении мепикват хлорида методом ВЭЖХ с масс-спектрометрическим детектированием после его извлечения из образцов органическим растворителем с последующей очисткой на патронах с оксидом алюминия. Мепикват хлорид идентифицируют по абсолютному времени удерживания. Массовую концентрацию мепикват хлорида в пробе определяют в режиме автоматической обработки данных по построенной ранее градуировочной характеристике.

Избирательность метода определения мепикват хлорида достигается сочетанием условий подготовки проб и хроматографического анализа с масс-спектрометрическим детектированием.

3. Средства измерений, реактивы, вспомогательные устройства и материалы

3.1. Средства измерений

Хромато-масс-спектрометр Agilent Triple Quard LC/MS модель 6460 производства фирмы Agilent Technologies, состоящий из: - высокоэффективного жидкостного хроматографа Agilent 1200; - масс-спектрометра Agilent модели Triple Quard LC/MS 6460, оснащенного системой ионизации «электроспрей» Весы аналитические ВЛА-200 ГОСТ 24104-2001 Весы технические ВЛКТ-500 ГОСТ 24104-2001 Колбы мерные на 10, 100, 1 000 см³ ΓΟCT 23932-90 Микродозаторы одноканальные «BIOHIT» переменного объема от 200 до 1 000 мм³ и Номер в Госреестре средств от 1 до 5 см³. Финляндия измерений 36152-07 Пипетки градуированные ГОСТ 29227---91 Цилиндры мерные на 50 и 100 см³ FOCT 23932-90 рН-метр универсальный ЭВ-74 ГОСТ 22261---76

Примечание. Допускается использование средств измерения иных производителей с аналогичными или лучшими характеристиками.

3.2. Реактивы

Ацетонитрил для ВЭЖХ, сорт 1	ТУ 6-09-3534—87
Вода для лабораторного анализа (бидистилли-	
рованная, деионизованная)	ГОСТ Р 52501—2005
Изопропиловый спирт, хч	ТУ 6-09-402—75
Карбонат магния (магний углекислый	
основной водный), ч	ГОСТ 6419—78
Калия перманганат, хч	ГОСТ 20490—75
Кислота муравьиная Reagent Grade,	
№ G2453-85060 по каталогу Agilent	
Кислота соляная, хч	ГОСТ 3118—77
Мепикват хлорид, аналитический стандарт с	
содержанием д.в. 98,0 % (BASF)	
Метилен хлористый, хч	ТУ 2631-4449317998
Натрия гидроксид, чда	ГОСТ 4328—77
Оксид алюминия для хроматографии, ч,	
размер частиц 100—200 мкм, 1-й степени	
активности по Брокману, нейтральный	ТУ 6-09-42675

MYK 4.1.3020-12

Подвижные фазы для ВЭЖХ:

- подвижная фаза А: вода + муравьиная кислота

 $(1\ 000 + 1, по объему)$

- подвижная фаза Б: метанол + муравьиная

кислота (1 000 + 1, по объему)

Спирт метиловый, хч

ГОСТ 6995---77

ТУ 64-1-1081—73

ΓΟCT 25 336—82 ΓΟCT 8613—75

MPTY 42-1505-63

ΓΟCT 10384---72

ТУ 1-01-0593—79 ГОСТ 25336—82

ГОСТ Р МЭК 60335-2-15--98

Примечание. Допускается использование реактивов иных производителей с более высокой квалификацией, не требующих дополнительной очистки растворителей.

3.3. Вспомогательные устройства и материалы

Колонка Zorbax Eclipse XDB-C18

 (150×4.6) mm, 5 mkm

Аппарат для встряхивания

Ванна ультразвуковая УЗВ-1.3 Воронки лабораторные В-75-110

Воронки делительные ВД-3-250

Гомогенизатор

Колбы плоскодонные на шлифах КШ500 29/32 ТС ГОСТ 10384--72

Колбы круглодонные на шлифах КШ10 и

КШ250 29-32 ТС

Мельница ножевая РМ -120 и лабораторная

зерновая ЛМЗ

Насос водоструйный

Патроны Диапак С (БиоХимМак СТ), 0.4 г

(номер по каталогу 22.0300)

Ротационный испаритель вакуумный

Buchi R-205 (Швейцария)

Стеклянные флаконы (виалы) для градуировочных и анализируемых растворов вместимостью

1,8 см³ с завинчивающимися крышками и тефлоновыми прокладками фирмы Supelco,

номер по каталогу 2-6951

Центрифуга производства фирмы Eppendorf,

Германия

Шейкер Multi Reax производства фирмы

Heidolph, Германия

Примечание. Допускается применение оборудования иных производителей с аналогичными или лучшими техническими характеристиками.

8

4. Отбор и хранение проб

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов» (от 21.08.79 № 2051—79), а также в соответствии с ГОСТ Р 51592—2000 «Вода. Общие требования к отбору проб»; ГОСТ Р 50436—92 (ИСО 950-79) «Зерновые. Отбор проб зерна»; ГОСТ 28168— 89 «Почвы. Отбор проб»; ГОСТ 10852—86 «Семена масличные. Правила приемки и методы отбора проб». Пробы зерна и соломы для определения остатков в урожае хранят в бумажной или тканевой упаковке при комнатной температуре. Семена рапса хранят при комнатной температуре в полотняных мешочках, перед анализом доводят до стандартной влажности и измельчают. Растительное масло хранят в холодильнике при температуре 0-4°C в герметично закрытой стеклянной таре в течение 2 месяцев. Для длительного хранения пробы почвы подсущиваются при комнатной температуре в отсутствие прямого солнечного света. Сухие почвенные образцы могут храниться в течение года. Перед анализом сухую почву доводят до стандартной влажности, просеивают через сито с отверстиями диаметром 1 мм, зерно и солому измельчают на лабораторных мельницах.

5. Подготовка к проведению измерений

5.1. Подготовка и очистка реактивов и растворителей

Перед началом работы проверяют чистоту применяемых органических растворителей. Для этого 100 см³ растворителя упаривают в ротационном вакуумном испарителе при температуре 40 °C до объёма 1,0 см³ и хроматографируют. При обнаружении мешающих определению примесей очистку растворителей производят в соответствии с общепринятыми методиками.

5.2. Кондиционирование колонки

Перед началом анализа колонку (Zorbax Eclipse XDB-C18) кондиционируют в потоке подвижной фазы (0,6 см 3 /мин) до стабилизации нулевой линии в течение 1—2 ч.

5.3. Приготовление растворов для подготовки проб

Раствор 2M HCl: в мерную колбу на 1 000 см 3 вносят 197 г 36 %-й соляной кислоты, добавляют бидистиллированную воду до метки и перемешивают.

Раствор 6M HCl: в мерную колбу на $1\,000\,\mathrm{cm}^3$ вносят $605\,\mathrm{r}$ $36\,\%$ -й соляной кислоты, добавляют бидистиллированную воду до метки и перемешивают.

Смесь 6М HCl–MeOH (9:1): в конической колбе на 1 000 см 3 вносят 900 см 3 6М соляной кислоты и добавляют 100 см 3 метанола.

Экстрагент № 1: в колбе на 1 000 см³ смещивают 650 см³ бидистиллированной воды, 350 см³ метанола и 50 см³ 2М HCl.

Элюент № 1 для очистки на патроне: в колбе на 500 см³ смешивают 100 см³ метанола с 400 см³ ацетонитрила (1:4), элюента № 2 — смешивают 50 см³ метанола с 450 см³ ацетонитрила (1:9).

Раствор гидроксида натрия 1M: в мерную колбу на $100 \, \mathrm{cm}^3$ помещают $4 \, \mathrm{r}$ гидроксида натрия, растворяют в $100 \, \mathrm{cm}^3$ дистиллированной воды, доводят водой до метки и перемешивают.

Подвижная фаза А: в мерную колбу на 1 000 см³ помещают 1 000 см³ бидистиллированной деионизованной воды, затем микродозатором вносят 1 см³ муравьиной кислоты.

Подвижная фаза Б: в мерную колбу на 1 000 см³ помещают 1 000 см³ метилового спирта, затем микродозатором вносят 1 см³ муравьиной кислоты.

Смесь метанола с ацетонитрилом: в колбе на 100 см^3 с помощью мерных цилиндров смешивают 20 см^3 метанола с 80 см^3 ацетонитрила (смесь 1:4) и 10 см^3 метанола с 90 см^3 ацетонитрила (смесь 1:9).

5.4. Приготовление растворов для градуировки

Основной раствор мепикват хлорида с массовой концентрацией $10~{\rm Mkr/cm}^3.$

Точную навеску мепикват хлорида массой $(10\pm0,1)$ мг помещают в мерную колбу вместимостью $100~{\rm cm}^3$ и добавляют около $90~{\rm cm}^3$ бидистиллированной воды. Содержимое колбы тщательно перемешивают, выдерживают $20~{\rm mu}$ при температуре $20~{\rm c}$, после чего добавляют воду до метки. Затем $10~{\rm cm}^3$ полученного раствора с концентрацией $100~{\rm mkr/cm}^3$ вносят в мерную колбу на $100~{\rm cm}^3$ и доводят до метки бидистиллированной водой — получен основной раствор с концентрацией $10~{\rm mkr/cm}^3$.

Градуировочные растворы с концентрациями 1,0; 5,0; 10,0; 15,0; 20,0 и 25,0 нг/см 3 готовят из основного раствора методом последовательного разбавления, используя подвижную фазу **A**.

Раствор № 1 с концентрацией мепикват хлорида 25 нг/см³: в мерную колбу вместимостью 100 см³ вносят 0,25 см³ основного раствора и доводят объем до метки подвижной фазой **A**.

Раствор № 2 с концентрацией мепикват хлорида 20 нг/см³: в мерную колбу вместимостью 100 см³ вносят 0,2 см³ основного раствора и доводят объем до метки подвижной фазой А.

Раствор № 3 с концентрацией мепикват хлорида 15 нг/см³: в мерную колбу вместимостью 100 см³ вносят 0,15 см³ основного раствора и доводят объем до метки подвижной фазой А.

Раствор № 4 с концентрацией мепикват хлорида 10 нг/см^3 : в мерную колбу вместимостью 10 см^3 вносят $5,0 \text{ см}^3$ раствора № 2 и доводят объем до метки подвижной фазой A.

Раствор № 5 с концентрацией мепикват хлорида 5 нг/см³: в мерную колбу вместимостью 10 см³ вносят 5,0 см³ раствора № 4 и доводят объем до метки подвижной фазой A.

Раствор № 6 с концентрацией мепикват хлорида 1 нг/см³: в мерную колбу вместимостью 10 см³ вносят 1 см³ раствора № 4 и доводят объем до метки подвижной фазой A.

Основной и градуировочные растворы можно хранить в холодильнике при температуре 0—4 °С в течение месяца.

Для внесения в контрольный образец при определении полноты извлечения используют основной раствор, разбавленный ацетонитрилом до нужного уровня концентраций методом последовательного разбавления. Растворы для внесения в масло готовят из основного раствора с концентрацией 100 мкг/см³ методом последовательного разбавления по объему изопропиловым спиртом.

5.5. Построение градуировочного графика

Для каждого из градуировочных растворов регистрируют хроматограммы в условиях, указанных в п. 7 и определяют абсолютное время удерживания и площадь пика мепикват хлорида (в усл. ед.), соответствующего MRM (114 \rightarrow 98). Одновременно в режиме автоматической обработки данных определяют соотношение площадей пиков, соответствующих MRM (114 \rightarrow 98) и MRM (114 \rightarrow 58) (S_{98}/S_{58}).

В режиме автоматической обработки данных строят градуировочную характеристику (площадь пика — концентрация мепикват хлорида в растворе). Для этого в хроматограф вводят по 10 мм³ градуировочных растворов (не менее 3 параллельных измерений для каждой концентрации, не менее 4 точек по диапазону измеряемых концентраций).

Градуировочную характеристику необходимо проверять при замене реактивов, хроматографической колонки или элементов хроматографической системы, а также при отрицательном результате контроля градуировочного коэффициента:

$$\frac{\left|K_{\kappa o \mu m p.} - K\right|}{K}$$
 100 $\leq \lambda_{\kappa o \mu m p.}$, где

 $\lambda_{\kappa onmp.}$ — норматив контроля градуировочного коэффициента, %. ($\lambda_{\kappa onmp.}=10$ % при P=0.95).

5.6. Подготовка патронов с оксидом алюминия для очистки экстракта

В картридж емкостью $10~{\rm cm}^3$ для твердофазной экстракции вносят 2,5 г оксида алюминия 2-й степени активности и уплотняют центрифугированием $10~{\rm muh}$ при $8~000~{\rm of./muh}$.

Приготовление оксида алюминия 2-й степени активности: к 97 г Al_2O_3 (активность 1, влажность 0 %) добавляют 3 см³ воды и перемешивают в шейкере 2 ч при 300 грт.

Оксид алюминия готовят в день использования и хранят в эксикаторе.

5.7. Подготовка приборов и средств измерения

Установка и подготовка всех приборов и средств измерения проводится в соответствии с требованиями технической документации.

6. Проведение определения

6.1. Определение мепикватхлорида в воде

Подщелачивают 25 см³ воды 1М раствором гидроксида натрия до рН 9 и пропускают через картридж с силикагелем (Диапак С) со скоростью 3—4 см³/мин. Мепикват хлорид элюируют 5 см³ смеси 6М НСІ—МеОН (9:1). Элюат выпаривают досуха. Сухой остаток растворяют в 5 см³ смеси (метиловый спирт: подвижная фаза А в соотношении 1:9) и 10 мм³ раствора вводят в жидкостный хроматограф.

6.2. Извлечение мепикват хлорида из почвы

Навеску почвы $(5\pm0,1)$ г помещают в коническую колбу емкостью 250 см³ и добавляют 50 см³ дистиллированной воды. После перемещивания на аппарате для встряхивания в течение 5 мин в почвенную вытяжку добавляют карбонат магния до получения нейтральной реакции. В полученную смесь добавляют 100 см^3 хлористого метилена и тщательно встряхивают. Затем ее выдерживают в ультразвуковой ванне в течение $10 \text{ мин и декантируют в делительную воронку на 250 см³ через стеклянную воронку с ватным фильтром. После разделения фаз нижний слой переносят в другую делительную воронку (верхний слой отбрасы-$

вают), добавляют к нему 50 см³ разбавленной соляной кислоты (125 см³ кислоты и 825 см³ воды) и энергично встряхивают в течение 1 мин. После разделения слоев водную фазу (верхний слой) собирают в колбу емкостью 100 см^3 . К органической фазе (оставшийся нижний слой) повторно добавляют 50 см³ разбавленной соляной кислоты. После разделения слоев водную фазу собирают в ту же колбу, органическую фазу отбрасывают. Из объединенной водной фазы (100 см^3) отбирают аликвоту 2 см^3 ($\frac{1}{50}$ экстракта) и упаривают ее на ротационном испарителе при температуре водяной бани $70 \, ^{\circ}$ С. Дальнейшую очистку проводят на патронах с оксидом алюминия по п. 6.7.

6.3. Извлечение меникват хлорида из зерна

Навеску измельченного зерна массой (5 ± 0,05) г помещают в коническую колбу емкостью 250 см³ и экстрагируют мепикват хлорид 100 см³ экстрагента № 1 (вода-метанол—2М НС1 в соотношении 65 : 30 : 5) в ультразвуковой ванне в течение 10 мин. Затем в колбу добавляют 100 см³ бидистиллированной воды и энергично встряхивают колбу в течение 1 мин. Отбирают из колбы в пробирку 10 см³ смеси и центрифутируют 5 мин при 4 000 об./мин. Затем отбирают из пробирки 4,0 см³ супернатанта и выпаривают до сухого остатка на роторном испарителе при 70 °C. Дальнейшую очистку проводят на патронах с оксидом алюминия по п. 6.7.

6.4. Извлечение мепикват хлорида из зеленой массы и соломы зерновых культур

Навеску измельченной зеленой массы или соломы массой (5 ± 0.05) г помещают в коническую колбу емкостью $250~{\rm cm}^3$ и экстрагируют мепикват хлорид $100~{\rm cm}^3$ экстрагента № 1 (вода—метанол—2М HCl в соотношении 65:30:5) в ультразвуковой ванне в течение $10~{\rm muh}$. Затем в колбу добавляют $100~{\rm cm}^3$ бидистиллированной воды и энергично встряхивают колбу в течение $1~{\rm muh}$. Отбирают из колбы в пробирку $10~{\rm cm}^3$ смеси и центрифугируют $5~{\rm muh}$ при $4~000~{\rm of}$./мин. Затем отбирают из пробирки $2.5~{\rm cm}^3$ супернатанта и выпаривают до сухого остатка на роторном испарителе при $70~{\rm c}$. Дальнейшую очистку проводят на патронах с оксидом алюминия по п. 6.7.

6.5. Извлечение мепикват хлорида из семян рапса

Навеску измельченных семян массой (5 ± 0,05) г помещают в коническую колбу емкостью 250 см³ и экстрагируют меникват хлорид 100 см^3 экстрагента № 1 (вода-метанол-2M HCl в соотношении 65:30:5) в ультразвуковой ванне в течение 10 мин. Затем в колбу до-

бавляют 100 см³ бидистиллированной воды и энергично встряхивают колбу в течение 1 мин. Отбирают из колбы в пробирку 10 см³ смеси и центрифугируют 5 мин при 4 000 об./мин. Затем отбирают из пробирки 2,0 см³ супернатанта и выпаривают до сухого остатка на роторном испарителе при 70 °C. Дальнейшую очистку проводят на патронах с оксидом апюминия по п. 6.7.

6.6. Извлечение меникват хлорида из масла рапса

Навеску масла массой $(5\pm0,05)$ г помещают в коническую колбу емкостью 250 см³ и экстрагируют мепикват хлорид 100 см³ экстрагента № 1 (вода—метанол—2М HCl в соотношении 65:30:5) на ультразвуковой установке в течение 10 мин. Смесь помещают в делительную воронку емкостью 250 см³ и промывают двумя порциями хлористого метилена по 50 см³, встряхивая смесь каждый раз в течение 2—3 мин и собирая нижний водный слой. К водной фазе добавляют 100 см³ бидистиллированной воды и энергично встряхивают в течение 1 мин. Аликвоту полученного водного экстракта 2,0 см³ выпаривают досуха на роторном испарителе при $70\,^{\circ}$ С.

Дальнейшую очистку проводят на патронах с оксидом алюминия по п. 6.7.

6.7. Очистка на патронах с оксидом алюминия

Сухой остаток в колбе, полученный при упаривании экстрактов по пп. 6.2—6.6, растворяют в $1\,\mathrm{cm}^3$ метанола в ультразвуковой ванне в течение 0,5 мин и добавляют $4\,\mathrm{cm}^3$ ацетонитрила. Полученный раствор количественно переносят в подготовленный картридж для твердофазной экстракции и дают ему впитаться. Промывают картридж $1\,\mathrm{pas}\,5\,\mathrm{cm}^3$ смеси метанол—ацетонитрил (1:4), затем $3\,\mathrm{pasa}\,$ по $5\,\mathrm{cm}^3$ смесью метанол—ацетонитрил (1:9). Элюат от $4\,\mathrm{npombibok}$ собирают в грушевидную колбу емкостью $100\,\mathrm{cm}^3$. Раствор упаривают досуха на вакуумном ротационном испарителе при температуре не выше $40\,\mathrm{°C}$. Сухой остаток растворяют в $1\,\mathrm{cm}^3$ смеси метиловый спирт : подвижная фаза $A\,\mathrm{(}1:9\,\mathrm{no}$ объему) и $10\,\mathrm{mm}^3$ раствора вводят в жидкостный хроматограф.

7. Условия измерений

7.1. Хроматографические условия измерений

Колонка: Zorbax Eclipse XDB-C18 (150 × 4,6) мм, 5 мкм.

Температура термостата колонки (30 ± 1) °C.

Подвижная фаза A: вода + муравьиная кислота (1 000 + 1, v/v).

Подвижная фаза \mathbf{b} : метанол + муравьиная кислота (1 000 + 1, \mathbf{v}/\mathbf{v}).

Скорость потока элюента: 0,4 мл/мин. Объем вводимой пробы 10 мм³. Режим элюирования: градиентный:

Время, мин	% A	% B
0	100	0
0,1	100	0
4,0	10	90
8,0	10	90
8,1	100	0
19,0	100	0

7.2. Масс-спектрометрические условия измерений

Тип ионного источника	ESI positive polarity (электроспрей)
Режим сканирования	Multiple reaction monitoring (MRM) 114→ 98 (основной) 114→ 58 (подтверждающий)
Напряжение на фрагменторе, у	135
Параметры работы ионного источника: Gas temperature, °C Gas flow, л/мин Nebulizer, psi Sheath gas temperature, °C Sheath gas flow, л/мин Capillary, v Nozzle voltage, v	350 10 35 35 350 10 3 500 2 000

7.3. Обработка результатов анализа

Анализ проводят в тех же условиях, в которых проводили градуировку прибора.

Каждый раствор хроматографируют не менее 2 раз (параллельные определения). Растворы анализируют непосредственно друг за другом.

Мепикват хлорид идентифицируют по абсолютному времени удерживания, определенному ранее при градуировке (\pm 0,3 мин). В режиме автоматической обработки данных определяют площади пиков мепикват хлорида (в усл. ед.), соответствующих MRM ($114 \rightarrow 98$) и MRM ($114 \rightarrow 58$). Соотношение S_{98}/S_{58} не должно отличаться от найденного при градуировке более чем на 15 %.

Массовую концентрацию (C_x , мкг/см³) мепикват хлорида в каждом из анализируемых растворов определяют в режиме автоматической обработки данных по построенной ранее градуировочной характеристике.

Содержание мепикват хлорида в исследуемых образцах (X, мг/кг) вычисляют по формуле:

$$X = \frac{C_x \cdot V \cdot A_2}{A_1 \cdot P}$$
, где

 $C_{\rm x}$ — концентрация мепикват хлорида, найденная по градуировке, мкг/см 3 ;

V — объём пробы, подготовленной для хроматографического анализа, см³:

 A_1 – аликвота анализируемого экстракта (2,0 см³ – для рапса и почвы, 2,5 см³ – для зеленой массы и соломы, 4 см³ – для зерна);

 A_2 — общий объем экстракта (200 см³ — для рапса, зерна, зеленой массы и соломы и 100 см³ — для почвы);

P – навеска анализируемого образца, г (см³ для воды).

Образцы, дающие пики большие, чем стандартный раствор мепикват хлорида 25 нг/см³, разбавляют подвижной фазой A для ВЭЖХ.

8. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предел повторяемости:

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r, \text{где} \tag{1}$$

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости ($r = 2.8\sigma_r$).

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

9. Оформление результатов

Результат анализа представляют в виде:

$$(X \pm \Delta)$$
 мг/кг при вероятности $P = 0.95$, где

X— среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

Δ – граница абсолютной погрешности, мг/кг:

$$\Delta = \frac{\delta \cdot X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе «менее нижней границы определения» (например: менее 0.02 мг/кг*, где «*» — 0.02 мг/кг — предел обнаружения мепикват хлорида в зерне).

10. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—2002 «Точность (правильность и прецизионность) методов и результатов измерений».

- 10.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 10.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки $C_{\tilde{c}}$ должна удовлетворять условию:

$$C_{\hat{\sigma}} = \Delta_{x,X} + \Delta_{x,X}$$
, где

 $\pm \Delta_{n,X} \ (\pm \Delta_{n,X}')$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно), мг/кг, при этом:

$$\Delta_{\tau} = \pm 0,84 \Delta$$
, где

 Δ – граница абсолютной погрешности, мг/кг:

$$\Delta = \frac{\delta \cdot X}{100}$$
, где

 δ — граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_{\kappa} = X' - X - C_{\phi}$$
, где

X', X, C_{∂} — среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 4) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно. мг/кг.

Норматив контроля К рассчитывают по формуле:

$$K = \sqrt{\Delta_{a,X'}^2 + \Delta_{a,X}^2}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K,\tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры к их устранению.

10.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости.

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предел воспроизводимости (R):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R, \, \text{гдe}$$
 (3)

 X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг; R — предел воспроизводимости (в соответствии с диапазоном концентраций), %.

11. Требования безопасности

- 11.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007—76, требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019—2009, а также требования, изложенные в технической документации на жидкостный хроматограф с масс-спектрометрическим детектором.
- 11.2. Помещение лаборатории должно быть оборудовано приточновытяжной вентиляцией, соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004—91 и иметь средства пожаротушения по ГОСТ 12.4.009—83. Содержание вредных веществ в воздухе не должно превышать ПДК (ОБУВ), установленные ГН 2.2.5.1313—03 и 2.2.5.2308—07.

Организация обучения работников безопасности труда – по ГОСТ 12.0.004—90.

12. Требования к квалификации оператора

Измерения в соответствии с настоящей методикой может выполнять специалист-химик, имеющий опыт работы методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием, ознакомленный с руководством по эксплуатации прибора, освоивший данную методику и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений по п. 10.

13. Разработчики

Долженко В. И., Цибульская И. А., Берестецкий А. О. (ГНУ «Всероссийский научно-исследовательский институт защиты растений» Россельхозакадемии, Санкт-Петербург).

Крылов А. И., Лопушанская Е. М. (ФГУП «Всероссийский научно-исследовательский институт метрологии им. Д. И. Менделеева», Санкт-Петербург).

Измерение концентраций действующих веществ пестицидов в воде, почве, зеленой массе, зерне и соломе зерновых культур, семенах и масле рапса, зерне гороха, семенах и масле льна

Сборник методических указаний по методам контроля МУК 4.1.3020—12; 4.1.3022—12; 4.1.3045—12

Редактор Л. С. Кучурова Технический редактор Е. В. Ломанова

Подписано в печать 07.02.13

Формат 60х88/16

Тираж 200 экз.

Печ. л. 3,75 Заказ 11

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс (495)952-50-89