4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств действующих веществ пестицидов в зелёной массе, зерне, масле, семенах

Сборник методических указаний по методам контроля МУК 4.1.2988—12; 4.1.2994—12; 4.1.3002—12

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств действующих веществ пестицидов в зелёной массе, зерне, масле, семенах

Сборник методических указаний по методам контроля МУК 4.1.2988; 4.1.2994—12; 4.1.3002—12

ББК 51.23 Об0

Обо Определение остаточных количеств действующих веществ пестицидов в зелёной массе, зерне, масле, семенах: Сборник методических указаний по методам контроля.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013.—47 с.

ISBN 978-5-7508-1172-4

- 1. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 22.12.2011 № 2).
- 2. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онишенко 19 марта 2012 г.
 - 3. Введены в действие с момента утверждения.
 - 4. Введены впервые.

ББК 51.23

ISBN 978-5--7508--1172--4

[©] Роспотребнадзор, 2013

[©] Федеральный центр гигиены и эпидемиологии Роспотребнядзора, 2013

Содержание

Определение остаточных количеств флуроксипира в зелёной массе растений, зерне и масле кукурузы метолом капиллярной газожидкостной хроматографии: МУК 4.1.2988—12	4
Определение остаточных количеств МЦПА в семенах и масле льна масличного методом капиллярной газожидкостной хроматографии: МУК 4.1.2994—12	18
Определение остаточных количеств тиабендазола в семенах и масле рапса методом капиллярной газожидкостной хроматографии: МУК 4.1.3002—12	33

УТВЕРЖЛАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онищенко

19 марта 2012 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств флуроксипира в зелёной массе растений, зерне и масле кукурузы методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2988—12

Свидетельство об аттестации от 25.07.2011 № 01.5.04.014/01.00043/2011. Настоящие методические указания устанавливают метод капиллярной газожидкостной хроматографии для определения в зелёной массе растений, зерне и масле кукурузы массовой концентрации флуроксипира в диапазоне концентраций 0.01—0.08 мг/кг.

Название действующего вещества по номенклатуре ІСО: флуроксипир.

Название по номенклатуре IUPAC: 4-амино-3,5-дихлор-6-фтор-2пиридилоксиуксусная кислота.

Структурная формула:

Брутто формула: $C_7H_5Cl_2FN_2O_3$. Молекулярная масса: 255,0.

Белое кристаллическое вещество, температура плавления — 232—233 °C. Давление пара (25 °C) 0,126 мПа $(9,42\cdot10^{-7}$ мм рт. ст.). Раство-

римость (20 °C, в г/л): в воде -0.091. метаноле -43.7, ацетоне -64.7. этилацетате -11.8, ксилоле -0.3.

 $ЛД_{50}$ (в мг/кг) для крыс > 5 000. СК₅₀ (в мг/л): для радужной форели и серебряного карпа — 0,7 (96 ч); для дафний > 0,5 (48 ч). $ЛД_{50}$ для пчел > 0.1 мг/особь.

Гигиенические нормативы: ПДК в воде водоемов -0.01 мг/дм^3 , ОДК в почве -0.2 мг/кг, МДУ в зерне хлебных злаков, луке -0.05 мг/кг.

Область применения: гербицид системного ауксиноподобного действия для послевсходовой некорневой обработки против широкого круга широколистных сорных растений (включая подмаренник цепкий и мокрицу-звездчатку) в зерновых, декоративных культурах; против многолетних сорных растений в плодовых садах (включая щавель, вьюнок и другие).

1. Метрологическая характеристика метода

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и её составляющие) результатов измерений при доверительной вероятности P=0.95 не превышает значений (табл. 1) для соответствующих диапазонов концентраций.

Таблица 1

Диапазон измерений. массовая концентрация, мг/кг	Показатель повторяе-мости (относительнее среднеквадратическое отклонение повторяемости), ср. %	Показатель промежуточной прецизионности (относительное среднеквадратическое отклонение в условиях вариации факторов «время», «оператор» в одной лаборатории), σ_{Rn} %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости), Св. %	Показатель точности* (границы относительной погрешности при вероятности $P = 0.95$), $\pm 8.\%$
Зелёная масса от 0,01 до 0,08 вкл.	8	9	11	22
Зерно от 0,01 до 0,08 вкл.	7	8	10	20
Масло от 0,01 до 0,08 вкл.	9	11	13	24

^{*} Соответствует расширенной неопределенности $U_{\mathit{omn.}}$ при коэффициенте охвата k=2

Таблица 2 Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для флуроксипира (n = 20, P = 0.95)

Объект анализа	Предел обнаруже- ния. мг/кг	Диапазон определяе- мых концен- траций, мг/кг	Среднее значение определе- ния, %	Стандарт- ное от- клонение. S, %	Доверительный интервал среднего результата. ±, %
Зелёная масса	0.01	0,010,08	83,2	7,0	3,3
Зерно	0,01	0,01-0,08	81,7	5,2	2,5
Масло	0.01	0,010,08	78,6	8,3	3,9

2. Метод измерения

Метод основан на извлечении остаточных количеств флуроксипира из анализируемого объекта органическими растворителями, проведении очистки экстракта перераспределением в системе несмешивающихся растворителей и метилировании флуроксипира диазометаном. Количественное определение проводят методом абсолютной калибровки с применением капиллярной газожидкостной хроматографии и использованием детектора электронного захвата.

Метод специфичен в присутствии других применяемых пестицидов. Проведение очистки экстрактов, а также использование капиллярной колонки и селективного детектора позволяет устранять влияние коэкстрактивных веществ на результаты анализа.

3. Средства измерения, реактивы, вспомогательные устройства и материалы

3.1. Средства измерения

Газовый хроматограф с детектором электронного захвата и хроматографической кварцевой капиллярной колонкой длиной 15 м, внутренним диаметром 0,32 мм с неподвижной фазой SE-52, толициа плёнки 0.4 мкм

Весы аналитические типа ВЛА-200	ΓΟCT 2410401
Весы лабораторные типа ВЛКТ-500	ГОСТ 2410480
Колбы-концентраторы объёмом 250 см ³	ΓΟCT 25336-82
Колбы плоскодонные объёмом 100 и 300 см ³	ГОСТ 25336—82
Колбы мерные со шлифом объёмом 25, 50, 100 см ³	ГОСТ 23932-90

Микрошприц МШ-10	ТУ 2-833-106
Пипетки градуированные объёмом 1, 2, 5 и 10 см ³	ΓΟCT 29227—91
Пробирки мерные со шлифом объёмом 5,0 см3	ГОСТ 23932—90
Стаканы химические объёмом 100, 200 и 500 см ³	ΓOCT 25336—82
Флаконы стеклянные (типа пенициллиновых)	
объёмом 2,0, 3,0 и 5,0 см ³	ТУ 64-2-10—87
Цилиндры мерные объёмом 25 и 250 см ³	ГОСТ 23932—90

Примечание: Допускается использование средств измерения с аналогичными характеристиками.

3.2. Реактивы

Аналитический стандарт флуроксипира	
Азот газообразный высокой чистоты	ТУ 301-07-25—89
Ацетон, осч	ТУ 2633-004-1129105894
Ацетонитрил для хроматографии, хч	ТУ 6-09-432676
Вода дистиллированная	ГОСТ 7602—72
н-Гексан, хч	ТУ 6-09-3375—78
Дихлорметан, хч	ТУ 6-09-2662—77
Изооктан эталонный	ΓOCT 12433—83
Калия гидроокись, чда	ГОСТ 2436380
Натрий серно-кислый б/в (сульфат), чда	ΓΟCT 4166—76
Натрий хлористый, чда	ГОСТ 4233—77
N-Нитрозометилмочевина, хч	ТУ 6-09-11-1643—82
Серная кислота, осч	ΓΟCT 14262—78
Смесь н-гексан: диэтиловый эфир, 50.50, по	
объёму	
Эфир диэтиловый, чда	TY 2600-001-4385201505

Примечание: Допускается использование реактивов с аналогичной квалификацией.

3.3. Вспомогательные устройства и материалы

Аппарат для встряхивания	TY 64-1-1081—73
Ванна ультразвуковая УЗВ/100 ТН	
Вата медицинская	ТУ 9393-001-00302238—97
Воронки делительные объёмом 250 и 500 см ³	ΓOCT 25336—82
Воронки химические конусные	ГОСТ 25336—82
Индикаторная бумага универсальная	ТУ 6-09-1181—76
Колпачки алюминиевые для герметизации	
флаконов	ΓOCT P.51314—99
Мельница электрическая лабораторная	ТУ 46-22-23679

Насос водоструйный	ГОСТ 10696—75
Ротационный вакуумный испаритель	
LABOROTA 4000	
Приспособление для обжима колпачков на	
флаконах	ТУ 42-2-244273
Установка для перегонки растворителей при атмосферном давлении	
• • • • • • • • • • • • • • • • • • • •	
Установка для упаривания растворителей в токе азота	
Фильтры бумажные «красная лента»	ТУ 2642-001-42624157-98
Фильтры бумажные «белая лента»	ТУ 2642-001-4262415798
Фильтры бумажные «синяя лента»	ТУ 2642-001-4262415798
Электроплитка	ГОСТ 14919—83

Примечание: Допускается использование другого оборудования с аналогичными техническими характеристиками.

4. Требования безопасности

4.1. При проведении работы необходимо соблюдать правила техники безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами (ГОСТ 12.1.005, 12.1.007). Организация обучения работников по безопасности труда (ГОСТ 12.0.004).

При выполнении измерений с использованием газового хроматографа и работе с электроустановками соблюдать правила электробезопасности в соответствии с требованиями ГОСТ 12.1.019 и инструкциями по эксплуатации приборов.

4.2. Помещение лаборатории должно быть оборудовано приточновытяжной вентиляцией, соответствовать требованиям пожарной безопасности (ГОСТ 12.1.004) и иметь средства пожаротушения (ГОСТ 12.4.009). Содержание вредных веществ в воздухе лабораторного помещения не должно превышать норм, установленных ГН 2.2.5.1313—03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны».

5. Требования к квалификации операторов

Измерения может выполнять специалист-химик, имеющий опыт работы методом капиллярной газожидкостной хроматографии, ознакомленный с руководством по эксплуатации газового хроматографа, осво-ивший данный метод и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений по п. 13.

6. Условия измерения

При выполнении измерения соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха лабораторного помещения (20 ± 5) °C и относительной влажности воздуха не более 80 %;
- выполнение измерения на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Отбор проб и хранение

Отбор проб для анализа проводят в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, продуктов питания и объектов окружающей среды для определения микроколичеств пестицидов» от 21.08.1979 № 2051—79.

8. Подготовка к определению

8.1. Кондиционирование колонки

Капиллярную хроматографическую колонку устанавливают в газовый хроматограф и перед анализом кондиционируют при температуре 280 °C до установления нулевой линии.

8.2. Подготовка и очистка растворителей

Перед началом работы проверяют чистоту применяемых органических растворителей. Для этого 100 см³ растворителя упаривают в ротационном вакуумном испарителе при температуре 40 °C до объёма 1,0 см³ и хроматографируют. При обнаружении мешающих определению примесей очистку растворителей производят в соответствии с общепринятыми методиками.

8.3. Приготовление эфирного раствора диазометана (из расчета метилирования экстрактов 2 проб)

N-Нитрозометилмочевину массой (0,5 \pm 0,01) г помещают во флакон объёмом 2,0—3,0 см³ и герметизируют резиновой пробкой и колпачком с помощью приспособления для обжима колпачков на флаконах. В другой флакон объёмом 5,0 см³ вносят диэтиловый эфир объёмом 4,0 см³, герметизируют резиновой пробкой и колпачком и охлаждают в морозильной камере холодильника в течение 30 мин.

После этого флаконы через предварительно проколотые пробки соединяют гибкой тефлоновой трубкой (внутр.диам. $\sim 1,5$ —2,0 мм), одним концом погружая ее в диэтиловый эфир на всю глубину (флакон с охла-

ждённым диэтиловым эфиром обязательно должен ещё иметь свободный выход в атмосферу). Во флакон с нитрозометилмочевиной, используя шприц с тонкой иглой и прокалывая пробку, добавляют по каплям по стенке 50 % водный раствор гидроокиси калия (~ 0,3 см³) до прекращения реакции. Диэтиловый эфир при насыщении диазометаном окрашивается в ярко желтый цвет.

Внимание! Приготовление эфирного раствора диазометана и процедуру метилирования проводят в работающем вытяжном шкафу.

8.4. Приготовление градуировочных растворов

Основной раствор флуроксипира с содержанием 100 мкг/см³ готовят растворением в ацетоне 0,01 г аналитического стандарта флуроксипира в мерной колбе объёмом 100 см³. Раствор хранят в холодильнике при температуре 4—6 °C не более трёх месяцев.

Рабочие стандартные растворы с концентрациями 0,8, 0,4, 0,2 и 0,1 мкг/см³ готовят из основного стандартного раствора флуроксипира последовательным разбавлением ацетоном. Рабочие растворы хранят в холодильнике при температуре 4—6 °C не более месяца. В модельных опытах при изучении полноты извлечения флуроксипира используют ацетоновые растворы стандартного вещества.

Для приготовления градуировочных растворов в мерные пробирки со шлифом объёмом 5,0 см³ вносят по 1,0 см³ рабочих растворов флуроксипира с концентрациями 0,1, 0,2, 0,4 и 0,8 мкг/см³. Растворитель в пробирках упаривают в токе азота досуха и проводят метилирование флуроксипира по п. 8.4.1.

8.4.1. Метилирование флуроксипира

В пробирки с сухим остатком добавляют по 2,0 см³ свежеприготовленного по п. 8.3 эфирного раствора диазометана. Пробирки закрывают пробками и ставят на 12—14 ч (на ночь) в холодильник с температурой 4—6 °С. После этого диэтиловый эфир в пробирках упаривают в токе азота досуха и сухой остаток растворяют в 2,0 см³ изооктана.

8.5. Построение градуировочной характеристики

Для построения градуировочного графика в инжектор хроматографа (п. 9.3) вводят по 1 мм³ приготовленных по пп. 8.4 и 8.4.1 растворов, содержащих флуроксипир (в виде производного) в концентрациях 0,1, 0,2, 0,4 и 0,8 мкг/см³. Осуществляют не менее трёх параллельных измерений и находят среднее значение высоты (площади) хроматографического пика для каждой концентрации. Строят градуировочный график зависимости высоты (площади) хроматографического пика в мм (мм²) от

концентрации флуроксипира в градуировочном растворе (мкг/см³). Градуировочную характеристику необходимо проверять при замене реактивов, хроматографической колонки или элементов хроматографической системы, изменении условий хроматографирования, а также при отрицательном результате контроля градуировочного коэффициента.

Градуировочную зависимость признают стабильной при выполнении следующего условия:

$$\frac{|C-C_{\kappa}|}{C}$$
 100 $\leq \lambda_{\kappa onmp.}$, где

C — аттестованное значение массовой концентрации флуроксипира в градуировочном растворе,

 C_{κ} — результат контрольного измерения массовой концентрации флуроксипира в градуировочном растворе,

 $\lambda_{\text{контр.}}$ — норматив контроля градуировочного коэффициента, % ($\lambda_{\text{контр.}}=10$ % при P=0.95).

8.6. Первичная обработка проб

Пробы растений кукурузы измельчают, зелёную массу перемешивают и выделяют аналитические пробы. Для длительного хранения аналитические пробы зелёной массы растений помещают в морозильную камеру с температурой -18 °C и хранят в закрытой стеклянной или полиэтиленовой таре.

Пробы зерна перед анализом рассыпают на бумаге или кальке и пинцетом удаляют включения. Зерно измельчают на лабораторной мельнице и после перемешивания измельчённой массы готовят усреднённые аналитические пробы.

Для исследовательских целей допускается получение в лаборатории масла из проб измельчённого зерна методом экстракции органическими растворителями при температуре не выше 40 °C. Пробы масла хранят при 4—6 °C в закрытой стеклянной таре не более 30 сут.

9. Проведение определения

9.1. Определение флуроксипира в зелёной массе и зерне кукурузы

Аналитическую пробу зелёной массы или зерна массой $(10,0\pm0,1)$ г помещают в плоскодонную колбу объёмом $300~{\rm cm}^3$, добавляют $150~{\rm cm}^3$ ацетона, слегка встряхивают и подвергают обработке в ультразвуковой ванне в течение $10~{\rm mu}$ при комнатной температуре. После этого содержимое колбы фильтруют через бумажный фильтр «красная лента» в

колбу-концентратор объёмом 250 см³. Содержимое колбы с пробой промывают 50 см³ ацетона и также фильтруют в колбу-концентратор.

При использовании аппарата для встряхивания в плоскодонную колбу с аналитической пробой вносят 150 см³ ацетона и встряхивают в течение 60 мин. После этого содержимое колбы фильтруют через бумажный фильтр «красная лента» в колбу-концентратор объёмом 250 см³. Содержимое колбы с пробой промывают 50 см³ ацетона и также фильтруют в колбу-концентратор.

Колбу-концентратор с объединённым экстрактом подсоединяют к ротационному вакуумному испарителю и упаривают растворитель до объёма 10—20 см³ при температуре 40 °C. В колбу-концентратор добавляют 200 см³ дистиллированной воды, 2.0 см³ 5.0 %-го водного раствора серной кислоты и содержимое колбы перемещивают встряхиванием. Колбу-концентратор помещают в холодильник и выдерживают при температуре 4-6°С в течение 4-5 ч. После этого содержимое колбы фильтруют через бумажный фильтр «белая лента» в делительную воронку объёмом 500 см³. В воронку добавляют 10 %-й водный раствор гидроокиси калия до pH 9—10. 30 см³ насыщенного водного раствора хлористого натрия и после перемещивания 75 см³ дихлорметана. Содержимое воронки энергично встряхивают в течение 2 мин. После 15-минутного отстаивания нижний дихлорметановый слой сливают и отбрасывают. Процедуру очистки экстракта повторяют с использованием 50 см³ дихлорметана. Далее в воронку добавляют 40 см³ насыщенного водного раствора хлористого натрия и после перемешивания 75 см³ нгексана. Содержимое воронки энергично встряхивают в течение 2 мин. После 5-минутного отстаивания нижний ацетоно-водный слой сливают в химический стакан объёмом 500 см³, а верхний гексановый слой сливают и отбрасывают.

Водный раствор пробы, находящийся в химическом стакане, подкисляют концентрированной серной кислотой до pH 2,0 и переносят в чистую делительную воронку объёмом 500 см³. В воронку добавляют 75 см³ смеси н-гексан—диэтиловый эфир (50:50) и встряхивают в течение 2 мин. После полного разделения слоёв нижний водный слой сливают в химический стакан, а верхний гексано-эфирный слой фильтруют через фильтр «синяя лента» со слоем безводного сульфата натрия (толщина слоя ~ 1,0—1,5 см) в колбу-концентратор объёмом 250 см³. Экстрагирование и фильтрование повторяют с использованием 50 см³ смеси н-гексан—диэтиловый эфир (50:50). Нижний водный слой отбрасывают.

Колбу-концентратор с объединённым гексано-эфирным экстрактом подсоединяют к ротационному вакуумному испарителю и упаривают

растворители при температуре 40 °C до объёма 3—5 см 3 . Остаток экстракта количественно переносят в мерную пробирку со шлифом объёмом 5,0 см 3 и упаривают растворители в токе азота досуха при температуре 40 °C. Метилирование флуроксипира проводят по п. 8.4.1, а газохроматографический анализ – по п. 9.3.

9.2. Определение флуроксипира в масле кукурузы

Аналитическую пробу масла массой $(10,0\pm0,1)$ г растворяют в 50 см³ н-гексана (насыщенного ацетонитрилом) в плоскодонной колбе объёмом 100 см³ и после этого гексановый раствор масла переносят в делительную воронку объёмом 250 см³. Колбу промывают 50 см³ ацетонитрила (насыщенного н-гексаном) и переносят его в воронку. Содержимое воронки встряхивают в течение 2 мин. После 5-минутного отстаивания нижний ацетонитрильный слой сливают в колбу-концентратор объёмом 250 см³. Плоскодонную колбу промывают 25 см³ ацетонитрила (насыщенного н-гексаном) и также переносят в делительную воронку (250 см³). Содержимое воронки встряхивают в течение 2 мин, отстаивают 5 мин и нижний ацетонитрильный слой объединяют в колбеконцентраторе с предыдущим. Верхний гексановый слой отбрасывают.

Колбу-концентратор с объединённым ацетонитрильным экстрактом подсоединяют к ротационному вакуумному испарителю и упаривают растворитель досуха при температуре 50 °C. Сухой остаток растворяют в 20 см³ ацетона. К раствору добавляют 200 см³ дистиллированной воды, 2.0 см³ 5.0 %-го водного раствора серной кислоты и содержимое колбы перемешивают встряхиванием. Колбу-концентратор помещают в холодильник и выдерживают при температуре 4—6 °С в течение 4—5 ч. После этого содержимое колбы фильтруют через бумажный фильтр «белая лента» в делительную воронку объёмом 500 см³. В воронку добавляют 10 %-й водный раствор гидроокиси калия до рН 9—10, 30 см³ насыщенного водного раствора хлористого натрия и, после перемешивания. 75 см³ дихлорметана. Содержимое воронки энергично встряхивают в течение 2 мин. После 15-минутного отстаивания нижний дихлорметановый слой сливают и отбрасывают. Процедуру очистки экстракта повторяют с использованием 50 cm³ дихлорметана. Далее в воронку добавляют 40 см³ насыщенного водного раствора хлористого натрия и, после перемешивания, 75 см³ н-гексана. Содержимое воронки энергично встряхивают в течение 2 мин. После 5-минутного отстаивания нижний апетоно-водный слой сливают в химический стакан объёмом 500 см³, а верхний гексановый слой сливают и отбрасывают.

Водный раствор пробы, находящийся в химическом стакане, подкисляют концентрированной серной кислотой до pH 2,0 и переносят в чистую делительную воронку объёмом 500 см³. В воронку добавляют 75 см³ смеси н-гексан—диэтиловый эфир (50:50) и встряхивают в течение 2 мин. После полного разделения слоёв нижний водный слой сливают в химический стакан, а верхний гексано-эфирный слой фильтруют через фильтр «синяя лента» со слоем безводного сульфата натрия (толщина слоя ~ 1,0—1,5 см) в колбу-концентратор объёмом 250 см³. Экстрагирование и фильтрование повторяют с использованием 50 см³ смеси н-гексан—диэтиловый эфир (50:50). Нижний водный слой отбрасывают.

Колбу-концентратор с объединённым гексано-эфирным экстрактом подсоединяют к ротационному вакуумному испарителю и упаривают растворители при температуре 40 °C до объёма 3—5 см³. Остаток экстракта количественно переносят в мерную пробирку со шлифом объёмом 5,0 см³ и упаривают растворители в токе азота досуха при температуре 40 °C. Метилирование флуроксипира проводят по п. 8.4.1, а газохроматографический анализ – по п. 9.3.

9.3. Условия хроматографирования

Газовый хроматограф с детектором электронного захвата и хроматографической кварцевой капиллярной колонкой длиной 15 м, внутренним диаметром 0,32 мм с неподвижной фазой SE-52, толщина плёнки 0.4 мкм.

Температура колонки: программирование от 120 (1 мин) до 280 °C (20 мин) со скоростью 8,0 °С/мин. Температура испарителя — 250 °С, детектора — 300 °С. Расход газов: газа-носителя (азот в/ч) — 1,5 см³/мин. дополнительного газа (азот в/ч) к детектору — 40 см³/мин. Пробы вводят в инжектор хроматографа в режиме разделения потока газа-носителя 1:10. Количество аликвоты, вводимое в хроматограф — 1 мкл. Время удерживания флуроксипира (в виде производного): (13,8 \pm 0,03) мин.

10. Обработка результатов анализа

Количественное определение флуроксипира проводят методом абсолютной калибровки и вычисляют по формуле:

$$X = \frac{H_2 \cdot C \cdot V}{H_1 \cdot P}$$
, где

Х – содержание флуроксипира в пробе, мг/кг;

 H_2 – высота (площадь) пика анализируемого вещества, мм (мм²);

 H_1 – высота (площадь) пика стандартного вещества, мм (мм²);

C – концентрация стандартного раствора флуроксипира, мкг/см³;

V — объём экстракта, подготовленного для хроматографирования, см³;

Р - масса (г) аналитической пробы.

Содержание остаточных количеств флуроксипира в анализируемом образце вычисляют как среднее из двух параллельных определений. При получении зашкаленных пиков анализируемый экстракт разбавляют изооктаном.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r, \text{ где}$$
 (1)

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости ($r = 2.8\sigma_r$).

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг при вероятности $P = 0.95$, где

 \overline{X} — среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

 Δ – граница абсолютной погрешности, мг/кг;

$$\Delta = \delta \cdot \frac{X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе менее 0,01 мг/кг», где: 0,01 мг/кг — предел обнаружения флуроксипира в анализируемых объектах.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—02 «Точность (правильность и прецизионность) методов и результатов измерений».

Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки C_2 должна удовлетворять условию:

$$C_o = \Delta_{i,\lambda} + \Delta_{i,\lambda'}$$
, где

 $\pm \Delta_{x,V}$ ($\pm \Delta_{x,V}$) — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой, соответственно), мг/кг; при этом:

$$\Delta_{I} = \pm 0.84 \Delta$$
, где

– граница абсолютной погрешности, мг/кг:

$$\Delta = \delta \cdot \frac{X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_r = X' - X - C_r$$
, где

X', X, $C_{\hat{c}}$ — среднее арифметическое результатов параллельных определений (признанных приемлемыми) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг.

Норматив контроля К рассчитывают по формуле:

$$K = \sqrt{\Delta_{i,X'}^2 + \Delta_{i,X}^2}$$

Проводят сопоставление результата контроля процедуры (K_k) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K,\tag{2}$$

процедуру анализа признают удовлетворительной. При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполне-

нии условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры к их устранению.

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R, \, \text{где}$$
 (3)

 X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг; R — предел воспроизводимости (в соответствии с диапазоном концентраций), %.

14. Разработчики

Долженко В. И., Тарарин П. А., Маханькова Т. А., Редюк С. И., Бурлакова Ю. В. (ГНУ ВИЗР Россельхозакадемии).

Методика прошла метрологическую экспертизу (Свидетельство об аттестации № 01.5.04.014/01.00043/2011) и внесена в Федеральный реестр (ФР.1.31.2011.10795).

Определение остаточных количеств действующих веществ пестицидов в зелёной массе, зерне, масле, семенах

Сборник методических указаний по методам контроля МУК 4.1.2988—12; 4.1.2994—12; 4.1.3002—12

Редактор Н. В. Кожока Технический редактор Е. В. Ломанова

Подписано в печать 31.01.13

Формат 60х88/16

Тираж 200 экз.

Печ. л. 3.0 Заказ 8

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994. Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс (495)952-50-89