4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций действующих веществ пестицидов в воде, почве, зелёной массе, зерне и соломе зерновых культур, ботве и корнеплодах свеклы

Сборник методических указаний по методам контроля МУК 4.1.3021—12: 4.1.3043—12

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций действующих веществ пестицидов в воде, почве, зелёной массе, зерне и соломе зерновых культур, ботве и корнеплодах свеклы

Сборник методических указаний по методам контроля МУК 4.1.3021—12: 4.1.3043—12

ББК 51.21+51.23 ИЗ7

ИЗ7 Измерение концентраций действующих веществ пестицидов в воде, почве, зелёной массе, зерне и соломе зерновых культур, ботве и корнеплодах свеклы: Сборник методических указаний по методам контроля.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013.—28 с.

ISBN 978-5-7508-1174-8

- 1. Разработаны сотрудниками ГПУ «Всероссийский НИИ защиты растений» Россельхозакадемии.
 - 2. Введены в действие с момента утверждения.
 - 3. Введены впервые.

ББК 51.21+51.23

Редактор Л. С. Кучурова Технический редактор Е. В. Ломанова

Подписано в печать 01.02.13

Формат 60х88/16

Тираж 200 экз.

Печ. л. 1.75 Заказ 9

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994. Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Фелерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Огделение реализации. тел./факс (495)952-50-89

© Роспотребнадзор, 2013
© Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013

Содержание

Измерение концентраций флуксапироксада в воде, почве, зелёной массе, зерне и соломе зерновых культур методом высокоэффективной жидкостной хроматографии: МУК 4.1.3021—12	4
Измерение массовой концентрации пропизахлора в ботве и корнеплодах свеклы методом высокоэффективной жидкостной хроматографии: МУК 4.1.3043—12	18

УТВЕРЖЛАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онишенко

3 июля 2012 г.

Дата введения: с момента утверждения

4.1. МЕТОЛЫ КОНТРОЛЯ, ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций флуксапироксада в воде, почве, зелёной массе, зерне и соломе зерновых культур методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1,3021—12

Свидетельство о метрологической аттестации от 11.10.2011 № 01.5.04.035/01.00043/2011.

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения массовой концентрации флуксапироксада в воде — в диапазоне концентраций 0,001— $0,005 \, \text{мг/кг}$, в почве и зерне — в диапазоне концентраций 0,005— $0,05 \, \text{мг/кг}$, в зеленой массе -0,02— $0,1 \, \text{мг/кг}$, соломе -0,05— $0,25 \, \text{мг/кг}$.

Название действующего вещества по номенклатуре ІСО: флуксапироксад.

Название действующего вещества по номенклатуре IUPAC: $(\pm)3$ -(дифторметил)-1-метил-N(3',4',5'-трифтор[1,1'-бифенил]-2-ил)-1H-пира-30л-4-карбоксамид.

Структурная формула:

Брутто формула: $C_{18}H_{12}F_5N_3O$.

Молекулярная масса: 381.

Химически чистое вещество представляет собой кристаллический порошок бежевого цвета без запаха.

Температура плавления: > 157 °C.

Давление пара $1,1 \cdot 10^{-7}$ мРа.

Коэффициент распределения в системе н-октанол–вода K_{ow} lgP > 3,0 (20 °C).

Растворимость в воде (мг/дм³, 20 °C): 3,88.

Растворимость в органических растворителях (г/дм³, 20 °C): ацетон ->250; ацетонитрил, дихлорметан, этилацетат ->100; метанол -53,4; толуол -20.0.

Гидролитически стабилен в водных растворах при рН 4-9.

Краткая токсикологическая характеристика

Острая пероральная — ЛД $_{50} > 2$ 000 мг/кг массы тела. Острая кожная — ЛД $_{50} > 2$ 000 мг/кг массы тела. Острая ингаляционная — ЛК $_{50}$ (4 ч) > 5,1 мг/л. Раздражающее действие — кролики: кожа — не раздражает; глаза — не раздражает.

Сенсибилизация -- не обладает.

Область применения

Фунгицид для обработки вегетирующих растений против комплекса болезней зерновых культур.

1. Погрешность измерений

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности P=0,95 не превыщает значений, приведенных в табл. 1, для соответствующих диапазонов концентраций.

Таблица 1 Метрологические параметры

Объект анализа	Диапазон определяе- мых концен- траций, мг/кг (мг/дм ³)	Показатель повторяемости (отно- сительное средне- квадратическое отклонение повто- ряемости), σ, %	Показатель внутрила- бораторной прецизион- ности, окль %	Показатель воспро- изводи- мости, σ_{R} , %	Показатель точности* (границы относительной погрешности), $\pm \delta$, %	
Вода	0,0010,005	5	7	9	17	
Почва	0,0050,05	7	9	12	23	
Зерно	0,0050,05	7	9	12	23	
Зеленая масса	0,020,1	6	7	10	20	
Солома	0,05—0,1 0,1—0,25	7 6	10 8	12 10	22 18	
* Соответствует расширенной неопределенности U_{omn} при коэффициенте охвата $k=2$						

Таблица 2 Полнота извлечения флуксапироксада, стандартное отклонение, доверительный интервал среднего результата для n=20, P=0.95

Анализируе- мый объект	Предел обнаруже- ния, мг/кг (мг/дм ³)	Диапазон опре- деляемых кон- центраций, мг/кг (мг/дм ³)	Среднее значение определения, %	Стан- дартное откло- нение, S	Доверительный интервал среднего результата, ± %
Вода	0,001	0.0010,005	95,9	2,3	1,1
Почва	0,005	0,0050,05	87,2	7,3	3,6
Зерно	0,005	0,005-0,05	86,8	7,3	3,6
Зеленая масса	0,02	0.02-0,1	88,5	9,4	4,4
Солома	0,05	0,050,25	82,1	9,9	4,7

2. Метод измерений

Методика основана на: определении флуксапироксада методом ВЭЖХ с использованием УФ-детектора после его твердофазной экстракции из воды или жидкостной экстракции из образцов почвы, зеленой массы и соломы ацетонитрилом в присутствии ацетатного буфера, насыщенного сульфатом магния, и обеспечивающего разделение водной и органической фаз; очистке ацетонитрильного экстракта с помощью дисперсионной твердофазной экстракции при одновременном удалении воды безводным сульфатом магния. При анализе зерна используют «Набор для пробоподготовки по методу QuEChERS Interlab VetexQ для обычных овощей, фруктов и зерна (кат. № IL-5056)» с дополнительной очисткой на патронах с силикагелем.

Идентификация флуксапироксада проводится по времени удерживания, количественное определение — методом абсолютной калибровки.

Избирательность метода обеспечивается сочетанием условий подготовки проб и хроматографирования.

3. Средства измерений, реактивы, вспомогательные устройства и материалы

3.1. Средства измерений

Жидкостный хроматограф «ACQUITY» фирмы «Waters» с быстросканирующим УФ-детектором, снабженном дегазатором, автоматическим пробоотборником и термостатом колонки Весы аналитические ВЛА-200 Весы технические ВЛКТ-500

Номер в Госреестре средств измерений 42816—09 ГОСТ 24104—2001 ГОСТ 24104—2001

Колбы мерные на 10, 25, 50, 100 см³ ГОСТ 23932—90 Микродозаторы одноканальные «ВІОНІТ» переменного объема от 200 до 1 000 мм³ и от 1 до 5 см³, Финляндия Импетки градуированные Пилиндры мерные на 50 и 100 см³ ГОСТ 23932—90

Примечание. Допускается использование средств измерения иных производителей с аналогичными или лучшими характеристиками.

3.2. Реактивы

Ацетон, осч	ТУ 6-09-351386
Ацетонитрил для ВЭЖХ, «В-230НМ» или хч	ТУ 6-09-3534—87
Вода для лабораторного анализа (бидистилли-	-
рованная. деионизованная)	ГОСТ Р 52501—2005
н-Гексан, хч	ТУ 6-09-3375—78
Кислота ортофосфорная, хч	ГОСТ 6552—80
Кислота уксусная, ледяная	ГОСТ 61—69
Магний серно-кислый безводный, хч	ΓΟCT 452367
Набор для пробоподготовки по методу	
QuEChERS Interlab VetexQ для обычных	
овощей, фруктов и зерна (кат. № IL-5056)	
Натрий уксусно-кислый, ч	ГОСТ 199—68
Силикагель, Merck 1.09385.1000	
Смесь № 1: этилацетат-гексан в соотношении	r
1:4 по объему	
Смесь № 2: этилацетат-гексан в соотношении	ĺ
1:1 по объему	
Подвижная фаза для ВЭЖХ: смесь ацетонит-	
рила и 0,005 M H ₃ PO ₄ в соотношении 50 : 50	
Уголь активированный БАУ-А	ГОСТ 6217-4—74
Флуксапироксад с содержанием основного	
вещества 99,7 % (BAS 700 F)	
Этилацетат, хч	ГОСТ 1138—84
7	

Примечание. Допускается использование реактивов иных производителей с более высокой квалификацией, не требующих дополнительной очистки растворителей.

3.3. Вспомогательные устройства и материалы

Аналитическая колонка ACQUITY UPLC BEH C18 ($100 \times 2,1$) мм, 1,7 мкм (Waters)

Аналитическая колонка ACOUITY UPLC Shield RP18 (100×2.1) MM, 1.7 MKM (Waters) Аппарат для встряхивания и Multi Reax (фирмы Heidolph, Германия) TY 64-1-1081-73 Воронки лабораторные В-75-110 ΓΟCT 25336—82 Колбы круглодонные на шлифе вместимостью 25 cm^3 ΓΟCT 9737-93 Патроны Диапак С16 (БиоХимМак СТ), 0,4 г (номер по каталогу 21.0040) Патроны Диапак С (БиоХимМак СТ), 0,4 г (номер по каталогу 22.0300) Пробирки полипропиленые центрифужные с крышками объемом 15 и 50 см³ Ротационный вакуумный испаритель фирмы BÜCHI, мод. R 205 (Швейцария) Фильтры бумажные «красная лента» TV 6.091678---86 **Центрифуга ОПн-8УХЛ4.2** TY 5.375-4261—76 или 5804R (фирмы Eppendorf AG, Германия) Шприц медицинский с разъемом Льюера **FOCT 22090**

Примечание. Допускается применение оборудования иных производителей с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007—76, требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019—2009, а также требования, изложенные в технической документации на жидкостный хроматограф.
- 4.2. Помещение лаборатории должно быть оборудовано приточновытяжной вентиляцией, соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004—91 и иметь средства пожаротушения по ГОСТ 12.4.009—83. Содержание вредных веществ в воздухе не должно превышать ПДК (ОБУВ), установленных ГН 2.2.5.1313—03 и 2.2.5.2308—07.

Организация обучения работников безопасности труда — по ГОСТ 12.0.004—90.

5. Требования к квалификации операторов

Измерения в соответствии с настоящей методикой может выполнять специалист-химик, имеющий опыт работы методом высокоэффек-

тивной жидкостной хроматографии, ознакомленный с руководством по эксплуатации хроматографа, освоивший данную методику и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений по п. 13.

6. Условия измерений

При выполнении измерений выполняют следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 ± 5) °C и относительной влажности не более 80 %;
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к определению

7.1. Кондиционирование колонки

Перед началом анализа колонку (Acquity BEH C18 и Acquity Shield RP18) кондиционируют в потоке подвижной фазы (0,1—0,2 см³/мин) до стабилизации нулевой линии.

7.2. Приготовление растворов

- 7.2.1. Раствор 0,005 М ортофосфорной кислоты: (0.5 ± 0.01) г 98 %-й ортофосфорной кислоты помещают в мерную колбу объемом $1\,\mathrm{дm}^3$, растворяют в бидистиллированной воде и доводят объем до метки.
- 7.2.2. Для приготовления подвижной фазы смешивают ацетонитрил с 0,005 М раствором ортофосфорной кислоты в соотношении 50:50 по объёму, используя мерные цилиндры.
- 7.2.3. Приготовление элюента № 1: в колбе на 100 см 3 смешивают 80 см 3 н-гексана и 20 см 3 этилацетата, используя мерные цилиндры.
- 7.2.4. Приготовление элюента \mathbb{N}_2 : в колбе на 100 см³ смещивают 50 см³ н-гексана и 50 см³ этилацетата, используя мерные цилиндры.

7.3. Приготовление основного и градуировочных растворов

- 7.3.1. Основной раствор с концентрацией 0.5 мг/см^3 : точную навеску флуксапироксада (50 ± 0.5) мг помещают в мерную колбу вместимостью 100 см^3 , растворяют в ацетонитриле и доводят объем до метки ацетонитрилом.
- 7.3.2. Приготовление градуировочных растворов (анализ на колонке Acquity BEH C18).

Градуировочные растворы с концентрациями флуксапироксада 0,02; 0,04; 0,06; 0,08 и 0,1 мкг/см³ готовят методом последовательного

разбавления по объему, используя раствор подвижной фазы (смесь ацетонитрила и 0,005 М ортофосфорной кислоты в соотношении 50: 50).

- 7.3.2.1. Раствор № 1 с концентрацией 0,1 мкг/см³: в мерную колбу вместимостью 100 см³ вносят 1 см³ основного раствора и доводят до метки подвижной фазой (5 мкг/см³). В другую мерную колбу вместимостью 100 см³ переносят 2,0 см³ полученного раствора. Объем вновь доводят до метки подвижной фазой (0,1 мкг/см³).
- 7.3.2.2. Раствор № 2 с концентрацией 0.08 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 8.0 см³ раствора № 1 и доводят объем до метки подвижной фазой.
- 7.3.2.3. Раствор № 3 с концентрацией 0,06 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 6 см³ раствора № 1 и доводят объем до метки подвижной фазой.
- 7.3.2.4. Раствор № 4 с концентрацией 0,04 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 4 см³ раствора № 1 и доводят объем до метки подвижной фазой.
- 7.3.2.5. Раствор № 5 с концентрацией 0,02 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 2 см³ раствора № 1 и доводят объем до метки подвижной фазой.
- 7.3.3. Приготовление градуировочных растворов (анализ на колонке Acquity Shield RP18).
- Градуировочные растворы с концентрациями флуксапироксада 0,01, 0,02, 0,05, 0,1 и 0,2 мкг/см³ готовят методом последовательного разбавления по объему, используя раствор подвижной фазы (смесь ацетонитрила и 0,005 М ортофосфорной кислоты в соотношении 50: 50).
- 7.3.3.1. Раствор № 1 с концентрацией 5,0 мкг/см³: в мерную колбу вместимостью 100 см³ вносят 1 см³ основного раствора и доводят до метки подвижной фазой.
- 7.3.3.2. Раствор № 2 с концентрацией 0,2 мкг/см³: в мерную колбу вместимостью 100 см^3 вносят 4,0 см³ раствора № 1 и доволят до метки подвижной фазой.
- 7.3.3.3. Раствор № 3 с концентрацией 0,1 мкг/см³: в мерную колбу вместимостью 100 см^3 вносят 2,0 см³ раствора № 1 и доводят до метки подвижной фазой.
- 7.3.3.4. Раствор № 4 с концентрацией 0,05 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 5 см³ раствора № 3 и доводят объем до метки подвижной фазой.
- 7.3.3.5. Раствор № 5 с концентрацией 0,02 мкг/см³: в мерную колбу вместимостью 10 см³ помещают 2 см³ раствора № 3 и доводят объем до метки подвижной фазой.

7.3.3.6. Раствор № 6 с концентрацией 0,01 мкг/см 3 : в мерную колбу вместимостью 10 см 3 помещают 1 см 3 раствора № 3 и доводят объем до метки подвижной фазой.

Основной раствор можно хранить в холодильнике при температуре 0—4 °C в течение 1 месяца, градуировочные растворы — в течение суток.

При изучении полноты определения флуксапироксада в воде, почве, зерне, зеленой массе и соломе зерновых культур используют ацетонитрильные растворы вещества, приготовленные из основного раствора методом последовательного разбавления по объему ацетонитрилом.

7.4. Построение градуировочного графика

Для установления градуировочной характеристики (площадь пика — концентрация флуксапироксада в растворе) в хроматограф вводят по 10 мм^3 градуировочных растворов (не менее 3 параллельных измерений для каждой концентрации, не менее 4 точек по диапазону измеряемых концентраций). Затем измеряют площади пиков и строят график зависимости среднего значения площади пика от концентрации флуксапироксада в градуировочном растворе.

Методом наименьших квадратов рассчитывают градуировочный коэффициент (K) в уравнении линейной регрессии:

$$C = KS$$
, гле

S — площадь пика градуировочного раствора.

Градуировку признают удовлетворительной, если значение коэффициента линейной корреляции оказывается не ниже 0,99.

Градуировочную характеристику необходимо проверять при замене реактивов, хроматографической колонки или элементов хроматографической системы, а также при отрицательном результате контроля градуировочного коэффициента.

Градуировочную зависимость признают стабильной при выполнении следующего условия:

$$\frac{\left|C-C_{\kappa}\right|}{C}\cdot 100 \leq \lambda_{\kappa onmp.}$$
, где

C — аттестованное значение массовой концентрации флуксапироксада в градуировочном растворе;

 C_{κ} — результат контрольного измерения массовой концентрации флуксапироксада в градуировочном растворе;

 $\lambda_{\text{контр.}}$ — норматив контроля градуировочного коэффициента, % ($\lambda_{\text{контр.}} = 10$ % при P = 0.95).

8. Отбор проб и хранение

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов» (от 21.08.79 № 2051—79), а также в соответствии с ГОСТ Р 51592—2000 «Вода. Общие требования к отбору проб»; ГОСТ Р 50436—92 (ИСО 950—79) «Зерновые. Отбор проб зерна»; ГОСТ 28168—89 «Почвы. Отбор проб». Пробы зерна и соломы для определения остатков в урожае хранят в бумажной или тканевой упаковке при комнатной температуре. Для длительного хранения пробы почвы подсушиваются при комнатной температуре в отсутствие прямого солнечного света. Сухие почвенные образцы могут храниться в течение года. Перед анализом сухую почву доводят до стандартной влажности, просеивают через сито с отверстиями диаметром 1 мм, зерно и солому измельчают на лабораторных мельницах.

9. Проведение определения

9.1. Определение флуксапироксада в воде

Через патрон Диапак С16 пропускают 50 см³ воды. Фильтрат отбрасывают. Флуксапироксад элюируют 3 см³ ацетона. Элюат упаривают досуха на вакуумном ротационном испарителе при температуре бани не выше 40 °C. Сухой остаток растворяют в 2,5 см³ подвижной фазы. 10 мм³ полученного раствора вволят в хроматограф.

9.2. Определение флуксапироксада в зеленой массе и соломе зерновых культур

В полипропиленовую центрифужную пробирку вместимостью 50 см³ помещают 10 г измельченной зеленой массы или 4 г соломы, прибавляют 10 см³ воды, 10 см³ ацетонитрила, 0,1 см³ ледяной уксусной кислоты, 4 г безводного магния серно-кислого и 1 г натрия уксусно-кислого. Пробирку плотно закрывают пробкой, встряхивают на аппарате в течение 15 мин и центрифугируют при скорости 8 000 об./мин в течение 10 мин. Супернатант декантируют и количественно переносят в другую тефлоновую центрифужную пробирку. Если супернатант декантировать не удается, то массу фильтруют на воронке Бюхнера через бумажный фильтр «красная лента». Измеряют объем супернатанта или фильтрата и прибавляют к нему силикагель и безводный магний серно-кислый из расчета 50 мг силикагеля, 150 мг магния серно-кислого на 1 см³ супернатанта. При работе с образцами зеленой массы или соломы к суперна-

танту также прибавляют активированный уголь из расчета 7,5 мг на 1 см³ супернатанта. Пробирку плотно закрывают пробкой, встряхивают на аппарате 15 мин и центрифугируют при скорости 8 000 об./мин в течение 10 мин. Количественно отбирают с помощью шприца верхний ацетонитрильный слой, переносят его в мерную колбу вместимостью 10 см³ и доводят объем до метки водой. 10 мм³ полученного раствора вводят в хроматограф.

9.3. Определение флуксапироксада в почве

В полипропиленовую центрифужную пробирку вместимостью 50 см³ помещают 10 г просеянной почвы, прибавляют 3 см³ воды для смачивания пробы, через 2 мин прибавляют 10 см³ воды, 10 см³ ацетонитрила, 0,1 см³ ледяной уксусной кислоты, 4 г безводного магния серно-кислого и 1 г натрия уксусно-кислого. Пробирку плотно закрывают крышкой, встряхивают на аппарате в течение 15 мин и центрифугируют при скорости 4 000 об./мин в течение 10 мин. Отбирают 5 см³ верхнего ацетонитрильного слоя и переносят его в полипропиленовую центрифужную пробирку вместимостью 15 см³, содержащую 250 мг силикагеля и 750 мг безводного магния серно-кислого. Пробирку плотно закрывают крышкой, встряхивают на аппарате 10 мин и центрифугируют при скорости 4 000 об./мин в течение 10 мин. Аликвоту 2 см³ переносят в круглодонную колбу и упаривают досуха на ротационном вакуумном испарителе, остаток очищают на патроне Диапак С.

9.4. Определение флуксапироксада в зерне

В полипропиленовую центрифужную пробирку вместимостью 50 см³ помещают 10 г измельченного зерна, добавляют 15 см³ воды, 10 см³ ацетонитрила и содержимое влагонепроницаемого пакета из «Набора для пробоподготовки по методу QuEChERS Interlab VetexQ для обычных овощей, фруктов и зерна (кат. № IL-5056)». Пробирку плотно закрывают, встряхивают на аппарате в течение 15 мин, центрифугируют при скорости 4 000 об./мин в течение 10 мин. Отбирают 5 см³ верхнего ацетонитрильного слоя и переносят в полипропиленовую центрифужную пробирку из набора вместимостью 15 см³, содержащую сорбент. Пробирку плотно закрывают, встряхивают на аппарате в течение 15 мин, центрифугируют при скорости 4 000 об./мин в течение 15 мин, центрифугируют при скорости 4 000 об./мин в течение 10 мин. Аликвоту 2 см³ переносят в круглодонную колбу и упаривают досуха на ротационном вакуумном испарителе, остаток очищают на патроне Диапак С.

9.5. Очистка на патроне Диапак С

9.5.1. Кондиционирование патрона Диапак С

Патрон с силикагелем Диапак С промывают 2 см³ элюента № 2, затем 3 см³ тексана.

9.5.2. Дополнительная очистка проб почвы и зерна на патронах Диапак С

Сухой остаток, полученный по пп. 9.4 или 9.5 растворяют в 1 см³ гексана, наносят на предварительно кондиционированный патрон, колбу ополаскивают 1 см³ гексана и так же наносят на патрон. Патрон промывают 6 см³ элюента M 1, элюат отбрасывают. Флуксапироксад элюируют 3 см³ смеси M 2, элюат собирают, упаривают досуха на ротационном вакуумном испарителе, остаток растворяют в 1 см³ подвижной фазы и 10 мм³ вводят в хроматограф.

9.6. Условия хроматографирования

9.6.1. Условия анализа проб воды, зеленой массы и соломы

Ультраэффективный жидкостный хроматограф «ACQUITY» фирмы Waters с быстросканирующим УФ-детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки. Аналитическая колонка ACQUITY UPLC BEH C18 (2,1 × 100) мм, 1,7 мкм (Waters). Температура колонки (30 \pm 1) °С. Подвижная фаза: смесь ацетонитрила и 0,005 М ортофосфорной кислоты в соотношении 50 : 50. Скорость потока элюента: 0,2 см³/мин. Рабочая длина волны УФ-детектора 230 нм. Объем вводимой пробы 10 мм³. Время удерживания флуксапироксада (4,8 \pm 0,1) мин.

9.6.2. Условия анализа проб почвы и зерна

Ультраэффективный жидкостный хроматограф «ACQUITY» фирмы Waters с быстросканирующим УФ-детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки. Аналитическая колонка ACQUITY SHIELD RP 18 $(2,1 \times 100)$ мм, 1,7 мкм (Waters). Температура колонки (30 ± 1) °C. Подвижная фаза: смесь ацетонитрила и 0,005 М ортофосфорной кислоты в соотношении 50:50. Скорость потока элюента: 0,2 см³/мин. Рабочая длина волны УФ-детектора 230 нм. Объем вводимой пробы 10 мм³. Время удерживания флуксапироксада $(5,0 \pm 0,1)$ мин.

Линейный диапазон детектирования сохраняется в интервале концентраций (0,01-0,2) мкг/см³.

10. Обработка результатов анализа

Количественное определение проводят методом абсолютной калибровки. Содержание флуксапироксада в воде, почве, зеленой массе, зерне и соломе зерновых (X, мг/кг) вычисляют по формуле:

$$X = \frac{S_x \cdot K \cdot V}{P} \cdot \frac{100}{f}$$
, где

 S_x – площадь пика флуксапироксада на хроматограмме испытуемого образца, мм² (AU);

K — градуировочный коэффициент, найденный на стадии построения соответствующей градуировочной зависимости;

V- объём пробы, подготовленной для хроматографического анализа, см 3 :

P – навеска анализируемого образца, г;

F – полнота извлечения флуксапироксада, приведенная в табл. 2, %.

Содержание остаточных количеств флуксапироксада в образце вычисляют как среднее из двух параллельных определений.

Образцы, дающие пики большие, чем стандартный раствор флуксапироксада с концентрацией 0,2 мкг/см³, разбавляют подвижной фазой для ВЭЖХ.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предел повторяемости:

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r, \text{ где}$$
 (1)

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости ($r = 2.8\sigma_r$).

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг при вероятности $P = 0.95$, где

 $\overline{X}-$ среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

∆ – граница абсолютной погрешности, мг/кг;

$$\Delta = \frac{\delta \cdot X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе «менее нижней границы определения» (например: менее $0,005 \, \text{мг/кr}^*$, где «*» — $0,005 \, \text{мг/кr}$ — предел обнаружения флуксапироксада в почве и зерне зерновых).

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—2002 «Точность (правильность и прецизионность) методов и результатов измерений».

- 13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки $C_{\bar{o}}$ должна удовлетворять условию:

$$C_{\partial} = \Delta_{xx} + \Delta_{xx'}$$
, где

 $\pm \Delta_{n,X'} (\pm \Delta_{n,X'})$ – характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой, соответственно), мг/кг; при этом:

$$\Delta_n = \pm 0.84 \Delta$$
, где

 Δ – граница абсолютной погрешности, мг/кг:

$$\Delta = \frac{\delta \cdot X}{100}$$
, где

 δ — граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_{\kappa} = X' - X - C_{\partial}$$
, где:

X', X, C_{∂} — среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 11) содержания компонента

в образце с добавкой, испытуемом образце, концентрация добавки соответственно, мг/кг.

Норматив контроля К рассчитывают по формуле:

$$K = \sqrt{\Delta_{z,X'}^2 + \Delta_{z,X}^2} \tag{1}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K,\tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры к их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости.

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предел воспроизводимости (R):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R, \, \text{где}$$
 (3)

 X_l, X_2 — результаты измерений в двух разных лабораториях, мг/кг; R — предел воспроизводимости (в соответствии с диапазоном концентраций), %.

14. Разработчики

Долженко В. И., Цибульская И. А., Журкович И. К., Черменская Т. Д., Комарова А. С. (ГНУ Всероссийский НИИ зашиты растений Россельхозакадемии).