


ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ, ПРОЕКТНО-ИЗЫСКАТЕЛЬСКИЙ ИКОКТЕРУКТОРОКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМИЫХ СООРУЖЕНИЙ ИМЕНИИ И.М. ГЕРСЕВАНОВА ГОССТРОЯ СССР

Инженерный центр ВНИИОСП

РЕКОМЕНДАЦИИ ПО УСТРОЙСТВУ ПОДЗЕМНЫХ СООРУЖЕНИЙ СПОСОБОМ ОПУСКНОГО КОЛОДЦА В ГРУНТАХ СО СКАЛЬНЫМИ ПРОСЛОЙКАМИ



ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ВЕСООЗНИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ, ПРОЕКТНО-ИЗМІСКАТЕЛЬСКИЙ И КОНСТРУКТОРСКО-ТЕХВОЛОГИЧЕСКИЙ ИКСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ NAMEN И.М. ГЕРСЕВАЙВА ГОССЕТРИЯ СССРУ

Инженерный центр ВНИИОСП

РЕКОМЕНДАЦИИ ПО УСТРОЙСТВУ ПОДЗЕМНЫХ СООРУЖЕНИЙ СПОСОБОМ ОПУСКНОГО КОЛОДЦА В ГРУНТАХ СО СКАЛЬНЫМИ ПРОСЛОЙКАМИ

### УЛК 624.

Рекомендации распространяются на разработку проектов производства работ и строительство подземных сооружений опособом опускного колодца в грунтах, содержащих скальные прослойки. В них изложены сведения о конструкциих опускных колодцев, их погружении, контроле качества производства работ, а также требовании по технике безопасности.

Рекомендации разработаны Инженерным центром ЕНИИ оснований и подземных сооружений им.Н.М.Герсеванова под руководством канд. техн, каук Ю.А.Березницкого. В работе принимали участие В.М.Руков и Ю.М. Саликов, Б.Б.Михайлова, В.З.Коган и А.А.Арсеньев.

Разработчики приносят благодарность докт. техн. наук, профессору М.И.Смородинову за критические замечания при соотавлении Рекоменцаций.

Рекомендации предназначени для инженерно-технических работников строительных и проектных организаций.

Предложения и замечания по содержанию Рекомендаций направлять по адресу: 109428, Москва, 2-я Институтская ул.,д.6, НИМОСП.

Ордена Трудового Красного Знамени Всесовзный научно-исследовательский, проектно-измокательский и конструкторско-технологический институт оснований и подземных сооружений им. Н.М. 1 Терсеванова, 1991

### I. Обние положения

- 1.1. Настоящие рекомендации являются дополнением к СНиП 3.02.03-84. Подземные гориме виработки и СНиП 3.02.01-83. Основания и фунцаменти. Правила производства работ, а текже других документов.
- I.2. Строительство подземных сооружений спососом опускного колонда следует осуществлять по периодем: подготовительному, последовательность выполнения работ которого определяется проектом организации отроительства / ПОС /:

нервому основному, в состав которого входят: устройство форшахти, монтаж номевой части и занавливающих устройств;

второму основному, в состав которого входят погружение опускного колодца, устройство подводной подушки – днища, силового днища и изготовление, если это требуется, внутренних конструкций.

- 1.3. Способ опускного колодца в грунтах со скальными прослойкеми может бить принят для строительства подземного сооружения на ссновании данных геологических изысканий. В случае выявления несоответствия фактических инженерно-геологических условий, учтенных в проекте, должны бить проведены дополнительные исследовании грунтов и скальных пород с внесением соответствующих изменений в рабочую документацию.
- 1.4. При производстве работ в сложных геомогических условнях /наличие опасности горных ударов, прорыва води, пливунов и т.п./ геологическая служба заказчика обязана вести наблюдения за состоянием грунтового массива в процессе проходки и на их основе выдавать прогноз о возможно опасных зонах.
- 1.5. Строительство подземных сооружений опособом опускного колодца не допускается на геологически неустойчивых площадках (с оползнями, каретами, пустотами и т.п.), на площадках, где основания
  фундаментов рядом расположенных аданий и сооружений находятся в зоне обружения грунта у колодца /за исключением случаев, когда специально предусмотренными мерами обеспечивается сохранность существукмих фунцаментов и коммуникаций/.
- 1.6. Погружение опускных колодцев следует предусматривать до возведения расположенных вблизи зданий и сооружений.

- П. Инженерно-геологические изискания дли проектирования и строительства подазмних сооружений способом опускного колодца в грунтах со скальными прослойнеми
- 2.1. Инженерно-геологические изискания должны проводиться в соответствии с требованиями глави СНий по инженерным изисканиям для строительства и других нормативных документов, перечень которих приведен в п.1.5. Руководства по проектированию оснований зданий и сооружений (м., Стройнздат, 1978) с учетом следующих дополнительных условий:

при диаметре подземного сооружения до 15 м в песчаних и глиимстих грунтах разведочных скважин должно быть не менее трех при их глубине, превышающей на 5 м глубину сооружении;

при большем диаметре подземного сооружения, а также в сложных инженерно-геологических условиях число сказани и их глубима должны изявляться проектной организацией по специальной программе. Симажины должны располагаться в пределах контура опускного колодца либо на расстоянии не более 5 м от его наружной поверхности.

- 2.2. Скважине, пробуренные при изисканиях, должни бить затаммонировани до начала погружения колодца за исключением наблюдатель ных окважин. На затампонированные скважини следует оформлять акт на скратие работи, а незатампонированные скважини передать на сохраиность заказумку.
- 2.3. В описании геологического строения стройнломацки следует привести геологические разрези, на которых должни бить показани все грунтовые намисствания со скальными прослойками, мощности см ев, их наклон, а также указано наличие крупных включений, налучов и т.п. с их качественной и количественной характеристиками /размер пречность, процентное содержание/.
- 2.4. Кажесификацию грунтов следует устававливать в соответст ви с ГОСТ 25100-82.
- 2.5. В инженерно-геологическом отчете должны быть приведены прогнозы максимального подъема уровня грунтовых вод и повышение степени их агресоненссти. При намичии вблизи подвежного оссружени водоема следует указывать расстоямие до уреза воды, характер сези него колебании уровия и связь грунтевых вод население с водоемом.
  - 2.6. Для уточновии гологии по трассе проходии выработки гор

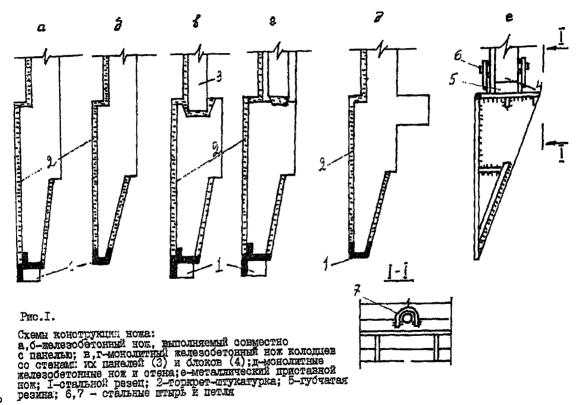
но—проходческая организация должих осуществлять контрольное опережающее бурение сквалин в забоях опускных колодцев для отбора образцов грунтов и сквальных прослоек, а также все необходимые в забое работы, связанные с профилактикой мер по предупреждению опасности горных ударов, выбросов пород, газов и плывунов.

2.7. Цри определения характеристик горных пород прослоек по крепости рекомендуется руководствоваться табл. I; уточняя их на основе данних натурных и лабораторных исследований в процессе погружения опускного колодца.

Таблица I (СНи Ш-II-77)

| ¥<br>H∕II | Геологическое намменование<br>пород                                                                                                          | Категория<br>крепости<br>пород | Коэффициент<br>крепости пород<br>по шкале Про—<br>топъявонова |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|
| Ī.        | 2                                                                                                                                            | 3                              | 4                                                             |
| ī.        | Кварцити исключительно крепкие,<br>джеспилиты, габбродиабаз, габбро-<br>диорит, порфириты исключительно<br>крепкие                           | ΧI                             | 19 - 20                                                       |
| 2.        | Базальт оливиновый, андезит, рого-<br>вик, диабаз, диорит высшей кремости                                                                    | <b>X</b>                       | I7 - I8                                                       |
| 3.        | Кремень, кварцитовидные песчаники исключительной крепости, окремненны известняки высшей крепости                                             | <b>X</b><br>10                 | I5 - I6                                                       |
| 4.        | Средневернистие гранити, кварцито-<br>видние песчаники, кварцити, диабазы<br>гнейси крепкие, порфирит, тракит<br>крепкий, сиенит, амфиболити | 1X<br>1,                       | I2 - I4                                                       |
| 5.        | Мелкозернястие монолитние окварцо-<br>ванние песчанаки, известняки сливна<br>исключительно крепкие, мрамор искли<br>чительно крепкий         |                                | 10 - 11                                                       |
| 6.        | няки, мартитомагнетитовые руды  компеданы, крепкие доломиты и извес                                                                          | ,                              | 8 - 9                                                         |

| I   | 2                                                                                                                                                                                                                                                  | 3                 | 4       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| 7.  | Эмеевик, гранит и сменит крупнозернис-<br>тие, кварцево-хлоритовые сланци                                                                                                                                                                          | ym                | 7       |
| 8.  | Крепкие аргилити и алевролити, песча-<br>но-глинистие сланци, сидерит, магнезит,<br>змеевик оталькованный, известняк плот-<br>ний, мартитовие руды                                                                                                 |                   | 6       |
| 9.  | Гранити, гнейси, сменити и прочие мас-<br>сивние и изверженние породы, сильно-<br>минерализованние или внеетрившиеся                                                                                                                               | ЛК                | 5       |
| IO. | Известняк мергелистый, песчаник глинистий, сланец слюдистый, доломити, бурне железняки и глинозекистые руди                                                                                                                                        | - YII <b>-</b> YI | 4 - 5   |
| II. | Тлинистие и углистие сланци средней крепостя, плотный мергель, слабие песчанистие сланци, слабие известняки и доломити, тальковие сланци                                                                                                           | y                 | 3       |
| 12. | Антрацит, кренкий каменный уголь,<br>слабый конгломерат и песчаник, алев-<br>ролит и аргиллит средней крепости                                                                                                                                     | У                 | 2       |
| 13. | Слабне гинистие сланцы, опока крепкая очень слабне выветрившиеся известняки и доломиты, каменный уголь средней крепости, крепкий бурый уголь                                                                                                       | , у               | I,5 - 2 |
| 14. | Плотине карбонатине глини, мел плот-<br>ний, мергель средней крепости, гипс,<br>крепкая каменная соль                                                                                                                                              | I <b>y-</b> m     | 1,5     |
| 15. | Каменный уголь мягкий, откарбонатная глина, трепел мягкий, мягкая онока, бурый уголь, карбонатная глина, трепел мягкая каменная соль, пористый гипс, тяжелая глина, моренный суглинок, жирная глина и тяжелый суглинок, со-держащий до 10% гальки, | ly—II             | I - I,5 |


| I   | 2                                                              | 3     | 4   |
|-----|----------------------------------------------------------------|-------|-----|
|     | мелоподобные слабне породы (мергель, опока и др.).             |       |     |
| 16. | Легкая глина, суглинки, супеси, лесо, галечник, гравий, щебень | n – 1 | 0,9 |
| I7. | Песок, песок-пливун, почвенный слой                            | I     | 0,6 |
| I8. | Рыхлый навестниковый туф, туф и другие<br>слабые породы        | I     | 0,4 |

# III. Требования к конструированию

- 3.1. Выбор конструктивного ремения спускных колодцев должен производяться на основе технико-экономических показателей вариантов, учитывакщих требования строительства и эксплуатации колодцев в данных геологических и импрогеологических условиях. Следует применять конструктивные решения колодцев, при которых обеспечивается необходимая прочность, устойчивость и пространственная жесткость на всех этапах строительства и эксплуатации.
- 3.2. Сравнительные технико-экономические расчети следует выполнять в соответствии с требованиями "Инструкции по определению экономической эффективности капитальных вложений в строительстве" (СН 423-71). Эти расчети осуществляются по минимому приведенных затрат, которые представляют собой сумму текущих издержек и единовременных затрат, приведенных к годовой размерности в соответствии с установлениями нормативными коэффициентами эффективности.
- 3.3. Колодци, погружаемие в тиксотропной рубашке, рекомендуется, как правило, проектировать сборными из унифицированных конструкций. Сборные элементы стен (блоки, панели и др.) следует принимать наиболее крупными с учетом грузоподъемности применяемых подъемно-монтажных механизмов, условий транспортирования и изготовления.
- 3.4. Для опускных колодцев дваметром в плане до 15 м рекомендуется использовать сегментные железобетонные блоки, как прагило, с внутренней металиоизолицией, соединяемие в кольца посредством накладок электросваркой, при соединении колец между собой круговым свариым швом. Обично такие блоки выполняются с выступающими нап

верхным торцом стальными накладками, изготовленными с возможностых контактирования с боковой поверхностью нижней части блока вышележащего кольца.

- 3.5. Конструкция ножевой части колодцев должна обеспечивать возможность ее внедрения в забой в мягких грунтах на величину, указанную в проекте производства работ. Ножевая часть не должна испитивать деформаций при ее посадке на скальные породы от веса оболочки колодца с коэффициентом перегрузки I,2.
- 3.6. Для колодцев диаметром в имане до 15 м, погружаемых в крупнообломочные грунти, плотные, крупные и средней крупности пески, глини с  $\mathcal{I}_L$  0.8, а также при необходимости опережащего заглубления ножа в грунт рекомендуются ножевые части с режущей кромкой пириной 40-60 мм (рис.І д.е).
- 3.7. Для колодцев диаметром более 15 м режупую кромку следует выполнять шириной 80 мм и более (рис. I.a-r).
- 3.8. Предпочтительно изготовление ножевой части с металлической облицовкой со стадыным реждем в нижней части или без него.
- 3.9. При выполнении ножевой части с металлической облицовкой рекомендуется производить ее контрольную сборку перед установкой в проектное ноложение.
- 3.10. Стени могут изготавливаться из плоских панелей, соединиемых между собой сваркой закладных деталей.
- 3.II. Рекомендуются панели с обрамлением по контуру рамкой из стальной полосы, к которой привариваются арматурные сетки, образующие совместно с ними арматурный блок. Полосы при этом оледует учитывать в расчете как рабочую арматуру. Вертикальные и горизонтальные стыки таких панелей осуществляют приваркой фланговым ином стальных накладок к обрамляющим рамкам.
- 3.12. В грунтах с нормативным сопротивлением по боковой поверхности S < 5 т/м<sup>2</sup> рекоменцуется приваривать к наружной поверхности стен колодиа металлические упори (рис.2), которые после погружения на проектную отметку упираются на формахту.
- 3.13. Проеми в наружних стенах колодцев должни дополнятельно окаймияться апматурой не менее сечения основной рабочей арматуры.
- 3.14. Проеми следует на время погружения закледивать железобетонными панедями или стальными питами (рис.3).
- 3.15. В местах примекания к колодцу теннеля по контуру проема следует предусматривать бортик с размерами, соответствующими тол—



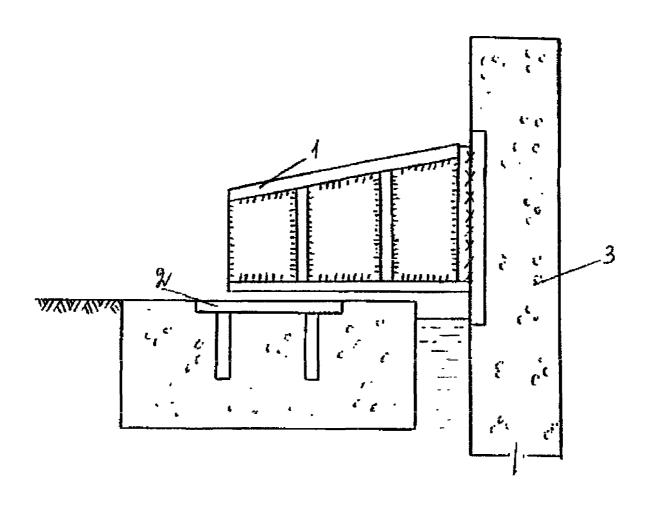



Рис. 2. Пример конструкции упора I ; 2 — закладные пластины; 3 — стена колодца

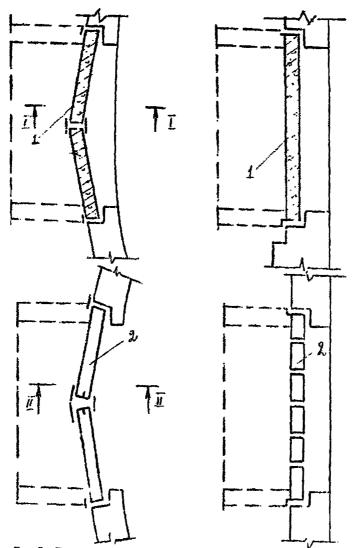



Рис.3. Примеры решений закладывания проемов в стенах: 1 — железобетооные панели; 2 — стальные щиты

щине обделки тоннеля (рис.4).

- 3.16. При соответствуваем технико-экономическом обосновании стени колодцев могут бить выполнени в сборно-монолитисм варианте. В этих случаях пелесообразно использовать несъемную опалубку.
- 3.17. Возможно применение в качестве конструкции стен два коаксильно установленных тюбинговых (блочных) комьща с заполнением полости между ними монолитным бетоном.
- 3.18. При возведении сборно-монолитных следует стремяться размещать рабочую арматуру в сборных железобетонных облицовках, сводя по минимума арматурные работы между ними.
- 3.19. Закрепление колодца против всплытия следует обеспечивать пригрузом из прилегащего грунтового массива при помощи:

тампонажа полости тиксотропной рубашки нагнетанием цементного раствора с одновременным удалением глинистого раствора;

устройства воротника (рис.5);

устройства горизонтальных и вертикальных анкеров (рис.6).

Воротник следует предусматривать при глубине первоначального котлована не менее 5 м и опирать на наружный уступ стени. При этом основание котлована, со дня которого начинается опускание колодца, должно быть на 0,5 м выше уровня грунтових вод. Воротник рекомендуется предусматривать сборной конструкции.

Допускаются монолитные воротники и соединение их с железобетонными формахтами. Засынку воротника желательно производить песчаным грунтом, укладываемым с уплотнением.

Торизонтальные и вертикальные анкеры не допускается предусматривать в текучих супесях, мягкопластичных, текучепластичных и текучих супинках и глинах. Горизонтальные анкеры (рис.7) — короткие железобетонные сваи, погружаемые в грунт домкратами через отверстви в стенах колодца после его погружения, рекомендуется раснолагать на глубине замегания пластов грунта с наибольшей несущей способностью; при этом томщина слоя грунта нед горизонтальной сваей должна быть не менее I м. В однородных грунтах горизонтальные сваи — анкеры следует располагать на глубине днища. Горизонтальные сваи большой несущей способности рекомендуется выполнять буронабивными, в обсадных трубах днаметром более 0.6 м, задавливая труби в грунт с уклоном вниз на 5-10°. Проемы для свай образуют закладкой деревянных пробок при изготовлении стен колодцев.

3.20. Вертикальные анкеры (сваи) следует располагать внутри колодда, закрепляя их в днище или по периметру стен. Увеличивать

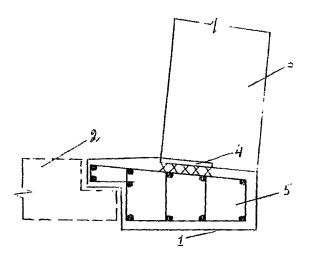
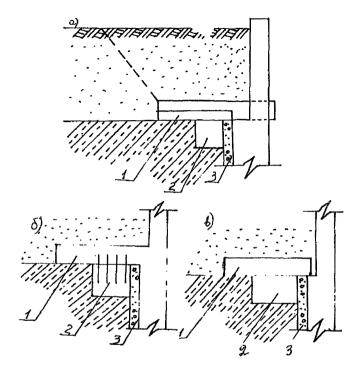




Рис. 4. Пример конструкции бортика I у проема для тоннеля 2; 3 — колодец; 4 — закладная пластина, к которой приваривается арматура 5 бортика

Рис.5. Примеры конструкций воротников I: а-оборного; б-монолитного; в-монолитного отрезного; 2-формахта; 3-затампонированная щель тиксотропной рубащки



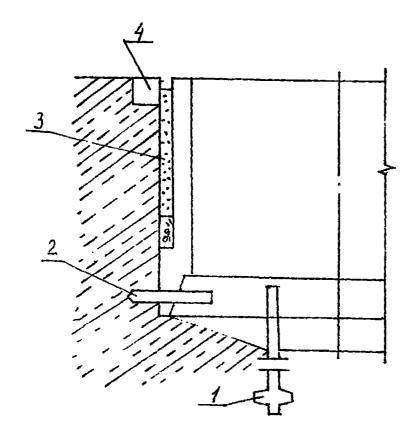



Рис.6. Схема устройств для закрепления колодца против

I-вертикальный анкер; 2- короткая горизонтальная свая; 3-затампонированная щель тиксотропной рубашки; 4-формахта

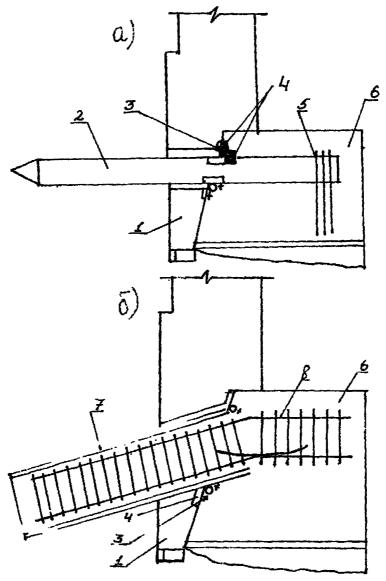



Рис.7. Примери конструкций сборных (а) и буронабивных (б) горизонтальных свай: 1-нож кололиа; 2-короткая свая; 3-стермень, привариваемий к закладним пластинам 4; 5-хомути, закрепликцие сваю в днише 6; 7- обсадная труба; 8-арматурный каркас

толични стен и дница колодцев с целью пригрузки колодца против вспливания не попускается.

- Основные положения расчета опускных колодцев
- 4.1. На нагрузки и воздействия, возникающие в условиях строительства колодцев, должни выполняться следующие расчети:
- а) по схемем, учитывающим наличие только наружных стен; по прочности коложца или его первого яруса, подлежещего ногружению, при снятии с временного основания (если это предусмотрено проектом произволства работ);

по ногружению колодца;

по прочности и устойчивости формы наружных стен при погружении колоши.

Колодии овальной или примоугольной форми, имеющие внутренние стени, с которыми они погружаются, рассчитываются с учетом этих стен.

б) по расчетным схемам, учитывающим наличие наружных отен и пинив:

по прочности лимпа:

на всилывание колонца:

прочности и устойчивости форми стен, а также срвига по подощве и опрокидывания при отрытии односторонних внемок волизи колодца (если они предусматриваются проектом производства работ).

Сборние элементи, кроме того, должни рассчитываться на нагрузки, возникающие в процессе их изготовления, транспортирования и монтаже.

4.2. Расчет прочности наружных стен в условиях строительства следует производить, когда колодец погружен до проектной (наибольшей) глубини, и для каждого яруса стен при когружении колодца ярусами.

Кругине колодии со сплошными стенами следует рассчитывать как оболочки с верхним и нижним своболными краями.

Нижний конец железобетонной ножевой части колодца следует рассчитывать как консоль, зацемленную в оболючке колодца, на которую грунт давит снаружи или изнутри. При этом расчетние нагрузки увеличиваются на коеффициент, равный 1,2, учитывающий резкие поседки колодца.

4.3. Колодин рекомендуется рассчитывать по существующим прог-

раммем расчета оболочек на ЭБМ, желательно с учетом соеместной работи с грунтом, например по программе расчета опускных колодцев, разработанной Харьковским Водоканалироектом в 1978г.

- 4.4. Расчет прочности калезобетонного дница должен производиться как кластинки с крами, марнирно — опертыми на колодец.
- 4.5. Димие, на которое опираются внутрениие стени или колонни с регулярным шагом, рассчитывается соответственно как многопролетная пластина, состоящая из прямоугольных панелей, или пластина, опертая в вершинах прямоугольной сетки.

Вертикальные буровне анкери, заделываемие в днице, учитываются в расчете днища как сосредоточенные нагрузки, имеющие направление, обратное давлению грунта.

- 4.6. Расчет сдвига по подошве и опрокидывания колодца при отрытии односторонных внемок вблизи колодца следует производить в соответствии с требованиями гмави СНиП 2.02.01-83по проектированию оснований зданий и сооружений ( м., Стройкадат, 1985).
- 4.7. На нагручки и воздействия, возникающие в условиях эксплуатации колодиа, должни выполняться следумиме расчеты:

прочности и устойчивости форми наружных и внутренних стен, колонн. лимки и перекрытий:

вспливания колониа:

осанки колонца:

сдвига по подошне и опровидивания колонца (при больших односторонних горизонтальных нагрузках).

- 4.8. При расчете колодцев, внутренние отсеки которих по технологическим требованиям заполнени водой, должна учитываться дополнительная гидростатическая нагрузка на ограждающие конструкции этих отсеков.
- 4.9. Расчет осадок колодцев и изменение осадок во времени следует выполнять как для фундаментов на естественных основаниях в соответствии с требованиями глави СНиП по проектированию оснований зданий и сооружений с учетом усилий тренин колодца по грунту, вызываемых осадкой колодца.
- 4.10. Белезобетонная цилиндрическая оболочка в кольцевом направлении рассчитивается как внецентренно — сматий кольцевой элемент с симметричной или несимметричной арматурой в зоне тиксотропной рубамки прямоугольного сечения и в ножевой части таврового сечения. Полку в сжатой зоне железобетонного ножа образуют с наружной стороны режумей части, а с внутренней сторони — участок примыкающей 18

CTSHN.

В меридиональном направлении железобетонное сечение обслочки рассчитивается как внецентренно — сжатый алемент, в котором нормальная сила формируется собственным весом отены, нагрузками от перекратий и пр.

- Производство работ по погружению спускных колодцев в грунтах со скальными просложнами
- 5.1. Комплекс работ по погружение колонца включает следующие ооновние технологические процесси:

изготовление формахти при погружении колодца задавливанием гидравлическими домератеми и монтак задавливаниих устройств;

монтаж ножевой части в формахте или на двевной поверхности; наращивание колодца по мере его опускания; устройство днища подводным способом или насуко.

5.2. К веномогательным процессам относятоя: монтак глинорастворного увла при погружении колодца в тиксотропной рубание:

монтаж ограждений и рабочих полков;

отсилка посчаной подготовки или изготовление временного основания под ножевую часть;

снятие колодца с гременного основания перед погружением.

- 5.3. Монтаж стен колонца на вор высоту следует производить для погружаемых под собственным весом колонцев с глубиной погружения до 10 м.
- 5.4. При погружении колодцее под собственным весом на глубину, большую ТО м, режем нараживания стен следует назначать в соответствии с принятой технологией внемки грунта при обеспечении гозможности местного нараживания стен для создании местного пригруза при испревлении перекосов.
- 5.5. При погружении колодцев принудательным задавливанием независямо от глубини погружения неращивание стен следует производить кольцами (ярусами) с высотой, рагной (кратной) ходу силовых цилиндров.
- 5.6. При пересечения скальных прослоск в колондах, погружаемых под собственным весом, следует применять буроварыване работи с размуриванием забоя по всей площами с оставлением расчетных вон опира-

## HHA.

- 5.7. Работи по разрушению скальной породи и опускание колодца производят в следующей очередности (рис.8): взрывают и убирают породу по всей площади котлована на велячину предполагаемого очередного опускания колодца (не более 0,5 м); взрывают и удаляют породу под банкеткой ноже колодца между зонами опирания. Для поддержания колодца в зонах опирания иногда применяют деревянию стойки. Количество. размеры, а также размещение стоек под ножом навначают в зависимости от расчетного цавления на стойку и прочности породи в соновании стоек.

  В местах установки отоек породу удаляют на 0,2 м глубке намечаемой носадки колодца; под нож колодца устанавлявают требуемое по расчету количество стоек; взрывают и удаляют грунт в зонах опирания; после взрыва стоек происходит спускание (по-садка) колодца.
- 5.8. При разработке породи под банкеткой ее необходимо удалять на 5-10 см за предели ножа. Образонавшиеся при этом пазули сдедует наклапивать гликой.
- 5.9. Общий вес заряда  $Q_{o\delta}$  на объем породы, езрываемой данной вермей шпуров, определяют по формуле

 $Q_{cS}=0.7\,\mathrm{KFh}\,i$ , где K — расчетный удельный расход ВВ, кг/см $^3$  (табл.2); f — илощаль дробления породы данной серией зарядов, м $^2$ ;  $h_i$  — тольдина верываемого слоя пореды, м. Вес одного заряда G определяют из виражения

Здесь  $C\ell$  — диаметр заряда,  $\partial u$ ;  $\ell$  — оли с заряда,  $\partial u$  (  $\ell$  = 0.7L , где L — длина шпура);  $\Delta$  — илотность заряда, кг/ди<sup>3</sup> ( $\Delta$  $\cong$  0.9).

Число шпуров (диаметром 42 мм) равно:

$$n = \frac{Q_{cd}}{Q}.$$

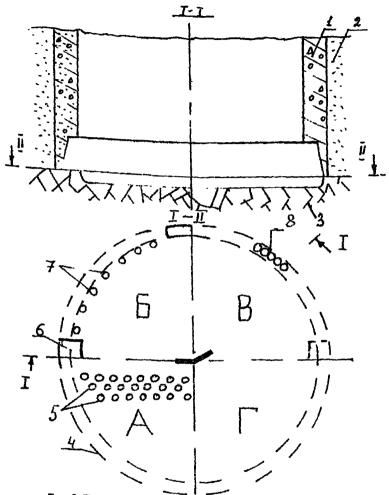



Рис. 8. Последовательность расот по опускании колонца в скальной пороле: А - рихление и усорка пороли в пределах площели котлония; В - установка деревнини стоек и разрушение зон опирания; Г - попомрание стоек: I — подрывание стоек; I-кожодец; 2-грунт; 3-скальная порода; 4-контур банкетки ножа; 5-дробящие веряци (шпуры);6-зона опирания;7-ото. впуры;8- отожке

Таблица 2

| Нажиенование твердых<br>грунтов и скальных<br>нород                         | Категория крепости<br>пород           | K, KI/MB    |
|-----------------------------------------------------------------------------|---------------------------------------|-------------|
| Суглинок твердый                                                            | П                                     | 0.4 - 0.45  |
| Глина твердая                                                               | IA                                    | 0,4 - 0,50  |
| Лесс твердый                                                                | Iy                                    | 0.35 - 0.45 |
| Мел                                                                         | Ty - y                                | 0.3 - 0.35  |
| Two comments                                                                | У                                     | 0.4 - 0.5   |
| Известняк - ракушечник                                                      | y - yl                                | 0,6 - 0,7   |
| Опока, мергель                                                              | y                                     | 0,4 - 0,5   |
| Туфи, тяжелая пемва                                                         | A                                     | 0.5 - 0.6   |
| Конгломерат, брекчия                                                        | y - yi                                | 0.45 - 0.55 |
| Песчаник на глинистом це-<br>менте, сланец глинистый,<br>изрестник, мергель | уі - уп                               | 0,45 - 0,85 |
| Доломит, изрестняк, маг-<br>незит, песчаник на изрест-<br>когом растроре    |                                       | 0.5 - 0.65  |
| Известняк, несчаник                                                         | · · · · · · · · · · · · · · · · · · · | 0,5 - 0,8   |
| Гранит, гранодиорит                                                         |                                       | 0.6 - 0.85  |
| Базальт, анцезит                                                            | . IX - XI                             | 0,7 - 0,9   |
| Кварцит                                                                     | х                                     | 0.6 - 0.7   |
| Порфирит                                                                    | X - XI                                | 0,8 - 0,85  |

5.10. Шпури следует располагать по пломади разрушаемой породи равномерно в шахматном порядке — при мгновенном взривании; по квадратной сетке — при корстковамедленном взривании. Расстояние между шпурами в ряду необходимо принимать не более 1.0 — 1.5 томани ввриваемого слоя породи, а расстояние между рядами не должно превызать 1.2 томании того же слоя.

Основные параметри дробящих шпуров при толщине взрываемого слоя породы 0,5 м рекомендуется принимать по табл.3.

- 5.11. Для вэрывания скальных пород под ноком коложца между вонами опирания при толжине вэрываемого слон 0.5 м отбойные шпуры рекоменцуется располагать в соответствии со схемой, приведенной на рис.9. а основные параметри шпуров принимать по табл.4.
- 5.12. После дробления и уборки короды между зонеми оперения произволят работы, овязанные непосредственно с заглублением (посад-

Tadawus 3

| Категория<br>породы | Глубина<br>шпуров, м | Расстояние межлу<br>шпурами, м |                  | Вес заряда<br>в одном |
|---------------------|----------------------|--------------------------------|------------------|-----------------------|
|                     |                      | в ряду                         | Dayana<br>Dayana | unype, kr             |
| 13                  | 0,6                  | 0,8                            | 0,8              | 0,25                  |
| A                   | 0,6                  | 0,8                            | 8,0              | 0.25                  |
| УI                  | 0.6                  | 0,8                            | 0.8              | 0.35                  |
| yn                  | 0,7                  | 0,8                            | 0,7              | 0,5                   |
| УШ                  | 0,7                  | 0,8                            | 0,7              | 0,5                   |
| IX                  | 0,7                  | 0,8                            | 0,7              | 0,5                   |
| X                   | 0,7                  | 0,8                            | 0,7              | 0,5                   |

Таблеца 4

| Категория<br>породы | Средняя глубина<br>впура, м | Вес заряда в одном |  |
|---------------------|-----------------------------|--------------------|--|
| ГУиУ                | 0,8                         | 0,4                |  |
| al a all            | 0,9                         | 0,5                |  |
| УШ — X              | 1,0                         | 0.5                |  |

кой) колодда в скальную породу. Под банкетку ножа следует подводить временные дереванные стойки, на которые передается вес колодда пооде дробления породы в зонах опирания, и производить одновременный 
варые зарядов то всех стойках (рис.10). Для подрывания стойки диаметром до 22 см требуется заряд тесом 150 г.

5.13. В одучае отсутствия необходимых ВВ их можно заменять другим с учетом следующих переводных козфрициентов

|                            | Переводной<br>козфіминент |
|----------------------------|---------------------------|
| AMMORNT # 9                | 0,1                       |
| 且6 m 用 6 XB                | 0,85                      |
| и 7 и и 7 XB               | 0,9                       |
| 推 IO                       | 1,0                       |
| Водоустойчивый аммонит В-3 | 0,9                       |

|                 | Переводной<br>коэффициент |
|-----------------|---------------------------|
| Тротил          | 0.85                      |
| Аммянья селитра | I,45                      |
| Indamar         | 1,0                       |

- 5.14. При погружении колодца в скальные просложи усидием домкратов меред каждым циклом разработки породы следует производить соединения верхнего торца стен с убранным штокеми домиратов в ссуществлять разработку породы под подвешенным колодцем. Опускание колодца за один цикл надо производить прямым ходом помкратов на предварительно выколненную полушку из мятой глины.
- 5.15. Вибор бурваних машин и установочных приспособлений для бурения шпуров следует производить по табл.5.

Таблица 5

| Вид                                                    |                                                                          | Характеристика пород                             |                       |
|--------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------|-----------------------|
| виработок                                              | Тип буральных мешин                                                      | коэффицент<br>крепости<br>по Протодья—<br>конову | категория<br>крепости |
| Вертикальные<br>ствомы жахт                            | Стволовие механизированние<br>бурильние установи: ,ручине<br>перфораторы | Ac 12-14                                         | До IX                 |
|                                                        | Ручные перфораторы                                                       | Bame I2-I4                                       | Bunne IX              |
| Горизонталь-<br>ные и наклон-<br>ные выработки         |                                                                          |                                                  |                       |
|                                                        | а) врещательного действия                                                | 2-6                                              | у-уп                  |
|                                                        | б) времятельно-ударного<br>действия                                      | 7-II                                             | уш-тх                 |
|                                                        | в) ударного действия                                                     | I2 m nume                                        | emae u XI             |
|                                                        | Ручние электро- и иневмо-<br>сверла                                      | До 5-4                                           | До ЖІ-УІ              |
|                                                        | Колонковне электросверла,<br>ручкие перфораторы                          | Более 5-4                                        | Уп-Уп                 |
| Восстанияе вы<br>работки с уг-<br>лом наклона<br>60-90 | -Телескопние перфоратори ил<br>опециальние проходческие<br>комплекси     | Burne 5-4                                        | Выше УП-УШ            |

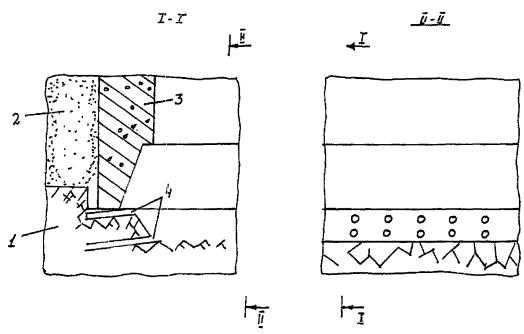



Рис. 9. Схема расположения отбойних шпуров меклу зонами опирания ножа: I — скальная порода; 2 — грунт; 3 — колодец; 4 — шпуры

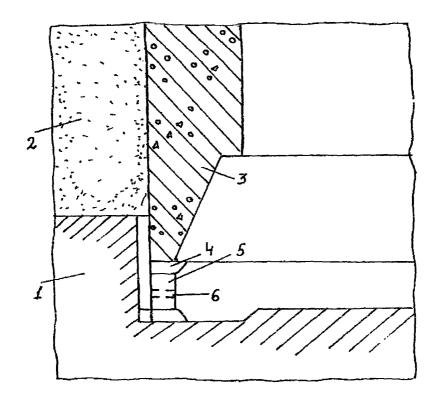



Рис.10. Схема подривания временных стоек: І — скальная порода; 2 — грунт; 3 — колодец; 4 — доски; 5 — стойка; 6 — шур в стойке

5.16. Количество бурильних машин, находящихся и работе, в забоях вертикальных отволов следует принимать:

из расчета один перфоратор на  $4-5~\mathrm{m}^2$  илощади забоя; на кажне три-четире рабочих перфоратора надлежит предусматривать один резервний.

- 5.17. При производстве буроваривних работ в затамионированных кли искусственно заморожених породах следует принимать мери предосторожности, исключающие вероятность раскрытия водоносных трещин, повреждения замораживающих колонок или ледопородного ограждения.
- 5.18. При проходке стеолов способом искусственного замораживания расстояние между шпурами и замораживающими колонками принимается по табл.6.

Таблица 6

| Наименование и крепость<br>вамороженных пород                                                           | Минимально допустимое рас-<br>стояние между шпурами и<br>замораживацими колонизми,<br>м, при взравании ВВ в пат-<br>ронах диаметром, мм |           |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                         | 36                                                                                                                                      | 45        |
| Нескальные породы (мергели, тякалые глины, суглинки, слабые аргиллиты, алевролиты и т.н.), $C = 1,5:3$  | I - I,I                                                                                                                                 | I,3 - I,4 |
| Скальные породы (посчанистие, посчано-глинистие сланцы, посчаники известняки, доломиты и т.п.), $C=4:6$ | 1,4 - 1,5                                                                                                                               | 1,8       |

### OTABBEHNE

| I. | Общие положения                                      | 3  |
|----|------------------------------------------------------|----|
|    | Инженерно-геологические изыскания для проектирования | •  |
|    | и отроительства подземних сооружений способом        |    |
|    | опаскного кочовия в глантях со свяченим просмодвями  | 4  |
| u. | Требования к конструированив                         | 7  |
|    | Основные положения расчета опускных колодцев         |    |
| У. | Производство работ по погружению опускних колодцев   |    |
|    | B PDYRTAX CO CRANLHEME IDOCRORRAME                   | 19 |

Воесованый научно-исследовательский, проектис-изискательский и конструктороко-технологический институт оснований и подземных сооружений имени Н.М.Герсеванова

Рекомендации по отроительству подземных сооружений способом опускного колодиа в грунтах, содержащих скальные просложки

Редактор Л.В.Пузанова

Эаказ /8/ . Тираж 500 экз. формат 60к90 I/I6. Бумага офсетная. Набор машинописный. Уч.--кад.я. I,7. Усл.кр.--отт.I,95. Цена 50 кон.

HSM BHNUHTHN Tocorpos CCCP 12/471, Momentone mocce, 25