ОРДЕНА ТРУДОВОГО
КРАСНОГО ЗНАМЕНИ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ
ИНСТИТУТ ОСНОВАНИЙ
И ПОДЗЕМНЫХ СООРУЖЕНИЙ
ГОССТРОЯ СССР

СИБИРСКИЙ ЗОНАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ ТИПОВОГО И ЭКСПЕРИМЕНТАЛЬНОГО ПРОЕКТИРОВАНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ ГОСГРАЖДАНСТРОЯ

РЕКОМЕНДАЦИИ

ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ СТОЛБЧАТЫХ ФУНДАМЕНТОВ В КОТЛОВАНАХ, ПОЛУЧЕННЫХ ТРАМБОВАНИЕМ ПРОСАДОЧНЫХ ГРУНТОВ

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ГОССТРОЯ СССР

СИБИРСКИЙ ЗОНАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНЫЙ ИНСТИТУТ ТИПОВОГО И ЭКСПЕРІМЕНТАЛЬНОГО ПРОЕКТИРОВАНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ ГОСГРАЖДАНСТРОЯ

РЕКОМЕНДАЦИИ

ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ СТОЛБЧАТЫХ ФУНДАМЕНТОВ В КОТЛОВАНАХ, ПОЛУЧЕННЫХ ТРАМБОВАНИЕМ ПРОСАДОЧНЫХ ГРУНТОВ

В Рекомендациях содержатся указания по проектированию и устройству столбчатых фундаментов в котлованах, полученных трамбованием просадочных грунтов. Приводятся требования на проведение опытных работ по вытрамбовыванию котлованов с целью определения размеров уплотненной зоны и несущей способности столбчатых фундаментов.

Содержатся рекомендации по возведению столбчатых фундаментов, включая: выбор оборудования, подготовку котлованов для вытрамбовывания, производство работ по трамбованию, устройство фундаментов и приемку выполненных работ. В приложении приводятся пример расчета столбчатого фундамента и журнал производства работ.

ВВЕДЕНИЕ

Возведение столбчатых фундаментов в котлованах, полученных трамбованием просадочных грунтов I типа, является дальнейшим развитием метода возведения фундаментов на просадочных грунтах, уплотненных тяжелыми трамбовками.

Особенность изложенного в настоящих Рекомендациях способа состоит в том, что трамбование используется не только для уплотнения грунтов в целях ликвидации их просадочных свойств, но и для образования котлованов под столбчатые фундаменты. За счет этого, по широко сравнению С применяемым поверхностным уплотнением грунтов, как правило, значительно уменьшается объем земляных работ за счет уменьшения на 0,6-1,2 м глубины отрывки котлована и сокращения на ту же величину высоты обратной засыпки котлованов. Кроме этого, приведенный в Рекомендациях столбчатых фундаментов по прочностным характеристикам уплотненного грунта и величине начального давления неуплотненного просадочного грунта позволяет более полно использовать несущую способность уплотненного основания и тем самым принимать минимальные размеры подошвы фундаментов.

В результате этого при сравнительно небольших нагрузках до 40-80 т столбчатые фундаменты, возводимые в котлованах, образованных трамбованием просадочных грунтов, оказываются часто более экономичныпо сравнению с другими видами фундаментов, применяемыми в практике строительства. Особенно эффективны они для сравнительно легких каркасных зданий. Однако, учитывая большое разнообразие грунтовых условий и конструкций зданий, целесообразность и **э**ффективность применения столбчатых фундаментов в каждом конкретном случае должна определяться на основе технико-экономического сравнения с другими ва-

риантами фундаментов.

Настоящие Рекомендации составлены на основе выполненных экспериментальных работ в гг. Новосибирске и Кемерове по исследованию описанного способа, опыта применения его в г. Новосибирске, а также учета опыта поверхностного уплотнения просадочных грунтов тяжелыми трамбовками, широко применяемого в настоящее время. При составлении Рекомендаций учтены замечания, полученные от научно-исследовательских, проектных и строительных организаций, а также замечания рецензента канд, техн. наук М. Г. Ефремова.

Рекомендации подготовлены НИИ оснований (канд. техн. наук Крутов В. И.) и СибЗНИИЭПом (инж. Власов Ю. В.). Научное редактирование Руководства вы-

полнено инж. Л. Е. Темкиным.

общие положения

1.1. Настоящие Рекомендации распространяются на проектирование и устройство столбчатых фундаментов в котлованах, полученных трамбованием просадочных грунтов I типа по просадочности.

Примечание. В связи с тем, что приведенные в Рекомендациях размеры уплотненной зоны основаны на данных экспериментальных исследований, проведенных в грунтовых условиях Западной Сибири, при использовании Рекомендаций в других районах СССР необходимо проводить соответствующие опытные работы по определению размеров уплотненной зоны (пп. 3.4—3.9) и уточнению коэффициентов η_{1-4} (пп. 2.7—2.8), а также по определению несущей способности столбчатых фундаментов в грунтах естественной влажности, в водонасыщенном состоянии (п. 1.8) и по определению модулей деформации грунтов основания (п. 2.20).

- **1.2.** Возведение столбчатых фундаментов в котлованах, полученных трамбованием просадочных грунтов, рекомендуется применять:
- а) при степени влажности грунта $G \leq 0.7$ и величине начального давления просадочного грунта \overline{P}_0 ниже уплотненной зоны не менее $0.8 \ \kappa c/c m^2$;
- б) для сравнительно легких зданий с нагрузкой на фундамент до $80\ \tau$.

Примечание. За величину начального давления \overline{P}_0 принимается давление, при котором начинает проявляться просадка грунта при его замачивании.

1.3. Порядок устройства столбчатых фундаментов в котлованах, полученных трамбованием просадочных грунтов, следующий.

На очищенной от растительного и насыпного слоя поверхности с помощью падающей трамбовки вытрамбовывается котлован на заданную глубину. В основании его образуется уплотненная зона (рис. 1), в пределах которой ранее просадочный грунт утратил свои просадочные свойства и обладает повышенными прочностными характеристиками и меньшей сжимаемостью.

В полученный таким образом котлован укладывают сборный фундамент или устраивают монолитный фундамент путем бетонирования враспор.

Для вытрамбовывания котлованов диаметром 1,3—1,6 м и глубиной 1—1,2 м при применении трамбо-

вок весом 5-6.5 τ и сбрасывании их с высоты 5-8 M обычно требуется 12-24 удара по одному месту.

1.4. Уплотненная зона основания представляет собой объем уплотненного грунта, имеющий форму, близ-

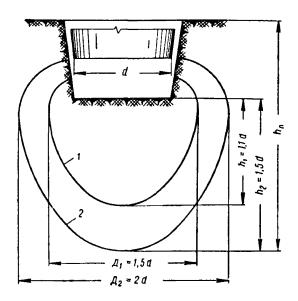


Рис. 1. Поперечный разрез вытрамбованного котлована и уплотненной зоны

1 — граница зоны достаточного уплотнения;
 2 — граница зоны уплотнения

кую к усеченному эллипсоиду вращения, и подразделяется на две части:

- а) верхняя часть зона достаточного уплотнения, в пределах которой объемный вес скелета (плотность) грунта изменяется от максимального, равного сверху $1.7-1.85\ r/m^3$, до минимального объемного веса скелета, при котором грунт утратил свои просадочные свойства, обычно равного $1.55\ r/m^3$;
- 6) нижняя часть зона частичного уплотнения, в пределах которой происходит повышение объемного веса скелета грунта не менее чем $0.02 \ T/M^3$.
- 1.5. Отсутствие просадок столбчатых фундаментов, возводимых в котлованах, полученных трамбованием

просадочных грунтов, при возможном, случайном замачивании этих грунтов обеспечивается тем, что нагрузка от фундаментов передается непосредственно на уплотненную зону основания.

В пределах уплотненной зоны происходит рассеивание напряжений, в результате которого на неуплотненные просадочные грунты передаются суммарные давления от нагрузки фундамента и собственного веса грунта, практически не вызывающие просадку.

1.6. Несущая способность столбчатых фундаментов определяется прочностью и деформативностью уплотненного лёссового грунта, а также окружающего его неуплотненного просадочного грунта природного сложения, определяемыми в водонасыщенном состоянии (при степени влажности G > 0.8).

1.7. Разработка проекта столбчатых фундаментов и производство работ по их устройству осуществляется в соответствии с требованиями глав действующих СНиП: II-Б.1-62, II-Б.2-62, II-А.10-62, III-Б.1-62, III-Б.10-62 с учетом дополнительных требований, приведенных в настоящих Рекомендациях.

1.8. В проектах столбчатых фундаментов, возводимых в котлованах, полученных трамбованием просадочных грунтов во вновь застраиваемых районах, по которым нет аналогов испытаний с целью уточнения полученной расчетом несущей способности, должны предусматриваться испытания опытных фундаментов на нагрузку, превышающую в 1,2 раза расчетную при естественной влажности и с полным промачиванием просадочных грунтов в основании, а также опытные работы по определению размеров уплотненной зоны (п. 3.4—3.9).

Количество пунктов и места проведения испытаний назначаются проектной организацией в зависимости от характера изменчивости инженерно-геологических условий площадки и размеров застраиваемой территории и должно быть не менее двух для каждой литологической разновидности грунтов, залегающих в основании.

Испытания опытных фундаментов производятся до разработки рабочего или техно-рабочего проекта по аналогии с испытаниями просадочных грунтов статической нагрузкой с помощью штампов или испытаниями свай в просадочных грунтах по заданию проектной организации, осуществляющей проект привязки здания или сооружения.

2. ПРОЕКТИРОВАНИЕ СТОЛБЧАТЫХ ФУНДАМЕНТОВ

2.1. Проекты столбчатых фундаментов, возводимые в котлованах, полученных трамбованием просадочного грунта, должны состоять из двух частей:

проекта подготовки (вытрамбовывания) котлованов, и проекта фундаментов.

ПРОЕКТИРОВАНИЕ КОТЛОВАНОВ

- **2.2.** В проекте вытрамбовывания котлованов должны быть указаны:
- а) план котлованов под все здания или сооружения (снятие растительного слоя);
- б) план расположения отдельных котлованов под столбчатые фундаменты;
- в) глубина, площадь и конфигурация (по разрезам) вытрамбовываемых котлованов;
- г) количество воды, заливаемой на один котлован в случае необходимого повышения влажности уплотняемого грунта до оптимальной;
- д) диаметр, вес, форма и высота сбрасывания трамбовки:
- е) ориентировочные размеры уплотненной зоны при заданных параметрах трамбовки;
- ж) величина плотности уплотненного грунта на глубине 25—35 *см* от дна вытрамбованного котлована;
- з) необходимое (ориентировочное) количество ударов трамбовки при вытрамбовывании котлованов.

Проект вытрамбовывания котлованов должен иметь технологическую карту производства земляных работ и вытрамбовывания и выдаваться строительной организации вместе с рабочим проектом организации работ по всему нулевому циклу.

Примечание. Для однотипных зданий и сооружений применительно к местным условиям целесообразно разрабатывать типовые технологические карты производства работ по нулевому циклу.

2.3. Глубина вытрамбовывания котлованов должна назначаться, исходя из необходимой глубины заложения фундаментов с учетом требований главы СНиП II-Б.1-62. Глубина должна быть не менее величины H (в M), определяемой исходя из необходимости по-

лучения в основании максимально возможной толщины уплотненной зоны по формуле

$$H = \frac{\varepsilon_0 - \varepsilon_{y \pi \pi}}{1 + \varepsilon_0} h_{\pi} \cdot m_0, \tag{1}$$

- где ε₀ среднее значение коэффициента природной пористости грунта в пределах уплотняемой глубины;
 - $\varepsilon_{\text{упл}}$ среднее значение коэффициента пористости уплотненного грунта, обычно принимаемое $\varepsilon_{\text{упл}} = 0.58$ 0.65;
 - h_n толщина уплотняемого слоя в m (см. рис. 1); m_0 коэффициент, учитывающий боковое перемещение грунта при трамбовании, принимаемый $m_0 = 1.2$.
- 2.4. Площадь и конфигурацию вытрамбовываемых котлованов принимают в соответствии с конструкцией и размерами фундаментов, определяемые по расчету пп. 2.15—2.19.
- 2.5. Вытрамбовывание котлованов должно производиться, как правило, при оптимальной или близкой к ней влажности грунтов. Отклонение от оптимальной влажности допуєкается не более чем на $\pm 4\,\%$ по абсолютному значению.

Оптимальная влажность W_0 в % для супесей и суглинков принимается $W_0 = W_p - (1 \div 3\%)$, где $W_p -$ влажность грунта на границе раскатывания.

2.6. Необходимое количество воды A в $\mathit{м}^3$ для получения оптимальной влажности грунта под каждый котлован определяется по формуле

$$A = \frac{\gamma_{\text{ck}} (W_0 - W_e)}{\gamma_{\text{v}}^{\text{B}} \cdot 100} \cdot h_{\text{n}} \cdot F' \cdot K_{\text{n}}, \tag{2}$$

где $\gamma_{\rm ck}$ — среднее значение объемного веса скелета грунта в уплотненной зоне, принимаемое равным $1.65~\tau/m^3$:

 W_{0} — значение оптимальной влажности грунта в %;

 W_e — естественная влажность грунта в %;

 $\gamma_{\rm v}^{\rm B}$ — удельный вес воды, равный 1 $\tau/{\it M}^{3}$;

 \vec{h}_n — то же, что и в формуле (1);

F' — площадь проекции уплотненной зоны в M^2 ;

 $K_{\rm n}$ — коэффициент, учитывающий расстояние воды в стороны и принимаемый $K_{\rm n} = 1,2.$

2.7. Толщина зоны достаточного уплотнения h_1 и зоны распространения уплотнения h_2 , в зависимости от диаметра трамбовки d, приближенно определяется из выражения

$$h_{1,2} = \tau_{|1,2} \cdot d, \tag{3}$$

- где η_1 и η_2 коэффициенты пропорциональности, принимаемые по данным экспериментальных исследований для просадочных суглинков и супесей Западной Сибири (см. примечание к п. 1.1); $\eta_1 = 1,1$; $\eta_2 = 1,5$.
- 2.8. Диаметр зоны достаточного уплотнения D_1 и зоны распространения уплотнения D_2 при применении круглой трамбовки на отметке трамбования равняется

$$D_{1,2} = \eta_{3,4} \cdot d, \tag{4}$$

- где η_3 и η_4 коэффициенты пропорциональности, принимаемые по данным экспериментальных исследований, принимаются равными (п. 1.1) $\eta_3 = 1.5$; $\eta_4 = 2$.
- **2.9.** Вес трамбовки назначается, исходя из грузоподъемности применяемого механизма, возможной высоты сбрасывания. Работа одного удара должна быть не менее 20 тм/м².

В целях унификации нижний диаметр трамбовок рекомендуется принимать равным от 0,8 до 1,6 м с шагом через 10 см.

2.10. Объемный вес скелета уплотненного грунта на глубине 25—35 см от дна вытрамбованного котлована должен быть при степени влажности уплотняемого грунта G=0,6-0,7 не менее $\gamma_{\rm ck}=1,75-1,7$ $\tau/{\it m}^3$, а при степени влажности G<0,6 $\gamma_{\rm ck}\gg 1,75$ $\tau/{\it m}^3$.

ПРОЕКТИРОВАНИЕ ФУНДАМЕНТОВ

- 2.11. Столбчатые фундаменты, возводимые в котлованах, полученных трамбованием просадочных грунтов, состоят:
- а) для каркасных зданий и сооружений, в которых несущими элементами являются колонны, — из фундаментного башмака со стаканами для заделки колонн;
- б) для бескаркасных зданий с несущими стенами — из фундаментного башмака, подколонника и ростверка.

Фундаментные башмаки делаются сборными или монолитными, а подколонники и ростверки сборными.

- 2.12. Монолитные фундаментные башмаки выполняются путем бетонирования враспор, при этом допускается применять до 30% от объема бетона камня горных пород «изюма», размером не более ¹/₅ высоты фундаментного башмака.
- **2.13.** Размеры стаканов для заделки колонн в фундаментные башмаки назначаются с учетом возможной рихтовки подколонников по высоте и в плане на \pm 5 см.
- 2.14. Столбчатые фундаменты и их основания рассчитываются по первому предельному состоянию (по несушей способности фундамента) и второму предельному состоянию (по деформациям) по осадкам фундаментов и их оснований.
- 2.15. Несущая способность столбчатого фундамента определяется для случая полного замачивания просадочных грунтов в основании, как наименьшее из значений, полученных при расчетах по следующим трем условиям:
- а) по нормативному давлению на уплотненный грунт;

б) по нормативной величине начального давления просадочного грунта естественного сложения \overline{P}_0 , залегающего ниже уплотненной зоны на глубине h_{π} (см. рис. 1);

- в) по несущей способности фундамента как бетонного или железобетонного элемента (по главе СНиП II-В.1-62). Пример расчета столбчатого фундамента приведен в приложении I.
- 2.16. Несущая способность основания столбчатого фундамента по нормативному давлению на уплотненный грунт определяется по формуле

$$P_1 = R^{\mathsf{H}} \cdot K_1 \cdot m_1 \cdot F, \tag{5}$$

где R^{H} — нормативное давление на уплотненный грунт в $\tau/м^2$, определяемое по формуле (12) главы СНиП II-Б.1-62 по прочностным характеристикам ϕ^{H} и c^{H} п. 2.17;

 K_1 и m_1 — коэффициенты соответственно однородности грунта и условий работы, принимаемые $K_1 = 0.8, m_1 = 1$;

F — площадь подошвы столбчатого фундамента в m^2 , принимаемая для сборных фундаментов, равной площади основания сборного башмака, а для монолитных фундаментов —

площади основания трамбовки (без учета возможности частичной передачи нагрузки по наклонным боковым поверхностям монолитных фундаментов).

2.17. Нормативные характеристики ϕ^{H} и c^{H} уплотненного грунта определяются в водонасыщенном состоянии в лабораторных условиях:

а) при проведении опытных работ (см. пп. 3.4—3.9) на образцах, отобранных с глубины 25—35 *см* от дна вы-

трамбованного котлована;

- б) при отсутствии опытных работ на специально уплотненных до объемного веса, указанного в п. 2.10, в лаборатории на образцах грунтов, отобранных в основании котлованов.
- 2.18. Несущая способность основания столбчатого фундамента по нормативной величине начального давления на просадочный грунт естественного сложения определяется по формуле

$$P_2 = R_2^{\mathfrak{n}} \cdot K_2 \cdot m_2 \cdot F, \tag{6}$$

где R_2^{H} — среднее нормативное давление по подошве фундамента на уплотненный грунт в τ/m^2 , определяемое по формуле (7);

 K_2 и m_2 — коэффициенты соответственно однородности грунта и условий работы, принимаемые $K_2 = 1$, $m_2 = 1$.

Среднее давление $R_1^{\rm H}$ по подошве фундамента на уплотненный грунт, при котором суммарная величина напряжений от собственного веса грунта и нагрузки фундамента на нижней границе уплотненной зоны на глубине h_2 равняется расчетной величине начального давления неуплотненного лёссового грунта равна

$$R_2^{\rm H} = \frac{P_0 - P_{6h} + \alpha P_6}{\alpha} \,, \tag{7}$$

где P_0 — начальное давление просадочного грунта на нижней границе уплотненной зоны (см. п. 1.2);

- P_{6h} природное давление на нижней границе уплотненного слоя (на глубине h_2) от уровня планировки в τ/M^2 ;
 - α коэффициент уменьшения дополнительного давления от столбчатого фундамента на глубине $h_2 = 1,5 \ d$, принимаемый для круглого фундамента равным $\alpha = 0,15$;

- P_6 природное (бытовое) давление грунта на отметке заложения фундамента в T/M^2 .
- **2.19.** Расчет столбчатых фундаментов по второму предельному состоянию (по деформациям) производится по формуле

$$S \leqslant S_{\rm np},$$
 (8)

- где S— расчетная величина осадки столбчатого фундамента, определяемая по указаниям п. 2.21;
 - S_{пр} предельная величина допустимой осадки фундамента, принимаемая по таблице главы СНиП II-Б.1-62.
- **2.20.** Расчетная величина осадки столбчатого фундамента S определяется в соответствии с требованиями главы СНиП II-Б.1-62 по схеме двухслойного основания, состоящего из уплотненного грунта $h_2 = 1,5 \ d$ (п. 2.7) и неуплотненного просадочного грунта ненарушенной структуры.

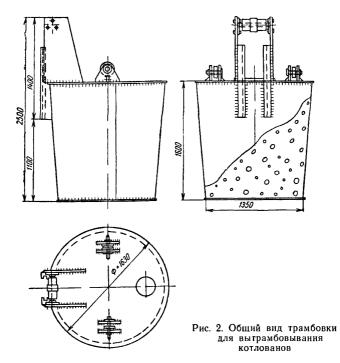
Модуль деформации грунтов основания принимается, как правило, по данным результатов полевых испытаний их статической нагрузкой стандартными штампами при естественной влажности и в водонасыщенном состоя-

нин для:

- а) уплотненных грунтов на отметке заложения фундаментов в интервале изменения давления от P_0 до $R^{\rm H}$;
- б) просадочных грунтов естественного сложения на отметке, соответствующей нижней границе уплотненной зоны, в интервале изменения давления от нуля до $1,2\,P_0$.

Значения R^{H} и P_{0} принимаются по данным пп. 2.16 и 2.18 настоящих Рекомендаций.

Примечание. При отсутствии данных испытания грунтов штампами осадки столбчатых фундаментов допускается определять как для однородного основания по среднему модулю деформации, полученному по результатам испытания опытных фундаментов.


3. ПРОИЗВОДСТВО РАБОТ

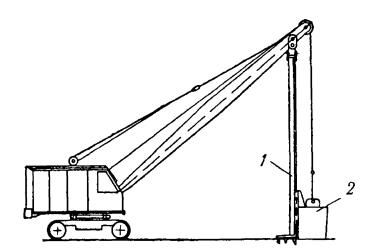
ОБОРУДОВАНИЕ ДЛЯ ВЫТРАМБОВЫВАНИЯ

3.1. Для производства работ по вытрамбовыванию применяется специальное навесное оборудование к трактору типа С-100, кранам или экскаваторам. Грузоподъемность подъемных механизмов должна превышать вес трамбовки в 1,5—2 раза.

3.2. Трамбовки для вытрамбовывания котлованов изготавливаются в механических мастерских строительства.

Диаметр и тип трамбовок должны соответствовать заданным в проекте размерам фундаментов. Во всех

случаях трамбовки должны иметь форму усеченного книзу конуса с уклоном $^{1}/_{20}$ — $^{1}/_{15}$.


Пример конструкции трамбовки для вытрамбовывания котлованов с помощью кранов приведен на рис. 2.

3.3. Механизмы, применяемые для вытрамбовывания котлованов, должны иметь направляющие рамы или другие конструкции, с помощью которых обеспечивается вертикальность падения трамбовок строго по одному и тому же месту и правильная форма котлованов. Пример конструкции направляющей штанги к крану (экскаватору) приведен на рис. 3.

1-1 ## ## ## ## ## Ysen B

Рис. 3. Общий вид механизма для вытрамбовывания и конструкция направляющей штанги

1 — направляющая штанга; 2 — трамбовка

ОПЫТНЫЕ РАБОТЫ ПО ВЫТРАМБОВЫВАНИЮ

- **3.4.** До разработки рабочего (или техно-рабочего) проекта выполняются опытные работы по вытрамбовыванию в целях определения:
- а) среднего количества ударов трамбовки заданного веса, размеров и высоты сбрасывания для вытрамбовывания котлована необходимой глубины и размеров в плане;
- б) объемного веса, влажности и прочностных характеристик $\phi^{\rm H}$ и $c^{\rm H}$ уплотненного грунта и параметров уплотненной зоны согласно пп. 2.7 и 2.8 настоящих Рекомендаций.

Кроме этого, в необходимых случаях (см. п. 1.8) проводятся испытания опытных фундаментов и определение модулей деформации уплотненных и неуплотненных просадочных грунтов штампами (см. п. 2.20).

- **3.5.** Опытные работы по вытрамбовыванию производятся в котловане, отрытом на проектную глубину возле участка производства основного объема работ.
- 3.6. Количество пунктов для опытных работ принимается согласно проекту в зависимости от изменчивости грунтовых условий.

Если участок сложен однородным грунтом, опытные работы производятся в одном пункте. При различных грунтовых условиях (по влажности, плотности и литологии) опытные работы следует производить для каждой характерной разновидности грунтов.

Примечание. При наличии результатов опытного вытрамбовывания, выполненного в аналогичных грунтовых условиях и при том же режиме вытрамбовывания (вес, размеры, высота сбрасывания трамбовки, глубина вытрамбовывания) по согласованию с автором проекта опытные работы допускается не производить и использовать полученные ранее результаты.

- 3.7. Вытрамбовывание котлованов при выполнении опытных работ производится с замером величин понижения его дна после каждых двух ударов трамбовки. Нивелировка делается по верху трамбовки в нескольких диаметрально противоположных точках. На основе этого строится график (рис. 4) понижения дна котлована в зависимости от количества ударов трамбовки.
- 3.8. После окончания вытрамбовывания по оси полученного котлована отрывается шурф (рис. 5) на глубину не менее 2 м от дна котлована для определения влажнос-

ти и плотности грунтов, а также отбора монолитов для

определения ϕ^{H} и c^{H} .

По полученным данным определяются параметры уплотненной зоны (см. рис. 1) согласно требованиям пп. 2.7 и 2.8 настоящих Рекомендаций.

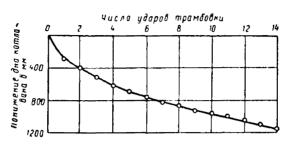


Рис. 4. Понижение дна котлована в процессе его вытрамбовывания

- 3.9. Результаты опытных работ оформляются в виде акта, на основе которого уточняется проект производства работ. К акту прилагаются:
- а) схема размещения опытного котлована;
- б) графики понижения трамбуемой поверхности в зависимости от количества ударов трамбовки (см. рис. 4);
- в) характеристика режима вытрамбовывания (вес, диаметр, высота подъема трамбовки);
- г) результаты определения объемного веса скелета грунтов;
- д) значения прочностных характеристик $\phi^{\text{н}}$ и $c^{\text{н}}$ уплотненных грунтов.

Примечание. При проведении испытаний опытных фундаментов или испытании грунтов штампами к акту дополнительно прилагаются:

- а) схема проведения испытания;
- б) результаты определения влажности до и после замачивания грунтов в основании;

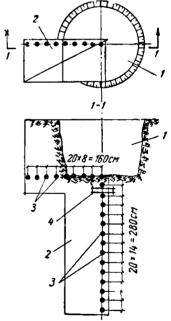


Рис. 5. Схема отбора проб из шурфа при проведении опытных работ

1 — вытрамбованный котлован; 2 — шурф; 3 — места отбора образцов для определения $\gamma_{\rm CK}$ и W; 4 — место отбора монолита для определения $\phi^{\rm H}$ и $e^{\rm H}$

- в) графики зависимости осадки от нагрузки;
- г) графики осадки от каждой ступени нагрузки во времени;
- д) вычисленные значения модулей деформации грунтов.

ПОДГОТОВКА КОТЛОВАНА ДЛЯ ВЫТРАМБОВЫВАНИЯ

- 3.10. Котлован для вытрамбовывания отрывается полностью или отдельными участками в зависимости от фронта работ. Глубина его принимается в соответствии с проектом; при этом во всех случаях должен полностью срезаться насыпной и растительный слой, содержащий более 5% по весу органических включений. Съезды в котлован рекомендуется делать с низовой стороны.
- 3.11. Для исключения попадания атмосферных вод, стекающих с окружающей территории, котлован с верховой стороны должен быть огражден специальными валиками. Дно котлована должно быть ровным, исключающим скопление атмосферных осадков.
- 3.12. Увлажнение грунтов в необходимых случаях для повышения влажности до оптимальной производится путем заливки расчетного количества воды на площади вытрамбовываемого котлована, огражденного обвалованием.

После впитывания воды поверхность котлована заново планируется, после чего приступают к вытрамбовыванию.

- 3.13. При производстве работ в зимнее время и наличии слоя мерзлого грунта до начала вытрамбовывания производится оттаивание в пределах площади грунта, равной проекции уплотненной зоны на всю глубину промерзшего слоя.
- 3.14. Перед началом работ по вытрамбовыванию на дне котлована делается разбивка центров будущих фундаментов с точностью ±3 см. От полученного центра по шаблону очерчивается место установки трамбовки. Каждому будущему котловану присваивается порядковый номер, который в дальнейшем используется для технического отчета, и в соответствии с выполненной нивелировкой намечается необходимая глубина вытрамбовывания.

ПРОИЗВОДСТВО РАБОТ ПО ВЫТРАМБОВЫВАНИЮ

3.15. Вытрамбовывание котлована на каждой отмеченной точке начинается с установки трамбовки по

центру будущего фундамента. Допускаются отклонения в плане на величину не более 3 см.

Вытрамбовывание при каждой стоянке механизма производится сразу на заданную глубину. Передвижения механизма с изменением положения трамбовки во время вытрамбовывания котлована не рекомендуются.

3.16. В процессе вытрамбовывания котлованов ведется журнал производства работ по выграмбовыванию котлованов (приложение II).

Глубина котлована должна соответствовать проектной (п. 3.15) с точностью до ± 5 см или понижению трамбуемой поверхности за 1 удар (трамбовки).

Результаты подсчетов и замеров заносятся в журнал производства работ по вытрамбовыванию котлованов. 3.17. Переход на новый участок производится толь-

- ко после окончания работ по предыдущему котловану.
- 3.18. Вытрамбовывание котлованов в зимних условиях при отрицательных температурах воздуха производится только при естественной влажности грунта без дополнительного увлажнения его.
- 3.19. При перерывах в работе по возведению фундаментов в зимнее время вытрамбованные котлованы должны предохраняться от промерзания грунта.

УСТРОЙСТВО ФУНДАМЕНТОВ

- 3.20. В целях исключения чрезмерного подсыхания или переувлажнения грунта возведение фундаментов должно производиться сразу же после окончания трамбования грунта.
- 3.21. Перед устройством фундаментов верхний разрыхленный слой уплотненного грунта доуграмбовывается легкими ударами трамбовки, сбрасываемой с высоты около 1 м, или удаляется.
- В случаях отсыпания со стенок на дно грунта он должен быть удален.
- 3.22. Перед установкой сборных фундаментных башмаков на подготовленный (п. 3.21) поверхности котлована делается выравнивающий слой из песка или тощего раствора толщиной до 3-5 см.
- 3.23. При устройстве монолитных фундаментных башмаков бетонирование их производится враспор с уплотнением бетона вибраторами.

3.24. После устройства фундаментов верхняя часть вытрамбованного котлована засыпается местным лёссовым грунтом с соответствующим уплотнением его.

4. ПРИЕМКА РАБОТ

- **4.1.** Приемка работ по вытрамбовыванию котлованов производится компесией по приемке скрытых работ на основе:
 - а) акта выполнения опытных работ;
- б) исполнительной схемы расположения котлованов в плане;
- ж) журнала производства работ по вытрамбовыванию котлованов (приложение II).
- 4.2. Приемка по возведению фундаментов производится на основе:
- а) исполнительной схемы расположения фундаментов в плане и их абсолютных отметок;
- б) двустороннего акта на скрытые работы по доуплотнению верхнего слоя или его удалению, составленного представителями заказчика и исполнителя.

ПРИМЕР РАСЧЕТА СТОЛБЧАТОГО ФУНДАМЕНТА В КОТЛОВАНЕ. ПОЛУЧЕННОМ ТРАМБОВАНИЕМ просадочного грунта і типа по просадочности

Необходимо: запроектировать столбчатый фундамент под колонну с глубиной заложения от планировки срезкой $h=1,3\,$ м н нагрузкой с учетом веса фундамента N=50 τ .

На участке возведения здания с поверхности до глубины 7 м залегают лёссовидные просадочные суглинки, имеющие:

 $\gamma_{BA} = 1,93 \ \epsilon/cm^3$;

 \overline{P}_0 — начальное просадочное давление на глубине 3—4 м от планировки срезкой $P_0 = 1, 2 \ \kappa e/cm^2$.

Уплотненные лёссовидные суглинки в верхней части на глубине 25-35 см от дна котлована в водонасыщенном состоянии имеют следующие характеристики: $c^{H} = 0.5 \ \kappa c/c M^{2}$ и $\phi = 23^{\circ}$.

Задаемся днаметром столбчатого фундамента $d=1,5\,$ м. Несущая способность столбчатого фундамента по нормативному давлению на уплотненный грунт для случая полного водонасыщения определяется по формуле (5)

$$P_1 = R^{\mathrm{H}} \cdot K_1 \cdot m_1 \cdot F. \tag{5}$$

Для фундамента диаметром d=1,5 м; F=1,76 м²; $b=\sqrt{F}=1,33$ м, φ = 23° получаем

$$R^{H} = (A \cdot b + B \cdot h) \gamma_{B,n} + D \cdot c^{H} = (0,67 \cdot 1,33 + 3,65 \cdot 1,3)1,92 + 6,24 \cdot 5 = 10,85 + 31,2 = 42,05 \ m/m^{2};$$

$$P_{1} = 42,05 \cdot 1,76 \cdot 0,8 \cdot 1 = 59,3 \ m.$$

Несущая способность столбчатого фундамента P_2 по расчетной величине начального давления на лёссовый грунт ненарушенного сложения определяется по формуле (6):

$$P_2 = R_2 \cdot F \cdot K_2 \cdot m_2, \tag{6}$$

где R_2 по формуле (7) равно

а

$$R_2 = \frac{12 - 1,92 \cdot 3,55 + 0,15 + 1,92 \cdot 1,5}{0,15} = \frac{5,68}{0,15} = 37,5 \ m/m^2,$$

$$P_2 = 37,5 \cdot 1,76 \cdot 1 \cdot 1 = 66 \ m.$$

Полученный столбчатый фундамент диаметром 1,5 м имеет несущую способность 59,3 т при нагрузке 50 т. т. е. имеется запас в 17%.

Принимаем диаметр столбчатого фундамента d=1,4 м. Тогда $R^{\rm H}=0.67\cdot 1.24+3.65\cdot 1.3 (1.92+6.24\cdot 15)=41.9$ m/m^2 , $P_1=41.9\cdot 1.54\cdot 0.81=51.6$ m.

По величине начального давления несущая способность будет равна

$$R_2 = \frac{12 - 1,92 \cdot 3,4 + 1,92 \cdot 0,15}{0,15} = \frac{5,91}{0,15} = 39,4 \ m/m^2,$$

$$P_2 = 39,4 \cdot 1,54 \cdot 1 \cdot 1 = 60,5 \ m.$$

Таким образом, принимаем столбчатый фундамент диаметром 1,4 м, который имеет несущую способность P_1 =51,6 au.

журнал производства работ по вытрамбовыванию котлованов

Наименов	ание стро	ительной орга	анизации		
Наименов	ание и м	естонахожд е н	ие строитель	ства	
Толщина	слоя прос	адочных грун	тов от повер	хности земли	м.
Глубина	заложения	н фундаменто	В	м	·
Глубина	котлована	ı	м, трамо	бования	
Влажност	ъ грунта	в основании			%.
Количест	во воды, з	алитой на уча	сток одного и	котлована	м ³ .
Диаметр	трамбовк	и	м, вес		т,
высота п	одъема		м		
№ котло- вана	Время (дата, часы)	Количество ударов трам- бовки	Глубина трамбования в м	Вид доуплот- нения верх- него слоя грунта	Приме- чание
1	2	3	4	5	6
		<u></u>			
					·
					<u> </u>

Ответственный за выполнение работ прораб (мастер)

СОДЕРЖАНИЕ

Введение
1. Общие положения
2. Проектирование столбчатых фундаментов
Проектирование котлованов
Проектирование фундаментов
3. Производство работ
Оборудование для вытрамбовывания
Опытные работы по вытрамбовыванию
Подготовка котлована для вытрамбовывания
Производство работ по вытрамбовыванию
_Устройство фундаментов
4. Приемка работ
Приложение І. Пример расчета столбчатого фундамента в
котловане, полученном трамбованием просадочного грун-
та I типа по просадочности
Приложение И. Журнал производства работ по вытрамбо-
выванию котлованов

Рекомендации по проектированию и устройству столбчатых фундаментов в котлованах, полученных трамбованием просадочных грунтов

Стройиздат Москва, К-81, Кузнецкий мост, д 9

Редактор издательства *Петрова В. В.*Технический редактор *Бочкова Н. Г.*Корректор *Л. С. Рожкова*

Сдано в набор 24.Х. 1969 г. Подписано к печати 23.ХІІ. 1969 г. Т-17152 Бумага 84×1081/₃₂ д.л. — 0,38 бум.л. 1,26 усл. печ.л. (уч.-изд. 1,08 л.) Тираж 27 000 экз. Изд. № ХІІ-2515. Зак. № 1415. Цена 5 коп.

Владимирская типография Главполиграфпрома Комитета по псчати при Совете Министров СССР Гор. Владимир, ул. Победы, д. 18-б