ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 54223— 2010 (CEN/TS 15402: 2006)

Топливо твердое из бытовых отходов ОПРЕДЕЛЕНИЕ ВЫХОДА ЛЕТУЧИХ ВЕЩЕСТВ

CEN/TS 15402:2006
Solid recovered fuels — Method for the determination of the content of volatile matter (MOD)

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ» (ФГУП «ВНИЦСМВ») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 179 «Твердое минеральное топливо»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 23 декабря 2010 г. № 1022-ст
- 4 Настоящий стандарт является модифицированным по отношению к европейскому региональному документу CEH/TC 15402:2006 «Топливо твердое из бытовых отходов. Определение выхода летучих веществ» (CEN/TS 15402:2006 «Solid recovered fuels Method for the determination of the content of volatile matter») путем изменения отдельных фраз (слов, значений показателей, ссылок), которые выделены в тексте полужирным курсивом.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

FOCT P 54223—2010

Содержание

1	Область применения
2	Нормативные ссылки
3	Термины и определения
4	Сущность метода
5	Оборудование и требования к нему
6	Подготовка пробы
7	Проведение испытания
8	Обработка результатов
9	Прецизионность
10	Э. Протокол испытаний

Введение

Выход летучих веществ определяют как потерю массы навески за вычетом влаги при нагревании твердого топлива из бытовых отходов без доступа воздуха в стандартных условиях. Результаты испытания являются относительными, поэтому для достижения воспроизводимости необходимо соблюдать постоянные скорость нагрева, конечную температуру и продолжительность нагрева. Для уменьшения окисления навески топлива при нагревании доступ воздуха к пробе должен быть ограничен. Это достигается применением тиглей с пришлифованными или притертыми крышками. Содержание влаги в аналитической пробе определяют одновременно с выходом летучих веществ.

Неорганические вещества, присутствующие в пробе, могут также терять массу при проведении испытаний, величина потерь зависит как от природы, так и от количества неорганических веществ в топливе.

Стандарт предназначен для лабораторий, производителей, поставщиков и покупателей твердого топлива из бытовых отходов, но может также использоваться административными и инспекционными организациями.

Метод, указанный в этом стандарте, идентичен ГОСТ Р 54184—2010 (EN 15148:2009) Биотопливо твердое. Метод определения выхода летучих веществ.

В настоящий стандарт включены дополнительные по отношению к европейскому документу CEN/TS 15402:2006 требования, отражающие особенности российской национальной стандартизации, а именно:

- откорректирован в 5.2 «Термопара» на соответствие требованиями ГОСТ Р 8.585—2001;
- внесены уточнения в 7.2 «Контроль за температурой в муфельной печи».

Указанные дополнительные требования выделены полужирным курсивом.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Топливо твердое из бытовых отходов

ОПРЕДЕЛЕНИЕ ВЫХОДА ЛЕТУЧИХ ВЕЩЕСТВ

Solid recovered fuels.

Determination of the content of volatile matter

Дата введения — 2012—07—01

1 Область применения

Настоящий стандарт распространяется на твердое топливо из бытовых отходов и устанавливает метод определения выхода летучих веществ и требования к применяемой аппаратуре.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 53228—2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ Р 54227—2010 (CEN/TS 15442:2006) Топливо твердое из бытовых отходов. Методы отбора проб

ГОСТ Р 54228—2010 (CEN/TS 15443:2006) Топливо твердое из бытовых отходов. Методы подготовки лабораторной пробы

ГОСТ Р 54233—2010 (CEN/TS 15414-3:2006) Топливо твердое из бытовых отходов. Определение содержания влаги высушиванием. Часть 3. Влага аналитическая

ГОСТ Р 54235—2010 (CEN/TS 15357:2006) Топливо твердое из бытовых отходов. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины и определения по ГОСТ Р 54235-2010 (CEN/TS 15357:2006).

4 Сущность метода

Метод основан на нагревании навески пробы без доступа воздуха при температуре (900 ± 10) °C в течение 7 мин. Выход летучих веществ в процентах рассчитывается по потере массы навески за вычетом потери массы, обусловленной содержанием влаги в пробе.

5 Оборудование и требования к нему

5.1 Муфельная печь

Муфельная печь с электрообогревом и зоной постоянной температуры (900 ± 10) °C. Используют муфель с глухой задней стенкой или отводной трубкой диаметром около 25 мм и длиной 150 мм на задней стенке, как показано на рисунке 1.

П р и м е ч а н и е — В муфельной печи с отводной трубкой передняя дверца должна быть плотно закрыта. Отводная трубка незначительно выступает над печью и должна быть снабжена двустворчатым клапаном для ограничения потока воздуха через печь.

Тепловая мощность печи должна быть такой, чтобы после внесения холодной подставки с тиглями температура, равная (900 ± 10) °C, восстанавливалась в течение 4 мин. Температура измеряется при помощи термопары в соответствии с 5.2.

П р и м е ч а н и е — Наблюдение температуры необходимо, чтобы исключить возможность отклонения температуры и в целях равномерного нагрева в зоне постоянной температуры.

Муфельная печь должна быть оборудована как для испытания нескольких проб — с использованием подставки для нескольких тиглей, так и для испытания одной пробы — в тигле на индивидуальной подставке. В первом случае зона постоянной температуры должна быть, как минимум, 160×100 мм, в последнем случае достаточно зоны диаметром 40 мм.

Подставку для тиглей размещают посередине печи. Температуру 900 °C следует поддерживать максимально точно с допускаемым отклонением \pm 10 °C, которое включает в себя возможные ошибки измерения температуры и неоднородность ее распределения.

Размеры в миллиметрах

Калибровочная термопара Зона постоянной температуры Система нагрева

Рисунок 1 — Муфельная печь с электрообогревом

5.2 Термопара

Термопара — два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

Зачехленная термопара должна быть постоянно установлена в муфельной печи (см. рисунок 1), причем ее спай помещают как можно ближе к центру зоны с постоянной температурой.

Незачехленная термопара должна быть достаточно длинной, чтобы доставать до центра зоны с постоянной температурой. Такая термопара используется для контроля температуры в муфельной печи.

П р и м е ч а н и е — Соотношение температура/электродвижущая сила спая термопары, находящейся при повышенных температурах, постепенно изменяется.

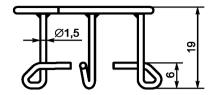
5.3 Тигель

Цилиндрический тигель должен быть оборудован плотно прилегающей крышкой. Тигель и крышка должны быть изготовлены из кварцевого стекла. Масса тигля с крышкой должна быть 10—14 г, размеры приведены на рисунке 2. Горизонтальный зазор между крышкой и тиглем не должен превышать 0,5 мм. После подбора тигель и крышка должны быть притерты друг к другу и затем помечены общим отличительным знаком.

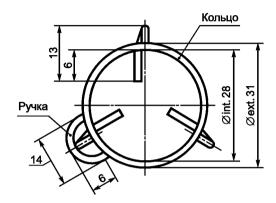
Если проводят несколько испытаний на сильно вспученном твердом топливе из бытовых отходов, используют высокие тигли (высотой до 45 мм). При этом поддерживается относительное температурное равновесие.

Размеры в миллиметрах

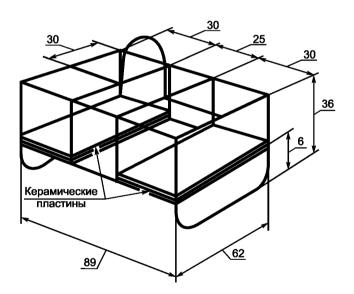
Рисунок 2 — Кварцевый тигель с крышкой


5.4 Подставка для тиглей

Подставка, на которой тигли помещают в муфельную печь, позволяет достигнуть установленную скорость нагрева.


Допускается применять следующие подставки:

- для единичного определения кольцо из термостойкой стальной проволоки с керамическим диском 25 мм в диаметре и 2 мм толщиной, опирающимся на внутренние выступы опор, как показано на рисунке 3a;
- для проведения одновременно нескольких определений каркас из термостойкой стальной проволоки с керамическими пластинами, поддерживающими тигли толщиной 2 мм, как показано на рисунке 3б.


Размеры в миллиметрах

Три «ноги» под 120°

а) Подставка для одного определения

б) Подставка для нескольких определениий

Рисунок 3 — Подставки для тиглей из термостойкой проволоки

5.5 Весы

При проведении испытаний используются весы лабораторные по *ГОСТР* 53228—2008 с точностью взвешивания до $0,1\,\mathrm{r}$.

6 Подготовка пробы

Отбор и подготовка проб проводятся по ГОСТ Р 54227—2010 (CEN/TS 15442:2006) и ГОСТ Р 54228—2010 (CEN/TS 15443:2006). Аналитическую пробу перемешивают и доводят до воздушно-сухого состояния.

Одновременно с определением выхода летучих веществ на двух навесках пробы определяют массовую долю влаги по ГОСТ Р 54233—2010 (CEN/TS 15414-3:2006).

7 Проведение испытания

7.1 Число испытаний

Необходимо провести, как минимум, два испытания.

7.2 Контроль за температурой в муфельной печи

В муфельной печи устанавливают температуру (900 \pm 5) °C с помощью постоянно установленной зачехленной термопары. В зону постоянной температуры печи помещают подставку, заполненную пустыми тиглями с крышками. Проверяют температуру под каждым тиглем на одной и той же высоте от пода печи с помощью незачехленной термопары. Найденные значения должны находиться в пределах допустимых отклонений от температуры рабочей зоны.

Допускается помещать спай незачехленной термопары на одной и той же высоте над тиглями в пределах зоны устойчивого нагрева.

Примечание— Температуру в печи проверяют до начала определений. Если в течение одного дня проводят несколько серий определений, температуру в печи контролируют один раз в день. При проверке скорости восстановления температуры в печи поступают аналогичным образом.

7.3 Определение выхода летучих веществ

Пустые тигли с крышками устанавливают на подставку для одного или нескольких тиглей и помещают в муфельную печь, предварительно нагретую до (900 ± 10) °C, и выдерживают при этой температуре 7 мин. Вынимают тигли из печи, остужают до комнатной температуры на толстой металлической пластине.

Как только тигли остынут, в каждый из них помещают навеску, взвешенную с точностью до 0,1 мг $(1,0\pm0,1)$ г аналитической пробы. Закрывают крышкой и распределяют навеску по дну тигля ровным слоем, слегка постукивая тиглем о чистую твердую поверхность.

Тигли с навесками, закрытые крышками, помещают на холодную подставку, затем переносят в муфельную печь, закрывают дверцу печи и оставляют на (420 ± 5) с.

Вынимают подставку с тиглями из печи и охлаждают до комнатной температуры на термостойкой пластине. Когда тигли остынут, их взвешивают с точностью до 0,1 мг.

Примечания

- 1 Одинаковая процедура прокаливания тигля до и во время испытаний сводит к минимуму влияние влаги, поглощаемой поверхностью тигля, а быстрое охлаждение тигля уменьшает возможность поглощения влаги нелетучим остатком.
- 2 Если делается несколько определений, то все свободные места на подставке должны быть заняты пустыми тиглями.

8 Обработка результатов

Выход летучих веществ из аналитической пробы испытуемого топлива $V^{\rm a}$, выраженный в процентах по массе, вычисляют по формуле

$$V^{a} = \frac{100(m_{2} - m_{3})}{(m_{2} - m_{1})} - W^{a}, \tag{1}$$

где m_1 — масса пустого тигля (5.3) с крышкой, г;

 m_2 — масса тигля с крышкой и пробой до нагревания, г;

 m_3^- — масса тигля с крышкой с пробой и нелетучим остатком после нагревания, г;

 W^{a} — массовая доля влаги в аналитической пробе, %.

FOCT P 54223—2010

За окончательный результат испытания принимают среднеарифметическое значение двух параллельных определений, рассчитанное с точностью до 0,01 % и округленное до 0,1 %.

При необходимости результаты испытаний пересчитывают на сухое состояние топлива по формуле

$$V^d = V^a \frac{100}{100 - W^a}. (2)$$

9 Прецизионность

Из-за различного происхождения топлива твердого из бытовых отходов, на которое распространяется настоящий стандарт, достоверно установить показатели повторяемости и воспроизводимости не представляется возможным.

10 Протокол испытаний

Протокол испытаний должен содержать:

- а) наименование лаборатории и дату проведения анализа;
- б) наименование продукции или пробы;
- в) ссылку на настоящий стандарт;
- г) используемый метод;
- д) любое отклонение от стандарта;
- е) на какой основе представлены результаты испытаний;
- ж) любые особенности, происходившие во время процедуры испытания, которые могли повлиять на его результат.

УДК 662.6:543.812:006.354

OKC 75.160.10

A19

ОКП 025149

Ключевые слова: топливо твердое из бытовых отходов, метод определения, зольность

Редактор *Н.О. Грач*Технический редактор *В.Н. Прусакова*Корректор *В.Е. Нестерова*Компьютерная верстка *И.А. Налейкиной*

Сдано в набор 23.12.2011. Подписано в печать 18.01.2012. Формат $60 \times 84 \frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 0,75. Тираж 111 экз. Зак. 60.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.